RFID

1

RFID tags

- RFID = Radio-Frequency IDentification
- RFID devices are called tags or transponders
- More powerful RFID tags can be called (contactless) smartcards
- Inductive coupling is used for
 - energy transfer to card
 - transmission of clock signal
 - data transfer
 - simple tags only support data transfer from the tag to reader

Various kinds of RFID tags

- Animal identification RFID tags (ISO 11784 & 11785)
 - only transmit permanently programmed id code
- Advanced transponders (ISO 14223)
 - have more data and support writing & write-protection
 - compatible with ISO 11785
- Contactless smartcards
 - close coupling: a few mm (ISO 10536)
 - proximity: less than 10 cm (ISO 14443)
 - vicinity: more than 10 cm (ISO 15693)

Many of these contactless smartcards are *not* very smart: memory cards instead of microprocessor cards

Various kinds of RFID tags

- Container identification (ISO 10374)
 - active battery-operated transponder
- Anti-theft systems (VDI 4470)
 - only one bit of information
- Item management (ISO 18000 + others)
 - ie rfid bar codes
 - GTAG (Global Tag), joined effort of EAN (European Article Numbering Association) and UCC (Universal Code Council)

pros & cons of contact vs contactless?

- pros contactless
 - easy of use
 - no wear & tear of contacts on card and terminal
 - less maintenance
 - less susceptible to vandalism
- cons contactless
 - easier to eavesdrop on communication?
 - terminal communication easier to eavesdrop than tag communication
 - communication possible without owner's consent
 - for replay or relay man-in-the-middle attacks
 - cheap tags have limited capabilities to provide security (eg amount of data, access control model, crypto)
 - illustration later using ov card

Anti-collision

Additional complexity of contactless cards:

- several cards may be activated by reader
- anti-collision protocol needed for terminal to select one card to talk to

Anti-collision protocol may leak information!

• eg test version of Dutch passport used a *fixed* number in the anti-collision protocol. Real one uses random number

Memory transponders

- read-only
 - communication one way only
- writable, no write-protection
 - 1 byte to 64 Kbyte, in fixed blocks, eg 16 bit, 4 byte,...
 - no protection on writing
- writable, some write-protection
 - password/key or more complicated authentication procedure
 - state machine operating system
 - possible offering segmented memory
 - each memory segment with its own key
 - important standard: MIFARE
 - possibly dual interface

Microprocessor transponders

- like normal smartcard, but (also) wireless
- but with a lot less power
 - ISO 14443 5 mW
 - GSM 11.11 50 mW
 - ISO 7816 300 mW
- MIFARE plus
 - contactless interface behaves as MIFARE memory card
 - contact interface is regular smartcard

RFID hacking

- eavesdrop on communication
- talk to real tag or terminal
- then
 - hack a real RFID tag
 - use a blank one
 - but MIFARE serial number cannot be written
 - simulate the tag
 - new mobile phones with NFC (Near Field Communication) can reportedly be used to simulate RFID tag and act as reader

MIFARE

- widely used proprietary standard by NXP (formerly Philips)
- several versions, incl.
 - MIFARE Ultralight, provides only memory with some write restrictions (locking)
 - MIFARE standard 4k, also provides authentication and communication encryption by proprietary CRYPTO01 algorithm

Info available from eg www.nxp.com/products/identification/mifare mifare.net

Common MIFARE weaknesses

 75% of MIFARE RFID applications use default (transport) keys or keys used in examples in documentation

[Source: Lukas Grunwald, DEFCON14, 2007]

 A0A1A2A3A4A5 is an initial transport key that many tags ship with. Googling for A0A1A2A3A4A5 produces links to documentation with other example keys to try!

MIFARE Ultralight

- No keys to protect memory access
- Instead some read-only and write once memory for security
- Memory organised in 16 pages of 4 bytes
 - first part is read-only
 - includes 7 byte serial number
 - second part is One Time Programmable (OTP)
 - you can write 1's, not 0's
 - includes data for locking
 - third part is readable & writable

MIFARE Ultralight memory layout

MIFARE ultralight memory access control

2 bytes for locking:

- 12 bits to lock data pages 4 .. 15 $: L_i$
- 1 bit to lock OTP area (page 3) : L_{opt}
- 3 bits to block locking of OTP, pp 4-9 and 10-15:

 $\mathsf{BL}_{\mathsf{OTP}},\,\mathsf{BL}_{4\text{-}9},\,\mathsf{BL}_{10\text{-}15}$

All these bites are OTP

L ₇	L_6	L_5	L_4	LOTP	BL ₁₀₋₁₅	BL ₄₋₉	BLOTP
L ₁₅	L_{14}	L ₁₃	L_{12}	L ₁₁	L ₁₀	L ₉	L_8

OV card

- MIFARE Ultralight for disposable tickets
- lock bytes initially 0x00F0, locking pages 12-15
 - data in pages 12-15 can still be read
- lock bytes set to 0xF8FF to invalidate card
- two bytes of the OTP used as counter
 - in unary style, eg 1111 1111 1111 1110 means one ride left
- pages 4-7 and 8-11 used to record last two transactions
 - meaning of certain bits clear
 - 000=purchase, 001=check in, 010=check out, 110=transfer
- pages 12-15 used for unknown card-specific data
 [Source "Security Evaluation of the disposable OV chipkaart", by UvA students Pieter Siekerman and Maurits van der Schee, July 2007]

- lock bytes initially 0x00F0, set to 0xF8FF to invalidate tag
- we can change an invalid tag so that some terminals fail to recognize it as invalid; can you guess the flaw?
- remaining 3 lock bits can still be set to one, so that lock bytes become 0xFFFF
- flaw in some terminals: tags with lock bytes 0xF8FF are recognized as invalid, but tags with 0xFFFF are not
 - Can you guess the terminal code that causes this?
- enables easy experiments with "invalid" cards

- on check-in, counter is incremented and transaction info written to pages 4-7
- on check-out, transaction info written to pages 9-11
- can you guess how a ticket could be used for multiple checkouts?
- by rewriting the transaction info (which is not write protected), we can use the same card to check-out again
 - How could you prevent this flaw?

- More serious, and reportedly fixed
- Attack found
 - purchace single/multiple ride ticket
 - back-up data in page 4-11 (incl. purchase transaction)
 - use card, checking in and checking out
 - rewrite content of page 4-11, overwriting check-in and check-out transactions with purchase transaction
 - card can now be used again, but OTP counter is not increased: infinite number of free rides
- Cause?? Counter not checked & increased if purchase transaction is found in memory?

- What's a more fundamental weakness of these MIFARE Ultralight tags?
- What if we can simulate a tag?
- No way to protect against spoofing of tags.

More RFID problems

- Vulnerabilities in first-generation RFID-enabled credit cards. by Thomas S. Heydt-Benjamin, Dan V. Bailey, Kevin Fu, Ari Juels, and Tom O'Hare. In Proc. of Eleventh International Conference on Financial Cryptography and Data Security, Lowlands, Scarborough, Trinidad/Tobago, February 2007.
- http://prisms.cs.umass.edu/~kevinfu/papers/RFID-CCmanuscript.pdf