Chapter 2

Writing Windows NT
Device Drivers

IN THIS CHAPTER

+ Prerequisites to getting started
+ The building procedure

+ The structure of a device driver

Most OF THE SAMPLES IN this book are Windows NT kernel mode device drivers.
This chapter contains the information you need to build device drivers and under-
stand the samples in this book. This chapter is not a complete guide to writing de-
vice drivers. The best sources of information for detailed coverage of the topic are
Art Baker's The Windows NT Device Driver Book: A Guidefor Programmers and the
documentation that shipswith the Windows NT Device Driver Kit (DDK).

Prerequisites to Writing NT
Device Drivers

You must install the following tools to create a working development environment
for Windows NT kernel mode device drivers.

Windows NT Device Driver Kit (DDK) from Microsoft For the development of
device drivers, you need to install the Device Driver Kit on your machine. The
Device Driver Kit is available with the MSDN Level 2 subscription. The kit consists
of sets of header files, libraries, and tools that enable easy development of device
drivers.

32-hit compiler You need a 32-bit compiler to compile the device drivers. We
strongly recommend using the Microsoft compiler to build the samples in this book.

Win32 Software Development Kit (SDK) Although it is not necessary for
compiling the samples from this book, we recommend installing the latest version

of the Win32 SDK on your machine. Also, when you build device drivers using 17

18

Parti: Essentials

the DDK tools, you should st the environment variable MSTOOLS to point to the
location where the Win32 SDK is installed. You can fake the installation of the
Win32 SDK by adding the environment variable MSTOOLS with the System applet
in the Control Panel.

Driver Build Procedure

The Windows NT 4.0 Device Driver Kit installation adds four shortcuts to the Start
menu: Free Build Environment, Checked Build Environment, DDK Help, and
Getting Started. The Free Build Environment and Checked Build Environment
shortcuts both refer to a batch file caled SETENV.BAT, but have different command
line arguments. Assuming that the DDK isinstalled in directory E\DDK40, the Free
Build Environment shortcut refers to this command line:

%SystemRoot%\System32\cmd.exe /k E:\DDK40\bin\setenv.bat
E:\DDK40 free

The Checked Build Environment shortcut, on the other hand, refers to this com-
mand line;

%SystemRoot%\System32\cmd.exe /k E:\DDK40\bin\setenv.bat E:\DDK40
checked

Both shortcuts spawn CMD.EXE and ask it to execute the SETENV.BAT file with
appropriate parameters. After executing the command, CMD.EXE dill keeps run-
ning because of the presence of the /k switch. The SETENV.BAT file sis the envi-
ronment variables, which are added to the CMD.EXE processs environment
variable list. The DDK tools, which are spawned from CMD.EXE, refer to these en-
vironment variables. SETENV.BAT sets the environment variables, including
BUILD DEFAULT, BUILD_DEFAULT TARGETS, BULLD _MAKE PROGRAM, and DD-
KBUILDENV.

The drivers are compiled using the utility caled BUILD.EXE, which is shipped
with the DDK. This utility takes as input a file named SOURCES. This file contains
the list of source files to be compiled to build the driver. This file dso contains the
name of the target executable, the type of the target executable (for example, DRI-
VER or PROGRAM), and the path of the directory where the target executable isto
be created.

Each sample device driver included with the DDK contains a makefile. However,
thisis not the actual makefile for the device driver sample. Instead, the makefile for
each sample device driver includes a common makefile, named MAKEFILE.DEF,
which is present in the INC directory of the DDK installation directory.

Here is the sample makefile from the DDK sample:

Chapter 2: Writing Windows NT Device Drivers

19

#

DO NOT EDIT THIS FILE!'!! Edit .\sources. if you want to add a
new source

file to this conponent. This file merely indirects to the real
make file

that is shared by all the driver conponents of the Wndows NT DDK
#

| INCLUDE $(NTMAKEENV)\makefile.def

Some of the driver samples in this book have Assembly language files (ASM
files). You cannot refer to the ASM file directly into the SOURCES file. Instead, you
have to create a directory caled 1386 in the directory where the source files for the
drivers are kept. All the ASM files for the drivers must be kept in the 1386 directory.
The BUILD.EXE utility automatically uses ML.EXE to compile these .ASM files.

BUILD.EXE generates the appropriate driver or application based on the settings
specified in the SOURCES file and using the platform-dependent environment vari-
ables. If there are any errors during the BUILD process, the errors are logged to a
file caled as BUILD.ERR. If there are any warnings, they are logged to the
BUILD.WRN file. Also, the BUILD utility generates a file called BUILD.LOG, which
contains lists of commands invoked by the BUILD utility and the messages given by
these tools.

Structure of a Device Driver

Just as every Win32 application has an entry point (main/WinMain), every kernel

mode device driver has an entry point called DriverEntry. A special process called
SYSTEM loads the device drivers. Hence, the DriverEntry of each device driver is
caled in the context of the SYSTEM process. Each device driver is represented by a
device name in the system, so each driver has to create a device name for its device.
This is done with the loCreateDevice function. If Win32 applications need to open
the handle to a device driver, the driver needs to create a symbolic link for its de-

vice in the DosDevices object directory. This is done using a cal to
loCreateSymbolicLink. Typicaly, in the DriverEntry routine of a device driver, the
device object and the symbolic link object are created for a device and some driver
or device-specific initialization is performed.

Most of the device driver samples in this book involve pseudo device drivers.
These drivers do not control any physicd device. Instead, they complete tasks that
can be performed only from the device driver. (The device driver runs at the most
privileged mode of the processor- Ring O in Intel processors) In addition, the
DriverEntry is supposed to provide sets of entry points for other functions, such as
OPEN, CLOSE, DEVICEIOCONTROL, and so on. These entry points are provided by
filling in some fields in the device object, which is passed as a parameter to the
DriverEntry function.

20

Parti: Essentials

Because most of the drivers in this book are pseudo device drivers, the
DriverEntry routine is the same for all of them. Only the device driver-specific ini-
tialization is different. Instead of repeating the same piece of code in each of the
driver samples, a macro is written. The macro is called MYDRIVERENTRY:

fidefine MYDRIVERENTRY(DriverName,Deviceld,DriverSpecificlnit)
PDEVICE_OQBJECT deviceObject=NULL;

NTSTATUS ntStatus;

WCHAR deviceNameBuffer[1=L"\\Device\\"{#ffDriverName;
UNICODE_STRING deviceNameUnicodeString;\

WCHAR devicelinkBuffer[]=L"\\DosDevices\\"##0riverName;
UNICODE_STRING devicelinkUnicodeString;
Rt1InitUnicodeString(&deyviceNameUnicodeString.
deviceNameBuffer);

ntStatus = ToCreateDevice(DriverObject,

0.
&deviceNameUnicodeString.
{HfDeviceld,

0,
TRUE,
4deviceObject):

if (NT_SUCCESS(ntStatus)){
RtlInitUnicedeString(&devicelinkUnicodeString.
devicelinkBuffer);

ntStatus= IloCreateSymbolicLink(
&devicelinkUnicodeString,
&deviceNameUnicodeString);

if (INT_SUCCESS(ntStatus)) |

IoDeleteDevice (deviceObject);

return ntStatus;:

]

ntStatus=#DriverSpecificlnit;

if (INT_SUCCESS(ntStatus)) |

[obeleteDevice (deviceObject):

IoDeleteSymbolicLink(&devicelinkUnicodeString):

return ntstatus;

}

\

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunctionfIRP_MJ_CLOSE] =
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

Nud raniNd rrmadals o

Chapter 2: Writing Windows NT Device Drivers 21

DriverObject->DriverUnload=DriverUnioad;:
return STATUS_SUCCESS;
I else | return

ntStatus:

The macro takes the following three parameters:

+ The first parameter is the name of the driver, which will be used for
creating the device name and symbolic link.

+ The second parameter is the device ID, which uniquely identifies the
device.

+ The third parameter is the name of the function, which contains the
driver-specific initialization.

The macro expands into calling the necessary functions such as loCreateDevice
and loCreateSymbolicLink. If these functions succeed, the driver cdls the driver-
specific initialization function specified by the third parameter. If the function re-
turns failures, the macro returns the error code of the specific initialization
function. If the function succeeds, the macro fills in various function pointers for
other functions supported by the driver in the DriverObject. Once this macro is used
in the DriverEntry function, you need to write the DriverDispatch and DriverUnload
functions, as the macro refers to these functions.

The macro definition can be found in UNDOCNT.H on the included CD-ROM.

All the requests to device driver are sent in the form of an 1/0 Request packet
(IRP). The driver expects the system to call the specific driver function for al device
driver requests based on the function pointers filled in during DriverEntry. We as-
sume that dl the driver functions are filled in with the address of the
DriverDispatch function in the following discussion.

The DriverDispatch function is called with an IRP containing the command code
of IRP_MJ CREATE whenever an application opens a handle to a device driver us-
ing the CreateFile API call. The DriverDispatch function is called with an IRP con-
taining the command code of IRP_MJ CLOSE whenever an application closes its
handle to a device driver using the CloseHandle API function. The DriverDispatch
function is called with an IRP containing the command code of IRP_MJ DE-
VICE_CONTROL whenever the application uses the Devicel oControl API function to
send or receive data from a device driver. If the driver functionality is being used
by multiple processes, the driver can use the CREATE and CLOSE entry points to
perform per-process initialization.

Because al these requests end up calling DriverDispatch, you need to have away
to identify the actual function requested. You can accomplish this by looking at the

22

Parti: Essentials

MajorFunction field in an I/0 Request Packet (IRP). The request packet contains the
function code and any other additional parameters required to complete the re-
quest. The DriverUnload routine is called when the device driver is unloaded from
the system. Just like DriverEntry, the DriverUnload function is called in the context
of the SYSTEM process. Typicaly, in a DriverUnload routine, the device driver
deletes the symbolic link and the device name created during DriverEntry and per-
forms some device-specific uninitialization.

Summary

In this chapter, we covered the software requirements for building Windows NT de-
vice drivers, the procedure for building device drivers, and the structure of a typi-
cal device driver. Along the way, we explained a simple macro that you can use to
generate the driver entry code for atypical device drive.

