Peter

Gutmann
University of
Auckland

COVER FEATURE

PKE: It's
Not Deat,
Just

Resting

Despite an original design that failed to
address the marketplace’s needs, the use
of innovative public key infrastructure
models can make the technology meet

today’s requirements.

fter some false starts, X.509 has slowly

evolved into an extremely flexible public

key infrastructure model, especially when

X.509 proponents are describing its capa-

bilities. However, like other flexible
objects, PKI sacrifices some utility in trying to be
all things to all people: Mainly, its generic, all-pur-
pose identity certificates—issued by third-party cer-
tificate authorities—are not generally what the
marketplace demands. Consequently, vendors con-
tinue to develop more economically efficient, use-
ful, and imaginative business models.

X.509, originally designed to solve the problem
of controlling access to an X.500 directory, does
not address the problems that need solving today.
This creates a severe mismatch because real-world
business demands must be shoe-horned into the
X.509 model to work with certificates.

The X.509 model’s ties to X.500/LDAP directo-
ries, hierarchical structures, offline revocation, and
other design decisions that stem from its X.500 ori-
gins further complicate the situation. Ideally, the
model would instead use today’s standard business
tools and methods, such as relational databases, a
nonhierarchical organization, and online validity
and authorization checking.

The solution to these problems is to adapt the PKI
design to the real world rather than trying to con-
strain the real world to match PKI. A variety of

0018-9162/02/$17.00 © 2002 IEEE

alternative approaches, ranging from simple
workarounds to designing the application to side-
step the problem entirely, can help solve the inher-
ent problems in the standard X.509 model.

PKI’S EVOLUTION

PKT’s history dates back to Whitfield Diffie and
Martin Hellman’s seminal 1976 paper on public-
key cryptography,' which proposed a Public File
key directory that users could consult to find other
users’ public keys. Today, the Public File, which
protected all communications by signing them,
would be called a trusted directory.

Realizing some of this approach’s shortcom-
ings—including that it is a potential performance
bottleneck, that it presents a tempting target for
attackers, and that disabling access to the direc-
tory also disables users’ ability to communicate
securely—Loren Kohnfelder proposed the con-
cept of certificates in 1978.2 Certificates separate
the signing and lookup functions by allowing a
certificate authority to bind a name to a key
through a digital signature and then store the
resulting certificate in a repository. Since the
repository no longer needs to be trusted and can
be replicated, made fault tolerant, and given var-
ious other desirable properties, the CA approach
removes many of the problems associated with a
trusted directory.

August 2002

C=NZ
National CA

0 = University of Auckland

Organizational CA

0U = Computer Science

Departmental CA

CN = end user

Figure 1. X.500
directory and certifi-
cate model. A differ-
ent certificate
authority (CA) is
attached to each
part of the directory
to manage access
control, while rela-
tive distinguished
names (RDNs) define
the path through the
directory and
together form a dis-
tinguished name
(DN).

X.509

Some years after Kohnfelder published his the-
sis, developers incorporated certificate use into
X.500, a global directory of named entities admin-
istered by monopoly telecommunications compa-
nies. The X.500 directory proposed a hierarchical
database model, with the path through the direc-
tory being defined by a series of relative distin-
guished name (RDN) components that together
form a distinguished name (DN). To protect access
to the directory, its designers proposed various
access-control mechanisms, ranging from simple
password-based measures to the then relatively
novel approach of using digital signatures. Each
portion of the directory had CAs attached to it that
issued access-control certificates, as Figure 1 shows.

The original X.509v1 certificate structure had an
issuer DN and a subject DN to place the certificate
in the directory, a validity period, and a public key.
However, it lacked any indication of

¢ whether the certificate belonged to a CA or an
end entity since this information is implicit in
the directory;

e what the key in the certificate could be used
for—there was only one use, directory authen-
tication;

e what policy the certificate was issued under—
again, there was only one policy, for authenti-
cation; or

e any of the other information without which
no current certificate can be complete.

Although no real directories of this type were ever
deployed, PKI designers and users have been forced
to live with the legacy of this approach.

The main conceptual problem with X.509 cer-
tificates is that they turn simple public keys into
capabilities, tickets that control access rights and
that an end entity can use to demonstrate access to
an object. Unfortunately, capabilities make access

Computer

review—deciding who has access to what, since a
capability can be easily passed on to others—and
revocation extremely tricky. X.500 tried to address
this problem through certificate revocation lists.
CRLs are a digital analog of 1970s-era credit-card
blacklists, which were in turn modeled after even
earlier check blacklists. The standard, vague on
how these checks should work, left all the details to
the CA, the directory, or both. Other options
included simply replacing the revoked certificate
with the new one or notifying the certificate owner
“by some offline procedure.”

Figure 2 shows the final form of the X.509 cer-
tificate usage model, in this case for general digital
signature verification rather than directory authen-
tication. The relying party, wishing to verify a sig-
nature, fetches a certificate from a repository,
fetches the CRL from the same or another reposi-
tory, checks the certificate against the CRL, and
finally checks the signature against the certificate.
Originally, developers intended the repository to
be the X.500 directory. Today, in practice, it can be
anything from flat files, a relational database,
Berkeley DB, or the Windows registry, to a hard-
coded local certificate or a certificate included with
the data it authenticates. Only occasionally is the
repository actually a directory.

Identity certificate problems

The abstract model, while simple, hides many
problems. The phrase “fetches a certificate from a
repository” reflects the biggest one. Because a
global distributed directory never appeared, there
is no clear idea where the system fetches a certificate
or its CRL from.

Developers solved this well-known PKI issue,
called the “Which directory?” problem, by includ-
ing any certificates that might be needed wherever
they might be needed. For example, an SYMIME
signature usually includes all the certificates needed
to verify it, and a secure socket layer server’s com-
munication to the client usually includes the cer-
tificates needed to protect that communication. A
relying party can obtain a new certificate either by
out-of-band means such as mailing a user and ask-
ing for the certificate or by a lazy update mecha-
nism in which an application keeps copies of any
certificates it may come across in case they’re use-
ful in the future. This approach solves the certifi-
cate distribution problem at the expense of
transferring the load to an even harder problem:
certificate revocation.

Even if the user knows which directory to look
in, there’s no way to determine which DN to use to

find a certificate, or which of several identical
names being searched on belongs to the person
whose key the user is seeking.

This raises another standard PKI issue, the
“Which John Smith?” problem. As a result, the cur-
rent version of X.509 turns a key distribution prob-
lem into an equally intractable name distribution
problem. Although it’s possible to disambiguate
names through ad hoc measures such as adding the
last four digits of a user’s Social Security number
to the DN, doing so results in a unique DN that is
useless for name lookups because no third party
will know how to construct it.

Other certificate models such as the Pretty Good
Privacy and Simple Public Key Infrastructure/
Simple Distributed Security Infrastructure (SPKI/
SDSI) ones have their own approaches to the nam-
ing problem. SDSI recognized that globally unique
names were only necessary in a few special cases.
Instead, servers usually require only a name mean-
ingful within a limited community. For example,
while the name “John Smith” is essentially mean-
ingless within the “USA” community, it is mean-
ingful when we restrict the community to “people
allowed to use this server.” SPKI then paired SDSI
names with the concept of using the public key as an
identifier to provide global uniqueness.*

PGP solves the problem less rigorously but
equally effectively by letting users choose any kind
of identifier they want for certificates. These gen-
erally consist of an e-mail address and accompa-
nying user name. Because the e-mail address is
unique and PGP is used mostly for e-mail commu-
nications, this approach works reasonably well.

In effect, PGP and SPKI employ the same con-
ceptual model, using a locally meaningful identifier
within a specific domain. PGP implicitly sets the
domain to “e-mail addresses,” whereas SPKI implies
the domain by defining the restricted community in
which the certificate is used—to authenticate to a
particular server, for example. Credit card and bank
account numbers and Social Security and tax iden-
tifiers are other examples of such schemes. Although
easily confused when presented without a disam-
biguating context, these identifiers are meaningful
in an application’s particular domain.

X.500 DN, on the other hand, did not fit a real-
world domain, and most users didn’t understand
them. As a result, except for a few carefully man-
aged, centrally controlled schemes, users employed
de facto local naming schemes, cramming anything
into the DN until it became a mostly meaningless
blob whose sole purpose was to uniquely identify
a public key.

‘Ah m‘

Certificate e CRL
Check
lCheck
Signature

All three of these approaches, two by design and
one by coincidence, eventually found the same solu-
tion of using a locally unique identifier such as an
e-mail address and a user name within a specific
domain. This solution mostly resolved the identi-
fication issue, which led to the next problem: revo-
cation.

REVOCATION

Certificate revocation doesn’t really work, par-
ticularly when implemented as envisaged in
X.509.° The problem with CRLs is that they vio-
late the cardinal rule of data-driven programming;:
Once you have emitted data, you can’t take it back.
Viewing the certificate issue-revocation cycle as a
proper transaction-processing transaction, the cer-
tificate issue becomes a PREPARE command and the
revocation becomes a COMMIT command. This
means, however, that nothing can be done with the
certificate in between the two commands because
any action would destroy the transaction’s atom-
icity and consistency properties. Allowing other
operations with the certificate before the transac-
tion has been committed results in nondeterminis-
tic behavior, which provides little value for relying
parties.

CRL problems

Several problems make CRLs difficult to work
with and unreliable as a certificate-status-propa-
gation mechanism. Critical applications require
prompt revocation—or, more accurately, real-time
certificate-status information—and CRLs don’t
really solve this core problem, for several reasons.

Developers based the CRL concept on the credit-
card blacklists used in the 1970s. Credit card com-
panies periodically printed booklets of canceled
card numbers and distributed them to merchants,
expecting them to check any cards they handled
against the blacklist before accepting them. The
same problems that affected credit-card blacklists
then affect CRLs today:

e the CRLs aren’t issued frequently enough to
be effective against an attacker who has com-
promised a card or private key,

August 2002

Figure 2. Final X.509
certificate usage
model, used in this
case for digital sig-
nature verification.

In one widely used
application,
certificate-

revocation-list

checking caused

every certificate

operation to stall

for a minute,

after which it timed
out and processing
continued as hefore.

e distributing them is expensive,

e checking them is time-consuming, and

¢ a denial-of-service attack easily renders
them ineffective.

When a CA issues a CRL, it bundles up a
blacklist of revoked certificates along with an
issue date and a second date indicating when
the next blacklist will become available. The
CA expects a relying party to fetch the cur-
rent CRL and use it to check the validity of
the certificate. In practice, this rarely occurs
because users and applications don’t know
where to find a CRL, they put off using it

until things grind to a halt, or they disable

the function because fetching the CRL and

checking the list takes too long. In one widely
used application, CRL checking caused every oper-
ation that used a certificate to stall for a minute
while the application groped around for a CRL,
after which it timed out and processing continued
as before.

CRLs suffer from several other practical prob-
lems. To guarantee timely status updates, the server
must issue CRLs as frequently as possible. Yet issu-
ing the CRL increases the load on the server and
the network that transmits it and, to a lesser extent,
on the client that fetches it. Issuing a CRL once a
minute provides moderately timely revocation at
the expense of massive overhead as each relying
party downloads a new CRL. On the other hand,
delaying the issuance to once per hour or day does
not provide timely revocation.

CRLs also lack mechanisms for charging relying
parties for checking revocation. When a CA issues
a certificate, it charges the user a fee. The amount
the CA charges is typically tied to how much check-
ing it does before issuing the certificate. On the other
hand, users expect CAs to create and issue CRLs
for free. Neither the user nor the CA can say defin-
itively who will validate the certificate, how often
it will be validated, or what degree of latency will be
acceptable. This situation serves as an active disin-
centive for CAs to pay much attention to CRLs
because creating and distributing them requires pro-
cessing time, one or more servers, and significant
amounts of network bandwidth.

Who pays for general PKI operations is also a
concern. For example, in the Secure Electronic
Transaction (SET) PKI, the issuing bank carries the
cost and associated risk of handling certificate
enrollment and issue, while the acquiring bank
obtains all the benefits. Although sharing the cost
between both banks could mitigate this flaw, it

Computer

provided one of the many nails that sealed SET’s
coffin.

Another approach charges a per-certificate-use
transaction fee to cover the cost of running the PKL
In a US General Services Administration project,
the cost ranged from $.40 to $1.20 for each trans-
action,® a considerable disincentive to certificate
use. A more general CA practice is to bury the per-
transaction costs elsewhere, although how well this
will work when the PKI project leaves the pilot
stage remains to be seen.

Proposed CRL workarounds

CRLs with built-in lifetimes all expire at the same
time, forcing every relying party to fetch a new CRL
simultaneously, which leads to huge peak loads
whenever the current CRL expires. In effect, CRLs
contain their own built-in distributed denial-of-ser-
vice attack. Many solutions to this problem have
been proposed, including

e staggering CRL expiry times for different cer-
tificate classes so that they don’t expire simul-
taneously,

e overissuing CRLs so that multiple overlapping
CRLs exist at one time,

e segmenting CRLs based on the revocation
information’s perceived urgency so thata CRL
with a “key compromise” reason code would
be issued more frequently than one with an
“affiliation changed” reason code, and

¢ issuing delta CRLs that augment the main
CRL.

There is little real-world experience with any of
these mechanisms, although discussions on PKI
mailing lists indicate that attempts to implement
them will prove interesting.

SET uses one possible solution to the problem,
taking advantage of certificates’ ties to credit cards
to avoid using CRLs altogether. SET cardholder
certificates—which are expected to be invalidated
relatively frequently—are revoked by revoking the
card to which they’re tied. Merchant certificates—
which are invalidated less frequently—are revoked
by removing them from the acquiring bank’s data-
base. Acquirer payment gateway certificates—
which are seldom invalidated—are short-term
certificates that can be quickly replaced.

This process takes advantage of existing mecha-
nisms for invalidating certificates or designs around
the problem so that PKI-like revocations are not
needed. Account Authority Digital Signatures
(ANSI X9.59) uses a similar scheme to design

around the problem. AADS uses a simple extension
to existing account-based business infrastructures.
The extension stores public keys on a server that
handles revocation by removing the key. The most
widely used key-management system for the secure
shell works along similar lines, tying keys to Unix
user accounts.

SPKI takes a slightly different approach by
implicitly making validation part of the certificate-
processing operation. SPKI prefers revalidation,
which represents a positive statement about a cer-
tificate’s validity, to CRLs, which represent a neg-
ative statement. This approach works because
positive assertions are much more tractable than
negative ones—consider, for example, the relative
difficulties of proving that aliens exist versus prov-
ing that they don’t.

The time interval for SPKI certificate revalida-
tion is shorter than the traditional year granted to
X.509 certificates and is based instead on a risk
analysis of potential losses from excessively long
certificate-validity periods. To avoid clock skew
problems, SPKI also allows one-time revalidations
that guarantee the certificate’s validity for a single
transaction.

Another alternative takes an application-specific
approach to avoiding revocation. Consider the case
in which authority-to-individual communications,
such as those for tax filing purposes, must be
secured. The obvious solution involves using
S/MIME or PGP-secured e-mail. A simpler solution
uses an SSL Web server with appropriate access-
control measures. The server handles revocation by
disabling access for the user, which is

e instantaneous, because there’s no CRL propa-
gation delay;

e consistently applied because we don’t have to
worry about whether the client software will
check for revocation or not; and

o effectively administered from the server con-
taining the data, not an external CA.

Other issues such as the “Which directory?” and
“Which John Smith?” problems also disappear
because everyone knows who the tax department
is, and the tax department knows who its users are.

SSL itself provides an example of handling revo-
cation in an application-specific manner. Using the
X.509 CRL reason codes as usage cases, SSL han-
dles

e cessation of operation by shutting down the
server;

0CSP
responder
lFetch
Validate
Certificate
*Check
Signature

e affiliation changed and superseded by obtain-
ing a new certificate for the changed server
URL—changing the subject’s name is a stan-
dard, if clunky, approach to revoking a capa-
bility; and

e key compromise by hoping it doesn’t occur,
since it’s unlikely to be useful unless attackers
inform the server administrator that they’ve
stolen the key.

Issues such as these prompt some analysts to
refer to the SSL certificate management process as
“certificate manufacturing” rather than PKI
because its only real infrastructure component is
the one that, once a year, exchanges the client’s
credit card number for a collection of bits.

Online revocation authorities

The Online Certificate Status Protocol, a recently
proposed solution for the revocation checking prob-
lem,” provides a responder that can be queried
online, as Figure 3 shows. In effect, the OCSP
responder functions as a special-purpose CRL-cre-
ation mechanism. This approach solves many prob-
lems inherent in monolithic CRLs by creating a
one-off, fresh, single-entry CRL in response to a
query. In contrast, as Figure 2 shows, the CRL-based
model requires relying parties to repeatedly fetch a
huge number of irrelevant entries to obtain status
information for the one certificate they care about.

OCSP comes with a cost, however. Instead of
preparing a CRL as a background, offline opera-
tion, the CA must now perform a certificate lookup
and pseudo-CRL-creation operation for each
query. To make OCSP economically feasible, the
CA must charge for each revocation check. OCSP
handles this by signing requests to identify the
sender for billing purposes.

Despite their shortcomings, CRLs are useful
when a revocation check is, quite literally, worth-
less. For example, consider a signed executable
such as ActiveX controls. A vendor can buy a rel-
atively inexpensive code-signing certificate from a
commercial CA and use it to sign software that it
distributes over many machines. With an installed
base that spans millions of Windows machines, all

August 2002

Figure 3. Certificate
usage model with
the Online
Certificate Status
Protocol (OCSP)
responder, which
functions as a spe-
cial-purpose CRL-
creation mechanism
and solves many
problems inherent in
monolithic CRLs.

Figure 4. Certificate
hierarchy (left), with
cross-certification
(right), which turns
the hierarchy of
trust into the
spaghetti of doubt.

containing hundreds of ActiveX controls, the costs
involved in providing a useful online revocation
checking service for code-signing certificates would
be astronomical.

As a result, there is a strong financial incentive
for CAs to do as little revocation handling as pos-
sible for these certificates, beyond paying lip ser-
vice in the form of an infrequently issued CRL
located at a semidocumented location. CRLs are
perfect for scenarios such as this. CRLs are also
useful when a statutory or contractual obligation to
use them exists, so that a relying party must demon-
strate CRL use for due-diligence purposes or to
avoid liability in case of a dispute.

OCSP problems

OCSP’s major shortcoming is that, instead of
providing a simple yes-or-no response to a validity
query, it uses multiple, nonorthogonal certificate
status values because it can’t provide a truly defin-
itive answer. This vagueness stems at least in part
from the original CRL-based certificate status
mechanism. Because a CRL can provide only a neg-
ative result, the fact that a certificate is not present
in a CRL doesn’t mean it was ever issued or is still
valid. Some OCSP implementations may report the
“I couldn’t find a CRL” response as “not
revoked/good” or relying parties will interpret the
response as “good” because it’s not the same as
“revoked,” which is assumed to be “not good.”
Opinions on the exact semantics of the various
responses vary somewhat among implementers.

A fundamental problem of blacklist-based
approaches such as CRLs and OCSP is that they
ask entirely the wrong question. Instead of asking,
“Is this currently valid?” they ask, “Has this been
revoked?” because that’s the only question a black-
list can answer. This is not a problem with SPKI
because it uses a certificate revalidation process.

A related problem affects CRLs more than OCSP
itself. As with their 1970s credit-card-blacklist
cousins, CRLs represent an inherently offline oper-
ation in an almost completely online world. Credit
card vendors realized this when they began using
full online verification of transactions in the 1980s.
As with online credit-card checks, a response to a
query about a certificate only needs to return a sim-
ple Boolean value, either “The certificate is valid

Computer

right now” or “The certificate is not valid right
now.” Unfortunately, OCSP cannot do this.

CERTIFICATE CHAINS

The initial problem with multiple certificates is
constructing a path from a leaf certificate to a
trusted top-level root CA and validating the cer-
tificate chains once the path has been built. Cross-
certification, in which CAs in disjoint hierarchies
cross-certify each other, can make this problem
almost intractable. When multiple certificate paths
lead from a given leaf certificate, all with different
semantics, the certificate paths can contain loops,
and, in extreme cases, the semantics of a certificate
can change across different iterations of the loop.
Cross-certification turns the hierarchy of trust into
the spaghetti of doubt, with multiple certificate
paths possible from leaf to roots, as shown in
Figure 4. An alternative, bridge CAs, avoids this
problem to some degree by adding a single super-
root that bridges two or more root CAs.

To help address the problem of verifying all cer-
tificates in a chain, OCSP uses an access concen-
trator or gateway that farms out the revocation
checking to one or more OCSP responders, CRL-
based implementations, or both, as Figure 5 shows.
The Identrus PKI uses gateways, called transaction
coordinators, to provide real-time certificate status
information to its members. This makes billing eas-
ier, a required feature because each Identrus trans-
action comes with certain guarantees absent from
general CAs.

Working with certificate chains also leads to an
extreme case of the “Which directory?” problem.
This approach requires locating not just a single
directory but multiple directories for the different
CA certificates and CRLs. Cross-certificates com-
plicate the problem because the server must now
locate all certificates on all possible paths. This can
become an intractable problem because it is impos-
sible to determine whether further paths exist based
on certificates in as-yet-undiscovered repositories.

One proposed solution uses path construction
servers, a type of smart repository that offloads the
chain-building process from the end user. While
effective in theory, this approach simply offloads
all the problems to the PCS, while adding the prob-
lem of communicating certificate selection criteria
from the client to the server. The path validation
server concept extends the approach by offloading
the validation process as well as the path con-
struction process, which requires communicating
even more constraint information to the server.
Both of these approaches, which effectively imple-

ment PKl-crawler analogs to standard Web
crawlers, also suffer from the usual “Which direc-
tory?” problem.

CLOSING THE CIRCLE

Gordon Bell once observed that a system’s most
reliable components are those that aren’t there.
Based on this principle, removing the need to per-
form revocation checking in the X.509 sense would
solve a significant portion of the PKI problem.
Working with a PKI community of interest—a
restricted group of participants that agrees to play
by certain rules—is one approach to achieving this
goal. A COI can quantify the risk reliably enough
to make meaningful warranties to relying parties,
either by requiring that all participants follow cer-
tain rules, or by executive fiat or government
decree. In contrast, an open environment, in which
a certificate represents a general-purpose ID,
exposes the issuing CA to virtually unlimited lia-
bility—unless it specifically disavows liability for
its certificates, as many public CAs indeed do.
Disavowing responsibility for identity in ID cer-
tificates seems somewhat ironic, however.

Since the entity that accepts the risk can dictate
the technology used, these closed communities can
use PKI models that differ radically from the tra-
ditional X.509 design. The communities will likely
be small and tied together by a common interest or
policy requirements. The automated clearinghouse
network, in which the participants are tied together
by both a very stringent set of operating require-
ments and the ACH system’s operating rules, exem-
plifies such a community. Members agree to comply
with the community’s rules, and they are then con-
tractually bound to stand behind signatures made
with their private keys. These communities man-
age risk by admitting only members who can afford
to carry it and who have the means to manage it.

An unwritten benefit of operating within a closed
community is that supporting a fixed, hard-coded
set of rules avoids the ongoing feature creep inher-
ent in PKI standards and technology. At some
point, the feature set can be frozen, everyone agrees
to work within the given framework, and the PKI
can be realized.

Bypassing revocation checking

A community can address the revocation prob-
lem by collapsing the certificate-fetch-and-valida-
tion process even further than OCSP provides for.
Both CRLs and OCSP fetch a certificate first, then
immediately fetch revocation or validity informa-
tion for that certificate. An alternative is to com-

@ 0CSP
¢ Fetch T¢

Certifcate j——| OCSP | —p 0CSP
chain - gateway || q—
LCheck Validate *T

Signature 0CSP

bine the two into a single fetch of a known-good
certificate from a server known by the community.
Although this approach requires a trusted server,
OCSP also requires a trusted server to perform the
same function, but in a more roundabout manner.
This combined fetch technique derives from the
original 1970s concept of public-key distribution in
which keys were held in public directories or key
distribution centers that handed out only known-
good keys in response to queries.

This approach relies on using established mech-
anisms such as security policies and auditing that
the members of the community have agreed upon or
that have been determined sufficient to carry evi-
dentiary weight in court. For example, significant
legal precedent is attached to the US’s “business
records exception,” which allows computer-gener-
ated records “kept in the course of a regularly con-
ducted business activity” to be treated as evidence
rather than as hearsay.® It’s probably preferable to
rely on this type of mechanism than to become the
test case for PKI.

Bypassing certificates

In practice, because we are really only interested
in the public key, we can go beyond simply col-
lapsing two queries into one, requesting only a copy
of the appropriate key needed to perform an oper-
ation such as verifying a signature. This returns us
to Diffie and Hellman’s original Public File
approach.’ Most certificate-based applications
already use this technique, which submits a request
for a public key to a certificate store on the local
machine, for example the Windows registry, and
obtains a key in response that, as far as the system
knows, is associated with the given entity. Making
the key lookup a remote rather than local query
simply transfers the administrative burden for key
management to a centralized location rather than
having end users perform it ad hoc or not at all.

A final step can collapse the query-then-validate
process into a single stage. A server trusted to pro-
vide a known good key can just as easily validate
a signature directly. This is analogous to the online
credit-card-processing model in which the relying
party can perform the entire transaction online.

August 2002

Figure 5. OCSP cer-
tificate verification.
OCSP offloads the
revocation-checking
process to a
gateway that farms
out the checking for
a certificate chain.

PKI Design Recommendations

The various public key infrastructure
issues can be condensed into a set of rec-
ommendations for working with certifi-
cates.

Identity

Choose a locally meaningful identifier
such as a user name, e-mail address,
account or employee number, or similar
value. Attempts to do anything meaning-
ful with distinguished names are proba-
bly doomed to failure. “Locally meaning-
ful” doesn’t necessarily mean meaningful
to humans. For example, an authoriza-
tion mechanism keyed off an account
number is the logical choice for use as a
local identifier. On the other hand, objects
that are pure tickets—capabilities—don’t
require any identity information.

Revocation

If possible, design the PKI so that it does
not require certificate revocation. The best
way to handle revocation is to avoid
it entirely. The Secure Electronic Trans-
action system, Account Authority Digital
Signatures (AADS), and the secure shell
and secure sockets layer (SSL) protocols
exemplify this approach.

If it isn’t possible to avoid revocation
by designing around it, consider using a
PKI mechanism that allows certificate-

freshness guarantees, thereby avoiding the
need for explicit certificate revocation. A
repository that returns only known-good
certificates exemplifies this approach.

If you can’t avoid revocation, use an
online status query mechanism. The best
mechanism gives a direct indication of
whether a certificate is valid or not, a
slightly less useful one provides a certifi-
cation revocation list (CRL) response.
The online certificate status protocol
exemplifies this approach.

For cases in which revocation infor-
mation is of little or no value, use CRLs.
Revocation of code-signing certificates
exemplifies this approach.

Application-specific PKls

Certificates and PKlIs specifically
designed to address a particular problem
are much easier to work with than a one-
size-(mis)fits-all PKI design. For example,
simple public key infrastructure (SPKI)
certificates bind a public key to an autho-
rization to perform an action. X.509, on
the other hand, binds a key to an often
meaningless identity that must then be
mapped, via some unspecified means, to
an authorization. SPKI is therefore ideal
if the goal is to authorize a particular
action or grant a capability. Similarly,
Pretty Good Privacy handles secure e-mail

communication and employs a laissez-
faire key management model that
imposes few restrictions on users.

In many situations, no PKI is necessary,
vendor claims to the contrary. This holds
particularly true when two or more par-
ties have an established relationship. For
example, the secure shell protocol avoids
dependence on a PKI by having the user
copy the required public keys to where
they’re needed, an approach feasible for
its application domain. Likewise, AADS
takes advantage of existing business rela-
tionships to tie public keys to accounts.

In some cases, even PKI-less public-key
encryption may be unnecessary. If asking
a bank to confirm that a particular cer-
tificate is still valid is not faster or easier
than asking the bank to directly autho-
rize a transaction, it makes sense to per-
form the transaction directly. If external
constraints specifically require using
X.509, nothing requires using it as any-
thing more than a somewhat complex bit-
bagging scheme. If you have a means of
distributing and managing certificates
that isn’t covered in a formal standard but
that fulfills its intended function, go ahead
and use it. This provides the benefits of
broad X.509 toolkit and crypto token
support from vendors while allowing you
to choose a PKI model that works.

An early certificate model proposed by Donald
Davies and Wynn Price in the late 1970s provided
a precedent for this approach.” In this model, arbi-
trators and key registries—a CA’s predecessors—
provided a dispute resolution mechanism to relying
parties by issuing an interactive certificate attesting
to a key’s validity in the context of a particular
transaction. SPKI’s one-time revalidations provide
another example of this idea. There are already
trends back to this type of model for use with bank-
ing and other settlement-oriented transactions.

The Security Assertion Markup Language em-
bodies a related concept. SAML provides an XML-
based mechanism for describing authorization
mechanisms and authentication events that, how-
ever, still rely on an unspecified external PKI. SPKI
finally completes the circle by combining the autho-
rization specification system with a built-in,
special-purpose PKI. This PKI is designed to avoid

Computer

the problems of the traditional X.509 PKI while
providing a direct authorization management sys-
tem, rather than stopping short at identification and
leaving the mapping from identity to authorization
as an exercise for the user.

he proposed approaches for adapting the PKI

design to serve the market’s current needs I've

described, and my advice for implementing
them contained in the “PKI Design Recom-
mendations” sidebar, provide a starting point for
freeing the technology from the legacy of its
X.500/0SI origins. By taking its strong points—
broad vendor support in the form of software
toolkits and crypto tokens—and adapting it to cur-
rent standard practices—online processing and val-
idation, Web-based storage and distribution, and
real-world IDs such as e-mail addresses or account

numbers—PKI can be turned into a tool capable of
meeting current requirements. It remains to be seen
whether X.509 can meet this challenge, or whether
the way forward will be led by alternatives such as
SPKI and XML-based certificates, which already
use these techniques.

References

1. W. Diffie and M. Hellman, “New Directions in Cryp-
tography,” IEEE Trans. Information Theory, vol. 22,
no. 6, 1976, pp. 644-654.

2. L.Kohnfelder, “Toward a Practical Public-Key Cryp-
tosystem,” bachelor’s thesis, Dept. Electrical Engi-
neering, MIT, Cambridge, Mass., 1978; http://theses.
mit.edu/Dienst/UI/2.0/Composite/0018.mit.theses/
1978-29/1.

3. “Information Technology? Open Systems Intercon-
nection? The Directory: Authentication Framework,”
ISO/IEC 9594-8, 1993, also ITU-T Recommenda-
tion X.509, v2.

4. C. Ellison, “SPKI Requirements,” RFC 2692, Sept.
1999; http://www.ietf.org/rfc/rfc2692.txt.

5. P. Hope, “Certificate Revocation: Why You Should
Do It and Why You Don’t,” ;login, Dec. 2001, pp.

Help Shape
the IEEE
Computer
Society of
TOMOoOrrow.

Vote for 2003 Computer Society officers.

Polls open from 9 August to 4 October

36-40; http://www.usenix.org/publications/login/
index.html.

6. US General Accounting Office, “Advances and Re-
maining Challenges to Adoption of Public Key Infra-
structure Technology,” GAO-01-277, 2001; http://
www.cio.gov/fpkisc/documents/gao-01-277pkireport.
pdf.

7. M. Myers et al., “Online Certificate Status Protocol—
OCSP,” RFC 2560, June 1999; http://www.fags.org/
rfes/rfc2560.html.

8. Federal Rule of Evidence 803(6), “Hearsay Excep-
tions; Availability of Declarant Immaterial”; http://
www.law.umich.edu/thayer/prop803.htm.

9. D. Davies and W. Price, Security for Computer Net-
works: An Introduction to Data Security in Telepro-
cessing and Electronic Funds Transfer, John Wiley &
Sons, New York, 1984.

Peter Gutmann is a researcher at the University of
Auckland. His research interests include security engi-
neering, secure cryptographic hardware, and PKI.
Gutmann received a PhD in computer science from
the University of Auckland. Contact him at pgut001@
cs.auckland.ac.nz.

IEEE ‘2

COMPUTER

hitp://computer.org/election/ SOCIETY

August 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

