Tim Hendtlass

This book has been written as shareware. You may make
copies for your own use or to give to others provided that you
do not make a profit thereby. You may only recover your
costs. If you wish to sell copies of this book for profit you
should contact the author for a non exclusive licence.

If you find the book especially useful and wish to encourage me
to continue writing and distributing material this way, a
voluntary contribution would be appreciated. A figure of the
equivalent in your local currency of US$10 is suggested
(notes/bills are OK). If your financial situation is such that you
cannot afford to make a donation, then enjoy the book with my
best wishes.

| accept no responsibility whatsoever for the consequences that
follow any use you might make of the information contained in
this book.

You can contact me by any of the following ways. Contact
information as at 1993.
Mail. A/Prof Tim Hendtlass,
Physics Department,
Swinburne University of Technology,
P.O.Box 218,
Hawthorne 3122
Australia.
Email tim@brain.physics.swin.oz.au
Fax 61 3 819 0856

REAL TIME FORTH

Dr.Tim Hendtlass,

Associate Professor
Scientific Instrumentation Group

Physics Department,

Swinburne University of Technology.

[This book refers to version 3.56 of F-PC. Earlier versions may
| not have all the features listed.

Document control:-

Version 5.0

Generated November 1993

CONTENTS

PrEAIMDIE ..o e e ettt e e e e e e e e teee e e e eeennnmeeeeeenre 1
AN EXPIANATOIY NOTE ... e e e e e e e e e e e eenbbeee s 3
Chapter 1 An oVerview Of FOItN........oooi i 5
TRE STACK ...t e e ettt e e e e eeeeee 5..
F N (111 (= o TP P PP PPURURN 5
A TEW COMIMEBNTS ...t e e e e et e bbb as B........
Defining things t0 De dONE Taler........uiuiiii e 7
Chapter 2 The data STACK.uuiiiiiiii ettt o 9
Keeping track of the STACK.cooiiiiiii e 9.
Shuffling and cloning the STACKooiiiiiiiiiii e 10
Standard Words from the Required Word Set. ... 10
Words from the double WOrd Set. ..o 11
NON-SEANAAIrd WOTTS. ...ttt ettt e e e e e e eeeennnes 12
Exercises on manipulating the Stack.uuiiiiiiiii e 12
Chapter 3 Arithmetic, LogiC and COMPAIiSONS.........cuvttiiiiiiiiiiiiiiiiiieeeiieieeeiiieie e 15........
A NOLE @DOUL OB ... ettt e e e e e e e e e eeeeeerenee 15....
A note about iNteger diVISION...........ooiiiiiiiiiiiiiiiii e e 15.........
ANTRMETIC. e e e e e e e e e e e e e s emmeneenes 16
LOgiC . ettt e ettt e et e et te e e e e e s — 17
(0] 1 0] 0= 14 [<T0] o - T PSP PP TP PPPPPRRURN 17...
EXBICISES. ettt e ettt e e eeeaaan 18
Chapter 4 BasiC CONIIOl SITUCTUIEScooeeeeeiiiiiiiiieeeeee e e e e e e e e e e e e e e e e e eeeeeneeeees 19.
Standard CONrol STIUCTUIES.uuiiiiiiiiiee e s 19..........
The IF THEN ELSE CONSIIUCT.uuuiiiiiiie et e e 19
LI L3 DO N (o To] o BT P PP PP PPPPPPPPPPPPPR 20
ASSOCIAEA WOIUS. ...ttt e e e e e e 20...
BEGIN.. UNTIL and BEGIN..WHILE..REPEAT.coi it 21
NON-Standard CONIOl STIUCTUIES.ceviiiiiiiiiiiiitiet e e ettt 22
A S . e et 22
B B G e ettt e e e eaa s 23
EXBICISES. .ottt ettt ettt e ettt e e et e e e e e nnnnnnaan 23

DO LOOP WITH USE OF INDEX......ouiiiiiiiiiieiiiii ettt 23

INDEFINITE LOOP ...ttt e e 23

Chapter 5 Moving Data ArOUNGoooiiiiiiiiiiiiiiiiiiia e e e e e e e e e e e ettt ettt e e e ee e eeeaas 25.
Moving data between memory and the Stack. ... 25
Moving data between the stack and the dictionary.............ccccciiiiiiiie 25
Moving data between the stack and the USEr. ... 26

Words that output numbers and text to the SCreen ... 26
Standard words that obtain input from the keyboardccccvvviiiiiiiiiiiiiiiiiiiiii, 27
Moving data between the outside world and the stack.cccccovviiiiiii 27
Words that provide direct access to input and OULPUL POITS..........ueviiiiiiiiieiiiiiiiiieeeeenn. 28
Coordinating iNPut and OULPUL.ooiiiiiiiiiiiiiiiiiiier e e e e e e e e e e e e e e e e e e eeeeeneennnees 28
EXEICISES. ..ttt e et e e s e eeaaaan 31
Chapter 6 A first programming example - signal filteringccccoe, 33....
Chapter 7 Entering and Compiling YOUr Program............ccouuiiiiiiiiiiiiiiiieiiiiiiiiiiiiiiiiieeievieeeeeeees AT 3
INSTAIlING FPC ... et meeeennnnnn 37
RS Ly 14Te = =T ORI 37
OPENING A TIE i 37
EditiNg @ il s 38
Creating @ NEW fIl&uuie e 38
A NANAY NNt e 39
LOAAING AN TESTING +..vvvvtiie ettt e e ettt e e e e e e e e eeene 39
Inspecting the Source of FOrth WOIAS.uuuuuieiiii e 40
DeCOMPIlING WOIAS. ...ttt e e e e 41
Listing the available FOrth Words...............uuuuuiieiiii e 41
SED - The sequential @ditor............ciieeee e D20
OVBIVIBW. ..ttt ettt e e e oot e ettt et bbb e e e e e e e e et e e e b be bbb e e e e e as 42
KEY TUNCHIONS ..ttt mmmmmmean 42
MOVING thE CUISOI ...ttt e et e ettt mmaas 43..
Deleting CharaClerSccooiiiiiiieiiie e e e e e 43
CopyiNg and MOVING TEXE......eiiiiiiiiitiiee e e 43
Searching for and replacing teXtoovei i 43
MISCEITANEOUS ...t e e e e e e e e e e e eeeeeeennaes 44
EXpanded deSCrPIONS. e 44
Notes on F6 and F8 and their variants............cccccvviiiiiiiiiiiiiiiiiiis 47
Control Key template ... e A8
Keypad TEMPIALEooeeeieiiiiiie e s 48......

FUNCLION KEY TeMPIALE ..o 49

Chapter 8 It didn't WOrk - NOW WHAL? ..o e 51

LI B2=] o 18 o o =] PP P T PP 51...
SEEING into FOrth definitionsoooiiiiiiiiiii e 3 5
Chapter 9 Basic number and text handlingcooiii e 55......
NUMEIIC CONVEISION. ...ttt ettt ettt e ettt et e bbb e e e e et e e e eeeennnean 55.......
Setting the NUMDEI DASE.ii e 55
Converting a NUMDBET INTO ASCIL.ouiiiiiiiiiee e 55
Converting ASCIIINtO & NUMDET.uiiiiiiii e 56
MOVING SEHNGS AFOUNCL.t e e e e e e e e e ettt e et a e e e e e e eeeeeeeennne 57
Text OUIPUL N INPUL. oot e e e 57.......
TEXE OULPUL ...ttt et e e et et e et e r e e e e e rnrr e e e eene 57
TEXEINPUL ...t e e e 58
Chapter 10 Maths - Wh0 NEEAS 117uuuieiiiii e 59.
Single precision integer arthmetiC.oooiiiiiiiiiiiii e 60
Double precision integer arnthmMetiC.oooiiiiiiiii e 61
32 bit fixed point @rthMETIC.cooiiiiii e 64.......
32 bit floating Point arthMETIC.uiiiiiiiii e 66........
Forth or ASSEMDBIY COUR?nni e s 6.1.
48 bit floating point arthmetiC, SFLOAToo oo 68
Control and DefiNiNg WOITSuuuuuiiiiee e 68
STACK WOTUS ...ttt e e e e et e et e e e e e e be bbb 69
MAENS WOITS. ... et 69
LOQICAI TESE WOIAS ...ttt ettt ettt e e e et e e e e e s 70
Predefined NUMDEISooiiii s 70
Words that Input and Output from the Floating Point Stack............cccccvviiiiiiiiiiennnnn. 70
Relative PerfOrMEanCe.uueii e 71.......
REVIEW QUESTIONS L. ..eiiiiiiiiiiiie ettt ettt e e e e e et e e e e e ettt e e e e eeaa s e e e eeettn s e e e s emmmmmmmmmns £ 75
Graphics Information for problems that require graphics. ..., 76
Chapter 11 Deferred WOIASuuiuiiiiiiieee e+ mm— 79
The difference between " and [. e e Q......... 8
Chapter 12 A conundrum OF CIPNEIS.... . e 83...
AT a1V o] o] 41T £ IO PP PP PP PPPPPPR 83...
A digression iNLO CIPNEIS. ... aeeeeees 83.
Implementing a cipher with arithmetiC.ooiiiiiiiiii s 85

Implementing a Cipher With @n @rray.uuuueiee e 86

Implementing a cipher with a new defining WOrd.oeiiiiiiiiiiiiiiiiii 88
Chapter 13 The DOS interface and file handlingcoooviiiiiiiiii e A3.........
The interface t0 DOS.... ... 93......
Making DOS SYStEM CallS.cooiiiiiiiiiiiiiiiit et e 93...
Interfacing to DOS COMMIANGS........oiiiie ettt e e e e e e e e e e e e e e eeeeeeeeeeeennnnnnnes 93
Manipulating Files iN FPC......... s 94..
Working direCtly With fileS. 94......
Creating and clearing a Nandle.oooo e 95
Words for using a file described by a handle. ... 95
WOrking Within @ fil@ooeeiei s 97....
Manipulating the handle STACK............ooi oo 97
HaNAIE FIEIASo e 91..
An example Of LINEREAD USBJEccuuuuiiiiiiiiiiiiiia e e e e e ettt e eteeseesaaese s 97
Block words - present but Not USEd DY FPCooiiiiiiiiiiiieiiiiiii s 98
Chapter 14 VOCADUIAMESueiiiiieii ettt mmmmmmmmmmeean 99
The vocabulary order CONtrol WOIS.ooiiiiiiiiiiiiiiii e 100
Formatted printing using VOCADUIAIES.ccooiiiiii e 101
EXBICISES. ..ottt e e et e e e eeaaaan 108
Chapter 15 CREATE, DOES> and a glimpse iNSide............oooooiiiiiiiiieeeeeeeeeeeeees 111
MoOre 0N defiNITIONS.ooiiiiieiiee e 111..
Producing a defining WOId........... e 112.
A 1-0F lISt OF ClAUSES......oii i e e e e eeeeees 113
An Example of a 1-0f liSt Of CIAUSESccciiiiiiiiiiii e 116
TCODE and ;USES ... o een e e 116
REVIEW QUESTIONS 2 ..ottt ettt e e ettt e e e et e et e e e e e et s s e e e eetta s s e e s e mmmmmmme £ 119
Chapter 16 MUII-EASKING «..eeeeerttiitiiie e e eeeeea e e e e eeeas 123
A list of MUlti-tasking CONTIOl WOTASviiiiiiiiiiiiiiiii e e e e e e e e e 123
An example of MUItI-tASKING.ooo o e e e e e e e eeeeene 4. 12
CRAPLET 17 TIMING . eeettiiitiitite e e e e e e e e ettt ettt e e et bbb e s s—— 129
TIMER - measuring the eXeCUtioN TIMe. ... 129
DOWN-COUNTER - making it happen at the right time............cooooiii 130

AN BXAMPIE ..t e 131

Chapter 18 PASM, the FPC aSSEMDBIETiiiiiiiiii e e aneee 133.....

PrefiX OF POSTIIX?....ueiiii e e ettt e e e e e e e e 133
PASM GIOSSANY ...ttt e ettt b e e e e e e e n e 134
SYNTAX COMPATISON ...ttt ettt e e e e e e et e e ittt e bbb r e e e e e eeeeeeeesnnbnnns 135.....
AAArESSING MOUES......cceeiiieiiee ettt ettt e e e e e e e e e e e e bbb bbb eeaeeeas 136
REGISTEN MOTE ... ettt e e e e e e e e e eeeeennaees 136
IMMEAIALE MOUE. ...ttt e e e e e e 136
DIFECE MOOE ...ttt e ettt e e e 137
INAEX MOAE ... e e e eeeenn s 137
Implied Mode and Segment OVEITIAEcoooiiiiiiiiiieei e 137
MBICIOS 1N PASM. ...ttt e et ettt ettt b e e e et e et et e e e e nban s 138
LOCAI 1ADEIS ... — 138
ININE COER ... ettt e bbb 139
Chapter 19 Mixing Forth with assembly l[anguage..............ccccoiiiiiiiiiiiiiiiiiis 41....... 1
Assembly code in a Forth colon definition................. e 141
An example using INLINE and END-INLINEcouutiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 142
Forth code in an assembly definitioN.ooiiiiiiiiiiiiiii e 143
>H, H>, HDOES and HRET iN detall........coouiiiuiiiiiiie et 144
Chapter 20 Interrupts and FOIth...........ooiiiiiiiiiiiii e eeeeeeeeeees 147
Forth and ISRs written entirely in aSSEMDBIEr. 149
AN INterrupt drivEN COUNTET. . ..coiiiiiiiiiiiiiieee ettt 152......
Writing ISRs in Forth rather than assembIer. e 154
An example of @ high 18VEI ISR........uee e 157
Lean, mean, interruptable interrupts and DOS.i i 158
Extra Information fOr IBM PC USEIS.uuuiiiiiiiiiiiiiee e 159
REVIEW QUESTIONS 3 ..ttt ettt e e e ettt e e e et ettt e e e e e eta s e e e e eettan e s e mmmmmmme £ 161
Chapter 21 Input OULPUL, TEVISITEAciiiiiiiiiiiiiiiiiee e ettt e eenmmnnnas 163
Synchronised SIow data tranSTer. 163
Synchronised fast data tranSTer. ... 64......... 1
Chapter 22 Interfacing with basic PC INpUt/OULPUL TESOUICES..........ccvvviiiiiiiiiiiiiiiiii 167
Interfacing to the parallel (Printer) POIt. oo 167
Interfacing to the serial POITS.oviiiiiiiii e 169.....
AN BXAMPIE. .t 172

Moving data very fast - direCt MeMOrY GCCESS.ccoiiiiiiiiiiiiiiiiieie et 174

Chapter 23 An example With the 10T 10 GOcooiiiiiiiii e 177...

The INtErNal AESIGN....... i e e e e 177...

A few points oOf detalil.coooiiiiiii s 178..

TE LS. ettt ettt e e e e e e e e e e et e e e e e e e e e et meeennnees 179
Chapter 24 Turnkey, Meta and Target CoOmMPIliNgcoooiiiiiiiiiiiiie s IR 18

Why do any of the aboVe? ... 83........ 1

Making a tUrnKeY PrOgIaIM.ooiiiiiiiiiiiiiiiiiiiieitbei e e e e e e e e e e e e e e eeeeeeeeeeeeeeenesennrrrene 184..

MeEta COMPIIING ettt e e e ettt e e e e e e eeeeees 184..

Target COMPIlING. ...ueueee e e e e e e e e aeaas 189..

Comparative PErfOrMEANCE.ooiiiiiiiiiiiitiir e e e ettt e e e e e e e e eeeeeeennnne 1. 19
Appendix 1 The internal organization of FPC ... 193.....

Header Space

List Space

COUE SPACE ... ittt — 195.
Appendix 2 Answers to selected ProbIEMSuiiiiiiiii 197.....
Appendix 3 An ASCII list of useful FOrth Words............cccccviiiiiiieeeee 201

[N\ o] ¢= 11 o] o TR TP T TP RT R PPPPPP 201

LI 4T 1) S PP P PP 201
Appendix 4 Forth Words sorted by fUNCHON.........oooiiiiii e 233....

Symbol definitions used in thisS APPENIX..........uuurmiii e 233

1021 (=T o [o] oY A 11 1= T TP PP P PP PPPP PP 234

AppPeNndix 5 A Starter St Of WOIASccooiiiiiiiiiiiiiii e e e e e e e e e e e e e eeeeenees 245

Preamble Pagd

Preamble

This book hasbeen written to provide informaticabout using a computerith the realworld

so the two may work cooperatively together. In msityyations inwhich a computer is used,

the main constraint is getting the jdbne,usually as quickly as possible. Téeacttime each

part ofthetask takes isiot of great significance and the job proceeds tinting to suit, and
dictated bythe computer. Interfacing the computer with the outside world requires things to
be done at precisely the times the outside world demadéten many thinggtasks) must be
done, if not together, in an interleaved waylsat onetask isnot kept waiting testartuntil all
othertaskshave fully finished. Datawill need to betaken as anavhenavailable, outputwill

need to bgpassed on at the times and in the form the outside weddst. This iswhy there

is 'Real Time' in the title. Why Forth?

This book is intendedor use as @eachingtext, either in a formal situation dor self study.
Theonly way tolearn is to first read anthen to do. This requires that lnguage suitable for
the task be chosen. Forth is used as the landoageerfacing for a number @oodreasons.
It is fast, especially whemun on hardwarelesignedor the languagebut fastenougheven
whenrun ongeneral purpose equipment. It is interactive, providingrarironment in which
immediate testing as you @tarifies thetask inhand and helps catehrors early sdhey can
be painlessly corrected. It is a rich, structured langubgeprovides facilities useful for
interfacing that are missing in many other languages.

So thatthe reader catry astheyread, thisbook uses a very readily available, vegmplete

and incredibly inexpensive implementationFairth, FPC. Soinexpensivethat it is actually
free. Thiscombination of publidomainsoftware and the mosbmmonlyavailable hardware
(any of the IBM PC family or clone thereof) should makéually trying the ideadeveloped in
this book accessible to an enormous number of many people. Atmiostof themany

examples require any hardware in addition to the basic computer.

This book concentrates on the softwaspects of interfacing, iloes nottalk about the
hardware of analogue to digital converters or serial and pgpalitd at all. Itmerelyassumes
such deviceare available and work. Readérterested in hovguchdevices work will be able
to find the information in many other books.

This book is not intendetbr the complete computer novidayt it certainly does not require

very much previous computer experience onpthg of the user. It assumes that yodear
reader, areomputer literate That isyou have som&nowledge othe computer hardware and
some srall amount of experience of programmirgt it makes no assumption as to what the
language you used mighe. If you have not previousiyet the concept of stack, so central

to Forth, it is briefly introduced at the start of the next chapter. To follow the ratiorsdenef

of the examples a very elementémowledge ofinstrument interfacing is required (if you do

not have this do not worry, an ounce of common sense will substitute very nicely). Outside this
all that is needed is an open and inquiring mind, a PC and a copy of FPC to experiment with.

As mentionedabove, a major topic in this book is timing. Timingn®re than justdoing
thingsfast, indeedthings may noheed to be doniast at all insomecircumstances. Rather it

is doing things afpredictable times in a synchronised fashion with the world outside the
computer. For this reason thi®ook is unusual in the emphasis it places on the precise
execution time of code, synchronising multiple evesutsl responding to external stimuli.

Page2 Real Time Forth

However, please don't get the impresgiwat all Forth isonly goodfor interfacing, it can be
used for anything and be efficient at everything.

Thosewho have extensive experienceaoibther language may find themselves wondering why
should one do things tiferth way. The answ@&omes &bit at atime, so go right through this
book and see what Forth has to offer. If, ateheé ofthis there is stilsomefeature yousorely

miss from that other language, you will know enough to just add it to Forth to give yourself the
best of both worlds. Don't forget then share the result witleveryone else. The infinite
adaptability of Forth is one of its major features.

So don't hesitate, come on in, the programming's fine.

Forth startedvith oneman, Charles Moordyut hasgrown through the efforts of both he and
many others. When standardisation was undertakéinst in the 79standardthen in the 83
standard and now in the IEEE standard, a compromise hadnad&sebetween providiral of
the rich multiplicity of additionsusers haddevelopedfor various special occasiornand
therefore producing a vast language)paviding a simple corthatwould be present iavery
implementation and theextended by the@ser on an "aseededbasis. Languages which by
nature arenot userextensible tend to specify as large a language as the average person has
memoryfor. Even then some refinements have to be deitieout andsome of thefeatures
included are rarely used. Fortigving a set of incremental compilerkich areintended to be
user altered andxtendedgcan provide asimple core and let thaser add whatevehey feel
they need. Vast libraries ofwell documentedoutines ardreely available to customise the
language to whatever the task of the moment is.

There hasbeen ahistory of solid publicdomain implementations oForth aswell as
commercial ones. Iparticular | would mention HenryParry and Michael Laxen who
produced F83, a public domain versioeeting the thenew 83standard.FPC is aroffspring
of this, mostly written byoneman, Tom Zimmer. There have alseencontributions by Wil
Baden, Charles Curley, Robert Smith, Jerry Modrow and others too numerous to mention. The
production of thewhole package in a form suitable for release, program doaimentation,
wasundertaken by thEPCworking group of Charles R. Curley, David Jaccldike Mayo,
Jay McKnight, Jay Melvin, Jerry Modrow, Davihktor,JohnPeters, MarlSmiley, Robert L.
Smith, Alfred Tang, C. H. Ting and Tom Zimme@ne personvho had nothing to do with the
original FPC package is this author. Have added someontributions of myown that are
available on a disk with this book. | place these contributions in the plabtiain sahat you
may freely use and cogliemfor private purposes. The souroede is therdoo, in the spirit
of the Forthcommunity where there is@mmon beliethatyou should only keepourcecode
secret if you are ashamed of it.

| accept responsibility fothe discussion, examples and additions described in this book and
any errors thahavecrept in. In this bookmainly in chapter 7, chapter 17 and appendix 4, |
have used some material from the version of the user manual distributed tPGpackage.

I am most grateful fothe generosity of those who, leadDy. C. H.Ting, forfeited copyright

on that manual. Indeed, | am extremelgrateful to themany who have worked oRPC,
especially Tom Zimmer, and then unselfishly put it in the public domain.

Preamble Pag8

An explanatory note

This explanatory note is for people already experiemitd another languageFeel free to skiphis
if you wish, a full understanding is not a prerequisite for understanding the rest of this book.

As a computer language, Forth is unusuathat it is based on a semantic modedther than a
syntactic model: meanings afymbols, rather than theforms of their expression, is the crucial
consideration. Eactiefinedsymbol inForth is executableand withfew exceptionghe meaning of a
standardsymbol isits operationakffect. Every symbohas an action, and i&ction is its meaning.
The meanings (actions) of phrases in Forth can be infdirectly fromthe meanings of theymbolg
used to construdhe phrases. A Forth program's meaning is infediegctly fromthe meanings of
the parts from which it is built.

An application can be said to dictate d#n natural grammar. While Forth has little, ahy,
associate@yrammar, it isextensibleand candirectly embodyany application'siatural grammar. The
Forth modelallowsthe natural "language” of an application toflsgedwith the computer language
so that the two become one.

As is true with any computer language, Farlhisesthe semantic gapetween computehardware
and humanswhile humancommunication is basgarimarily on natural-language&ords, computers
reactonly to sequences of bitsorth handles the translation frdmmanlevel to computehardware
level by packaging appropriate bit sequerio#s words, allowing higher-level 'words' to be built put
of previously-defined wordantil the desired level of functionality is reached. A word defined by a
Forth programmer is simply a package of one or mpoegiously defined commands (words), each of
which is also such a packagkhus, the fundamental meaningful element in a Forth program |is the
word.

Just amatural languagelsave differedypes of wordhouns, verbs, prepositions etd=prth also has
different types of words pre-specified. Unlike a natural language Forth encourages the programmer to
develop new types of words s$uiit special needs. Forth programmBygtemsorganise wordto a
traversable structure called the dictionary. phacess ofranslatingsource code for a new wongto
an executable structurand adding this to the Fortlictionary, is called compiling. In general there
is a different special compiler for each type of word in Forth.

Natural languages allow a word to have different meanings when used in different contexts. Similarly,
Forth allows the sameword to have multiple definitions ithe dictionary, each with different
function. Forth accomplishasis by organising thelictionary intoword lists, where each different
definition for a word is in a different woriést. Forthprovides astandardword for designating the
word list into whichnew words will be compileddtherwordsareused to designatie search order
during compilation and execution.

A Forth conceptthat is useful in manykinds of applications is the definingord or word-type
compiler. This is gowerfulmechanisnwhereby a woratan be given a special extendmsgability to
define (compile) new types wordgth arbitrary behaviouspecified bythe programmer. There are
several standard definingwords. Some of these creastandard programmingbjects such as
constantsand variables. Others have ttsle purpose of allowinghe programmer to create new
defining words (compilers) for special classes of words tailored to the application.

Each definingword has acompile-time action as well asran-time action. The compile-time actipn
creates a new dictionary enincluding any user-defined data structure; the run-time aspeugifieg
what thenewly created word will doThe power ofthis mechanisntomes fromthe fact that the
specified run-time action may include invoking the compiler, so thateidy defined word is itself ja
defining word. By means of higher-order definimgprds (wordsthat define wordsthat define
words...) extremely concise and advanced applications code can be created.

Page4 Real Time Forth

Chapter 1: An overview of Forth Page5

Chapter 1

An overview of Forth

The Stack

Forth is built aroundhe concept of atack, a storagmechanism which allows any number of
items of information to be stored and retrieved. Think ¢ikét a stack of papersach with
one piece of informatiowritten onit. You can add aew piece opaperonto the top of the
stack (push artem onto thestack) andhe stack getsone itembigger. What wagreviously
the topitem on thestackbecomes covered by the item yjost added and becomes thecond
item on thestack. You can retrieve (popne itemfrom thestack andhe stackbecomes one
item smaller. When you pop an item it disappears tlemstack andhe itemthat wasthe one
under the one you just removed becomes the new top item on the stack. You can get to items in
the topfew positions if you wistbut it gets progressively harder to access itéumnther and
further down the stack. The stackrigendedfor the temporary storage of information, storage
in which thelastitem youput on is probablyhe first item that you would wish to retrieve.
This is exactly what we usually want to do with tteta wetemporarilyneed tostorewhen
passing information from one piece of a computer program to another.

A first step

Forth is a computer languagetworks interactively with the@ser,accepting input and acting

on it. Input that is to be kept for later use, rather than just used immediately and disposed of, is
acceptedut fully compiled beforestorage so thawhen it isused later itunswithout delay.

All input that is be stored ompiled on a line by linbasis (forkeyboard entry) and eadihe

may be tested immediatedyter beinginput. Aline thatcontains syntax errossill be rejected

by the compiler. If arror isfound on testing the compiled code, theorrectcompiled code

may be ‘forgotten' back to a user specified point and then compilation of corrected input carried
on fromthat point. Input cawomefrom either the keyboard or from disc. The longest input
line is implementation dependent. FPC aline from the keyboard magonsist of up to 80
characters while a line from disk may contain up to 1024 characters.

Forth expects to workvith two types of things, numbers and commands to do something.
Whenever anything isnput into Forth, either from the keyboard or from disk, the outer
interpreter (user interfac&hecks to see ithis is acommandthat it knows. If so, it does
whatever it is required to do by this command. If it cannot fimdramand bythis name it
attempts to convert the input into a valid number in the current numabker If successful the
number is placed on trgata stacKkcommonly calledqust the stack). Ifthe attempt to convert
the input into a numbdails, Forth complains by printinthe offendinginput followed by a
guestion mark and awaiting more input.

Page6 Real Time Forth

For example consider the input line:
Hex 4D Decimal . f

wheref stands for pressinthe enter or carriageeturnkey. This causes th#llowing to
occur:-

1. The word "Hex' is found in the dictionary (where the namesl diie things to do are
kept) and the routine associated wiltlat name isactivated. This changes the current
number base to 16 (decimal).

2. The word 4D’ is not found in the dictionary and so 4Ehicked to see if it is a valid
number forthe current numbedbase. It is fothe hexadecimal system and so 4D is
placed on the data stack.

3. "Decimal’ is found in the dictionary and the corresponding routinanis Thischanges
the current number base to 10 (decimal).

4. . is found in the dictionary too, aitt$ routine isrun. This is aoutine to take the top
number off the stack and print it on the terminal in the current number base.

The overall result of all this is to print the number 77 @beimal equivalent of 4D hex). The
stack has no more items on at the end than it had at the beginning.

A few comments

Exceptwithin text strings, Forth is cagasensitive and sopper andower case letters are
treated as being the same.

Forthknewthathexwas acomplete word to look up in the dictiondmgcause in Forttwvords

are always separated bye or morespaces. As aonsequence you may ngge a 'word' such
as 'number of boxes' as Foutlil take it as three wordsijumber of and boxes Long and

informative namesare allowed and to be encouragédit mustnot contain blanks - try
'number_of_boxégather thatthe invalid form above. Exactliqjow manycharacters are
allowed is implementation dependent but 31 are allowed in FPC.

To save typing, singleharactemamesareused formany very frequently used routines (eg. !
@ ,). Thisis good for the fingers kiddes not help readability. However, by conventibay

all have specifianeanings which they t@n everwhenpart of alonger name. Thexample
above used "' which prints a number. Almost r@@yethatcontains a . will be found tmean
print something as shown in the examples below.ti¥ssisonly a convention you do nbave

to follow it but it makes reading code easier and is highly recommended.

For examplesomewordsthatcontain " in their name which implies they wirint something.
Print the number on the top oftack as asigned number.

u. Print the number on the top oftack as anunsigned number.
Jtext " Compile the messadext to print later. Note the blank
between the
"and the t.
.(message) Printmessage from the input stream. Note the blank between the (
and the m.

Similarly ! in a name means &ore (write)something, @ in a name means to fetch (read)
something. Orits own, ! means to take the b value offthe top off thestack and use it as
the address of th#rst of two memorybytes at which tatore the 1®it valuethat wasnext on
thestack. On itown, @ means to fetch the contents ofrti@morylocation whoseaddress is

on the top of the stack.

Chapter 1: An overview of Forth Page7

There are alssomestandard prefixes. Foxample a leading C beforestandardcommand
meanghat it is an 8 bit (Characteversion of the normal 16it command. For example, €

works as butonly stores 8 bits ahe 16bit address, of coursaly takingonebyte to store it
in. As another example, a leading U means an unsigned version of a neigrely word (as
already described above).

Defining things to be done later.

There is a special class of wordalled definingwords which,when encountered in a@nput

line, have the effedhatthey take over from the normalter interpreter for avhile. They
accept words from the inpbut, instead of looking them ug@nd running them, thelyeatthem

in some differenway. Usuallythey add something onto thetality of information stored
inside Forth. The totality of words that Forth knows is called the dictionary.

The mosicommon definingvord is "' (colon) whicltreates aewentry in the dictionary using
the word following the colon as the name. It thssociates a list of the worttsatfollow the
name up to a speciahd of definitioncharacter - ';(semi-colon) - with the name. Finally it
programs thenewentry with the action it is to performhen it is invoked. This is to activate
each of the words in the list in turn.

For example:
: DOUBLE dup +;

creates anewentry in the dictionary called double and which includdistaconsisting of dup
(which duplicates th#gem on thetop of thestack) and fwhich adds the top two numbers on
the stack and replacabem with thesum). Associated with DOUBLE is the run-time action
that when DOUBLE is invoked it is to execute each of the commands in the list in turn.

Entering:
2 double .

will result in 4being printed (recalthat '.' printsthe number on the top of tlstack). From

now onuntil the power is turned off (or the computer is told to forget the word double or any
word preceding it in the dictionary) the computer kndd®@UBLE. When DOUBLE is
invoked by enteringt, the actions “dup +will be done, as if they haglst been entered
although very much faster since they are now compiled rather than interpreted.

The word double canow be usequst like any other word. For example it can besed in
further definitions, such as:

: QUADRUPLE double double ;
although in this case it hardly seems worth while.

All words encountered inside a colon definitiafter the namearenormally compiled into the
dictionary. There i®netype of word which is an exception tiois. When encountered these
are runevenduring compilation. Such wordsre called IMMEDIATE words. They are
mainly used to control the compilationsgomeway, forexample the words IF artHEN that
we will meet inchapter 4. Any colon definitioncan bemade into an immediate word fyst
adding the wordMMEDIATE after the closing semi-colon.For example, let us define an
immediate word that emits a beep from the terminal (the word BEEP will cause a beep).

: NOISE beep ; IMMEDIATE

typing eitherNOISE f or BEEPf will cause the beep to lmmitted. But if BEEP is
encountered in another colon definition that definition is being compiled, it wiljust get

Page8 Real Time Forth

added to the list of things to adhen theword that isbeing compiled isun. NOISE however,
under the same circumstances willuse a beep to happen as iteiscountered during
compilation and will not add anything onto th&t being constructed adll. Consider the
definition:

: HORN beep noise ;

As thiscompiled there would be a sound producedIGSE. WhenHORN was rurthere
would only be one beep, produced by BEEP.

If for somereason you wante®lOISE to becompiled, you wouldneed tooverride its
immediate nature by preceding it with [COMPILE]. For example, consider the definition:

: ROAD-RUNNER beep [compile] noise ;

This would produce no sound when compiling, but two beeps when ROAD-RUNNER was run,
one from the normal word beep and one from the overruled immediate word NOISE.

All defining words consist of tw@arts,instructions on thetructure to build irthe dictionary
and the run-time behaviour give to thenewdictionary entry. Unlike other languages Forth
encourages you to buildew definingwords to suit your task ithe standardonesare not
suitable. Itprovides the two wordSREATE and DOES> tbelp you specify the twparts of
your new defining word.

There areother definingwords provided pre-written in addition to colon. Two of thest
commonly usedare CONSTANT andVARIABLE. Their construction behaviour igery
similar as both take the word following them as the name ofa@hentry in the dictionary and
thenset aside two bytes twld a 16bit value. CONSTANT takethe number off the top of
the stack and places it ithese two bytebut VARIABLE leaves the two bytes uninitialised.
The run-time behaviours differ toGONSTANT addghe run-time behaviouhatthe number
stored during definition is copied to te&ack, vhile VARIABLE adds the run-time behaviour
that the address of the two byte storage location is placed on the stack.

For example:
12 constant DOZEN

constructs an dictionary entry called DOZENich contains the number 12 ahdsthe run-
time behaviouthat anytime the wordDOZEN isencountered the number 12 is placed on the
top of the stack.

However:
variable MY_BANK_BALANCE

constructs a dictionary entry called MY_BANK_BALANG#hich contains thepace to save

a 16 bit number andhas the run-time behaviourthat, any time the word
MY_BANK_BALANCE is encountered, the addressvdtich this value is stored is returned

on the top of the stack. The value may then be read (using @) or a new value saved (using !).

Other pre-definediefining words (such a®EFER toallow vectored execution) will be left
until later, as will any further discussion of how to use CREATES and DOESweverbear
in mind that : and CONSTANT and VARIABLE, while covering well over 90% ofdiining
word situationscommonlyencountered, do not allow the full powerFgrth to be used. To
put it another wayevery languagean provide the facilitieshat : and CONSTANT and
VARIABLE do, but CREATESand DOESx>give theForth usetthe unique ability to add any
structure or construdrom any other language tBorth, aswell as special structures or
constructs suitable to the task that exist in no other language.

Now down from the soap box and we will leave this overview and look &iaies of Forth in
more detail.

Chapter 2: The data stack. Page9

Chapter 2

The data stack.

Keeping track of the stack.

Thedata stackcommonlyreferred to as just 'The Stack'}le main source and destination of
data used by wordls Most words expedhe datathey need to be aestack inthe orderthat
they need it and leave their results (if any) onstiagk. Obviously it is important to be careful
with the order of the items on tis¢éack if wewish our program to do what we want. In the
documentation of a word it is normal to show the effect ordéta stack.The stackeffect is
shown inbrackets with thestate ofthe stackbefore the word executes on the leftooke or
more dashes and tlstate ofthestack afteexecution on the right. Within easkack state the
top of the stack is on the right.

For example:
OVER (nln2--nln2nl)

showsthat before OVERrunsthere must be two itenthat OVERwill need onthe stack, nl
and n2, and that n2 must be on top. After OVERexa&suted it leaves three items, with the
new copy of n1 on top.

A second example is:
! (nadr--)

which showghat ! (pronounced store) expects two items ongtaek, avalue to store (n) and
the address to store it @dr), with the address otop. After | hasexecuted both itemisave
been removed from the stack.

It should be notedhat there could be any number of items on sheck,only thosethat are
involved in the execution of the word being describeglshown. Sincd~orth isinherently
recursive the data stack can get to be very large at times.

During the testing of a word it isonvenient to beble to seavhat is on thestackwithout
alteringit. The simpest way is to get a diagram of teeack drawn orthe screen sthat you
canseeit. This isdone every time yodepress both shift keys ahce(this facility is only
available with version8.5 and later; ifyou have earlier versions ymll have touse .S as
described below). At the top of the screen is a sfigdl that gives the size of thetack,
showing either empty or the number of items on the stack. Pressing both shift kepaisella
stack to appear ahe screen which shows eittadl the items on thetack or agnany ofthem

1 Forthuses a second stack, calteé return stack. Wwill not often need to refer tthis and
when we do we will clearly call ithe returnstack sothat there is na@onfusion with'The Stack'.
Similarly any other stacks wmaay create frontime to time, such as a floating-point number stack,
will be clearly referred to by their full name.

Pagel0 Real Time Forth

as willfit on the screen. Th&tack orthe screen willisappear asoon as you release the two
keys. Alternatively to get a coplgatwill stay onthe screen you can use the word .S (dot S).
Thiswill cause a non-destructive printing of the contents ostifiek onone line of the screen,
startingwith the topitem on thestack. It is important to realighat both ofthese techniques
do not alterthe stack at all. Aftethey have been executed #tack is just as it walsefore
they executed. If you get tistackvery confused with useless information ignthe simplest
way to clear it is to enter a non-existent word, such as !@# or ZXCV. Wwiirtesue agentle
complaint of course when it can't find what to do with the word you just entered, but it will also
reset (empty) thetack. Theamountthatyou canput onthe stackbefore running out afoom
depends on thexact installationbut you are sure tdave roonfor several thousand items. |
have never seenstackwith this much useful information afy but | have seerstacks full of
this muchrubbish left by repeatedly using wortizat leave unexpected information on the
stack. As an aside, jfou ever have a prograthat appears to run juihe for a while and
then suddenlgtops for no apparent reason, suspectdbiate word is leaving unintended and
unwanteddata onthe stack. Your programmay appear to beunning fine,but inreality the
stack isgetting larger andarger. Eventuallfthe roomfor the stack is exhauste@omething
important gets overwritten and disaster strikes.

Shuffling and cloning the stack

Many words, for rample testing and comparing words, ‘consume’ the itemsatbhégsting or
comparing. That is, aftethe wordhas runthese itemsire nolonger on thestack. Iftheywill
still be needed afterwards, a copy mustrizele by duplicating them before tt@st or compare
operation is carried out. Othémes the items on th&tackwill not be in thecorrect order and
somestackshuffling will need to be doneForth provides a set aftack manipulationvords
which are listed below along with their effects. The Forth 83 standard providescaset, but
a few other have been found to beuseful thatthey areincluded. Up to three itentsan be
easily be juggled on thetack, but igets progressively harder as the number of itemawged
to re-order exceeds three. If you ever fihdtyou aretrying to juggle 10 or more itemstop
and re-think youapproach tahe problem. Maybe usirgpmevariables as temporary storage
or evenusing thereturn stackwith greatcare,see the comment below) will simplifyhat you
have to do.

In the lists ofprovided words below, the effect on thimck isshown inbrackets. Where the
namethat you type does not have an obvious pronunciation, the suggested pronunciation is
shown in quotes.

Standard Words from the Required Word Set.

Every implementation of Forth must have these words.

DUP (x--xx) Duplicate the item on the top of the stack.
DROP (x--) Discard the item from the top of the stack.
SWAP (x1x2--x2x1) Exchange the top two stack items.

OVER (x1x2--x1x2x1) Make a copy of the second item onto the top.
ROT (x1x2x3--x2x3x1) Rotate the third item to the top. "rote"

PICK (n--x) Duplicate the ntlitem on thestack tothe top of thestack.
Zero based, that is the tiipm on thestack isthe zeroth item,

Chapter 2: The data stack. Pagell

the one below that is the first item and so onP(OK has the
same effect as DUP, 1 PICK the same as OVER).

ROLL (n--) Roll the nth item to théop of thestack, moving theothers
down. Also zerdvased, (eg., 1 ROLL is SWAP, 2 ROLL is
ROT).

?DUP (x--xx)or(0--0) DUP ifnon-zero. Normally used in the form ?DUP IF ..
THEN soyou don't have to discard the O flag in the false
case. "question-dup”

>R (x--) Move thetop item to thereturn stack for temporary storage
(see caution below). "to-r".(C)

R> (--x) Retrieve the top item from return stack "r-from".(C)

R@ (--x) Copythe topitem on thereturn stackonto thedata stack "r-
fetch".(C)

DEPTH (--+n) Return the number of items on the stack.

A caution on using the three stack manipulation words that involve the return stack. The return
stack is quite different from the data stack and is mainly used by Fdwepoeturn addresses

and loop control parameters. If ygut anything on thaeturn stack and fail teemove it

before the next timEorth takeghe topitemand uses it as a return address, your progvéim

crash in a heap. Asgeneral rule you shouktay out of trouble ifou onlyuse >R and R> in

a definition (between a : ants terminating ; forexample) and have the same number of R>s

as there are >Rs. Unless you seriously need the return stack, leave it well alone.

As a quick check to sehatyou follow the action of théata stacland understand the way we
write a stack diagram for a worillow through the example belowlwo sequences of words
are shownthat each have the same net effe@elow each of thevords is a diagram of the
stack after thatvord hasbeen executed. Note tBabtraction in the top example, the ftgm

is subtracted from the item second from top. The sequaneésst for practice angdould not
really be used - if you really want 5 on the top of the stack deddvit, just input 8 andhen

5!

/5 4 DUP + 9 OVER - ROT NIP\

EPEEEEE

8 SWAP

=88

Words from the double word set.

Forth has a set of standard wothdat act on 32 bit rather than 16 gitantities. These are
known as the double wosgt. A 32 bit number is stored the stack intwo parts,each of 16

bits. Themost significant 16its are orthe top of thestack andhe less significant 16 bits
underneath. We normallyeatthe 32bit totality as asingle entity. Words to handle 32 bit

Pagel2 Real Time Forth

guantities are presentimost implementations arfePC is ncexception. They can &mes be
very useful even when you are not dealing with 32 bit quantities.

2DROP (d--) Discard the 32 bit item d from the top of the stack.
2DUP (d--dd) Duplicate 32 bit item d on the top of the stack.
20VER (d1d2--d1d2dl) Make copy of second 32 bit item on top of the stack.
2ROT (dl1d2d3--d2d3d1l) Rotate third 32 bit item to top.

2SWAP (dl1d2--d2d1) Exchange top two 32 bit stack items.

Non-Standard Words

These are already present in FPC and many other systems but are easy to define if absent.

-ROT (X1 x2 x3--x3 x1x2) Rotate top item to third. " minus rote"

DUP>R (n--n) Copy top of stack to the return stack.

FLIP (nl--n2) Exchange the high and low bytes of the number on the
top of the data stack.

NIP (n1n2--n2) Discard thesecond number from thep of thedata
stack.

R>DROP Discard the top number from the return stack.

SPLIT (nl1--n2n3) Split two bytes of nl into two separate numbers, n2
low byte, n3 high byte.

S () This provides a non-destructive print out of the
contents of thetack from top to bottomVery useful
for debugging.

Exercises on manipulating the stack.

2-1. Write a word, call it REVERSE3 thathenrun reverseshe order of the tophree
entries on the stack. The stack picture willbe (N1 n2n3--n3n2nl)

2-2 Write a word, call it REVERSE4 thathenrun reverseshe order of the top four
entries on the stack. The stack picture willbe (n1n2n3n4 --n4n3n2nl)

2-3 Showfour ways, eaclinvolving no morethan two words, to duplicate tliem under
the topitem on thestackwith the duplicate appearing on top of itesn on thetop of
the stack. (n1n2--n1n2nl).

2-4 Show three ways, each involving no mitran three words, to duplicate titem under
the topitem on thestackwith the duplicate also appearing under theitemp on the
stack. (n1n2--nlnln2).

2-5. This question is rather ambitious if you have just started this book and have not
come across the concept of recursion elsewhere. If you still decideitiosde the
word RECURSIVE in appendix 3 ajust use the definition you will find there for
your recursive word. See if you can figure batv it works. Ifpossible run it and
watch it with the debugger (read chapter 8 to find out how to run the debugger).

You are towrite a word FACTORIAL (n -- n!)which returnsthe factorial of a

Chapter 2: The data stack. Pagel3

number. The factorial of a number is the nuntivees ondess than itself times two
less than itself times three less than itself etc down to Baeexamplefactorial 4 is 4

*3 * 2 *1 (=24). The factorial ofone is defined to be oneNote that factorial 4

(written 4!) is just 4 * 3! and bgxtension n! = n * (n-1)!.This is thebasis of the

recursive way of calculating factorials.

Write two versionspone using recursion angdne using a do loop. Investigate the
relative execution times (you maged to dd~ACTORIAL over in a loop in order to
get a reasonable estimate).

Chapter 3: Arithmetic, Logic and Comparisons Pagel5

Chapter 3

Arithmetic, Logic and Comparisons

Forthcomes with a fulket of arithmetic, logical and comparison operatorsl6 bitintegers

as standard. These are, in generalethan adequate for retiine datacollection and control
tasks. Alimited number of 3it versions othe standard words argften provided. Floating

or fixed point maths of any required precisman, of course, badded, as can anythirgse
neededrom time to time. Somspecial 'building block' wordare often alsoprovidedthat are
useful in developing higher precision arithmetic for the few times it is needed. Floating point or
extended fixed point arithmetic is however slower tdhdgm 16 bit arithmetic, andill not be
considered further until much later (in chapter 10).

A note about order.

Initially, some people have a little difficulty remembering which item orsthek isadded or
subtracted fronwhich. It is always the top twitemsthat areinvolved. Since addition and
multiplication are ordetindependent, the question does anse withthem. Subtraction and
division are orderdependent, and thep item issubtracted odivided from the item below it.
The sum 4 / 2 in oueveryday notation becomes 4 2 / in the reverse Polish nothtibfrorth
uses. Reverse Polish and Forth stiheesame philosophy; you can't sliemething until the
data youneed to do it imvailable. If the operation is described before alldéig isavailable,
then the operation will only have to be stosethewhereintil thedata is availableand as data
arrives yowwill need to keep checking to see wtika required amourttas arrived. Byever
issuing the operation command umiéita is availableyou save thdime to store thepending
operation and the checkindg=or one calculation theime saved may bsmall, but for many
calculations it can become significant. We often want all the speed we can reasonably get.

A note about integer division.

In the Forth-83 standardthe quotient is floored (rounded to negative infinityJhis only
becomes important if you divide numbers of different signs, sudividshg 23 by-5. It is not

clear if the answer in integer terms is -5-4r In flooredarithmetic the number closest to
minus infinity is chosen, with the consequeticat the remaindehasthe same sign as the
divisor. If you use unfloored arithmetic (round towards zero) you havencmsistency
around zero as can Iseen by dividing the sequence 5, 4, 3, 2, 1:10;:2, -3 by 2. With
unfloored integer arithmetic we get 2, 2, 1, 1, 0, 0, O, -1, -1. Note that O occurs three times in a
row rather than twice like other numbers. With floored integer arithmetic we get 2, 2,1, 1, 0, O,
-1, -1, -2 avoiding this.

Pagel6 Real Time Forth

Arithmetic.

We can all add, subtractultiply or divide integenumbers so little explanation of these basic
operations is required. All arithmetiperators expect their operand(s) on the top of the stack
and return the answer on the top of the stack. The four basic operatipnevatedfor 16 bit
integers, plusome conveniencgords and wordshatallow higher precision arithmetic words

to be developed.

+ (n1ln2--n3) Add nland n2,the result n3 replaces both n1 and n2 on the
stack. "plus”

D+ (d1d2--d3) Add double (32 bit) numbers. "d-plus"

- (n1ln2--n3) Subtract nZrom n1,the result n3 (=n1-n2) replaces both nl
and n2 on the stack. "minus”

D- (d1d2--d3) Subtractdouble (32 bit) number d2 from double number d1
(d1-d2=d3). "d-minus"

1+ (n--n+l) Add one to n. "one-plus”

1- (n--n-1) Subtract one from n. "one-minus"

2+ (n--n+2) Add two to n. "two-plus”

2- (n--n-2) Subtract two from n. "two-minus"

* (n1ln2--n3) Multiply n1 by n2 togive n3. Both n1 and nare treated as

signed numbers. "times"
UM* (ulu2--ud) Unsigned multiply, double precision result. "u-m-times"

UM/MOD (ud ul -- mod quot)
Unsigned division with double precision dividensingle
precision divisor and result. "u-m-divide-mod"

2/ (n--n/2) Arithmetic right shift. "two-divide"

D2/ (dn--dn/2) 32 bit arithmetic right shift. "d-two-divide"

/' (n1 n2 -- quot) Signed division, the result is the quotient of (n1/n2). "divide"
MOD (nl1n2--mod) Signed division, the result is the remainder of (n1/n2).

/IMOD ('n1n2 -- mod quot) Division with both remainder and quotient. "divide-mod"

*/MOD (n1n2n3--n4 n5)First multiply then divide to genl*n2/n3, using a double-
precision intermediatessult internally. n4 is the remainder,
n5 is the quotient. "times-divide-mod"

*/ (n1 n2 n3 -- nb) Like *MOD above, but gives the quotient only. "times-
divide"

Note these handy approximations (good to better than one part in 10 million):
m=355/113

e=25946 9545

V2 =27720 19601
J3 132592 18817
V10 027379 8658

Chapter 3: Arithmetic, Logic and Comparisons Pagel7

MAX (n1ln2--n3) n3 is the larger of n1 and n2.

DMAX (dl1d2--d3) d3 is the larger 32 bit number out of d1 and d2. "d-max"
MIN (nln2--n3) n3 is the smaller of n1 and n2.

DMIN (dl1d2--d3) d3 is the smaller 32 bit number out of d1 and d2. "d-min"
ABS (n--u) If n is negative, u is the twos complement of n. "absolute"
NEGATE (nl--n2) Two's complement, nhasthe same magnitude as ht the

opposite sign.
DNEGATE (dl1--d2) Double precision two's complement. "d-negate”

Logic

The four basidogical Boolean operatiorereprovided. Notehattheyall produce their 16 bit
answers on a bit by bit basis. Fitlsé operation is performed betwegih O of one operand
and bit 0 ofthe other, and the singtst result put in bit 0 ofhe answer. Then the operation is
performed between thast 1s togive bit 1 ofthe answerthenbit 2 and so on.All four logical
operations expect their operand(s) on the top ofthek and returthe answer on the top of
the stack. They destroy their operand(s).

NOT (x1--x2) Logical bit-wise NOT, returns the one's complement.
AND 1x2--x3) Logical bit-wise AND.

OR 1x2--x3) Logical bit-wise OR.

XOR 1x2--x3) Logical bit-wise exclusive OR. "x-or"

Comparisons.

These comparisorare mostly obvioushowever remembehat if the most significanbit of a
number is set this numbeill be treated as negative if yask for asigned comparisonThis
can lead tsome unexpecteghswers if yowere not using signed numbers! All comparisons
result in a flag (true or false) returned on the top of the stetwkh would generally be used to
make a decision. All comparisons destvdyat they compare. If yowill needthe number(s)
that are to bénvolved in thecomparison to be still on thetack aftethe comparison igone,
you mustmake a copy of them before you do the comparisagain 2dup is oftenonvenient
for this.

< (nln2--flag) True if n1 less than n2. "less-than"

= (nln2--flag) True if n1 equals n2. "equals”

> (nln2--flag) True if n1 greater than n2. "greater-than"

0< (n--flag) True if n is negative. "zero-less"

0= (n--flag) True if n is zero. "zero-equals”

0> (n--flag) True if n greater than zero. "zero-greater"

D< (dl1d2--flag) True if 32 bit d1 less than 32 bit d2. "d-less-than”

D= (d1d2--flag) True if 32 bit d1 equals 32 bit d2. "d-equals"

Pagel8 Real Time Forth

DO= (d--flag) True if 32 bit d is zero. "d-zero-equals”
U< (ulu2--flag) True if unsigned ul less than unsigned u2. "u-less-than”
DU< (duldu2--flag) True if unsigned 32 bit dul less than unsigned 32 bit du2.

Exercises.

3-1 Build <= out of other relationaperators. { <= compardbe top twoitems on the
stack and returns truettie second on@2) is less than or equal to the @pe(nl), it
returns false otherwise.} The stack action is (n2 nl -- flag).

3-2 Write a word IN-RANGE®hat tests if anumber N lies within a rangghat is greater
thansome lower limitand less thasomeupper limit). The stack on entry is to be:
number-to-test, lower-limit, upper-limit, with the upper-limit on top. Consume the
three numbers and return true if number N is in the approved range, false otherwise.

Chapter 4: BasicControl Structures Pagel9

Chapter 4

Basic Control Structures

An essentiapart ofany computer language is the ability to control the order of execution of a
program depending on thecircumstances prevailingvhen the program is run. These
circumstances might be different each time the program is run. Forth provides as standard four
basic control structures for ugdthin definitions of newwords. These can tsmply described

as:

« Do one thing IF some condition is niait dosomethingeLSE if the condition is not
met, THEN carry on no matter which was done. (IF..ELSE..THEN)

« For afixed number of times DO something LOOPIng back to repeat it until liekas
done the required number of times. (DO..LOOP)

« BEGIN and continueloing something ovesind over again UNTIlsome condition is
met, then carry on. (BEGIN..UNTIL)

« BEGIN and WHILE some condition isnot metREPEAT something over andver
again until itis. (BEGIN..WHILE..REPEAT)

It will be noticedthatthe lasttwo arevery similarbut sometimes it is more convenient to use
onethan the other.FPCalso provides a couple of non-standbud useful control structures,
CASE and EXEC..

These control structures are discussed in turn below.

Standard Control Structures.

The IF THEN ELSE construct.

Used in the form-
IF true-body THEN
or IF true-body ELSE false-body THEN

While running the word this control structure is part of, the item on the top sfatie istaken
as a flag when the IF is encountered.

« If this flag is true(non zero) thérue body immediatelyafter the IF is done, the false
body immediatehafterthe ELSE (if it exists) isskipped and execution continusgh
the code after the THEN.

- If this flag is false (zero) thiue body immediatelyafter the IF is skipped, the false
body immediatelyafter the ELSE (if it exists) isdone and execution continues
immediately with the code after the THEN.

Page20 Real Time Forth

For example

4 flag true, do Xxxxxxxxxx only)

|
XXXXXXXX
> @ ELSE _ YYVYYWYYYYY @>

flag false, do yyyyyyyyyy only

J

Note that the true body can be as simple or as complicated as you wish. A further example in
normal program form:

: 2TOP_OF _STACK (flag - flag)

dup \ make a copy of the top item on the
stack
if \is it true?
." Top of stack is true" \ yes, print this message
else \ no not true, so assume it is false
." Top of stack is false" \ and print this message
then \ always carry on from here
The DO loop.

Used in the form-

DO loop-body LOOP
or DO loop-body +LOOP

The loop index limit and the loop indexarting value must be dhe stack (start on togdimit
directly underneathyvhen DO is encounteredThe loop-body is executed and the ldngex
incrementedby 1 in thefirst case, bythe number on the top of tletackwhen+LOOP is
encountered in the second). If the loop intag not crossetthe boundanbetween limit and
limit-1, the loop-body is executed again and the loop index furthesmented.This continues
until the loop limit has crossed the boundary between limit and limit-1.

/ index < limit - 1 \

l/ index > or
>DO loop body >LOOP———>
= limit - 1
Save
index ' index '
and
limit

.

Associated words.

LEAVE Used in the form-

Chapter 4: BasicControl Structures Page21

DO ... LEAVE ... LOOP or
DO ... LEAVE ... +LOOP

these cause the loop to éxited immediately LEAVE is encountered irrespective of the value
of the loop index.

I Used inside a loop, returns the current index value on the stack.

J Used inside a second level neskedps, returnghe index value obuter loop on the
stack.

For example:-
:BY_ONES 62dol.loop;
will produce the output
23465

Note that there are four numbers printed, the difference between the loogtad€X) and the
loop index finish value (6)

:BY_MINUS_TWO 26 do . -2 +loop ;
will produce the output
642

BEGIN.. UNTIL and BEGIN..WHILE..REPEAT.

BEGIN starts two related but different structures.
« BEGIN loop-body UNTIL

The loop-body is repeated over and over again urtile(non zero) flag is on thp of the
stack when UNTIL is encountered. The loop-body must put the flag there of course.

« BEGIN loop-body WHILE true-body REPEAT

Execute loop-body and check the flag ontthe of thestackwhenWHILE is reached. If the
flag is true (non zero) execute the true-body and return to BEGIN to do loop-body again. If the
flag is false (zero) do not do true-body but exit the loop and continue after REPEAT.

The diagram below shows tlstructure ofthese two types of loop. Noteat the BEGIN
UNTIL loop only lets youtest (and therefore exit) at thad of thdoop. The BEGIN WHILE
REPEAT Iloop on the other hand allows you to test (armed#d beexit) from themiddle of a
loop. The sectiotetweerBEGIN and WHILE is alwayslone, the section betweSWHILE

and REPEAT isdone every timehat there is atrue flag onthe top of thestackwhen the
WHILE is encountered. If there is notraie flagthe loop is exited without this sectitweing
done.

Page22 Real Time Forth

/ F failfse_l \
% BEGIN— loop-body—> UNTIL=— triLe% &iD

always _|
if

% BEGINI00p-bodyWHILE == 1,c= true bodyREPEAT
if
L L. > & ,

Non-standard control structures.

CASE

There is a school of thougthtat casestatements are syntactogarand unnecessary, and that
theyare just a way dhiding a number of IFTHEN statements.While they do indeed compile

to a number of IF THEN statements, they do make code easier to read. The value on the top of
the stack is used to specify the function to be performed, as shown in the exampleNuow.
thatthe EXEC: word(see below) is muckaster if the valueghat specify the functions are
sequential.

For example:
CASE (value --)
valuel OF functionl ENDOF \ valuel selects functionl
value2 OF function2 ENDOF \ value2 selects function2

(..as many more value function pairs as you need..)
default-function \ an optional default case

ENDCASE

The value on the top of the stack on entry is compared in turn against valuel, value2 and so on.
If a match is found the corresponding routineris and animmediate jump made to
ENDCASE. If you wish you mayclude a default function (whiamustconsume the initial

stack value) jusbefore ENDCASE to bdone if nomatch haseen found by the end. If you

do not use a default function, or it does not consume the initial VaR®P must appear
immediately before endcase. It will remove thiéial value and thereby clean up th&ack.
Valuelneedbear norelationship to value2 (or value3 or valued..) and as many different

values as required can be tested. In the interestpedfd the mostommonvalue (and
therefore action) should be listed first as values are tested from the beginning in turn.

This is asimple type ofCASE statemenivhich requires definite valueather tharpermitting
such tests as lte range from 23 t66' or "Amember of theset23, 97, 12'. Alternative and
more flexible typesirereadily produced fothe times whesuch features are desirabl€hese
include versions in whiclone value can cause multiple functions to be executetike this

Chapter 4: BasicControl Structures Page23

version which is terminated as soon as fometion hasbeen triggered. One way of producing
a more powerful type of case statement is described later in chapter 15.

EXEC:

The lastcontrol structure, also non-standard, thall be described irthis chapter is really a
special version o€ASE. It is faster butequires thathe possible valueare sequential and
consecutive. The value on thack is used tindex into an executioarray: avalue of zero
causes thdirst function to be done, a value ofecauses thesecond and so on . It is used
inside a normal colon definition as in the example below.

: MY_ACTION_LIST (n--)

EXEC: functionO functionl function2

FunctionO could be anfyorth word youike, and the list can be &g or asshort as youike.
However, caution - in common with most other Forth words no run-time checking is done in the
interests of speed. Forthll calculatewhere theaddress of the function iteeds should be,
will blindly read what is there amdll try to execute a wordtarting at that address. If, in the
example above, you invoke MY_ACTION_LIST with a number other than pampr two on
the top of thestack Forthwill read rubbish instead of a function address. The atttadmwill
follow is unpredictable and almost certainly undesirable.

Exercises.

DO LOOP WITH USE OF INDEX

4-1 Write a word SUMA that printthe sum of the integer numbéhat occutbetween the
two top numbers on thetack,excluding thestack numberthemselves. The numbers
may be assumed to differ by at least twieor example ifthe top twoitems on the
stack are 4 and 2, SUMA will print 3, tloaly number between &nd 4. If the top two
numbers were 2 and 5, the number printed will b@+4). The order othe two
numbers on the top of thetack is to be unimportant, eg. 2 anavii give the same
answer as 5 and 2.

4-2 Improve SUMA to handle theasewhentwo consecutive numbeaseentered. Irthat
case the answer of zero must, of course, be returned as there is no bemben
them. Call this new word SUMB.

4-3 Improve SUMB toalso handle thecase of two identical numbebginginput. Zero
must be returned in this case too. Call this new word SUMC.

INDEFINITE LOOP.

4-4 Write a wordthat puts asterisks dhe screen until &ey ispressed. Call thisord
STAR. (Hints: The ASCII value of theharacter * is 42lecimal. You willneed to
see KEY? an&EMIT which have not yet been covered. You will find them in both
chapter 5 and in the ASCII word list appendix)

Page24 Real Time Forth

Chapter 5: Moving Data Around Page25

Chapter 5

Moving Data Around

Moving data between memory and the stack.

Data isoftenmoved betweethe top of thestack andnmemory. When a worthat movesdata

is called, the address of the location in memory that is to give or receive the data must be on the
top of the stack. Words exist to move eight, sixteen or thirty two bits at a time. There is also a
handy word whicladds a number to the previous contents of a location, without you having to
explicitly get the number, add to it and then store it again.

@ (addr--n) Replace addr by number at addr. "fetch"

I' (naddr--) Store n at addr. "store"

C@ (addr--byte) Fetch least-significant byte only. "c-fetch"

C! (byte addr --) Store least-significant byte only. "c-store"

2@ (addr--d) Read the(32 bit) double number aaddr andthe following
location. "two-fetch"

2! (daddr--) Store the double number daddr andhe following location.
"two-store"

+! (naddr--) Add n to number at addr. "plus-store"

+C! (byte addr --) Add byte to the 8 bit number at addr. "plus-C store"

Moving data between the stack and the dictionary.

The dictionary isheld in memoryand the words listed above can be usepdutodataonto the
dictionary and to retrieve data from the dictionary. However, during compilatiorcoimnision
to add things onto thend of thedictionary. To save having to firmlit where the end of the
dictionary is explicitly,some convenienceords areprovided to add items to thend of the
dictionary wherever that may be without having to specify an actual address.

In FPC the dictionary is actually split into three parts, unlike some other Fdréns it is kept

in one piece. The threeparts arekept in theHEAD SPACE where the nameare kept, the
CODE SPACEwhere the runtime information is kept and th8 T SPACE where the lists of

colon definitions are kept. Words that access the head saateith Y, wordsthat startwith

X access the list space and words without any special first letter access the code space. Thus:

« HERE returns the last used address in the code space, which is held in variable DP.

Page26 Real Time Forth

« XHERE returnsthelastused address in the lispacewhich is held invariable XDP, on
top of the actual segment of the list space.

« YHERE returns the last used address in the lspadewhich is held invariable YDP, on
top of the actual segment of the head space.

We add 16 bits oinformation onto the end of theurrent contents of theodespace with,
(comma) or 8 bitsvith C,. In each case the number returnedHBRE is updatedccordingly
(by two if we stored two bytes with , and bge if westoredonebyte withC,). Similarly we
add two bytes to thend of thecurrent contents of theead space with, and to the list space
with X,.

We can write taanywhere in headpace withy! andYC! and to list space witX! andXC!.
We can read fromanywhere in headpace withY@ andYC@ and from list space witk @
andXC@. Thesearenot generally used unlesse is writingnew compilingwords or other
special facilities for the system (see chapter 15) and so can be safely ignored for now.

Moving data between the stack and the user.

Most programs interacwvith the user by way ofthe keyboard and the visual display.
Exceptions to thigrethose programghich run ondedicated, often embeddddirdware. To
providefor convenienuser interactionvhenthis is desired a number of simg&andardvords

are provided to handle entering key strokes and printing numbers and text on the Boesen.
basic words argiven belowand should work the same on any hardwaoeth isdesigned to

run multiple tasks apparently at once, a process called multi-taskingMJ irethe listbelow
indicates words with multi-tasking implications - they contain an implicit PAUSE and so cause
task switching if multi-tasking is enabled and there is mii@ one activetask onthe multi-
tasking queue. Multi-tasking may be safely ignored for now, it will be discussed in chapter 16.

The user can specithe numbebasethey are most comfortable working with arféorth will
use thiswhenaccepting numeric input or providing numeoigtput. Internallythe computer
always works in binary. Decimal (the default base) laedare predefined sahat justtyping
"HEX" for examplewill switch to working inbase 16. Ifyou feel somestrangeneed to work
in base 21, for example, just type

21 base'!

and you will get all input and output ihat strange baseRemembethat anynumber typed at
the terminal is converted from the user specified base to binary and placed on the stack.

Words that output numbers and text to the screen

(n--) Display thesigned number n in theurrent base and add a
trailing blank. "dot" (M)
U. (u--) Display unsigned number u in tlerrent base and add a
trailing blank. "u-dot" (M)
Stext" (--) Compiling: Compile the messagext into the wordbeing
defined.

Run-time: Display the message téixat is part othe word
being currently executed. "dot-quote" (M)

Chapter 5: Moving Data Around Page27

.(message) (--) Display message from the input stream on the screen during
the compileoperation. Note the blanketween the (and
message. "dot-paren” (M)

CR (--) Force the display on the screen to start a new line. "c-r* (M)

EMIT (char--) Display thecharactemwith the ASCllcodechar onthe screen.
Display of control characters is probabigplementation
dependent. (M)

TYPE (addr +n--) Display a string ofength nthat is stored starting at address
addr. Display of any control charactevihin the string is
probably implementation dependent. NotBat n must be

positive. (M)
SPACE (--) Display a space. (M)
SPACES (+n--) Display +n spaces. Note that n must be positive. (M)

Standard words that obtain input from the keyboard

KEY (--char) Get a 7-bit ASCII chawith hardwaredependent highit, do
not echo char to the screen. Wait for keystroke if
necessary.(M)

KEY? (--flag) If a keyhasbeen depressed sintzsttime the keyboard was
read, return a true flag. If it has not return a false fages
not clear thepending keystroke if there is onljs must be
done with KEY. "question-key" (M)

EXPECT (addr +n --) Get n characters from terminal and stthrem ataddr. Store
and display up to +n characters or until returreigered.
Control charactermay be intercepted by systdor editing.
Save the number afharacters input ithe variableSPAN.
Note that n must be positive. (M)

SPAN (-- addr) Contains theactual number ofcharacters stored bie last
execution of EXPECT.

Moving data between the outside world and the stack.

The physical connections through whightamoves as it goes between t@nputer and the
outside worldare known asinput and output ports (or 1/0O ports for short). The 'input' and
‘output’ refer todata transfefrom the point ofview of theprocessor. An input port, for
example, is one through which data passes from the outside world to the processor.

Because |I/Qports areimplementation dependerfprth does notdefine how thesare to be
accessed. There afeerefore no standard words to acgesds. In FPCthe followingfour
words allow for access to basic input and output portstibe IBM PC family. Most
implementations ofForth for port-oriented processqgusovide similar wordsbut beware, the
names mayary slightly. Forths for processorghich handleperipheral input and output via
memory addresses have n@eed ofspecial port access words at ddyt justuse standard
memory access words.

Page28 Real Time Forth

Words that provide direct access to input and output ports

PC@ (p#--n) Get the value from eighiit port numberp#. A sixteen bit
result will be returned, with the top eight bits set to zero.

P@ (p#--n) Get the value from the sixtedait port numberp#. In FPC
this 16 bit port ismade from eighbit port p# andeight bit
port p#+1. The eightbits from port p#+1become the most
significant eight bits of the final sixteen bit quantity.

PC! (np#--) Store the least significant eight bits of n at output pomber
p#.

Pl (np#-) Store the sixteerbits of n atthe sixteenbit output port
numberp#. In FPCthis 16 bit port ismade from p# and
p#+1.

The use of these words is qudtaight forward, butemembethat Forth carries out no run-
time checking atll in the interests of speed so the programmer magesure thathe port
number is correct, especialyhenwriting to aport. Unintentional writing toports inthe disk
controller, for example, isnlikely to help the operation of the computétbrt 20decimal and
port 20hexarenot the same all. Supposegou areworking in decimabut need tospecify a
port numberthat you only know in hexand you do notrust your mental numbeconversion
skills. You can add a $ to the front of the number analilitbe correctly taken as a hex
number. For example, to read input port 3F hex when working in decimal, enter $3F PC@

Coordinating input and output.

While the function of the words themselves nmsgemobvious, the use ofthem to get
meaningful input ooutputinvolves morethan justknowing how thewords work. Unlike all
the words described before, the computer does nalyalWwaveotal controlover the process
during input and output transfer irts. This is becaudée transfermay involve thereal
world over whose timing the computer itself has no control.

To explain this idea imore detail, anthow to deal witht, we will write a series of words to
input and output under different conditions.

As a firstexample, let us colled00 byte sized values from an inpport and savéhe values
received in a linear array called VALUE&irst we must creatsomewhere tsave the values.

A variable provides space to stavee 16bit value (or two bytes), and returns this address
whenit's name is calledWhat weneed is someay to increase the space allocated from two
bytes toone hundredbytes, that is to allocat@nety eight mordytes. This can bdone with

the word ALLOTwhich takes the number off the top of thimck and allocate thatany bytes
onto the end of the last thing defined. Thus

variable VALUES 98 allot

will provide atotal of 100consecutive bytes (2re allocated forthe variable VALUES and
then the ALLOT allocates 98 more) and eviimye VALUESIs invoked theaddress of thérst

of these one hundred bytes will be returned orstaek. Itwill be atrivial calculation towork

out the address of the nth byte in thige hundredbyte space. If a value of n greater than 100
were to be used iarrorthe address we calculated would notitgde the allotted 00 bytes
and storing anything at the address we calculated would be a sure recipe for trouble.

We can get the values using a DO loop and stame sequentially iturn. Let usassume that
we enter with the number of samples on the top of the stack and the port number below that.

Chapter 5: Moving Data Around Page29

: INPUT1 (port# #samples --)

0do \ set up the loop
dup pc@ \ get one value
valuesi + \ calculate where it goes
c! \ store it
loop
drop \ lose port number

This is quite straight forwardyut remembethat | returnghe index of the innermost loop and
that these values will range in turn from 0 to 99 (100 values in all). The final dnepdsd to
clean off theport numberthat wehave been preserving on teeackwhen it is no longer
needed. To output a number of byte values from VALUES is just as straight forward.

: OUTPUT1 (port# #samples --)

0do \ set up the loop
valuesi+c@ \ get one value
over pc! \ output it
loop
drop \ lose port number

A little thought will revealthat, although there is nothing wrong with these definitions, the
results maywell not be what wasxpected. Whatvould happen if the external sourceuld

not delivernewvalues agast asthe computewas able to acquirthem? Somealueswould
probably be readnore than once. For example, valuesire often slow in coming from an
analogue-to-digital converter, which, in general, have to be triggerstatb aconversion.
Once triggered, they take a small but significant time to complete a convefgigrattempt to
read a value withouneeting these timing requirements of toaverter willresult in garbage
being read.

To handle this converters provide a couple of handshake signalgninput to the converter
that triggers aconversion, and the second a signal from the converter which sigaal#he
conversionthatyou requestethasbeen donend thatthe result is available to bead. The
simple word taread a port hasow to bereplaced by a more complicated wadn@t triggers a
conversion, loops arourthecking the end_of_conversion signal utitis becomes valid and
thenactually reads the value. Suppdbat ananalogue-to-digital converter is connected as
follows:

- Start of conversion signal. Bit O of 8 bit output port 256, bit active high.
« End of conversion signal. Bit 7 of 8 bit input port 256, bit active low.
« Actual Data. Available at 8 bit input port 257.

Further suppose th#te state of bits 1 to 6 of input port 256 are inuarknownbut changing
state. This means that when we read port 256 we will have to isolate the bits we waiit, and
not be able to assume that the bits wenatdnterested ire in azerostate, forexample. We
can force all unwantekiits into a knownstate byeither ANDing them with zero (forcinpem

to zero) or ORing them witbne (forcing them to one). With all thebits we arenot interested

in having been forced into a knowtate, it issimple to make decisiorigased on the bit(s) we
are interested in.

We define simplevords to trigger a conversion, to check if a conversion Bagress, and to
collect the data. Suitable definitions are:

: TRIGGER_CONVERSION (--)
1 256 pc! \ form start of trigger pulse
0 256 pc! \ form end of trigger pulse
: CONVERSION_DONE? (-- flag)
256 pc@ \ get byte containing signal

Page30 Real Time Forth

128 and \ force all but bit 7 to zero
0= \ Result is now zero if and only if bit
7 was also zero
; \ flag on stack tells all

: GET_DATA(--n)
256 pc@ \ read data

These carnhen beput together into a 'politgdort read that waitantil data isready unlike the
‘rude’ grab and run PC@.

: READ_ADC (--n)

trigger_conversion \ start the ADC
begin

conversion_done?
until \'loop till conversion done
get_data \ get the result

Our word to obtain and store 100 values as fast as the A-to-D converter can provide them is:
: INPUT2 (#samples --)

0do \ set up the loop
read_ADC \ get one value
valuesi + \ calculate where it goes
c! \ store it
loop

Timing is now determined by the maximum converdimmoughput of the A-to-D converter.
However,eventhis is not always desirable as ofteme wishes t@btain samples at a regular

rate that isless than thenaximumrate atwhich the convertecan convert. Amethod of
obtaining samples at regular intervals less than maximum rate is described later in chapter 17.

Devices connected tmutput ports alssometimes have problems acceptitaga as fast as the
computer can provide it. For example printers often reglsita aiquite slowrates(compared
to thetransfer ratesnside a computer). They typically provide a sigtiadt informs the
computer that they are in a position to aceaptedata. Supposing that a printeonnected to
8 bit output port 256 supplies a MORE_NEEDE@tussignal on bit 1 of 8 bit input port
256. A high on this bit indicates thi#iie printer can acceptoredata. Acivilised, as opposed
to forced feed, output routine to supply this printer from the array VALUES would be:

: OUTPUT2 (#samples --)

0do \ set up the loop
values i+ c@ \ get one value
begin
256 pc@ 2 and 2 = \ printer ready for more?
until \ loop until it is
256 pc! \ output it
loop

To summarise, input and output to ports involves more rtight atfirst meet theeyebecause
of the need to synchronise with the independent timing requirements of whatever is connected to
the port in question.

Exercises

5-1. Change the line where VALUES is definedd the word$NPUT1 and OUTPUTL1 so
that 100 16 bit values can be handled. Caution Allot allots in bytes!

Chapter 5: Moving Data Around Page31

5-2.

An output port is used as a ‘'message board'. That is the computer putdlzeralae
soon as it is readyrovidedthatthe previousonehasbeentaken. This is adescribed
above. However, the 'outsid#vice only checks theort periodically andneeds to
know if the value posted therensw since ilastchecked ojustthe same old value as
lasttime. To handle this aew statussignal is provided obit O of 8 bit output port
257. This is set bthe processowhen itposts anewvalue and is reset as soon as the
processor sedhat the last value haseenread by theMORE_NEEDEDgoing low

briefly while the outside device digests thaue just taken.Modify OUTPUT2 to
handle this extra signal.

Page32 Real Time Forth

Chapter 6: A first programming example- signalfiltering Page33

Chapter 6

A first programming example - signal
filtering

Let us suppose that wégsh to sample a noisy signalr@gular intervals. Aoisy signal is one
which has extraunwanted signals (noise) in addition to the signawaat. Wewill assume
thatthe noise is of significantly higher frequenihan ourwanted signal, anthat wewould
like to minimise the noise iaur datawhile at the same time preserving the warsigghal. In
technical terms we wish to improve our signal-to-noise ratio.

We can use thiact thatthe noise is of significantly higher frequentyan our signal teeduce

the noise by outputting a running average oflétstfew samplegaken. For thigxample we

will use the average of three input sampl@sitputseven for examplewould be the average

of input samples five, six and seven. If we take lessdahasample pecycle of the noise, the
noise will tend to be averagedit. However, as long as wake many samples durirgyery
cycle of the highest frequency componenbof wanted inputour signalwill be only slightly
affected. This low pass filter is a very simple example of a process known as digital filtering.

(Forthose interested: provided the number of sanqéesycle of the noise and the signal are
as described above, the more samples you average overediter thamprovement in the
signal-to-noiseatio, the greater the attenuation of the signal and the larger the élageof
the output compared to the input.)

For the purposes of this example let us asstmaé wewill output 1000filtered samples and
then qut. Since we cannatutputanything until we have taken three samples fitisé output
being the average of the first three inputs) we will have to input 1002 samples in all.

Our first stage of top down design might read:
: Filter_1000_Samples (--)

Sample_One Sample_One \ take two before we start
1000 0 \ terminal and initial count
do
Sample_One \ get next input
Get_Average \ average it with last two
Output_Average \'send it on its way
Lose_Oldest_Input \ as finished with it
loop
Lose_Two_Samples \ finally finished with all

Note that we stillneed tohave the two most recent inputs aipe wewant to output in

response to aewinput, otherwise we could not calculate the averagefirSowe get samples

1 and 2 without which we cannoutput anything. Then we enter a loofhat we do 1000

times, getting a sample, savingfar future use, calculatinghe average of it and the two
previous sample values we have stored, outputting the average and finally losoidete
input value which has now been used for the last time and so is no longer needed.

Page34 Real Time Forth

The word Filter_1000_Samples isgtartassuming nothing is on tletack andending having
put nothing on thestack. Duringhe time the word is executingdén of course use the stack
in anyway it wantsbut it mustmake noassumptions about what is tre stack on entry and
must ensuré¢hat it hadeft nothing on thestack bythe time itexits. This is the reasdor the
Lose_Two_Samples word at the end.

We will assume that the word Sample_One already exists and acts as follows:

It only takes samples at regular intervals of time. The regular interval ttagssreadyeen
chosen. When Sample_One is calledaits until thechosen interval isip, acquires a value
from a digital-to-analogue converter arektartsthe interval timer. The value acquired is
placed on the stack.

The word Get_Average must take the average of the topithmee on thestack,placing the
average value on the top of the stack. The stack notation for this word is:

Sn-2, Sn-1, Sn --> Sn-2, Sn-1, Sn, Average of Samples
whereSn-2 stands fothe sample two before the latest sample, Sn-1 standse sample one
before the latest sample and Sn stands for the latest sample.

The first try at Get-Average might be:

: Get_Average (Sn-2,Sn-1,Sn --> Sn-2,Sn-1,Sn,Average)
2dup + 3 pick + 3/

The execution of Get_Average, with the stack after each step, is:

2dup \-->Sn-2, Sn-1, Sn, Sn-1, Sn

+ \ -->Sn-2, Sn-1, Sn, Sn-1+Sn

3 \-->Sn-2, Sn-1, Sn, Sn-1+Sn, 3

pick \-->Sn-2, Sn-1, Sn, Sn-1+Sn,
Sn-2

+ \ -->Sn-2, Sn-1, Sn, Sn-1+Sn+Sn-2

3 \ -->Sn-2, Sn-1, Sn, Sn-1+Sn+Sn-2, 3
/ \ -->Sn-2, Sn-1, Sn, Average

We will assume that Output_Average exists (it could be as simple asvjush simplyprints
the value) andhat it removes theaop item from thestack as it outputs it and swove on to
Lose_Oldest_Input. This has temove the second fromop item (Sn-2) butleave the two
items that are above it. A suitable definition is:

:Lose_Oldest_Input (Sn-2, Sn-1, Sn -- Sn-1, Sn)

rot \-->Sn-1, Sn, Sn-2
drop \-->Sn-1, Sn

A moments thought shows tisatthe only word left to defind,ose_Two_Samples, is just the
same as the regular word 2drop which deletes the top two items form the data stack.

We would now enter Lose_Oldest_Input as shown above, test it, enter Get_Average, test it, and
finally Filter_1000_Samples and teékat. There is naeed tore-enter existing words such as
2drop of course Remember we assume we hakeady written and entered Sample_One and
Output_Average.

Often, simplifications noimmediatelyapparentwhenyou encoded the highest level wawdl
become obviousluring the coding of lessavords. Forinstance in this example, Sn-2 was
carefully preserved during Get_Averagenly to be immediately discarded by the word

1 Interval timers suitable fdow data rates will belescribed in chapter 1&hd interrupts that
allow high data rates in chapter 20

Chapter 6: A first programming example- signalfiltering Page35

Lose_Oldest_Input. It would haveen letter not to have preserved it in fimst place. With
this in mind let us write a second version of Get_Average which does not preserve Sn-2.

The second try at Get_Average might be:

: Get_Average (Sn-2,Sn-1,Sn --> Sn-1,Sn,Average)
rot over + 2 pick + 3/

The execution of this second try, with the stack after each step, is:

rot \-->Sn-1, Sn, Sn-2

over \-->Sn-1, Sn, Sn-2, Sn

+ \ --> Sn-1, Sn, Sn-2+Sn

2 \-->Sn-1, Sn, Sn-2+Sn, 2

pick \ -->Sn-1, Sn, Sn-2+Sn, Sn-1
+ \ --> Sn-1, Sn, Sn-2+Sn+Sn-1

3 \ -->Sn-1, Sn, Sn-2+Sn+Sn-1, 3

/ \ --> Sn-1, Sn, Average

This is the same number of stepsit will save the need for the unnecessary word
Lose_Oldest_Input later. The totade to do the filtering in therder we would enter and test
them, apart from the words we have assumed, is:
: Get_Average (Sn-2,Sn-1,Sn --> Sn-1,Sn,Average)
rot over + 2 pick + 3/
: Filter_1000_Samples (--)
Sample_One Sample_One
1000 O do
Sample_One Get_Average Output_Average

loop
2drop

We could pick up slightly more speed if we were to write Get_Average in [iace
Filter_1000_Samples rather than define it as a separate word. However the breaking down into
functional elements helps understandizigd makes modification simpler.For example,
suppose we wanted to get better filtering by averagintptitdourelements. Thenly major
changethatwould be needed istatally newGet_Average, athat isthe only major change to

our requirements. The changes to Filter_1000_Saraptesinimal and just consist djetting

three samples before startingr input-average-outputycle along with dropping three items

off the stack atthe end. As an exercise check #tack use irthe following version of
Get_Average that performs improved filtering using an average of the last four inputs.

\ Filtering using an average of the last four inputs
: Get_Average (Sn-3, Sn-2, Sn-1, Sn -- Sn-2, Sn-1, Sn, Average)

2swap swap 2over + + over + 4 [2swap rot

: Filter_1000_Samples (--)
Sample_One Sample_One Sample_One
1000 0 do
Sample_One Get_Average Output_Average
loop
2drop drop

In summary this type of programming consists of writing a formal specification of what is to be
done (eg. the functional definition of what Filter_1000_Samples is to do) and then breaking this
down (factoring it) into asimpleprogram structure written in terms of smaller sub-tasks (such
as we have done in the definitionffter_1000_Samples above). Since thege-taskhave

not been writteryet, nothingcan yet be tested. Instead each of ghb-tasks issimilarly

Page36 Real Time Forth

decomposedfactored) and written as short programs written in terms of sub-sub-tasks. This
process continues until all the sabb .. sub-taskbave been written using only predefined
words. Then the short prograraee entered and tested in the reverse ordeh&b inwhich

they were defined until the original requirement (the top word) has been met.

This style of program writing is called togown programming, or sometimes creative
procrastination (put off untthe next stage of factoring what you do fesl like doing in this
stage!). It is tempting toy to cutdown on the number déctorising stages by writing larger
sub-programs thahay combine severatages in oneThis can be counter productive on two
grounds.

Firstly you shouldonly do in onestage asnuch as yowcan easilysee in one glancand retain
in your head, otherwise you will find it hard to understand again ifuthee (to saynothing of
how other people will find it). Also it will beasier to fully checknestage at @me to ensure
that itbehaves as expected under all conditions. Secondly, with &Xiéience you will be
able to factothe problem sohatthe words youwevelopare usable imany different places in
the overall scheme of thingsither than in jusbne. This improves your programming
efficiency.

It may worry youthat, whenyou run your top word, itvill call the other words aoivhich it is
composed in turn, and that these other wordscaillthe words ofvhich theyarecomposed in
turn, and thathese will inturn callother words as so on. Tresdless calling of lesser words
and then returning to higher words does take some lintdsorth isvery efficient in the way it
handles this call anteturn process. The clarity d¢iie program, and therefore the ease of
maintenance and modificatiofar outweighs the small time penaltyr all butthe mosttime
critical applications. Factorising is a skill you must learn in order to progff@iently in any
language.

Chapter 7: Entering and Compiling your Program. Page37

Chapter 7

Entering and Compiling your Program

Installing FPC

Before you can usePC,you must instalit. This need only be done onesd most of it is
done by thanstall program thatomes withFPC. However you mayneed toconfigure it.
This too ishandled by the instafirogram, and lets you sebmeuser configurable parameters
as well as the paths to the files you installed when yo&Pp@ on your machine.

To installFPCinvoke theinstall program (log onto the digkat containsFPC incompressed
form and type:INSTALL f). Then you follow the on-screeprompts. Notethat FPC
occupies several megabytshen decompressedut you don'tneed tohave all of it on your
hard disk if space is tight. Yoaregiven the option ohot installing the optiongbarts and
advised of the room they wouldke. If space is tight, work dar down thelist as your space

will allow. If in doubt just accept the default response suggésteal questions asked. What
follows assumethatthe executable version built by the install program is called F (this too is
the default suggested).

Starting FPC

OnceFPC hasbeen installed oyour computer, you castart it up bytyping F f from the
keyboard. Thiswill display a sign-on messag#outthe version number, availabemory,
etc. An additional information screen canvimved bytyping INFO f. FPC is asystem rich
in resources with near000words alreadylefinedand many useful tools. It is important to
rememberthat it does not have to be masteralll at once! What follows are the basic
operations you wilheed to do the fancystuff can wait until lateeventhoughfor consistency
some of it is described in this chapter.

Opening a file

Words can belefined directly from the keyboahd then used. Thewill remain available

until explicitly forgotten or the computer is reset. This is not werywenient unless the words
arevery few in numbeand short (and yoare certain thagou will make no mistakes). It is
better to put the definitions in a file and load from there; as the file will be kept on disc you can
reload and reuse your definitions without having to type them all over again. You can open any
existing file byjust typing OPENfollowed by the name of the file yousant to open. Théle

name follows normaISDOSfile name convention@up toeightcharacters irthefirst part of

the name, and then an optional period and a thescterextension). The default extension

is SEQwhich will be automatically added if yagive no extension ofour own. Unless you

have a goodeason foradding yourown extension, it iprobably agood idea to let the system
look after the extension for you.

The currenfile is a nameahat refers tdhe file thatyou are currentlyworking on (obviously),
andopening a file makethatfile your current file. The previouse you were working on (if
any) ceases to be the current file. The name of the current file is shown at the top of the screen.

Page38 Real Time Forth

For example, type the followingOPEN BANNER f
The file BANNER.SEQ will be opened and will become the current file. It can loaded with:
1 LOAD f

The number preceding load tells the computer to load the file starting at the first life:. a&s
the computer is concerned it is as if you were typing the contents of the file BAN&HER
very quickly. BANNER prints a nice demo message, just Bp®RIOf to see it.

If you cannot rememberhat thename of the file you wish to opes, justtype OPENTf. A
screen willappear thawill let you search through the available files until you find ¢ime you
want. There areonvenient facilitieduilt in to speed the search if yoanremember thérst
letter. There are on-screen instructions to guide you.

Editing a file

Once a file is open weanedit (alter) what is in it. We caadit the source of the currently
open file (in this case BANNER if you just followed the section up above) by typing:

EDf

You will now be in the editor, viewing the first 20 lines or so of BANNER.SEQ. You can page
down through the file with the PgDn key on the keypad, and back up with the PgUp key. Much
of this chapter iglevoted to the many facilitigauilt into the editor suppliedyut for now just
pagedown to the bottom of the file witRgDn, and there yosee the definition of the word
DEMO, which prints out our demonstration banner.

Creating a new file

Reusing old files is not almysconvenient so som&ay has to b@rovided to create aew file.
Since one normally creates a file in order to enter thingstint@ Cprovides a way to create a
file, make it the current file and enter the editor all in one.

As an example let's createnaw file and put anew DEMO definition with our own banner
message iit. If the editor is still in the original BANNER.SEQ from the section ableaxe

the editor without saving any changes you might have made either by way pafptdewn
menus (accessed by typing "ESC Q D" for Quit and Discard) or directly (by pressing Alt-F10).
You will now be back in Forth and the original file BANNER.SEQ will be unmodified.

To create the new file, type the following:
NEWFILE MYBANNER f

FPC will start the editor, and try tipen the fileMYBANNER. If it is presentFPCwill open
it and show you the contentbus warning youhatyou already have a file liatname (you
can carry orwith this existing file if you so wish). If the file does not alreadist, FPC will
automatically create mew file called by the name you specifi@ll YBANNER.SEQ in this
case) and place you in the editor in that file, prepared to enter text.

Type in thefollowing definition, using the<enter>key at the end oéach line. A word of
caution, there must be at leaste spacebetween everyorth word, so be carefulith the
spaces in the samplext. The arrow (cursor contrdkeyscan be used tmovearound, but
you will not be allowed tanove belowthe line containing the little up-pointirnigangle at the
left edge ofthe screen, as this represents éhd of thecurrent file. If youmake a mistake
place thecursorover the offendingharacter and presise DEL key. If you leave a&haracter
out, returnthe cursor towhere it should be and type the rest ofthe textwill move over to
make room. There i&ar more to the editothat just this, but this isnough to be going on
with.

: MYBANNER (---)
"HELLO " BANNER

Chapter 7: Entering and Compiling your Program. Page39

"FROM " BANNER
"YOURNAME " BANNER

Instead of YOURNAME above type your actual name!

Now thatyou have typed in the above definition into the BRNNER.SEQ,leave the editor.
This time, as we REALLY DO want to save the text y@ave entered, exit the editor by
pressing "ESC Q S", for Quit and Save. y#u do not want to use the pojewn menus,
pressing the F10 key will achieve the same end).

A handy hint

Forth encourages you to write a small amount of a program (a sub-program)i, éatrit

and thermove on towrite more in theknowledgethat what hasween written sdar is correct.

This differs frommany other programming languages which require you to writevkiode

program before you can enter and test any. dven withthis capability to work witbsmall

sub-programssometimes you write aub-program, load, test it, find an error, modify the

sub-program, re-load itind anothererror (surelynot!) and so on. Befoleng you could have
many copies oyour sub-program loaded. This is ndiagal error as Fortlwill automatically

use thelast version loadedbut it uses upnemoryspace and leads to a numberaohoying

warning messageat tell you that such and such mame is not unique. It i&r better to

FORGETthe old copy before you load the new one. This can be done by typing:

FORGET name f

where name is the name of the first word in the file. This shouttbhe every time you reload
the file - of course, thdirst time you loadyour file there will be no old copy to forget! FPC
provides a special way to do this automaticaljtartyour file which contains the program
you are currently working on with the line:

ANEW <unique-name>

where <unique-name> is any unused narReogram is anamethat isnot used in standard
FPCso, if you wish, you can enter ANEWROGRAM,which has anice ringabout it. The
run-time behaviour of ANEW is to forget all definitioback to<unique-name> if <unique-
name> exists or forgetothing if it doesnot. This is exactly what yowould be doing by
entering FORGET when you go to re-load a file. Putting ANEW PROGRAM first thing in
your file will save you from having many copies of your definitions hanging about cluttering up
the system. Howevewhen the file is debugged, remaies line from the file so ican be re-
used in your next file. Think whatould happen if you had two files, eastarting ANEW
PROGRAM andyou loaded them orafterthe other. The ANEWROGRAM atthe start of

the second one yowad would forgetall of thefirst file as soon as the second cstarted
loading!

Loading and Testing

To load (compile) the currently open file from line n onwards you type:
n LOAD <filename> f

replacing n with the line number of tffiest line to load(usually 1) and <filename> with the
actualname of the file. If you forget the value and there is no number on the stacthe
file will automatically be loaded from the start. If you forget the nthede is a number n the
stackthe file will be loadedstarting fromthe line whose numbexas onthe stack and the
number on thestack will be lost. Almost certainly bad news, so takecare. Starting
compilation in themiddle of a definitioncan lead tosome most confusing compil@rror
messages.

Page40 Real Time Forth

You can also load &le which is not thecurrentfile with out having to open ifirst. In this
case you just type:

FLOAD <filename> f

and it is loaded from the first line to the last. It will not alter the current file. You can FLOAD
the current file if you wish, this is just equivalent to, but more work than, typing 1 LOAD.

Use asuitablemethod toload MYBANNER.SEQ(remember yowan see the name of the
currentfile at thetop of themain display). If you entered thgrogram as showrthen all
should be weland Forthshould coméback with the "ok™ message. If notvill display the
word that gave it indigestion angut you in the editor with theursorthere ready for you to
correct the mistake.

Now that MYBANNER is compiled, type its name to make it do it's thing:
MYBANNER <enter>

You should have segrour namescroll up on the screen. If you didrity editing the source
file (just typing EDwill put you back in the editor with the currefile open and ready for
modifying) to correct your typingerror. If you have a sudden desiredlber your name, ED
will let you do that too.

At this point, you can VIEW the source for MYBANNER by typing:
VIEW MYBANNERf

FPCwill locate thesource for your MYBANNER word, and displélye source filestarting at
the line where MYBANNER was started. A shorter word for VIEW called LL (Locate & List)
is provided to save typing. VIEW works whether the source is ircaneentfile or not,
however if it isn't it makes the actual file where the source is into the current file.

Inspecting the source of Forth words

A great deal can be learned freewing thesource of Forth wordsVIEW (or LL), together
with someother filetraversal wordsprovide the capability toiew thesource of any word as
long as thesource issomewhere accessible disk. Even if it isnot, all is not lost awill be
described below.

For an example type:
VIEW 4DUP f

and the source for DUP will be displayed. The source for ADURhe ifile Kernel 1 and you
canmovearound in thidile to see theest of it ifyou wish. You can copy a section of file
using F3 and ALT-Gutyou cannot alteKernel 1. If there is a word in the source of 4DUP
(perhaps 20VERyhosesource you wish to see, place thasor atthe start ofthis word and
press F9. The source of 20VERI now be shown. Yowanlook up thesource of a word in
the sourcdor 20VER if youwish and so on. Toomeback up aevel, from the source for
20VER back to the sourder 4DUP for example, pre$sl0. Atthe top right hand corner of
the screen is an indicator to shbaw deep youare in thislinked list of files. If it shows +n
you are nfiles down (on the screen n, oburse, is an actualmber!) ancheed topress F10 n
times to gebut (or shiftF10 toget right out of thenested files in one move). If it shows F10
you are atthe topleveland pressing-10 againwill take you back to whatever yaere doing
when you wanted to look at the source of 4DUP.

The HELP information (instructions for use) for 4DUP can be displayed by typing:
HELP 4DUF¥

When in the help file, placing tleursor atthe start of aForth word and pressing F@ll show
you the source of that word, just as if you had typed VIEW word.

Chapter 7: Entering and Compiling your Program. Page41l

When you are editing your file you can look at the source of a word by placing the cursor at the
start of itand pressingr9, orthe helpfor the word by pressingLT-H. If the source ohelp
files are unavailable, you will be advised and asked to press ESC.

Decompiling words

Sometimes the source of a word is unavailable, perhaps because of a shortage of disk space. In
this case you can usuabiigcompile it toobtain theactual source instructionsYou cannot get
any comments or help information though. The syntax is:

SEE word f

and the word will be decompiledFor code words which will be described chapter 18 the
optional disassembler willeed to be loadefirst.) Aswell as allowing us to sesxactly how
any given word doesvhat it does, this can be useful ¢heck exactliywhat youare really
running on the odd occasion thinggem to behave differently tehat you expect. The ability
to directly decompile anything is vemnusual in igh levellanguage and is a direct result of
the modular internal structure of Forth words.

Listing the available Forth words

Sometimes you wish to see if a namaligady used. Or you want a wosthose name you
canonly partially remember. Or you want a word to slamething and yoarenot sure if the
word exists alreadyyut provided the naming conventioase followed, you have a good idea
what thename would be like if the word doegist. One word you will findvery useful is
WORDS. Itis used as follows:

WORDS HEf

will display all words in all vocabulariésof Forth thatcontain the letter sequentdE". This
is very usefulvhenyou don't know how to spell the word yatelooking for, butyou know it
contains a particular character sequence. For another example,

WORDS . f
would showall wordswhose names include tieearacter ".". liyou have followed theaming
conventions that would be all words that print something, for example:

WORDS
by itself will show all words in the current vocabulary only.

WORDS *.* f

is recognised as a command to display all words of all vocabularies.
Here is a list of the words we have covered.

ANEW Erase old version when loading new.
EDf Edit the current file.
1 Vocabulariesare notdescribeduntil later in chapter 14.They are mentioned herenly for

completenessind you can ignore theeference ifyou wish. For the curious, the large number of
words in aForth system is often divideéhto smaller groups, each group normally havsane
common aspect ttheir function. For example, one groupight bewordsall having something to do
with the editor. Such groups, which dogically kept quite separatare calledvocabularies.Think

of themfor the moment as being like the chapters of badek. Youare currently in chapter 7 and
this is the current chaptévocabulary). There are other chapters, each of which can be turned to as
required. Vocabularies organise Fowtbrds so theyare easy tofind in the samavay that chapters

are used to organise the information in this book.

Page42 Real Time Forth

FLOAD <filename>f Load <filename>.

n LOAD f Load current file from line n.

NEWFILE <filename>f Create a file to edit.

OPEN <filename>f Make <filename> the current file.
HELP f Displays a help screen.

HELP <forth_word>f | Show the help and.. |

VIEW <forth_word>f | ..source for

LL <forth_word>f | ..a Forth word. |

SEE <word> Decompile <word> to show the source.
WORDS f Show all words in current vocabulary.
WORDS <sub_string>f Display all words containing <sub_string> in all vocabularies.
WORDS f Display all words in all vocabularies.

SED - The sequential editor

The editor provided witl-PC iscalled SED and hadar morefeatures than those previously
described in thishapter. The number of features canrdherdaunting atfirst, so it is
suggestedhat you start with the minimum already described and add other things to your
repertoire ameeded.The rest of this chapter descrilibe full features o6ED. By allmeans
read it, but don't try to master it in one sitting.

Overview

SED is a text editormplemented inForth, with cursormovement key sequencssnilar to
WordStar. SEDprovides pull-down menu®r ease of operatiomyith on-line helpfor most
functions. Press ESC to pop up the menu bar, then type the first latiernoénu name to see

the menu.Presghe FIRST CAPITALISED letter of amenu item tick thatitem, or use the

arrow keys tostepdown to itand press <Enter>. PreBSC again to clear thenenubar.

Many of the commonly used commands have a keystroke sequence which can be used to access
them directly; these are shown on the menus and also listed in the rest of this chapter.

The on-line help isbrought on screen by pressifd, afterwhich youcan press any of the
NUMBER keys tosee the additional help screen grious topics as described in the F1
screen. Pressing ESC will return you to the editor.

Key functions

SED tries to besomewhatWordStar compatible. Thecursor movementkeys, Control
A,S,D,F E,X,C,R,Wand Z havdbeen maintained fro/ordStar, asave the keyshat cause
deletion, ControlG,T,Y, and Del. A large number of other sindgdey commands haveeen
added and a few double key commands. These are listed below and involve one of:

« control key plus the simultaneous depression of anotkey (for example Cntl-Dfor the
control key and the D key);

- alternatekey plusthe simultaneous depression of anokwyr (for example Alt-Dfor the
alternate key and the D key);

« one of the keys on the numeric keypad;,
« or one of the function keys F1 to F10.

Chapter 7: Entering and Compiling your Program. Page43

Moving the cursor

Cntl-D
Cntl-S
Cntl-E
Cntl-X
Cntl-A
Cntl-F
Cntl-M
Home
End
Cntl-l
PgUp
PgDn
F2

F4
Cntl-C
Cntl-R
Cntl-w
Cntl-Zz
Cntl-Home
Cntl-End
Alt-Q
Alt-Z
Alt-G

Deleting characters

Insor Cntl-V
Del or Cntl-G
Cntl-T

Alt-U

Cntl-Y

Alt-Y

Move cursor right one character
Move cursor left one character
Move cursor up one line
Move cursor down one line
Move cursor back to start of previous word
Move cursor forward to start of next word
Same as the <return> key
Go tdoeginning of line
Go to end of line
Same as tab key
Go back through document 12 lines
Go towards end of document 12 lines
Go to top of screen
Go to bottom of screen
Move cursor down one page
Move cursor up one page
Scroll screen down, do not move cursor
Scroll the screen up, do not move cursor
Go to First line of document
Go to last line of document
Go to beginning of the file
Go to the end of the file
Prompt for page to go to

Toggle between insert and overwrite mode
Delete the character under the cursor
Delete the word to the right of the cursor
Word undeleteundeletes up to 10 words
Delete whole of the linthe cursor is on
Undelete lines

Copying and moving text

Cntl-N
Alt-N
F3

F5
Alt-C
Alt-A
Alt-X
Alt-V
Alt-W

Split line at the current cursor position

Join lines, the inverse of Control N

Mark line, for copy and export lines

Get a line from the mark

Copy text from mark to TEMP.SEQ
Append marked text to TEMP.SEQ

Cut linesfrom mark to cursor to TEMP.SEQ
Import a file from a selection window

Write entire file to a new file

Searching for and replacing text

F6

F8
Alt-F6
Alt-F8
Shift-F6

Search, prompts for search text

Replace text, must do F6 first

Search for same text again, no prompt
Replace with same text again, no prompt
Search for text backwards, Case sensitive

Page44 Real Time Forth

Shift-F8 Replace all occurrences of text (use after F6 and F8)
Shift-Alt-F6 Repeat search, no prompt, case sensitive
Shift-Alt-F8 Repeat replace, no prompt, case sensitive

Miscellaneous

Alt-L Move column right

Cntl-L Set left margin to column the cursor is in
Alt-S Set up Right Margin, and WINDOW size
Alt-T Set the TAB at the current column

Alt-M Define a macro

Alt-R Repeat a macro

Alt-O + U Convert line to uppercase

Alt-O + L Convert line to lowercase

Alt-O + P Paste date/time

Alt-O + X eXpand tabs to spaces

Alt-P Enter the print menu

Cntl-B Reformat paragraph

ESC Pop-up the menu bar

F1 Access the online help

F7 Sort the line of the current paragraph
F9 Enter line drawing mode

F10 Save and exit the editor

Alt-F10 Discard changes and leave the editor

Expanded descriptions.

Whatfollows is an alphabetical list of teommands from thkst abovethat need morghan
just aone linedescription. Also includedreinformation on topics such aglecting a file to
edit and the status line.

Column Move Right Alt-L

All of the lines of a column of data can be moved to the right by a numbbeardcters from 1

to 9. You will be prompted for the number of spaces to be insertedliteealfrom the current

line until a blankline is encounteredThis can be useful fandenting lines in aource file to
show up the structure. This canu&lone either by entering a negative number as the number
of colums to move or by Shift Alt L (see below).

Copying Lines F3 &F5

Lines can be copied from one place in a file to another, with ten&fk), and F5 (copimne)-
commands. Move to tHast line of the block oftext you wish to copy, anpress-F3. Then
move tothe place you want to copy the text to gmdss FSoncefor eachline youwant to

copy.

Copying text to a File Alt-C (to TEMP.SEQ)

Shift Alt-C (to another file)
SED cancopy lines oftext to another filemaking no change to the file it is currentprking
on. First go tothefirst line of text you want to copy, angress F3 to markhe start of the
block to copy. Then, with the cursor control keys, move to thdéifasbf text you want tcut,
and press Alt-C. Thisvill cause all of thdines from thestart tothe end (inclusive) to be
written out to thdile TEMP.SEQ. Taspecify a different filename to copy, pressShift-Alt-
C, instead of Alt-C and yowill be promptedor aname to writdo. Seealso "Cutting text to
a File", and "Copying from a File" below.

Cutting text to a File Alt-X (to TEMP.SEQ)

Shift Alt-X (to another file)
SED can cutines oftext to another fileleaving notrace ofthem in the file it is working on.
Go to thefirst line of text you want taut, and press F3 mark to matthke start ofthe block to

Chapter 7: Entering and Compiling your Program. Page45

be cut. Thenmove tothelastline of text you want tacut, and press Alt-X. Thisvill cause all

of the lines from the start line to the end line (inclusive) to be written out to tHeEWP.SEQ

anddeleted from theurrent file. To specify a differerilename tocut to, press Shift-Alt-X,
instead of Alt-X, and yowvill be promptedfor a name to writeto. Seealso "Pasting from a
File", and "Copying from a File".

Delete and Un-Delete lines Control-Y (delete)

Alt-Y (undelete)
Lines can baleleted withCntl-Y, andundeleted with Alt-Y. Any lines whichare deleted are
added to theop of aline deletestackwhich by defaulthasroom for 50 lines. When you
undelete a line thwop line from the line deletstack isremovedand placed back in the text.
The line delete stack size determines the number of line deletes which can be undeleted.

Delete Leading Blanks Shift-Alt-L

All of the spaces in the currehibhe from thecursorcolumn to the righaireremoved. This is
done to each following line until a blatike is encounteredThis is the opposite to what Alt L
above does.

Displaying and Using Menus ESC

Pressing th&SCkey while editing changes tfiest edit line todisplay the MENU BAR. The
most recently used menu item will be in reverse video. cémihenpress LEFTand RIGHT

ARROW to step acroghe menus. If yopress DOWN ARROWithe menu content®r the

highlighted menu will be pulled dowand the UP and DOWN ARROWeys will move the
selectionbar upanddown in the selected menwentents. PressENTER>when themenu

item youwant is selected. You can also selaenu items byressing thdirst UPPERCASE
LETTER in amenubar ormenu item. For some menu items there isshortkey sequence,
involving theALT or CONTROL keys, which will infuture selectthatitem without having to
invoke thepop down menus aall. When in the relevant menu note if it or Control key

sequence is shown by the menu item. li§jtthis sequencean be used fofast access in
future.

Drawing lines F9

Pressing F9 will enter eharactetine drawing mode. Yogan presshe arrow keys tomove
around on the screen and draw lines. This is most usefpiettying up youdocumentation.
Pressing F9 again or ESC will take you back to normal edit mode.

End of File Marker (an up pointing arrow head)
The up pointing arrow head symbol is used by SED to mark the last line of text in the file.
Expanding TABS in a file Alt-O X

To expand TABSwhich appear in dile as small diamondgress Alt-O (option)followed by
X expand tabs. All TABS in the current file starting at ¢hesorwill be expanded to eight (8)
character columns.

Exporting to another file Alt-W

The currentedit file can be written out to another file. By pressing Alt-W, yall be asked

for the name of the file to write out to. The entire file contenteémory will bewritten out to

the new filename. This is useful if you want t&eepboth thenew and old versions of a
program, for example. If you just want to export a small amount of text to another file, use the
Alt-X export function (see above).

Left margin Cntl-L

The left margin on the screen defaults to coluraro, butwhenprinted, defaults to 2 spaces,
so it is not normally necessary to insert a left margin. HowelemTAB is pressed, thieft
margin on the screen is expanded lph8racters.Any subsequent lines typed in will maintain
this margin. The left margin can be set at any column position. Movetber tothe column
where you want the left margin set and press Cntl-L.

Lower case conversion Alt-O L

To convert the curredine to lowercase, press Alt-O (optionfpllowed by L. Allupper case
characters irthe currentline will be converted to lowecase. Seealso UPPER CASE
conversion.

Page46 Real Time Forth

Macros and FPC Alt-M, Alt-1..5

SED does not have macros built into it by deféult, afile is provided calledMACROS.SEQ
which, once loaded, implementsacros in Forth that can lbsed inSED. These macrosork

exactly the same as they work fPC. That isyou use Alt-M tostart defining amacro,

followed by one of thélt-1, Alt-2, Alt-3, Alt-4, or Alt-5 keysfor the macro yoware defining.

Next you enter any keys you waintluded in themacro, and finallypress Alt-M again to
complete thanacro definition. To perform macro,simply pressthe Alt-n (n=1 to 5)keys

alone, and the keystrokes saved will be performed.

On line help F1
Press F1 foon-line help on therariouscommandsvailable. Thiswill only work if the help
file is on the disk you are using.

Page Break Marker (a down pointing arrow head)
The down pointing arrow head symbol is used by SED to maffirsthéne of aNEW page on
the screen. It does not appear in your file.

Pasting the DATE & TIME Alt-O P
You can paste the date and time into a document at any time with Alt-O P.
Pasting from a File Alt-V (from TEMP.SEQ)

Shift-Alt-V (from another file)
Text which hasbeencut with the Alt-X (cut) command to th@ EMP.SEQfile can be pasted
back with Alt-V, thepastecommand. If you want tpaste dile otherthanTEMP.SEQ, you
can press Shift-Alt-V, and a window will pop-up for you to select a file from. Ifpregs Esc
during thepaste, owhile in the file selection window, thenport operation will beaborted.
See also "Cutting text to a File".

Printing Documents Alt-P

Printing can be initiated by Alt-P. Will take you to a screemhere youcan set the printing
parameterslike first and last page to printopies toprint, etc. These values default to the
mostcommonsituation,which is toprint all of adocument once. Tstartprinting, press "P",
or press ESC to abort.

Tab expansion Alt-K

If you want to read a text file from an editor which imbeds tabswibsee small diamonds in
many places in the filwhenyou first starteditingit. Thesearethe embeddedab characters.
If you do see thestab characters, pregdt-K, and thesecharacterswill be expanded into
spaces. This processll increase the size of the file somewhat, so if ywadoing this to a

very large file, you may run out of the character memory space available. Wodd&arent

files which contain bytes withit 8 setwill need topassed through a conversion utilitgfore

being edited by SED.

Replacing Text F8 Replace first

Alt-F8 Replace next
After a Search habeen done, yogan replace the text found by pressi®} You will be
asked for areplacement stringwhich will be used to replace the foutekt, whenreturn is
pressed. To search fure next occurrence of the sameat, press Alt-F6, and to search for
and replace the next found occurrence with the same replacement text, press Alt-F8.

Replacing All Occurrences of Text Shift-F8

Having already performed a Sear(h6) and Replace (F8pnce, you can replace all
occurrences of search text with replacement text by pressing Shift-F8.

Searching for Text F6 Search for first
Alt-F6 Search for next

You can look for any sequence of characters in SED with the F&/bgn F6 igpressed, you
areasked to enter a text string ltwk for. SEDwill look for that string of charactemshen

you press <return>. When SED searches for text, it ignores the case of the letters. If you want
SED tolook at thecase of the text it searchd®mld downSHIFT while pressing <return>.

Chapter 7: Entering and Compiling your Program. Pagea7

This search is much faster. To search for another occurrence of the same text striddt- press
F6 if you want only an exact match. See also the earlier section on Replacing Text.

Searching for Text Backwards Shift-F6
Having alreadydone asearch using F6 above, you can also search backwards with Shift-F6,
which searches backwards from the cursor with a case sensitive search.

Selecting a File to Edit

Whenever yowarebeing asked to enterreew filenameand youpress ENTERwithout entering
a filename, a window wilbop upallowing you to select a file from the directory. If yaxe in
a sub-directorywhen the windowappearsthen a file named." and afile named".." will
appear athe top of thefile list. These filesalong with any directories below tlwairrent
directory, will display agraphic "infinity" symbol to the right of the filename. If ypuess
<return>while positioned on th&" name you will select thROOT directory. The "..'hame
will pop upone level ofdirectory, and any other name with the "infinity" symbol next wwilit
step youdown one level tdhat directory. You canmove betweeriiles in thelist, with the
keypadarrow keys, and select a file by pressiBYi TER. Escape can hesed toabortfile
selection. Pressing a letter key will take thiesor tothefirst filenamestartingwith that letter.
The path andhe currentrive is displayed in the loweight. The path can behanged by
pressing the "\" key, then typing thew pathfollowed by thereturnkey. The drive specified
must exist and have a disk in it, or a system error will result.

A filename can be specified on theommand line wherstarting SED,and may include a
directory specification.

Sorting the lines of a paragraph F7

An interesting although relatively slow function$&D isthe F7 keythatwill sortthe lines of
the currentparagraph starting othe cursor line and continuing until a blanline is

encountered. Theort starts athe current column, arnéststhe next 10characters t@erform

thesort. It ispossible to create simptiatabases gohonelists, by placingdifferent pieces of
information at specific columns, and using F7stot according to these columns aseded.
For example ghonelist can be sorted according ficst name last name,areacode,state, or
zip as needed.

Status Line

The topline of thedisplay shows the curreatit status, startingvith INSERT/OVERWRITE
statuswhich isalsoshown by a thickecursor for insertnode. The curreniColumn andLine
numberarethen displayed, followed by thgage number, totdines in file andtotal characters
in file.

Tab setting Alt-T

Set up tabs at uftiples of the current column-or example, if yoware oncolumn 5 angress
Alt-T, TABS will be set atcolumn 1, 5, 913, 17, etc., that is at stepstbé distancdetween
column 1 and column 5. There is always a tab at column 1.

Upper Case conversion Alt-O U

To convert the currerine to UPPER CASE, press Alt-O (optiorfpllowed by U. Allupper
case characters ithe currentline will be converted tdJPPER CASE.Seealso LOWER
CASE conversion.

Notes on F6 and F8 and their variants

The basic keys, F6 or R&ill perform the specified operatiqisearch for and replaceyjth a
prompt for a text string parameter. The operatigreiformed with a case insensitive search.
That is, "CaSe" is the same as "case".

The Alt-F6 or Alt-F8 repeats the same function addkeF6 or F8using the same text string
as was used then. Again, the search is case insensitive.

Holding down Shift while pressing return on F6, Alt-F6 or Altsb8 cause the seardone to
be CASE SENSITIVE. Thatis, "CaSe" is NOT the same as "case".

Page48 Real Time Forth

And finally, pressing Shift-F8, WITHOURLT, causes alobal replace all occurrences to be
performed.

While the above mageem confusing dirst, it provides a lot of flexibility and power for
search and replace operationbry these commands on a junk file until ybecomefamiliar

with their operation.

Control key template

Cntl-wW Cntl-E Cntl-R Cntl-T Cntl-Y
Delete word

Scrollup ong| Line up Move one to cursor Line delete
screen page up right

Cntl-A Cntl-S Cntl-D Cntl-F Cntl-G
Move word Move Move Move word Delete

left character leff] character right character
right under cursol

Cntl-Z Cntl-X Cntl-C Cntl-V

Scroll down || Move one Move one || Toggle Inser
one screen|| line down page down || <> Overtype

Kevpad Template

Home Up PgUpto
Cntl-Home to file starf]| to line one line || previous
start in file page
Left Right
Cntl-Left left one word one 5 one Cntl-Right right one word
character| character
Move to Down PgDnto
Cntl-End to end of filg end one line || next page
of line in file in file
Ins Del char
Insert / overwrite under

toggle cursor

Chapter 7: Entering and Compiling your Program.

Page49

Function Key Template

Alt-F1 Rotate
through open files

F1 F6
Call up help Search for a string
F2 F7
Cursor to top of
screen Line and box drawingy
F3 F8
Set mark at current
line Replace a string
F4 F9
Cursor to bottom off| Link to and browse tg)
screen a word
F5 F10
Copy a line from thg| Unlink one level.
mark If at top level exit ang

save

Alt-F6 Repeat a
search

Alt-F8 Repeat a
search and replace

Alt-F10 Leave
discarding changes
Shift-F10 Unlink to
top level

Page50 Real Time Forth

Chapter 8:- It didn't work - now what? Page51

Chapter 8

It didn't work - now what?

The person who never madeemornever made anything! Programmiegors reallycome in
two basic types, errors aompilation timebecause Fortltould not understand what you
meant, and errors because Fodid understand and divhat you asked it to do but
unfortunately this was not what you meant to ask it to do. Theyfzetare usualljthe easiest
to find. Forth will object if you try to use unbalanced conditional w@ifelsvithout THEN for
example) or if you use a word litas never heard of (a typingrror perhaps). Ifou are
compiling from a file you will beput in the editor with thecursor atthe exactspot that the
compiler gaveup. Make the necessary corrections astdrt the compilation again (after
manually forgetting the definitions previously learned from this file if goeinot using the
ANEW convenience construct).

When testing a word that compiled correctly, set up the stack with it's required information, run
the word and see if the stack effect is what you expected. It is very useful here to be able to see
a non-destructive printout of what is on gtack. This can bdone by depressinigoth shift

keys at once whichauses a picture of ttgtack to be drawn athe screen. When you release

the keys thepicture disappears. ifou want a non-destructive printout of the contents of the
stack onthe screerfior future reference, type .S ("pri6t"). Of course ithe computenever
comesback (probably as a result of you playing with tieturn stack) yolknow there is
something very wrong and you wilked tareset the computer before you do anything else. As
mentioned earlier, Forth does no run-time error checking in the interests of execution speed. As
a consequence this, know how toreset the computer before runnimgchecked code! Often

a simple inspection of the misbehaving word will reveaktngse (yoknow which word is the
offending one as yoareonly testingone word at a timand it is builtonly of pre-tested words

- aren't you, isn't it?)When thecause remains a mystery no matieww much you look, it is

time totest the wordnesub-word at dime while watching thestate ofthestack. FPCas a

special utility for this - the debugger.

The Debugger

The debugger allowlr step by stegxecution of a word while showing tlsack. This is
invaluable for catchingomesubtle types of erroralthough if your programs consist sinall
words you should nateed itoften. Thedecompiledsource forthe currentdefinition being
debugged is displayed while debugging so you can see just where you are.

A typical command sequence might be as follows:
DEBUG IFFY-WORDf

which specifiesthat IFFY-WORD is to balebugged as soon as it is next encountered for
execution. You carthen start things running and aWvill continue as normal untilFFY-
WORD isencountered. IFFY-WORWill run onestep at a time. After IFFY-WORD has
been complete(and assuming you do not gwhile in the debugger) execution wiéturn to

Page52 Real Time Forth

full speed. IFFY-WORDwill stay set up fodebugging every time it is encountered until you
unbug it.

Alternately,
DBG IFFY-WORD f

will run anddebugIFFY-WORD right now (youhad better have thstack set up as IFFY-
WORD expects it before typing this of course).

Once in the debugger, you will be shown the word umelstrdecompiled at théop of the
screen and underneath a display similar to the following:

17469 0O INWFLG ?>

At this point, pressing returwill cause the wortNWFLG to be executed, artie debugger
will print the stack afterexecution, and step to the next word in the list and Veaita
command. For example one return may change the above display to

17469 O INWFLG ?>[2]126 34
17493 2 : NEXT-WORD ?>

This showghat after INWFLG had ruthere were two items on tis¢ack, 126and 34 with 34
on top. Asnhormally set ug=PC only shows you théop fouritems on thestack. If this is
insufficient you carchange the variabl®lAX.S once in the debugrocess. (Note theaming
convention, the maximum number of stack items to be printed is set by the variable MAX.S)

Notice the fields in the above example. The number on the left is the addresaany where
the debugger is currently working in tberrent number base yauwe using. Next to this is the
'distance’ into the currenblon definition (two byteper sub-word). The next word INWFLG
is the word the debugger @bout to execute. The nesgmbol "?>" is a marker pointing to
where thdist of thestack contentsvill be after we pres$. There may be a symbbétween
the 'depth' in and the name of the word being debugged, it tells ofatee ofword (colon
definition for example).Looking ahead &it, if it is ":" this indicateghatthe next word to be
done is a colon wordnd if needs be yogan nestdown to singlestep through this word too.
Only colon words and wordbuilt from colon wordscan be stepped through with this
debugger.

Below the decompiled versidout above the step-by-stegiack picture is dine giving the
available command for use when in the debugger:

Cont, Done, Forth, Nest, Quit, Skipto, Unnest, Watch, X-srctgl

Type the first (capitalised) letter of any command to activate that command.

These are the commands you can use in the debugger. Their functions are as follows:
C-cont Trace continuously until a key is pressed or the end of the word is reached.
D - done Exit the debugger and carry on from where you are at full speed.

F - forth Allow entry of any Fortltommands until <enter> is pressed on an ey
Very useful for changing the values on the stack among other things.

N - nest Nest into the ":"definition we wereabout to execute.Only works on ":"
definitions.

Q - quit Quit the debugger, and unpatch next.

S - skip Jump over a specified numberstépswhich will be performed at full speed,
and thencarry ondebugging. On entering S you will be askedrtark the
instruction at which taeturn to step-by-stegxecution by moving thearker

Chapter 8:- It didn't work - now what? Page53

using the + and - keys on the numeric keypad. Niot¢ it takes two
keypresses tonove across a literal number. Skipping could be of use, for
example, if youare testing a wordthat contains a loop. After yotave
stepped through the loop ormed are sure it is correct, ube skipcommand
to complete the rest of the loop and resume step-by-step exdoutiediately
afterthe loop. Executing loops a large number of timégensingle stepping
is a great cure for insomnia.

U - unnest Unnest thecurrent™" definition being debuggedun it to completion andhen
re-enter the debugger on the next highest level word.

W - watch This word allows you to displagne 16byte long region omemory in.code
space. This is usefuhhen you want tosee things beingdpuilt. It is a
convenience compared to th#ernative of suspending the debugger with F,
displaying the memory witbUMP andthenre-starting the debugger tarry
on. After you type W, you will be askédr the startaddress of the region to
watch, you may enter this ione of threevays, as a number in the current
base, bygiving the name of a word whialeturnsthe desired address or by
using the tic operator ttmok up the codeaddress of a worthat does not
normally return an address. Entering an address of asres the watch
facility off.

X - srctgl The upper portion ahe screen is normally filled with tlemurce forthe word
you are currentlydebugging. This is tomake iteasier tofollow the debug
process. You may want tarn off the source display, if it interferes with your
debuggingprocess (prevents having a laggeughstack history orthe screen
at one timefor example). Entering Xvill toggle between having the source
displayed and not having it displaye@/hen youturn it off, the whole screen
scrolls providing room for a longer history of events. The de$saté forthis
toggle is to display the source.

Stepping through the definition, pausing reeeded tcalter the stack orsee the value of a
variable or perform any other operation you wishl, almost certainly bring therror tolight.

If you aredebugging a wordbuilt out of only known tested goodords, the nest and unnest
commands should not be needed. Taeyhowever veryuseful if your previous testing was
not quite as rigorous as it should have been. YouwnBnnest (debug aubsidiary wordjnto
another colon word as this is the only type of word that the debugger can work with.

SEEIing into Forth definitions

FPCprovides a decompiler call&EE (this is what produces the t@art ofthe screemvhen
we use the debugger its normalmode). SEE displays adecompiledsource that is imost
cases very similar to the source on disk. Just type:

SEE MY_WORD

where MY_WORD is the word you want tdook at. Naturally SEE cannot generate
commentsput isvery useful where thsource is not currently available on disc. If the source
is available, VIEW will find it and show it.

Page54 Real Time Forth

Chapter 9:- Basicnumber and text handling Pageb5

Chapter 9

Basic number and text handling

Numeric conversion.

These wordsre mainly to do with setting the numeizase andonverting between internal

binary number representation and ASCII string representation as generated by the keyboard or
shown the screen. Rememlbleat FORTHwill work in any numbebase youike. Many of

these wordsre rarelyused directly by the applications programmer. Tasyincluded for
completeness and in case you wish to convert binary numbers into some very special format for
printing. Performing mathematics will be covered in the next chapter.

Setting the number base.

BASE (--addr) A system variable containing theadix for input-output
conversions.

DECIMAL (--) Set number base to decimal (base 10).

HEX (--) Set number base to hexadecimal (base 16).

Converting a number into ASCII.

A number is convertegharacter by character frothe least significant digit to theost
significant digit into a holding buffer called PAD. The address of the current front of the string
is kept inHLD. Once the conversion of the string is finished, the strang be typed. The
number is built up by repeatedision by thecurrent base. Themainder (when converted to
ASCII) is the next most significant digit of tleaitput,the quotient is readfpr division by the

base again tget the next digit. This proceasrmally goes on until quotient is zero. Then a
sign is appended to the front of the string if needed.

<# (--) Start numeric output string conversion. "less-sharp”

SIGN (n--) If n is negative, add minus sign to output string.

(+dl--+d2) Convert next digit of a double number and adddharacter
to output string. +d2 is the number left to convert. "sharp”

#S (+d--00) Convert all significant digits of double number to output
string. "sharp-s"

HOLD (char--) Add char to output string.

#> (xd -- addr count) Drop xd and terminat@iumeric output string,leaving the

address and count ready for TYPE. "sharp-greater"

Page56

Real Time Forth

Words areprovided to meet theommonrequirementgor formatted and unformattatimber
output. Some of the formattedutput for bothsingle and double precision wordse non-
standard andnay notappear inother versions oForth. All areprovided inFPC. The (M)
indicates words with multitasking implications - they contain an implicit PAUSE and so cause
task switching if multitasking is enabled and there is mtran one active task on the
multitasking queue. (See chapter 16 for more information about multitasking).

(nl--)

R (n1ln2--)

? (addr--)

D. (dl-)
D.R (dilni--)

U. (nl--)

UR (nl1n2--)

UD. (d1--)

UD.R (dlnl--)

Display nl1 as aigned value in theurrent base andith a
trailing blank. "dot" (M)

Display n1 as asigned valueight justified in afield of n2
places.

Display the contents ofmemory address addr as signed
value.

Print a signed double number (32 bits) with a trailing space.

Output as asigned double numberight justified in an nl
digit wide field.

Output unsigned single precision number nl with a trailing
blank. "u-dot" (M)

Output unsigned number nl right justified infeeld of n2
places.

Output anunsigned double precision number with a trailing
blank.

Output anunsigned double precision number right justified in
a field on n1 places.

As well asprinting out numbers, weiill need to beable to input numbers. THellowing
words convert ASCII strings into binary. Natfeat all these conversion words convert the
input into a 32 bi{double precision) number; thep 16 bits can be dropped if it wasly a

single precision number.

Converting ASCII into a number.

DIGIT (char -- ntrue) or (char -- char false)

DOUBLE? (--f)

DPL (--addr)

NUMBER (addr -- d1)

NUMBER? (addr -- d1 f)

Check ifcharacter is aalid digit in the currenbase. If so
return converted value and true, if not character and false.

Return true if aperiod was encountered in the stringist
converted to a number. A . in the input number indicates a 32
bit number.

Returns thedecimal point location in theput string, DPL
contains the number of digits after the decimal point.

Convert string at addr to double number. The string must end
in a blank.

Convert string at addr to double number and s&PL to
contain the number of digi&fter the decimal point (if any).
The string mustend in ablank. Leaves a true flag if
successful.

Chapter 9:- Basicnumber and text handling Page57

Moving Strings Around.

Standard Fortlprovides a very fewvgtring primitives. Theyare,however, enough to build full
string handling from. ThéPC package forversion 2.25 included a fullstring handling
package. This was not included in version 3.5x but is on thendiskled withthis book. The
source is in the filePFSTRINGS.SEQand a full narrative descriptiowill be found in
PFSTRINGS.TXT. Agealtime processing does not normally use much in the way of string
handling, this packageill not be described ithis book. However, gew primitive standard
string handling words from the required word set that find frequent use are described.

CMOVE (fromtou--) Move u bytesstarting in memory at "from" address to
memorystarting at "to"addr. The byte ahe lowestmemory
address is moved first. "c-move"

CMOVE> (fromtou--) Like CMOVE exceptthat the byte at the higheshemory
address is moved first. "c-move-up"

FILL (addru byte --) Fill u bytes of memory starting from addr with byte.

COUNT (al--al+l byte) Move string count fronmemory ontcstack. Useful where al
is thestartaddress of a counted string with théiBcount at
al and the string propstarting at al+1. This ike form of
most strings irForth. Countieaves thestack ready for type.
Note. Also useful as a C@ with auto-increment.

-TRAILING (alll--all2) Modify string at al and with |1 byemoving all trailing
spaces. L2 ishe lengthafterthe spaceareremoved. "dash-
trailing”

Text Output and Input.

The words below provide ways of printing single characters and text to the screen and inputting
characters from the keyboard.

Text Output

CR (--) Start a new line on the terminal. "c-r" (M)

EMIT (char--) Display char onthe screen at the currentirsor position.
Display of control characters is not portable. (M)

TYPE (addr+n --) Display the string ofength nthat starts at addrDisplay of
control characters is not portable. (M)

SPACE (--) Display a space. (M)
SPACES (+n--) Display +n spaces. (M)
Stext" (--) Compile the message $bat when encountered at run-time

text will be printed on the screen. "dot-quote” (M)

Page58 Real Time Forth

.(message)(--) Display message from the input stream on the screen as it is
encountered. An immediatgord, it is useful forproducing
informative messages on the screen during compilation. "dot -
paren” (M)

AT (columnrow --) Move thecursor tothe specified row and column. The next
item sent to thetring to be printeavill appear there Useful
for having an organised screen layout. The row specified can
range from 0 to 24, the column from O to 79.

Text Input

KEY (--char) Get a 7-bit ASCIl chawith hardwaredependent higlbits
from the keyboard, do not eciio Wait until akey is pressed
if there is no keystroke available. (M)

KEY? (--flag) Check to see if there is a keystroke waiting. Do noitggist
return a flag to say if there is one waiting.

EXPECT (addr+n--) Get asequence ofharacters fronthe terminal and stotbem
starting at addr. Echo to the screen as thaye acquired.
Store up to +n characters or until returreigered, whichever
occurs first. Control charactersay be intercepted by the
system for editing. The number ofcharacters actually
acquired is returned in the variable SPAN. (M)

SPAN (--addr) A variable thatcontains theactual number of characters
acquired by the last execution of EXPECT.

Two other words worth aention select whether American Buropean date format is to be
used in output. These are non-standard but available in FPC.

D.M.Y. (--) Select day, month, year format for all calender operations.

M/DIY (--) Select month/day/year format for all calender operations.

Chapter 10 Maths - who needsit? Page59

Chapter 10

Maths - who needs it?

The title of this chapter is a deliberad®uble entendre Whatever ones feelingsbout
mathematics in general, arithmefat least) isgoing to be neededooner or later in your
programs. One of the most striking things about Forth, quickly noticed by pelopkreused
to another language, that 16 bitintegersare apparentlyhe onlytypes of numbers directly
supported. An inspection showst this isnot strictly true asome 32bit integersupport is
almost always providedut certainly thereare nofloating point numberslefined in the core
words of Forth. Of coursihe reason ishatyou can add anything yamight want orneed to
Forth, sowhy saddle people with things they magt need? Iffloating point is really required
for example, you just add it, to whatever accuracy you need.

Before rushing in to adextra maths, it isvise to see if it is reallpeeded. In som&tuations
certainly,but not in othersProvided all other factors are equal (algorithms, language gtc.)
floating point maths executes more slowhan fixed point maths, and fixed point maths
executes more slowlthan double precision and double precision exeaut@® slowly than
single precisiomaths. So, imakes sense from the pointviéw of speed taise the simplest
maths thameetsyour needs. Also theode size wilivary depending on the complexity of the
maths you use and whether it is writtenhigh levelForth ormainly in assembly language.
This chapter considers various options fravhich to pick theone that bestmeets the
requirements of the task in hand.

Firstlet us define a couple dérms concerning the representation of numbers, the resolution
and the range. The resolution is theimum possible changéhat can beepresented in a
particularnumber format. The range is tbiéference between thiargest and smallest (or in

the case o$ighed numbers the most negative) numbetscan be expresseéor integers the
resolution is always one and the range goes up as the number of bits in the integer increases.

For fixed point numbers, the number is expressed in a smgatity. Depending how many
bits of this quantityyou allocate fothe fixed decimaplaces, the resolution and the range vary
inversely (thegreater the resolution and the smaller the range). Fixed point mathsyis
closely related to integenaths, excepthat allnumbersare storednternally after havingbeen
multiplied by an integer scalingctor. They are divided bythis scaling factobefore being
output. This allows aumber of decimablaces to be provided and Yet the numbers to be
treated by integers. Since you still represent numbers in (sayjs3Be actual rangevould
be that for 32 biintegers divided by thecalingfactor. See the tabl&elow for figures for
signed numbers. The range is the differdreteveen théargest and smallest numbéingt can
be representedr-or unsigned integers the range would be the shotdtom zero to twice the
value shown under "Largest positive number" plus one.

Page60 Real Time Forth

< mmmmmeemeees Range -------------- > Resolution

Word Decimal Scaling Largest positive ~ Largest negative = Smallest

size places factor number number increment
Integer 16 0 na 32767 -32768 1
Integer 32 0 na 2,147,483,647 -2,147,483,648 1
Fixed point 32 1 10 214,748,364.7 -214,748,364.8 A
Fixed point 32 2 100 21,474,836.47 -2,147,483,648 .01
Fixed point 32 3 1000 2,147,483.647 -2,147,483.648 .001
Fixed point 32 4 10000 214,748.3467 -214,748.3468 .0001

Floating point numberare stored inwo parts,onepartexpressing an integer number and the
other the power of two (usually) to which this integer should be raisgideidhefinal number.

If this power (the exponent) is positive, the number represented can be very large and the
resolution small (two to the power of the exponent). If this power is negative, the number
represented can be very small and the resolution higimg floating point representation this

trade offbetweerrange and resolution can altynamically without any explicit attention by

the programmer as the magnitude of the numbers being used change. However, the system
does need to pay explicit attention which takes up processor time.

Now to look at some specific number representations.

Single precision integer arithmetic.

This is fully provided inFPC as irall Forths. The largegtositive signed numbehat can be
represented in 18its is + 32767 andhe largesinegative signed number i82768. The
smallest number is 0. Of course, since amedealing with integers, no decimal points are
allowed. Thefour basic functions (addsubtract,multiply and divide) are provided, plus
modulus (MOD), absolute (ABS) and special routines to multiplyivade by two (2*and 2/).

In binary, multiplying anddividing by twoarethe same apust shifting all bits in the number

left and right byoneplace. In the case of a left shift thi#¢ movedinto the least significant

place is zero. In the case of a right shift the bit moved in as the most significant bit must be the
same as the previous most significant bit in order to prefieev&gn of the number. Numbers

can be entered in line by just typing them and printed with . (and its formatted cousins .R etc).

Also providedare the wordsUM+, UM* and UM/MOD which are the building blocks on
which all higher precision arithmetic tsuilt. The firsttwo take two unsigned 1iits numbers
and add or multiply then together ¢ive an unsigned 3Bit result. UM/MOD divides an
unsigned 32oit number by arunsigned 16bit number togive a 16bit result and a 16 bit
remainder. One thinthat Forthdoes not have is earry bit, if the result of a mathematical
operation is too large to fit into the availaBjgace the topmost bit(sivill be lost. Since this
canlegitimately happemnvhen performing multprecision arithmetic, waeed to find avay to
allow for these 'losthits. In short, tesynthesise &arry bit. This isnot hard,but adds dittle

to the time taken to do things. Routines written in asseroateuse the internahrry bit of
the processor.

Chapter 10 Maths - who needsit? Page61

Double precision integer arithmetic.

A limited double precisiortapability is built into allForthswith double number extensions,
andFPC is ncexception. A double precision numbepigethat isexpressed in 38its, rather
than in 16 bitdike a single precisiomumber. Since thesse stillintegers, double precision
numbers can represemuchlarger numbers, from 2,147,483,647 to -2,147.483,648 in fact.
When do youneed them? Whegou can't express what you want wihngle precision,
naturally. Forexample, suppose you wanted to store the number of centaaaeper year,
then inall probability 16 bitswould not be enough as it would only allow youeiarn up to
about $640 per year. ybu thinkabout thaexample, it may occur to ydbhatsince there are
always 100cents in a dollarwhenyou express yousalary incents you have twdecimal
place fixed point arithmetic here, and yane right. Adong as youwadd orsubtractnumbers,
the fixed implied decimal point wilstay in place, but iffou multiply or divide theémplied
decimal point gets messeg. Below we will see how te@orrect that, but firsket us consider
what double precision facilities are provided.

Of the four basic functionspnly addition(D+) and subtraction (D-) arprovided directly,
though in amoment we willgenerate D* and D/ (among others). piint a double number
there is D. (andts formatted cousil.R). A double precision absolute value worgisvided
(DABS). There are alsiimited double precisiocomparisons,D=, D>, D<and DO=. To
input a double number, either from the keyboardhiime in a definition,all you need to do is
put a decimal point in the number somewhérhis use of alecimal point to indicate a double
number can lead to misunderstanding. Ihisndedfor whenyou areusing an implied fixed
decimalplace, butoften misleads people into believitigat the decimalpartwill be correctly
handled. It won't, unless you specifically use wdtdg do(ie fixed point or floating point
words). If youwere to enter the numb82415.the number in the two positions on the stack
would be no differenthan if you hadentered3.1415 -rememberthat a 32 bitmumberwill
occupy two 16 bit stack positions. However, the number of digits you enterethaftiexcimal
place is recorded in the system variableL, especiallyfor whenyou needthis information.
(As the same variable is ustmt all number input, you had betteollect the value from DPL
and use it oput it somewheresafe before the next numbamives.) Inthe first caseabove
DPL would contain zero, in the second case four.

The main wordshat weneed toadd to flestout ourdouble precision integer capabililye D*
andD/. D* may produce an answ#rat istoo big to fit into 32bits (just as *may produce an
answer too big to fit in 16 bits). It is possiblepimvide a run-time check to detehts (you
generate a full 64 bit answer and check sure that the top 32 bits of the arexeeo)but this

takes time. If yoware sure thaoverflow will not occur in a particulaproblem, there is no
need to calculate the top 32 bits of the answer. Code to perform 32 bit by 32 bit multiplication,
with and without overflow check, igiven below. In eaclbase we do thactualarithmetic
operation using unsigned arithmetic (both numbeesssumed positive), faigned arithmetic

we first work out the sign the answaerill have, then make both numbers positive, do the
operation and then apply the correct sign to the answer.

The algorithm for 32 bit multiplication is built frothe 16bit multiplication we alreadinow
how to do. Consider the following:
(@216 + b) * (c*216 + d) = (a*c)*B2 + (b*c+a*d)*216 + bxd

(a*216 + b) is one 3dit number andc*216 + d) the other. Note by expanding it Wwave
reduced one 3Bit * 32 bit multiply to four 16 bit * 16 bit multiplieswhich we know how to
do.

Page62 Real Time Forth

If we want to perform an overflow check, we get the full answerdbiyng four 16 bit
multiplies, offsetting their answers by the correct numbditsfto allow for the 2.6 and 32
in the equation above, and adding to get the final answer. The result idit (§dad
precision) number. If the numbers were both positive antbfh&2 bits ofthe resultare not
zero, the result was too big to fit into 32 bits.

If an overflow check is not needed, wa&n simplify things bynoting thata*c must equatero
(otherwise the resulvould notfit into 32 bits) so there is no point performing this multiply.
Similarly (b*c+a*d) mustgive ananswer that is nbigger than 1@its. Soonly b*d need be
done to 32bit precision, andb*c+a*d) to 16bit precision and a*meednot bedone atall.
Naturally, thismakes this versiofaster tharthe one with the overflow check (see the timings
at the end of this chapter).

The traditionalmethod toperform a 32 bit by 32 bitlivision is by asubtractand shift
algorithm (the wayhat it is taught aschool, except bit by biather thardigit by digit) which

gives both theesult and the remainder. Thigethodcan beextended to provide division of

any precision, not just 3Rits. Themethod shown hereses an algorithm specialiesigned

for 31 bit unsigned numbers (that is 32 bit signed numbers without the sign). The advantage of
this new algorithm is speed, it is more than twicéaat The algorithm works as follows. Let

the dividend be 216+ U1 and the divisor be §*216+V1. Also let D be a large integer not
bigger than 65536/y For simplicity of calculation, let D= 65536/(¥1). Then oudivision

sum is:

Up*2 16+ U1 D*(U 0216+ U 1)
= where D *
(Vo*216+vy) = W *216+wq V*216+vq W 0*2 16+ wq
Then
Up*2 16+ U1 D u 0
* W 1
= * (U 0*216+Uq) - -

---------- plus an error term.
Vo*2 16+ v ¢ w 0*65536 w 0

The errorterm is so small it may be ignored, unless we wishezhltulate the remainder. In
practice it is simpler tdind the remainder if waeed it bytaking the product of the answer
times the divisoaway from thedividend. Also wemustcheckthat \p is not zero, if it is we
must not use the relationship above aswilebe trying todivide byzero. However, if g is
zero, ourproblem is reduced to dividing a 3t number by a 16 bit number,v@ry much
simpler task.

The code below implements the various versions of D* and D/ in a straight forward way.
Multiply two double precision numbers to give a double precision

product.
With overflow check.
:UD*C (udl ud2-- ud3) \ all numbers unsigned
doubles
dup>r rot dup>r >r over >r \putaccbonreturn
stack
>r swap dup>r \ put a d onto return stack
um* \ b*d
0 2r> um* d+ 2r> um* d+ \ offset 16 bits, add on a*d+b*c
0 2r> um* d+ \ offset another 16 bits, add on a*c

or 0<> abort" D* overflow" \ check for overflow

Chapter 10 Maths - who needsit? Page63

Without overflow check.

:UD* (udlud2-- ud3) \ all numbers unsigned doubles
rot >r over >r >r over >r \ put c b a don return
stack
um* \ b*d = part of 32 bit answer
2r>*2r>* + + \ a*d+b*c= addition to top 16
bits
: D* (d1d2--d3) \ all numbers signed
doubles
dup>r dabs 2swap dup>r dabs \ #s +ve, keep info to work out
final sign
ud* \ get 32 bit answer. Change this to
\ ud*c to get overflow check
2r> xor ?dnegate \ work out and apply final sign

Division - (U 0*2 16+Uq)/(V o0*2 16+v)=(A 0*2 16+A 1)

\ Use fast algorithm, remainder needs an additional 32 bit
multiplication and subtraction.

:T* (udun--ut) \ Unsigned double *
unsigned single = unsigned triple

dup rot um* 2>r \ high-part of answer to return
stack

um* 0 2r> d+ \ get low-part,offset 16 bits,add
high-part
2T/ (utun--ud) \ Unsigned triple /
unsigned single = unsigned double

>r r@ um/mod swap \ divisor > r, divide top 16 bits, rem
to top

rot O r@ um/mod swap \ combine with next 16, divide
these by divisor

rot r> um/mod swap drop \ repeat for last 16 bits, lose
final remainder

0 2swap swap d+ \ combine parts of answer to for
final answer
:U* (udunlun2--ud2) \'ud *unl/un2, triple
intermediate product

>rtrr> t/

:uUD/ (U 1UoV1iVg-—-A 1AQ0) \Unsigned 32 bit by 32 bit
divide. No remainder

dup 0= \ top 16 bits of divisor = 0?
if swap t/ \ simple case, make it a triple,
do/
else \ more involved case
dup 65536. rot 1+ um/mod >r \ work out scaling factor,copy to
r
drop r@ t* drop 2>r \ scale denominator, move to
return stack
dup 0 2r@ u*/ d- \ calculate (U-U0*W1/W0)
2r> r> -rot nip u*/ \ multiply by (D/WO0)
nip O \ /2716, make answer double

then

Page64 Real Time Forth

: D/IMOD (dnl dn2-- drem dquot) \ Divide two signed double

numbers
2 pick over xor >r \ work out sign of answer
dabs 2swap dabs 2swap \ convert numbers to positive
4dup ud/ 2dup 2>r \ do the division, save copy of
guotient
ud* d- \ calculate the remainder
2r> r> ?dnegate \ retrieve answer,apply final
sign
:D/ (dnl1dn2-- dquot) \ Divide two signed
doubles, no remainder
2 pick over xor >r \ work out sign of answer
dabs 2swap dabs 2swap \ convert numbers to positive
ud/ \ do the division
r> ?dnegate \ retrieve answer,apply final sign

32 bit fixed point arithmetic.

The softwarenow to be described will allow you to choose the number of degqilaeés you
want, and therefore the scaling factor that will be used. The more detames you want, the
smaller the largest positive andgative numbers yocan handlebut the smaller the smallest
number increment you can represent.

To perform fixed point mathspnly the numberinput, numberoutput, multiplication and
division wordsneed to bechanged. The addition, subtraction and absolute v@dugle
precision words still work.First you mustdecide how many decimalaces you want to the
right of the decimal pointFor simplicity let us call this N. Any numberthat does nothave
this number ofdecimal digitsmust be multiplied by thappropriatepower of ten to gets its
implied decimal point to line up withll the others. After a normal double precisroualtiply

the 64bit answerwill be too large by 1®, so to get the correct answer simply requires a
division by 10N Dividing by 10 is not as easy dw&iding by 2 unfortunately, so this extra
step adds a bit to the execution time.

After a division theresult will be too small by 1. Just doing the divisionand then
multiplying by 18N, would lose precision. We must do the division, scale the remainder up by
10N, do an integer division dhis remainder and add this result to the previous result to get a
final result to the fullest precision possible.

The word to print dixed point number, F(or F.R to print the number right justified in a
specified field) , really prints two numbers, a number representing the ipegand asecond
representing the fractional part. These are printed with a decimal pbetineenandleading
blanks as required in the case of F.R).

In this simple package theser has tespecify with the wordFIX that the double precision
numberjust entered is to be a fixed decimal point number. From the keylitardiould be
done by enterind23.4 FIX forexample. Toput the same fixed point number incalon
definition you would specify it asJ23.4 FIX] DLITERAL . D+, D-and DMOD allwork
with fixed point numbergust asthey work with 32bit integers, sdhe only tworoutines we
have to write and FIX* (which performs a fixed point multiply) &/ (which performs a
fixed point divide). Naturally these use D* and D/ to do much of the work.

The code below implements these words in a straight forward way.
\ Defining the fixed point structure

VARIABLE FDPL \ holds number of implied decimal
places

Chapter 10 Maths - who needsit? Page65

VARIABLE FSCL \ holds the scaling factor we are using
:FPLACES (--n) fdpl @ ; \ return number of implied
decimal places
:FSCALE (--n)fscl @ ; \ return the scaling factor we
are using
:FIXED (n--)
0 max 3 min fdpl ! \ clip to between 0 and 3 decimal
places
1 fdpl @ O ?do 10 * loop fscale ! \ store # places,
initialise scaling factor
3 FIXED \ default to three decimal places
\ Outputting numbers
(F)(fn--adr len) \ prepare fixed point #
ready to output
tuck \ keep copy of top byte so we know sign
dabs \ convert to positive number
<# bl hold \ start conversion with a leading blank
fdpl @ 0 ?do # loop \ convert places after decimal
point
ascii . hold \ put a decimal point in place
#s \ convert integer part
rot sign #> \ put sign in place, tidy stack
F.(fn --) (f.) type ; \ print fixed point number
"FR(fnp--) \ print right justified in a
field of p places
>r (f.) \ convert
r>over - 0 ?do bl emitloop \ pad with blanks as needed
type \ then print

\ Inputting numbers

: D10* (d1 -- 10*d1) \ multiply a 32 bit number
by 10
d2* 2dup d2* d2* d+ \ 8*d+2*d=10*d
cFIX(dn--fn)
dpl @ O< \ single or double number?
if s>d O dpl ! then \ if single convert to double
dpl @ fplaces <> \ # decimal places entered not
fplaces?
if dpl @ fplaces < \ too few places specified?
if fplaces dpl @ ?do d10* loop \ yes, too few so scale the
number up
else abort" Too many decimal places" \ no, too many - we
can't handle this
then

then

\ Multiply two fixed point numbers producing a fixed point result.
DFIX* (f1f2 --f1*%2)

rot 2dup xor >r \ sign of answer to return stack

-rot dabs 2swap dabs \ make both numbers positive

dup>r rot dup>r >r over >r \putaccbonreturn
stack

>r swap dup>r \ put a d onto return stack

um* \ b*d

0 2r> um* d+ 2r> um* d+ \ offset 16 bits, add on a*d+b*c

2r>* + \ add on low byte of a*c

fscale mu/mod \ divide ms32 bits, ans to R.

Page66 Real Time Forth

0<> abort" Fixed * Overflow" >r \ unless overflow quotient
to R....

fscale mu/mod rot drop \ divide remainder and last 16
bits

r>+ r> ?dnegate \ assemble final answer, negate
if required

\ Divide two fixed point numbers producing a fixed point result.

tFIX/ (flf2 -- fquot=f1/f2) \ Divide two fixed point
numbers
2 pick over xor >r \ work out sign of answer and
save
dabs 2swap dabs 2swap \ make all numbers positive
2dup >r >r \ keep copy of divisor
d/mod fscale 0 d* \ scale integer part of answer
2swap fscale 0 d* \ and then scale remainder
r>r>d/ \ divide remainder by divisor
d+ \ add fractional part of ans
r> ?dnegate \ put on final sign

32 bit floating point arithmetic.

If you need a greater dynamic range of numbers than can be @amilymodated in either 32
bit integer or 32 fit fixed point arithmetibut cantolerate lesser basic resolution than 32 bit
integers provide, you might consider 32 bit floating point. terae of the 3bits areused to
hold an exponerdnd the remainddor the basic number. Theode shown belowllocates 16
bits to each ofthe basic signed number and the signed exponent. The dynamic range is
probably unreasonablyigh andone might be tempted tocrease the number bfts allocated
to the basic number and decrease the number allocated to the exponent. The programming ease
of staying with 16bit quantities for each, anthe speed penaltshat would be incurred by
using other than 16its, strongly dictate otherwise. Tlaecuracy is a little better than four
significant digits, abouthe accuracy ofthe traditional logarithm tablethat school children
suffered before the advent cdlculators. Theode shown below which implemerstsch a 32
bit floating point number packageas originally written byMartin Tracyand hasonly been
slightly modifiedfor greaterspeed by thiswthor. Martincalled it "Zen" maths. There is also
an add on to Zen which extends itdaiculate transcendental functions (with aturacy of
only aboutthree figures) written by Nathaniel Grossman. This is not reproduced ioothks
but is included in the32MATHS.SEQfile on the accompanying disk. Thmde below
implements Zen maths.
\ Trim a double-number mantissa and an exponent of ten to a
floating number.
:TRIM (dnn=H1)
>r \ exponent to return stack

tuck dabs \ save copy of sign, make double
positive
begin over 0< over 0<> or \ MSB low word set or top

16 bits not=0?
\ if so won't fit into 16bits when

signed
while
0 10 um/mod >r \ divide by 10
10 um/mod nip r> \ and increase exponent
repeat rot ?dnegate drop r> \ apply sign and final exponent

\ 32 bit Floating Point Addition and Subtraction

Chapter 10 Maths - who needsit?

Page67

tF+
rot 2dup - dup 0<
if
exponent
negate rot >r nip >r swap r>
mantissas

else

swap >r nip
diff

then

>rs>d r>dup 0
16 bits >r

?do >r d10* r> 1-
exponent

over abs 6553 >
overflow?

if leave then
SO

loop

> over + >r

if rot drop
bottom 16

else rot s>d d+
and add on

then r> trim

: FNEGATE >r negate r>;
: F- fnegate f+ ;

\ work out difference in exponents

\ top number has the larger

\ keep larger and diff, swap

\ top has a smaller or equal exponent
\ keep larger (on return stack) and

\ convert larger to double, top
\ mantissa * 10, decrement
\ would another *10 cause
\ prematurely terminate loop if
\ calculate final exponent
\ top 16 bits were *ve lose
\ top 16 bits -ve, make double

\ get final exponent and trim

\ add negative of the top value

\ 32 bit Floating Point Multiplication

(F* (f1f2--13)

rot + >r
return stack

2dup xor >r
answer)

abs swap abs um*
multiply

r> ?dnegate r> trim
trim

\ 32 bit Floating Point Division

" F/

over 0= abort" d/0 error!"

rot swap - >r
r

2dup xor -rot
on stack

abs dup 6553 min rot abs 0
< 6553

begin 2dup d10* nip 3 pick <
dividend?

while d10* r> 1- >r
decrement answer exp

\ calc exp of answer,save on
\ save xor of mantissas (sign of
\ make mantissas positive and

\ apply sign and get exponent and

\ check for divide by zero
\ get exponent of answer, put on

\ get sign of answer, tuck down
\ make number +ve, ensure divisor
\ would divisor * 10 be less than

\ yes, divisor * 10,

repeat 2swap drop um/mod \ now do the division

nip O rot ?dnegate r> trim
get exp & trim

\ lose remainder apply sign

\ 32 bit Floating Point Input and Output

\ Numbers to be floated must include a decimal point when
entered.

\ DPL contains the number of digits entered after the decimal
point.

Page68 Real Time Forth

: FLOAT (n--1) \ float the last entered number

dpl @ negate trim
“F.(f-) \ print a floating number in
fixed format

>r dup abs 0 \ save exponent

<# r@ 0 max 0 ?do ascii 0 hold loop \ save any trailing zeros
needed

r@ 0<

if r@ negate 0 max 0 ?do # loop ascii . hold \ generate actual
number

then r> drop #s rot sign

#> type space \ and print the whole number

Forth or Assembly code?

All the words aboverewritten in Forth andare thus able to be transporteoin machine to
machine. There two reasowby words written in assembly code wilin faster. One reason

is that although there is only a slight speed overhead involvedsing theForth inner
interpreters this can accumulate to a srhatlsignificant sum over enougbperations. The
second reason is not as obvidug accounts fomore of the speed penalty observed. As
mentionedabove Fortthas no carry; iffou add two 16 bit quantitigegether and the result is
too large to fit into 16its, the most significant (17tH)it of the answer is lost. In arithmetic
involving morethan 16 bits a carry 13eeded irorder to do the calculations - sin€erth does
not haveone you have to synthesise one, whikes time. By writing irmachine code you
can make directuse of thecarry flag ofthe processor. The 4@t floating point package
described below is written mainly in assembly language and is signifidastigr than any
other of the packages giveriNot all this speed increasmmes from usingassembler, the
algorithms usedre highly optimised. If youvant thefastestspeed arithmetic possibfer a
givenprocessor you must use the most efficient algorithms and assembly language. The result
will be faster and larger thahe simple algorithms described herg totally non-portable. Of
course a hardware maths processitiralways perform faster than any softwa@ution on
the main processor, and be even less portable.

48 bit floating point arithmetic, SFLOAT

This is a full software assembly language floating point package-R& written (and
copyrighted) by Robert L. Smith. It is in thle SMITH.ZIP which comes apart ofthe FPC
package. The size of a floating point number iD48 (six bytes). The largedifference to
get used tavhenyou load this software is tHact thatyou now haveanother (third) stack.
Holding the floating point numbers on thegular data stackould makestack operations an
absolute nightmare, so thayegiven astack of theiown. By default the floating point stack
is 100 floating point numbers deep, but you can change this by just atirgognstant before
you load the software. Words expect their floating point parameters on the floating point stack
and leave their floating poimesults there.Any flags that resulfrom operations on floating
point numbersareleft on the normatlata stackany addresseseededare obtained from the
normal data stack. Words are provided to manipulate the floatingst@iktthe name used is
almost always the name of the same operation ofi#ite stackwith a leading F. Thus we
haveFDUP andFROT for example.

SFLOAT not only provides a fulset of arithmetic and transcendental functions, it may also
alterthe outer interpreter dfPC. The newouter interpreter allows you to enter floating point

Chapter 10 Maths - who needsit? Page69

numbers in line. Any number with a decimgboint anywherebut atthe end or with an
exponent will be converted to a floating point numbA&ny number without a decimal point
will be treated as aingle precision integer and placed on dla¢a stack.Any number with a
decimal point at thend will betreated as a double precision integer pntdonthe data stack.
You can control \Wwether you wish to use the normal or thésv outer interpreter at anyme
by the use of the wordsSLOATING and NOFLOATING. A list ofthe main words provided
by SFLOAT and a brieflescription of them is given belowlhere aremanyauxiliary words
thatmight possibly be useful frotime to time - see the help fitbat come withSFLOAT for
these words. For brevity the words "floating point" have been abbreviated to fp.

Control and Defining Words

F#BYTES (--n) The number of bytes in a fp word
FPSIZE (--n) The max number of fp variables in the
floating point stack
FPSTACK An array to hold the fp stack
FSPO (-- addr) Returns the address of the base of the
fp stack
FSP (--addr) Returns address of variable which
points to top of fp stack
FDEPTH (--n) The current depth of the fp stack in fp
words
FPERR X A deferred word to execute on a fp error
FLOATING Replace the current interpreter and compiler
with the

Floating Point version. This mostly affects
the ability to

enter floating point numbers
NOFLOATING Restore the previous interpreter and compiler
FLOATS Set the flag FLTS . Allows fp numbers to be
input using

embedded decimal points and optional exponent
fields
DOUBLES Clear FLTS so that the usual rules for double
numbers apply
FCONSTANT (F:r--) when creating an FCONSTANT

(F:--r) when using a created FCONSTANT

FVARIABLE (--) at creation time

(--addr) atrun-time

F@ (F:--r;addr--) Fetch the fp number at the specified
address and push it on

the fp stack. Drop the address from the
parameter stack
F! (F:r--;addr--) Store the fp number at the top of the
fp stack in the area

specified by the address at the top of the
parameter stack
PLACES (n--) Set the default number of digits to be
printed to the right

of the decimal point by the F. operator. The

argument

will be limited to the range 0 to 10.

Default value is 10

Stack Words
FCLEAR (--) Empty the fp stack
FDUP (F:ir--rr) Duplicate the fp number at the
top of the stack
FDROP (F:r--) Drop the top fp number from the stack
F2DROP (F:rlr2--) Drop the top two fp numbers from the
stack

FNIP (F:rlr2--r1) Remove rl from the stack. Equivalent

Page70

Real Time Forth

to FSWAP FDROP

FOVER (F:rlr2--rlr2rl)

second on the stack

F2DUP (F:rlr2--r1r2rlr2)
elements on the fp stack
FSWAP (F:rlr2--r2rl1)

numbers on the stack

FROT (F:r1r2r3--r2r3rl)
elements on the fp stack

F-ROT (F:r1r2r3--r3r1r2)
three elements on the fp

position

FPICK (F:rN..r0--rN...rOrN; N --)

Push a copy of the fp number
Push a copy of top two
Interchange the top two fp
Rotate the top three

bringing the third element to the top
Reverse rotate the top

stack, putting the top element to the third

Using a zero

referenced value of N, pick

the n-th value from the fp stack and push it

onto the fp
stack
FNSWAP (F:rN+1 rN rN-1...r0-- rN+1 rO rN-1...r1rN; N
-) Exchange the fp
value at the N-th location on the fp stack
with the value at

equivalent to FSWAP

Maths Words

FMAX (F:r1r2--r3)
stack with the

FMIN (F:rlr2--r3)
stack with the

FABS (F:rl1--r2)
absolute value
FNEGATE (F:rl1--r2)
fp stack

F1.0+ (F:r1--r2)

fp number

F+ (F:rlr2--r3)
errors

F- (F:r1r2--r3)
overflow errors

F (F:rlr2--r3)
Report overflow errors
F/I (F:rlr2--r3)

the stack by the floating

overflow

FSQRT (F:rl-r2)

the top of the fp stack. 1 FNSWAP is

Replace the top two numbers on the fp

greater of the two
Replace the top two numbers on the fp

smaller of the two
Replace the fp number r1 with its

Negate the fp number at the top of the
Add floating point 1 to the top
Add rl to r2. Report overflow
Subtract r2 from rl. Report
Multiply top two fp numbers.
Divide the fp number second on
point number at the top of the stack. Report

errors and division by zero
Replace r1 with its square root.

Report error if rl is negative.

1/F (Firl--r2)

FINT (F:rl1--r2)

to the integer part of rl
F*N (F:rl--r2;n--)
(on the parameter

FLN (F:rl--r2)
FLOG (F:rl--r2)
FEXP (F:rl--r2)
FALN (F:rl1--r2)
exponential function
F* F:rl+r2--r3)
Note: +r2 must be non-

Take the reciprocal of the fp argument
Replace r1 with r2 which is equal

Raise rl to the integer power n

stack)
Natural logarithm function
Logarithm of base 10
Fp exponential function e X
Alternative name for the

Leave rl raised to the power +r2.

negative, even if it converts exactly to an

Chapter 10 Maths - who needsit?

Page71

integer

FALOG (F:r1--r2)
10 to the power of rl
FSIN (F:r1--r2)
number in radians
FASIN (F:rl1--r2)
to the arcsine of rl1
FCOS (F:r1--r2)
argument in radians
FACOS (F:r1--r2)
to the arccosine of rl1
FTAN (F:r1--r2)
argument in radians

FATAN (F:r1--r2)
to the arctangent of rl
FSINH (F:r1--r2)

FASINH (F:r1--r2)
FCOSH (F:rl1--r2)

FACOSH (F:rl--r2)

FTANH (F:rl--r2)

FATANH (F:rl--r2)

Take the inverse log of r1, ie., raise
Returns the sine of the input
Returns a fp value (in radians) equal
Returns the cosine of the fp
Returns a fp value (in radians) equal
Returns the tangent of the fp
Returns a fp value (in radians) equal
Hyperbolic sin function
Inverse hyperbolic sin function
Hyperbolic cosine function
Inverse hyperbolic cosine function

Hyperbolic tangent function
Inverse hyperbolic tangent function

Logical Test Words

All consume the fp numbers tested and leave the answer on the data
stack unless otherwise noted.

FO< (Firl--;--1) Push -1 if top fp number is less than
zero, push 0 otherwise
FDUPO< (F:rl--r1;--f) AsFO<, exceptrl on top of FP
stack is not consumed
FO> (F:rl--;--f) Push -1 if top fp number is greater
than zero, else push 0
FO= (F:ir--;--1)
it is zero, else push zero
F2DUP= (F:rlr2--r1r2;--1) Compare rl and r2 non
destructively, push -1 if equal,

else push 0
F= (F:rlr2--;--f) Comparerl and r2, push -1 if. equal,
else push zero
F2DUP> (F:rlr2--rl1r2;--1)
destructively. Ifrlis

Test top fp number , push -1 if

Compare rl and r2 non

greater than r2 push -1 on the data stack,
else push 0
F2DUP< (F:rlr2--rlr2;--f)
destructively. Ifr2is

Compare rl and r2 non

greater than rl push -1 on the data stack,
else push 0
F< (F:rlr2--;--flag)
greater than rl push -1, else
push O
Comparerl andr2. Ifrlis

Compare rl and r2. Ifr2 is

F> (F:rlr2--;--flag)
greater than r2 push -1, else
push O
F<= (F:rlr2--;--flag) Compare rl and r2. Ifrlis less
or equal to r2 push -1,
else push 0

F>= (F:rlr2--;--flag) Compare rl and r2. If rl greater
than or equal to r2 push -1,
else push 0

Predefined Numbers

Pl (F:--r1) Push a fp number with a value of pi

Page72 Real Time Forth
FLN2 (F:--rl) Push a fp number with a value of the
natural log of 2
FO.0 (F:--rl1) Push a fp number with a value of O
F1.0 (F:--rl1) Push a fp number with a value of 1
FLOGI10E (F:--rl1) Push a fp number with a value of the
log base 10 of e
F10.0 (F:--r1) Push a fp number with a value of 10

FINFINITY (F:--rl) Push the largest representable number
onto the fp stack

FO.5 (F:--r) Return a fp number with a value equal
to 0.5

Words that Input and Output from the Floating Point Stack

FLOAT (F:--r;dbl--) Convert double integer number on
parameter stack to fp
number on fp stack

FIX (Fir--;--d) Convert a fp number to the
nearest signed double integer

equivalent
INT (Fir--;--d) Convert a signed fp number to its

truncated double
integer value
FLOOR (F:r--;--n) Converta fp number to the largest
integer less than or
equal to the fp number
CEILING (F:r--;--n) Convert a fp number to the
smallest integer not less than
the fp number
(E.) (F:r--;n--addrcnt) Converta fp number to an address
and count
suitable to be typed. The output is in
exponential format, n
is the exponent offset (normally 10)
E. (Fir--) Print a fp number in exponential (power
of ten) format
ER (F:r--;nln2) Display the fp number r on the
currently selected output
device in exponential form with nl digits to

the right of

the decimal point, right justified in a field
of width n2
F. (Fir--) Display the fp number on the currently

selected output

device in fixed-point form; ie., the location
of the decimal

point is adjusted so that no exponent need be
displayed
F.R (F:r--;n1n2) Display r on the currently selected
output device in fixed

point form with nl digits to the right of the
decimal place

right justified in a field of width n2
.FS (F:--) Display of the number of items on the fp
stack, and non

destructively display the top four numbers in
exponent

form.
FNUMBER (F:--r;adr---1)or(F:-- ;adr--d1)
Convert string at address adr

to a real or double integer number with a
flag of -1 or 1

respectively. Error if number cannot be

Chapter 10 Maths - who needsit? Page73

converted at all
F# (F:--1) Convert the string (with or without
decimal points)

following F# into a fp number. Even in

NOFLOATING

mode, F# converts the following number to the
fp stack
FLITERAL (F:--1) Create an in-line literal

Relative Performance.

Shown belowarethe timingsfor addition, subtraction, multiplication amtivision for each of
the 16 and 3dit maths capabilitieshown above. All timeare relativewith a 16bit signed
add used as reference, and haeen rounded to two significafigures. The timesvere
calculated bytiming a loopthat performed the required operatiéb,536times and deducting
the time for an empty loop. The acttiedes you get will depend on tipgocessor speedilso
shownare timings for the full floating point maths packad&FLOAT. Justlooking at the
figures can bamisleading as you may be unintentionally equatipgles with oranges, so a
number of explanatory comments are given below.

Description Add Subtract Multiply Divide
16 bit signed integer, written in 1 1 1.1 1.3
Forth, portable
32 bitunsigned integer, written 2.4 3.8 8 13
in Forth, portable
32 bitsigned integer, written in 24 3.8 13.1 19
Forth, portable
32 bit fixed point, written in 24 3.8 36 93
Forth, 3 decimal places,
portable
32 bit Zen floating point, 19 22 16 69

written in Forth, portable

48 bit floating point, written in 2.9 3.1 21 2.9
assembler, non portable

The multiply anddivide times inrow oneare snall as the PC processhas hardware 16 bit
integer multiply and divide. Théar larger times for multiplication anddivision in row 2
compared to row 1 shows the penalty to be pdidnyou have to synthesise operations on
long numberout of repeated use of shéehgthoperators. Doubling the word size increased
the execution time by a much higher factor. Row three shmatgustadding theextracode to
keeptrack ofthe implied decimal poinfor fixed point multiplication and divisiohasadded
about another 50% tthe time. Excepfor addition andsubtraction fixed point arithmetic
costs significant time over integer arithmetic.

For curiosity,the multiplication word in row threeras rewritten agiline code. This saves the
time used by the innénterprete™NEXT and allows intermediateesults to be kept in registers
instead of being pushed at teed of one woré&indimmediately reloadedgain at thestart of
the next. Thisiewversionwas fasterhowever the penaltior writing in Forth isonly about
6%. Thismodest speed increasaust beweighedagainst the benefits of writing iRorth so

Page74 Real Time Forth

thatthe word is immediatelportable to any other Forth system, no matter whefprocessor.
Also the Forth code is much easier to understand and therefore to write and debug.

The 32 bit floating poinZen packageesults mayseemstrange, buthe clue to understanding
them lies in thdact the waythat a separatexponent simplifies multiplication and division but
complicates addition ansubtraction. Since theactualnumber in Zen is a 16it quantity,
multiplication isdone by multiplying the 1®it numbers anddding their 16bit exponents.
For division the multiplication is replaced by division and the additiorsudytraction. All of
thesefour 16 bitinteger operationarequitefast. As a resulthese wordsire faster thatheir
fixed point equivalents whicHpr multiplication for example, require a 32 biultiplication
and then division of theesult by a scalinfactor. However, addition and subtraction fofed
point numbers is trivial, hile to do the same with floatingoint numbers requirethat the
numbers be shifted (scaled)tbattheir exponentareequal before thactual operation can be
done.

The times shown in rowix seemlittle short of amazingconsideringthat this is for 48 bit
floating point and show whatan bedone it youabandon the requiremefar portability and
write in highly optimised machine code. Natgain the (relativenefficiency of addition and
subtraction compared to multiplication agigtision. The figuresire quotedfor a very highly
optimised floating point packagehosecritical routines are all imssembly languag@vhich
saves a littldime but makes thenprocessor anérPC specific) and whichusessome of the
fastest algorithms available.They are anything but trivial to understand - see thiide
SFLOAT.TXT, for example, for an explanation dfe divide algorithmused. An assembly
language routine written using the same algoritbmfixed point would befaster thaneven
these floating point times.

Speed is only one criterion, another is itemorythatthese routines takgp. Below is atable
which shows the memory needed by each of the maths packs.

Maths Package Memory requirements in bytes
Header space Code space List space Total space

32 bit integer, 4 functions 86 42 288 416
32 bit fixed point, 4 functions 216 102 768 896
32 bit floating point, 4 106 50 1562 1718
functions
SFLOAT, 4 functions only 671 2976 850 4488
SFLOAT full package 2380 7253 5756 15389

The smaller space quotéat SFLOAT is foronly thebasic four mathematical functions, the
larger figure is foithe full package. If you have a maths co-processor there eglavalent
package to SFLOAT called FFLOAT which also comes with FPGadmch is everfaster and
smaller. FFLOAT is, of course, totally non-portable to anything other than FPC on a PC. You
chose your mathafter considering youneedfor speed, precision, size and portability. No one

is always the best.

Review Questionsl Page75

Review Questions 1.

(Practice in factorising a problem - not original. tBinking it out carefully, you should be
able tocome up with atrivial solution. Question 'borrowed' from Starting Forth and the
answer iggiven in there) Write a set of words to compute the prison sentefareBardened
criminals so that a judge can enter:

CONVICTED-OF ARSON HOMICIDE TAX-EVASION WILLSERVE <cr> and get
the answei35 yearsprinted on the screen. Your words must wéok any combination of
crimes. Use the following scale of penalties: Homicide y&#rs, Arson - 10 yearBraud - 15
years, Bookmaking - 2 years, Tax-evasion 5 years.

Defineyour own version of.S (call it newS so as not to get tl® not unique' messagtjat
does whatS does. Use the word DEPTH (which returns the number of items alathestack)
and a DO LOOP. | and PICK could be handy here.

Startingwith a variablegxtend thestorage space so thaiu can store 8 bytes of information.
(Hint - seeALLOT) Checkthatyou can store and retrieve into each amdry one of the 8
locations. Whatvould happen if you tried tstore into the 9th (nonexisterthe? Check what
you are actually placing in memory as you use the debugger with WATCH.

Having anextra stack can bleandy occasionally, although usually there is an alternative to
building one.Create a 1@&lementarray NEW-STACK tohold 16stackitems (each 1éits).
Define avariable STACKPOS td&eepaccount of the current position of tetack pointer.
Initialise STACKPOS topoint to thefirst (bottom) storage place in thetack. Define two
words NPUSH an®lPOP that transfer mumber between the nornddta stacland your new
stack. NPUSHmoves one item to theew stack and adjustSTACKPOSaccordingly. Check
you cantransfer back and forth safelfdlow modify your NPUSH andNPOP so thathey
cannot go outside the array you have created (MAX and MIN will be useful here).

Write words to calculate the next point on a cirgieen thecartesian coordinates of the
previous point. Let theadius ofthe circle be R and previous point be gt ¥Xq which is at
polar cordinates A and g. Timew point to plot has polar coordinates A aebb. The new
cartesian coordinates we wish to plot ageaxid Y.

X1=Acos6 Y 1=Asin 6
Xo=Acos @+d6) = A(co® codb - sirBsindd) = Xq coDO - Y1 sindd
Y o= Asin 0+00) = A(sirB cod0 + co® sindd) = Y1 coDO + X4 sindd

By going in fixed angle increments 8thand cod0 are constanta/hich can be precalculated.
(A step of bdegrees is recommended). By choosisgitable place tstartplotting the circle,
the initial values of X and Y can be either O or A.

Page76 Real Time Forth

Write a set of words that calculate using 16 bit integers and a second set that calculate using 32
bit scaled(fixed point) integers. Save a copy of the words you write, Wikye needed for
some other problems later in the book.

Graphics Information for problems that require graphics.

The following is information that will be needed for the questions above that require you to plot
on the graphics screen, such as dhe above and others later the book. Thdirst three
words switch between graphics and textdesand plot a point.Remembethatpoint0,0 is at

the top left hand courner of the screen, X increasesssthe screeibut Y increaseslown the
screen.

HEX
CODE TEXT \ set into text display mode
push ax \ save entry ax
mov ax, # 2 \ ah=0 al=2 = 80x24 text in colour
int 10 \ ask BIOS to change mode
pop ax \ restore entry ax
next \ go to next Forth word to do
END-CODE
CODE GRAPHICS \ set into mode 10 (640 * 480 * 16 colours)
push ax \ save entry ax
mov ax, # 10 \ mode BIOS is to change to
int 10 \ request BIOS service
pop ax \ restore entry ax
next \ go to next Forth word to do
END-CODE
CODE PLOT (x y colour --) \ to plot one coloured point
mov bx, ax \ ax must be preserved
pop ax \ colour to ax
mov ah, # C \ ah = OC hex for print point function
pop dx \'y coord to dx
pop cXx \ x coord to cx
int 10 \ request bios service
mov ax, bx \ restore entry value of ax
next \ progess to next Forth word to do
END-CODE
\ A cursor to show where on the graphics screen to place the next
character

variable CUR-X
variable CUR-Y \ where to place the next character

Review Questionsl

variable ATT
writing it

\ what attributes (colour) to use when

\ write one char in graphics mode at current cur-x and cur-y. Use

current attribute
CODE GRAF-EMIT (char --)

mov bx, # cur-y mov dx, 0 [bx] \ row to dx

mov bx, # cur-x mov cx, 0 [bx]

mov dh, dl mov dI, cl mov bh, #0

dl, page to zero
mov ah, # 2 int 10
mov bx, # att mov cx, 0 [bx]

mov bh, # 0 mov bl, cl pop ax
(page), char to al

mov cx, # 1 mov ah, # 9 int 10
mov bx, # cur-x add O [bx], # 1
next

END-CODE

: STRING. (adrlen --)
graphics cursor

0do
dup @ graf-emit 1+
loop drop

:G.
graphics mode

(.) string.
and write it out

bl graf-emit
for neatness

\ column to cx
\ row to dh, col to

\ place cursor
\ get attribute to cl
\ attrib in bl, 0 in bh

\ write char
\ move cursor on one

\ write string at current

\ set up loop
\ write one and move on
\ finally lose address

\ print a number in
\ convert number to string

\ write a blank on the end

The following is a very simple way tdraw aline - not thefastest but.very probably the
simplest. The algorithm used to draw a straligletbetweerx1,yl and x2,y2 is tgee if these
points arewithin one pixel ofeach other, if so plotl,yl. If not find themid point between
x1,y1 and x2,y2, call this x3,y3, aad/ide the line into twemaller lines. Then recurssice
to draw the two segments.

: LDRAW (x1yl x2y2--)
recursive \ so this word can call itself

2over 2over \ perform a 4dup

iot - abs \ calculate absolout value of y2-
y
-rot - abs \ ditto x2-x1, stack :- abs(y2-
y1) abs(x2-x1)
max 2 < \ within one pixel?
if 2drop \ yes, lose x2 y2
colour @ plot \ plot in required colour

else

Page78 Real Time Forth

2over 2over \ 4 dup again
rot + 1+ 2/ >r \ calc y3, save on return stack
+1+ 2/ r> \ and x3, reclaim y3
2dup 2rot \x1y1x3y3x3y3x2y2
Idraw Idraw \ draw each of these two line
segments
then

The outer interpreter writes on the text display. If goeiin graphicsenodeyou can'tseethis.
So test all words with graphicsitput using a constructidifie the one below.Substitute your
graphics word for GR ithe definition below. before yawy to actually plot outpuyou will
have checkedll subsidiary words won't you?So, in particular,you will know that the
coordinates you calculate for the points you want to plot are reasonaipei ak to BIOS to
plot at a point off the screen it mayd up writing somewhelienportant in criticalmemory,
leading to simplecrashes or obscure problems witarth. Forthdoes not prevent you from
blowing holes in it if you wish!

: TEST-IT
graphics \ switch to graphics mode
ar \ run the word under test
key \ wait for key to say we have finished
looking at it

drop text \ return to text mode

Chapter 11: Deferred words Page79

Chapter 11

Deferred words

There are (dew) times when onesord simply cannot be chosen@rded before it iseeded in
another word. One possible situatiomght be two wordghat switch atask betweenthem
depending on thexact detail of théask to bedone. The second word (tbee definedast)

can, of coursereference the earlier word. However, thiet word cannot reference the later
word as thiswill not yet have been compiledhen thefirst word is compiled. A second
situation arisesvhen aword cannot be chosen because it meyend on amput thatthe user

is to enter. Thisvill require thatthe meaning of the word will change from time to time. For
exampleone word may beequired to handle theutput from asystem and we may wish to be

able to switch theutputbetween the screeand printer at will. Wevould need to bable to

switch between the words to handle output to each of these destinations as needed at run-time.

In all thesecases, what iseeded is a 'holding definitiothat we later 'patch' tthe proper
definition wewant to use, and can re-patch dmge we wish. What we want cannot be
provided by any theefiningwords we have covered up mow: itisn't a list of things to do
whenactivated, nor a constamthich is toreturn a valuevhenactivated, oreven avariable
which is to return an address when activated.

The defining word wewant should create a placehold anaddress (juslike a constant or a
variable), buthave the run-time behaviouhat, when activated, just transfergontrol
immediately to the word whosection address is currently stored in that plaSace we want
different run-time behaviour thahat provided by constants eariables, weneed a different
defining word. This defining word exists in standard Forth and is called DEFER. It is used as:

DEFER THIS

which builds a word calle@HIS thatcontains a space for an addrbss this space is, agt,
not initialised byus. FPCactually installs the address okaor routine in aleferred word as

it creates it so that any attempt to activBit#S without us deliberately storing an address in it
will result in a controlled abort with an 'not initialised vector' message.

To store an address, firdte address you want to store is obtain with the ' (tic) word. For
example:

" THAT
will returnthe action address GHHAT provided youare inimmediate mode. (Inside a colon
definition youprobablyneed touse [] in place of ', this difference is discussed belo@nce

you have the address you can store it ifklS with the word IS. The full sequence in
interactive mode is:

" THAT IS THIS
or in a colon definition:

: SET-THAT-TO-THIS
[1 THAT \ get address of THAT
IS THIS \ make THIS point to THAT

Page80 Real Time Forth

Whether you place theode fieldaddress of THATInto the place holder ifHIS in immediate
mode, or by using the colon definiti@ET-THAT-TO-THIS,typing THIS will cause THAT
to be activated. You can ‘assign' any other word tohibiding' word THIS and you may
change what is assigned TéllS asoften as you wish. Once you typ®THER IS THIS at
the keyboard you have changed the address stosetk THIS and now typing THIS will
cause the wor@THER to run. THISwill continue to makeOTHER rununtil you again
change the address stored in THIS.

As an illustration of the use EFER, wewill write a word tooutput text tathe screen or a
printer as we wish. Wwill implement a very simple form of wordrap which prevents a
word beingsplit acrosdwo lines. For thissimple example we willestrict ourselves twords
of 10 or fewercharacters. (For a better wayhandle wordvrap seePTYPE in chapter 13.)
We will assume the screen to be @taractersvide, but the printerl32. Every time we go to
print a blank wewill check to see if ware cbser than 10 spaces to the right hadde. If we
are wewill turn that blanknto anew line. If wearenot pastthetrip point or if thecharacter
in question is not a blank, we just print it. W# useEMIT to send acharacter tdghe screen,
PEMIT to send one to the printer.

DEFER (CHOUT) \ will either be emit or pemit
DEFER (TRIP) \ new line at 1st blank past here
70 CONSTANT STRIP \ trip point for screen is 70
122 CONSTANT PTRIP \ trip point for printer is 122
: F-EMIT (chr --)
dup bl = \ this a blank?
#out @ (trip) @ > \ are we past the trip point?
and \ combine the two flags
if \ blank and past trip point
cr \ force a new line
drop \ no need to print this blank
else \ either not blank or not past trip
point
(chout) \ print the character, whatever
it is

then
Now we just needtwo convenient words to switch tleutput between the screeand the
printer.

: TO-SCREEN (--)

['] strip is (trip)
[1 emit is (chout)

: TO-PRINTER (--)

['] ptrip is (trip)
['1 pemit is (chout)

As soon as to-screen is invoked, the output goes to the screen and continues to go there until to-
printer is invoked.

The difference between 'and [1]

It is important to realise the differenbetween and []. Whenever ' is encountered, the next
word is taken from the input stream (from the keyboard orwlfgkhever is theurrent input
source) and the address of this worgus onthe stack. Use ' in a colon definition if yowill
want to get the address of whatever the next word in the input stréda at run-time. Use

Chapter 11: Deferred words Page81

[1in a colon definition if you want to compile the address of the word that caftezshe [] in
the definition. For example:

: SHOW-ME ' 10 dump ;
will not look up anaddress until run-time. SHOW-MERED will display 10 bytesstarting at
the code fieldaddress oFRED. SHOW-ME JORwill display 10 bytesstarting atthe code
field address of JOE.
However,

: SHOW-JOE [1] joe 10 dump ;

will build the address ojoe into show-joe. As eesult SHOW-JORuill always display the 10
bytes afterthe code fieldaddress of joe. SHOW-ME onthe other hand, could be used to
display 10 bytes aftethe code fieldaddress of any word we like. You use tiree which
provides the action you want.

Another example showing these of deferred wordaill be found at the end of the section
'Implementing a cipher with an array' in the next chapter.

Page82 Real Time Forth

Chapter 12:- A conundrum of ciphers Page83

Chapter 12

A conundrum of ciphers

This chapter consists cfomerelated exampleshat illustratethe use of words described
before. Inparticular itshows examples of deferred words dmmav to create and ussimple
arrays. The examples are all built around ciphers.

Why ciphers?

It is intendedhatthe reader should be ablettg outthe ideas and techniques described in this
book as they come across theihat iswhy completeyunable examplearegiven. You get a
better all roundeel for what ishappening by using the debug facilities to 'poke' around and be
involved as therogram executes than reading alocaeever giveyou. One of thehemes of
this book is dealing with collectingata ofsome kind from the outsideorld, processing it and
then exporting theesults. However, if the exampleare to be usablenmediately without
modification, they musbnly use the facilities built in to thetandard®C. Inputwill mainly be
from the keyboardputput mainly be to the screen and the processing will mamiglve
characters. Ciphering is a simple type ofharacter processingvhich is suitable for
demonstrating the techniques described in this bookbagic knowledge ofciphers will be
needed to followthe examples, of course, atitht isthe reasorfor the following apparent
digression.

A digression into ciphers.

A cipher is a way of trying tdide the meaning of a message legter substitution. The
relationship between tHetter from the original message (the plain text) and the letter used in
the ciphered message as sent (the cipher text) msiynpe or complicated. The sendersts

that nooneother than the persdor whomthe message is intended will &ble todeduce the
relationship used and so will be unable to retrieve the péain from the cipher text and
understand it. Ciphers anet the same as codes. In codes a groghafacters is used as a
substitute for avhole phrase, andhe length of the plaitext andcodedtext will probably be
different. In a cipher one plain text character produces one cipher text character.

The simplest cipher is to always replacgieen plain text charactewith the same unique
cipher text characterFor example, every 'e' in the plaiext might be replaced by 'ut no
other input letter be replaced by 'q. Ciphering in susimple way is almodtrivial to do.
You need dlist of all the possibleharactershowing the replacemenharacter againgach
plain text character.Then for each plain textharacteryou would look it up on théist and
replace it in the message ity cipher characterFor example, if ‘e’ is to be replaced by 'q’, 'n’
by 't and 'd' bya’, the plain textend' is enciphered agta'. Deciphering is simpléoo, each
character irthe cipher text isooked up in theoutputcolumn and the correspondicbaracter

in the input column written down, thus recovering the original plain text.

Page84 Real Time Forth

This is not a very secure cipher aslites nothing to hide theharacteristic frequencies of
letters. In English the mosbmmonlyused letter is 'efpllowed by't', 'a’, 'o',i' and 'n'. Given

a reasonablyong piece of ciphetext, the cipher breaker counts to find the frequendp

which characters appear ihe ciphettext. If 'g' occurreanost commonly, they would assume
that'g' wasthe ciphered version of 'e' and replace 'q" with 'e' wherever it occurred. Similarly
the cipherdor 't', 'a’, '0')i' and 'n' can beeduced. Armed witthat,the cipher breakdooks

for acommonthree letter word, thérst letter ofwhich is known to bé&' andthelast 'e'. It is
reasonable to assume that the middle letter must be 'h' as 'the' is a very common word. Now the
ciphered version of 'h' is aldmown. This process continuemaking use of othecommon

words or stylized prose. In this way the cipher can be readily broken.

A slight improvement, and the cipher we will use for the examples in this book, bretiiesep
letter frequency clues by arranging thingdfsatthe cipher version of givencharacter is not
always the same. An 'e' coubdmeout as anythinggeven asitself! We will do this by
arranging all theharacters we want our cipherttandle in a lineand numbering the position
of each from thestart ofthe line. For alittle cipher alphabethatonly involves thdetters 'a’,
'b, 'c’, 'd" and ‘e’ the line would look like

Position 1 2 3 4 5

Letter a b c d e
N

The sender and receiver woullso have agreed siartall messages with the pointehown

by the) at a given positiofas shown positior2). This startingoosition is thekey to the

cipher. In order to read the ciphered text you will need to know the characters in the cipher, the
order in which they appear, and the key used.

To encipher a letter, the number associated with the letter éodjghered is notedSay we
areencipheringb’, the number is 2. The pointer is theoved on bythat number of places

and the letter where the pointer finishes is the letter used as the enciphered version of the
original letter. In the example above the pointer would be in position 4 and the let@ult’

be output. Then the next letter is encoded ag@iving thepointer on from where ivas. The
positionafter the last one on the line is théirst oneagain, in ourexample after'e’ comes ‘'a’

again. Startingvith a key of 2, the wortbabe'would encipher to 'debb’. Notkat 'b' was
replaced by 'd' on the first occurrence but unaltered on the second. 'b' was also produced by the
letter 'e".

To decipher an encipherégtter, the number of positions the pointas to benoved toreach

the enciphered letter is noted. The deciphered letter is the Wwaitee position number
matches this number. For example, let us decipher our enciphered text 'debb’. The pointer is at
position 2when westartand we have tonove it 2further places to reach 'd'. THeciphered

letter for this 'd' ighen the letter in position 2, which'ls. Thepointer isnow in position 4.

To reach 'e' requires a move of 1 place and the deciphered letter for this 'e' is therefore the letter
in position 1('a’). The pointer isow in position Sand has to benoved 2places to get th',

the deciphered version of 'b' is the character in position 2, whitlisicase is also 'b'. It takes

a move of 5places to reach 'b' again, ge final letter of the plain text must be thee in

position 5 ('e").

Note that to use thigype of cipher you mugtnow what characters are to be time cipher
alphabet and in what order. Furthgou needthe key. However, this cipher is as secure at it
might seem afirst sight. Ifyou use the wronggey when decoding, only th@st letter will
come out wrong! This is because given plain text letterwill always produce the same
relationship betweeits encipheredcharacter andhe previous encipherecharacter output.
This maygive you a clue as to haothis type of cipher can be broken. As texiphered letter

is directly related to the spacing in the ciphglaybetween thdast letter andhe current letter

Chapter 12:- A conundrum of ciphers Page85

of the ciphertext, the second letter of a sequence of two repeattels (such as bb in the
example above) will always decipher to the same letter (e in the example above). By equating
the frequency of cipher lettpairswith the frequency of occurance of letters in the plain text
language being usethis cipher can be readily brokeiidowever weare only going touse it

for an example, not for any reelbck and daggestuff, so wewon't worryabout it's security.

If you reallyfeel youneed moresecurity you can do multi-stage enciphering,dbgput of the
first enciphering operatiobecoming thdanput into the next, and this can go fam as many
stages as you wish. dventhis does nosatisfy yourneedfor security, you canchange the
position of each pointer by a set amobetween each encipherirggperation. TheEnigma
enciphering machine used by the Germans during Wiéd 2 used multiple stages of
enciphering as described above, and offset the position of the doinesch cipher alphabet
after every character hadbeenprocessed. As isow well known, theoutput was able to
“broken' and read by the Allies, if not readily at least after some &ffort.

However in the exampldbat follow, we will use justonestage ofenciphering and not offset
the pointer as weare using ciphers to illustratéechniques and definitely not teide our
meaning.

Implementing a cipher with arithmetic.

Our first cipher implementation will have the single digits O to 9oas cipher alphabet. 1
through 9 will be in their correct positions with 0 appearing in tenth position.

Diagrammatically:
Position 1 2 3 4 5 6 7 8 9 10
Character 1 2 3 4 5 6 7 8 9 0

We choosesuch asimple scheme as it will allow us to @or enciphering andleciphering
using simple arithmetic and we will noeed toactually write out the cipher alphabet in our
program.

When we go to encipher a digit we will have the digit to encipher on the top of the stack and the
current position of the pointer unddvat. Weonly have toadd these two togethand, if the

result is greater than 9, subtrd€& What wehen have is both theewposition of the pointer

and the enciphered digit to output.

: (ENCIPHER1) (old-pointer digit -- new-pointer)
+ \ calculate new pointer position

dup 10 >= \ check if it is 10 or greater

if 10 - then \if it is, wrap it round

dup . \ print enciphered digit,keep new
pointer

Now that wehave a wordhat enciphers a single number, we should produce a wWad
accepts an inpigequence andutputs it inciphered form. Wavill enter the key, the digits to
be ciphered in order and tha&woke ENCIPHER. Tokeep things simple we will requitbat
the stack isempty before westartthe above process. Waill use the word REVERSEN
defined below to reverse the order of the top n items on the data stack.

1 What on earth are you planning to do?

2 If this very briefintroduction to ciphers has intrigugdu andyou would like to know more
about boththeir history and how they work,read "The Codebreakers" by DawWa@hn, published by
Sphere Books (1968). It is fascinating.

Page86 Real Time Forth

:REVERSEN (#1 #2 #3 ... #nn--#n ... #3 #2 #1)

1do \ set up to process the number n given
[roll \ roll successively deeper ones
up to the top
loop \ when deepest one is on the top, we

have done it
Now for ENCIPHER itself. Thevord DEPTH returnghe number of items on ttetack (we
assume fothe purpose of simplicitthatthe stack containsothing othethan thekey and the
numbers to be enciphered on entry). Keg isjust a numberthe starting position of the
pointer as described two pages ago.

: ENCIPHER (key #1 #2 #3 ... #n --)

depth reversen \ with the key on the top
depth 1 \ set up the parameters for a
loop
do
(encipherl) \ do one
loop \ and loop to do the rest
drop \ drop last pointer when all done

There is little point in being able to encipher if you cannot deciphgst aword to decipher
one digit. We will assume that the current pointer (either the ikéiabr thelastdigit output)
is on the top of the stack with the digit to decipher underneath.

: (DECIPHERZ1) (digit old-pointer -- new-pointer)

over swap - \ calc offset between pointer and digit

dup 0 < \ offset negative?

if 10 + then \'wrap it round if so

. \ the offset is ___the deciphered
digit

Finally weneed avord that accepts aiphered inpusequence andutputs itdeciphered. This
is the same as ENCIPHER above except (DECIPHER1) is used rather than (ENCIPHERL1).

: DECIPHER (key #1 #1 .. #n --)

depth reversen \ put then in the order we need
them
depth 1 \ set up for the loop
do
(decipherl) \ do one
loop \ loop until all done
drop \ drop final pointer when all done

Implementing a cipher with an array.

This is a slight evolution of the first cipher example in that the numbers need not be in sequence
any more. As a result of this teequence thegre in must béeld somewhere in throgram

so thatthe position a given digit is ican belookedup. Where better than in aarray? We

will create ararraycalledCIPHER-STRING tchold thenumbers, and pladhem in it at the

same time. Let the order of the digits in our cipher alphabet be 1,0,3,2,5,4,7,6,9,8.

First build a header for the array
create CIPHER-STRING

and thenstore the digits in the order we wahem (remembethat c, take®ne byte off the
stack and adds it to the end of the dictionary)

Chapter 12:- A conundrum of ciphers Page87

lc,0c,3c,2¢,5¢c,4c¢,7¢,6¢,9¢,8c,

This builds thearrayonto the end of thdictionary and gives it the run-time behaviobat it
returnsthe address of thigrst entry wheneverCipher-String is activated. Note vege using

byte length entries, which is why we add them to the end of the dictionary with 'c,’' rather than '/’
which adds 16 bits. Thenly change to the enciphering word in thiet example ighatwhat

we previously output waow use as the index into tlegray,and we mustook up thatentry

which is what we output as the enciphered digit.

: (ENCIPHER2) (input old-position -- new-position)
+ dup 10 >=if 10 - then

dup \ work out as before, keeping copy

cipher-string + \ work out address of char we
want

c@ . \ look up and output what is there

ENCIPHER?2 isidentical to ENCIPHER, exceptthat (encipher2) not (encipherl) does the
actual enciphering of the digits.

: ENCIPHER2 (key #1 #2 #3 ... #n --)

depth reversen \ put them in the order we need

them
\ with the key on the top

depth 1 \ set up the parameters for a
loop

do

(encipher2) \ do one
loop \ and loop to do the rest
drop \ drop last pointer when all done

However, to decipher weeed toadd an extra step to what & before. Wamust find the
position of the input digit in tharray, the position number (the index) is what et into
(decipher). Obviously we need a word to find where a given digit appears in the array.

. (find-it) (input-digit -- position)

cipher-string \ get address of first entry in
table
begin
2dup c@ <> \ entry there <> to input-digit?
while \ if this is true.......
1+ \ point to next entry ..
repeat \ and try again.........
nip \ once found input isn't needed
cipher-string - \ take off start address of array
to

\ give the actual position number

Now wecanfind where a given digit is in therray,the process of decipheringsagle digit is
quite straight forward.

: (DECIPHER?2) (digit index -- new-index)

swap

(find-it) \ find position of this digit
swap

(decipherl) \ now decipher as before

DECIPHER?2 is justthe same a®ECIPHER exceptthat it uses(decipher2)rather than
(decipherl).

: DECIPHER2 (key #1 #1 .. #n --)

depth reversen \ put then in the order we need
them

depth 1 \ set up for the loop

do

(decipher2) \ do one

Page88 Real Time Forth

loop \ loop until all done
drop \ drop final pointer when all done

Note that neither encipher2 nor decipher2 have any protection againsisdreputting in
something that is not a digit.

Inspection ofENCIPHER, ENCIPHER2, DECIPHER and DECIPHER®/ealsthat they
differ only in which word is used in them processonedigit. This suggestthat it would be
far more efficient to writgust one wordthat could act asany of thefour with a deferred word
that could be assigne(ENCIPHER1), (ENCIPHER?2), (DECIPHER1) or (DECIPHER2) as
required. We willcall this four-in-one wordCIPHER andthe deferred wordhat it contains
(DO-ONE). By altering what (DO-ONE) igectoredto, thisone wordCIPHER can benade

to act as any of ENCIPHER, ENCIPHER2, DECIPHER or DECIPHER2.

DEFER (DO-ONE) \ build a deferred word called (do-one)
: CIPHER (key #1 #1 .. #n --)

depth 1+ reversen \ put then in the order we need
them

depth O \ set up for the loop

do

(do-one) \ do one
loop \ loop until all done
drop \ drop final pointer when all done

While we are at it, let us define -> and <- to control what (do-one) is vectored to.

: ->[1 (encipher2) is (do-one) ;
: <-[] (decipher2) is (do-one) ;

Then we can enter
35713 ->cipherf

to get the enciphered version
9478.

Or we can enter
52712 <-cipherf

to get the deciphered version
8343.

We have improved the efficiency olur programming (one word ndbur) and alsogiven
ourselves a more readalsigntax. Notehatnot only is theorder of cipher-string unimportant,

so are it's contents. Bghanging the number 10 in both (encipher2) and (decipher2) and
redefining cipher-string, any sizgray containing anycharacters at all can, in principle, be
used. However we camly handle numeriput, which makes otherharacters rather useless.

It would not behard tochange thidut if you do it would be wise tarrange tocheck if the
input number is within the bounds of therayand if an input character is actually tofbend

in the array. We will remedy these deficiencies in our third (and last) ciphering example.

Implementing a cipher with a new defining word.

This example is included hefer tidyness, sohat allthe examples involving cipharethen in
one place. However, asew definingwords arenot covered untikchapter 14you should
probably skip this example on first reading until you have read chapter 14.

Chapter 12:- A conundrum of ciphers Page89

We will combine the encipheringrray (the structure built by CREATE) anthe run-time
behaviour of both encipher2 and decipher2 ome definition byconstructing anew defining
word CIPHER: (note this is different from CIPHER).

We will definewhat the ciphearray structure is tbe. Wewill change it slightly from the
previous onekeeping the number afharacters it contains (so wen't go searching off the
end) and the current key (the index into dineay). Wewill limit ourselves toarrays of nanore
than 255 characters. The structure we must build, and the stack diagram notatidhsisee
will be:

Aadr byte 0 - the current index

Aadr+1 byte 1 - the number of characters in the array
Aadr+2 byte 2 - the first characters in the array
Aadr+3 byte 3 - the second character in the array

etc

All cipher wordsthat webuild using CIPHERwill have the same run-timeehaviour,which
will be to expect two entries on tisgack and to done of three things depending what the
top entryis. |If it zero, uséhe otherstack entry as aew initial index (key). If it isone,
encipher the othestack entry and prirtheresults. If it is twodecipher the othestackentry
and print theresults. If it isanything elseabortand complain. We should alstort and
complain if given acharacter toencipher or deciphethat does notappear inthe cipher
alphabet.

We will use CIPHER: talefine a ciphering word by listing tlegpher string aftethe name of
the new ciphering word. For example:

CIPHER: CRAZY-VOWEL AEIOU|

where the | is used toark theend of thecipher string and cannot lpart ofthe cipher text.
First a simple word to initialize the cipher key.

: SET-KEY (n Aadr --) \ store current key into the

array
tuck 1+ c@ 1- \ get maximum size
mod \ wrap supplied index round if needed
swap c!; \ store n mod max-size at adr

We will need aword to find where a givecharacter is irthe sequence afharacters in the
array and return the offset to it.

: {FIND} (char Aadr -- Aadr offset)
tuck tuck 1+ \ Aadr Aadr char Aadr+1
c@ 1-0 \ Aadr Aadr char limit init-
index(=0)
2swap swap 2+ \ Aadr limit init-index char
Aadr0+2
begin
2dup c@ <> \ not found it?
while
1+ \ set up to try next
3 To seawvhat cipher: hasreated in the dictionary, get the address ofctige fieldaddress of

the thing that cipher: hasuilt (using the tick (') operatognd thenmove tothe address of the first
byte inthe parameteiield with >BODY. Thenyou canuse DUMP to showou what is inmemory.
For example to see the 7 bytes of the CRAZY-VOWEL cipher array, type

' CRAZY-VOWEL >BODY 7 DUMP

Alternatively, by finding the current end of the dictionary with HERE and using this as the address for
the watchfacility of the debuggeryou can watchCIPHER: as it works seeing how memory is altered
as CIPHER: does its work.

Page90 Real Time Forth

2swap 1+ 2dup < \ bump index, past end?
if \ if so complain
abort" Undefined" \ abort fixes stack
then
2swap
repeat \ and keep looking
2drop nip \ we found it, lose all we don't

need
Now two words to do thactualenciphering and deciphering of a singlearacter. These are
almost the same as the ones used for the array in the previous sectioty thiferencearises
because of the slightly different structures of the two arrays.

: {ENCIPHERY} (char Aadr --)

{find} \ get offset to char -> Aadr offset
over c@ + \ get new index -> Aadr new-index
over 1+ c@ mod \ wrap round if needed
2dup + 2+ c@ \ process char -> Aadr new-index char
emit \ print the output
swap c! \ save new index

: {DECIPHERY} (char Aadr --)

{find} \ stack -> Aadr offset
2dup \ save new offset to be next index
over c@ - \ subtract current index
dup 0 < \ is it negative?
if over 1+ c@ + then \ if so correct

\ stack now - Aadr new-offset

+2+c@ \ get deciphered character
emit \ and print

swap c! \ update the stored index

Now that wehave three words to perform the three different run-time types of behaviour
desired, it remains only to build the word to initialize the key, and encipher or deciwhelea
message.

: CIPHER:
\ How to build it, compile time stack (--)
create \ use next word as new cipher name
Oc, \ set current index to 0
skip.blanks \ move to 1st non blank character
(the

\ start of the cipher string)

ascii | word \ add the next | delineated word (the
\ cipher string) to the end of the
\ dictionary as a counted string
\ including the blank on the end

dupc@ + 1+ \ calc new end of dictionary
dp! \ update end of dictionary pointer
\ What it is to do, run-time stack effect (n m --)
does> \ DOES> puts adr containing current
\ index on stack
swap \ stack now -> n adr m
case
0 of set-key endof \ set the initial key
1 of {encipher} endof \ encipher this one character
2 of {decipher} endof \ decipher this one character
abort" No such function!" \ some silly

people....abort
\ cleans up the stack
endcase

Now we will use this oneharacterciphering word to automatically cipher and decipher strings
of characters. We will use the syntax when ciphering:

Chapter 12:- A conundrum of ciphers Page91

n Send abcdef

where n is the initiskey and abcdef is the string to be ciphered. The ciphereaviitxte put
on the screen. When deciphering the syntax will be:

n Receive abcdef

The decipheretext will be put onthe screen. We will specify which cipheruse byentering
CORRESPONDENT GEORGE (or whoever)

variable DIRECTION
defer cipher \ so we can use many ciphers

: NO-CIPHER abort" No cipher specified!" ;

' no-cipher is cipher \ initialize in case
: CORRESPONDENT \ this will update cipher to use
" is cipher ; \ get word and install it as
cipher
:PROCESS (n--)
0 cipher \ set initial key to n from the
stack
13 word \ move the string ended by CR
(13) to
\ HERE ready to process
dupc@ O \ get length and set up for do
loop
do
1+ dup c@ \ point next, save adr and read char
direction c@ cipher \ process it
loop
drop \ lose unwanted address

: SEND 1 direction ! process ;
: RECEIVE 2 direction ! process ;

For example, use the test code,
cipher: SUSAN abcdefghijklmnopgrstuvwxyz-1234567890.,?!|
cipher: JILL 1234567890-.,?'abcdefghijklmnopgrstuvwxyz|
cipher: ANNE zyxwvutsrqponmlkjihgfedcba0123456789!7. -|
(note that - is used for clarity instead of a blank) and enter:
CORRESPONDENT SUSAN
to establish who we are communicating with. Then:
2 send hello there
will cause an output of: jny9i8mtx!d

Entering:
CORRESPONDENT JILL

to change our communicant from Susan to Jill and then
4 receive wa3fpb5r-9

will reveal that Jill sent: send money (and is an optimist).

You mightcare tocheckwhat Anne sent. Herkey is 7and the message was: bc?m2rs4lf15

Page92 Real Time Forth

Chapter 13:- The DOS interface and file handling. Page93

Chapter 13

The DOS interface and file handling

The interface to DOS

The interfacebetweenFPCandDOS occurs aseveral levels.This section discussesaking
DOS system calls as well as the interface to the DOS commands.

Making DOS system calls

Three words argrovided with which the programmer may make sergaiés to theDOS via
interrupt 21hex. They diffesnly in the number gbarameters thdtave to be providetbr the
service call. These parameters muspbeonthe stack inthe correct order, of course, st
they end up in theegistersnhereDOS expects them. In each case two itears returned on
the stack,the value returned in the AX register BPSand an error flag. The error flag is on
top, 0 means no error, 1 (or aother non-zero value) meansemor occurred. Th&unction#

is the number of the service request as specified by DOS. The words are:

HDOS1(cx dx function# -- ax error-flag)
HDOS3(bx cx dx ds function# -- ax error-flag)
HDOS4(bx cx dx function# -- ax error-flag)
(Yes, there is no HDOS2.)

Interfacing to DOS commands.

It is convenient to bable to issudOS commands from withif-PC thus avoiding having to
leaveFPC to dahe normal housekeeping thintpst are regulanccurrences with a computer.
To achieve this, FPC implements a pair of commands that can be used with DOS3 or higher:

$SYS (al--f1)
SYs (text ---)

These words allow performing almost any DOS command line operation you would want to do.
$SYS spawns a DOshell andpasses ithe counted string atl. Ifthe string is null then you

stay inthe DOS shell andcan perform asnany lines as you likentil you typeEXIT which
returns you to FPC. If the string is not null, the commands in the am@pgrformed by DOS

and control returned automatically to FPC. The DOS error code is returnedstacthe SYS
performs the same excdpatthe string passed ©OS isthe textfollowing the wordSYS on

the command line.Rather than returtthe error code on thestack forconsideration by the
program thatalledDOS as $SYSloes,SYS inspectshe error codeand converts it into a

Page94 Real Time Forth

message on the screfam the userwho calledDOS. However it does not handél possible
error codes.

To make thingseven more convenienseveral additional words have beeoded which
automatically invoke specific functions in DOS. They are as follows:

A B: C: CHDIR COPY DEL DIR
FORMAT FTYPE MD PATH RD RENAME

These commandsrethe normaDOS commands with one exception, the wéfllYPE isused
instead of th&OSword TYPE (which types the contents of a file) to avoid confusion with the
Forth word TYPE (which types a string).

If you press Control-C, or Control-Break duritige execution of any of the above words,
operation will abort back to Forth.

Manipulating Files in FPC

The file system interface iRPCuses handles to talk @OS. Ahandle is 70 bytes @hemory
into which the informatiorabout afile that DOSneeds iplaced. Eactnandlehas anumber
assigned to it anthatnumber is althatneed bepassed to DO®om Forth. Since the handle
number is 16bits long, you can in principle have asany handles as you have room in
memory. Thestructure of éhandle is length (byt8), full path,filenameand extension (bytes
1-65), file attributes (bytes 66-67) and handler number (byte$688 in FPCwhen thename

of a handle is executed rieturnsthe address of thirst byte of the 70 byte blockor that
handle.

To make theprocess of interacting with files as simple as possibRC provides many
convenient words tereate handles, install default valuesthem and move from region to
region inside a handle if required. To simplify gm@cess bywhich one file mayuse another
subsidiary file,FPC implements a handlstack. This stackwhich is standardly fourdeep,
really links together a number of handlesisatyou canmove up or dowithe stack and alter
which file is currently being usedNew handlesanonly be added to thp of thestack just
as the only handithat can beeadily closed is theop one. Of coursewhenyou close the top
one the onender the tofpecomes theewtop one. You carhoweveruse any handle open on
the stack, the one you select is thmurrent handle. Many of th#le handling commands
described below automaticaliyse the currenhandle on thestack. Thestartaddress of the
currenthandle is kept in the variabBHNDL which can be reagnytime theactual handle
address is needed.

Only thebasic wordswill be described herdJANDLES.SEQ containghe sourcecodefor all
of them.

Working directly with files.

.FILES ()
Print a list of all files currently open on the screen.
.LOADED (--)

Print a list ofthe filesthat have been loadedThis is more than the files currently
addressed by the handitack. Thehandles of the files used in thest metacompile, although
no longer in the handistack, still exist and can be accessed. This ligsésl to locate the
source file for a particular word that has been compiled.

Chapter 13:- The DOS interface and file handling. Page95

FLOAD (filename ---)
Open and load the file specified by filename.

HIDELINES (---)
Specifies that lines loaded with FLOAD NOT be displayed to the display screen.

SHOWLINES ()
Specifies that lines loaded with FLOAD will be displayed to the display screen.

Creating and clearing a handle.

HANDLE (<hndlname> ---)
Create ahandle with name <hndlname>. When <hndlnamefatesr executed, it returns the
address of the handle array created.

PATHSET (handle --- flag)

Checks the file contained in handle. If it does not contgiath,then it applies the current
drive and path to the handle. RetuFi#d_SE if it succeededl RUE if it failed to read the path
from DOS.

CLR-HCB (handle ---)
Clears the handle to nulls, and resets the handle identifier field to -1 to indicate no file is open.

$>HANDLE (al handle ---)
Move the COUNTED STRING al into the filename field of handle.

$>EXT (al handle ---)
Move the counted string al into the extendietd of handle, the extensiatring should not
contain a decimal point, and should be exactly three characters long.

$HOPEN (al --- return_code)
Close the curreriile if one is openmovethe counted string from address al to the current
handle on the handle stack and open it. Return the result code from DOS as return_code.

Words for using a file described by a handle.

CHARREAD (---c1)

Reads a character frothe currently open file specified ByHNDL @. Before using this
word, you willneed tainitialise the sequential input buffer to empty, and to force a fedith

the currently selected file by saying INLEN OFF. This will force a disk read on the next call to
CHARREAD, assuring you get data from the file you selected.

CLOSE or SEQDOWN (---)

These wordsire aliases oéach other. Eithewill close thecurrently open file on theandle
stack andmove down one level othe handlestack, so anothefile may be openedfter
performing this operation. Normally you will ladle to operate on the handle yost vacated
as an empty handle after performing CLOSE.

EXHREAD (al nl handle segment --- n2)

Read from the file specified by handle into the buffer specified by segment:al for a length of up
to nl bytes, return nthe length of byteactually read. Théile must already be opetiseful

for reading from dile into memoryother than Forth'sode segment. Aead from d&file is

limited to 65535 bytes.

Page96 Real Time Forth

EXHWRITE (al nl handle segment --- n2)

Write from segment:afbr alength of n1 bytes to the file specified by handleeitirns n2 the
number of bytes actually written. THiée must already be open. Usefidr writing from
memory other than the Forth code segment to a file. A write to a file is limited to 65535 bytes.

HCLOSE (‘handle --- return_code)
Given theaddress of a handle, close the curreapgn file specified by handle, aneturn the
result code from DOS as return_code.

HCREATE (‘handle --- return_code)
Given theaddress of a handle, create fthename specified by handlend returnthe DOS
result code as return_code.

HDELETE (‘handle --- return_code)
Given theaddress of a handldelete the filename specified by handkturnthe resultcode
from DOS as return_code.

HOPEN (‘handle --- return_code)
Given theaddress of a handlepen the filename iit, and returrthe resulicode fromDOS as
return_code.

HREAD (al nl handle --- n2)

Given theaddress of a handle, read frdite associated with the handle into theffer address
at addresal. Read for anaximum length of nbytes, return nzhe number of bytes actually
read. The file must already be open. A read from a file cannot be more than 65535 bytes.

HRENAME (handlel handle2 --- return_code)
Rename the filename specified by handlel to be the name specified in hestdle2he DOS
result code as return_code.

HWRITE (alnl handle ---n2)

Given theaddress of a handle, write from address aleingth nl bytes to file handlegturn
n2 the length of byteactually written. Thedile must already be open. A write to a file is
limited to 65535 bytes.

LINEREAD (---al)

Read aline from thecurrentfile from the buffer INBUFF, which holds1024 bytes. Refill
INBUFF if needsbe. Returns atvhich is theaddress of OUTBUF, a 288/te buffer used to
hold line read. When switching to a new file, you should\i®/EPOINTER to resethefile
pointer to the beginning of the filand reset INLEN (the number of bytes in INBUFFyx#&yo
so the next LINEREADwill cause a read from the disk file. The réad length is limited to
255 bytes.

LOAD (line_number ---)
Startloading the currently open file, at line_number. Load throughetitk of the file if no
errors are encountered.

RWMODE (--—-al)

A variable which holds the read/write attributes for &ieyto be opened biHOPEN,normally
contains a two (2) for read/writejay be set tone (1) for write only, or to zerg0) for read
only.

Chapter 13:- The DOS interface and file handling. Page97

Working within a file

MOVEPOINTER (double_offset handle ---)
Move the file pointer into the file specified in handle. Move it to the offset location specified by
double_offset. The file must already be open.

CURPOINTER (handle --- Double_current)
Returns the current 32-bit double pointer into the file specified by handle.
ENDFILE (‘handle --- double_length)

Return double_length, the numlvehnich represents the length of the file specified by handle.
The file must already be open.

SEEK (d1--)

Position the file pointer for the file currently open®HANDL @, tothe 32bit position d1, that
is SEEK to position d1.

LIST (line_number ---)

List 18 linesstarting atline_number from the currently open file. The listoncestarted can
be controlled by L (list 18 linestartingthe most recently displayed line), N (go forward 16
lines and then display the next 18 lines) and B (back up 16 lines and then display 18 lines).

Manipulating the handle stack

SEQDOWN ()
Close the curreriile on thecurrentlevel of the handlstack, and stedown one level to the
previous handle. The handle stack is four levels deep.

SEQUP ()
Step upone handle on the handitack, ifthere is a file open othat stacKevel, closet. The
stack handle is four levels deep.

Handle Fields

A handle contains several fields, and words Hzeen defined téraverse to the various fields,
here is a picture of the data structure of a handle.

Bytes Contents Start address given by

0 count handle name
1-65 path, filename, null handle name + >NAM
66 - 67 attributes handle name + >ATTRIB
68 - 69 handle number handle name + >HNDLE

An example of LINEREAD usage

A sequential lingead word LINEREAD is providedyhichreads dine at a time from théle
open inNSHNDL, returningthe address of the counted strihgt isthe line. This will include

Page98 Real Time Forth

the CRLF characters dhe end of the line, so you wilkeed tostrip themoff if you don't want
them. The LINEREAD word is used as follows:

: SAMPLE (--) \ Print the file whose name follows SAMPLE on
the input line
open \ open the file
0.0 seek \ reset file pointer to start of
file
inlength off \ clear input buffer
begin
lineread \read 1 line, return buffer adr
dup c@ \ check that length is not 0
while
cr count 2- type \ type line just read without the
CRLF chars
repeat \ repeat till file empty
drop close ; \ close the file

While this simple example maseem complicated dirst glance, it really is easy to read the
lines of a sequential file. Writing is just as easy.

The word LINEREAD automatically buffers the reads from disk in a 1k bufferitonise the
number ofDOS callsperformed. Lines up t@55 characters can be reaith LINEREAD,
longer lines or lines not terminated by a LF will be truncated to 255 characters.

Block words - present but not used by FPC

These wordsire part othe Forth standard and atsed to getlatafrom the traditional Forth
standard mass storagehich is organised as a series of blocks, eactD8# bytes. To use

with some other operating system (such as MSDOS) traditionally Forth data has to be stored in
its special formwithin the structure ofthe host operating system. See the non-standard words
above for ways to access files using FPC.

BLOCK (u--addr)
Read the contents of uttD24 byte block from the currennb-file into a 1024-bytebuffer.
Return the start address addr.

BUFFER (--addr)

Allocates a 1024-byte buffer but does not initialise it.
UPDATE (-)

Mark last-referenced block as modified.
SAVE-BUFFERS ()

Write all updated blocks to mass storage.

FLUSH (-)

SAVE-BUFFERS and deallocate all block buffers. Used before changing diskettes, etc.

Chapter 14: Vocabularies Page99

Chapter 14

Vocabularies

A vocabulary is th@ame given irorth to a grouping of words. Usuallyyt not necessarily,
the wordsaregrouped together because ocd@nmonuse. For examplthe vocabulancalled
EDITOR might hold words concerned with these of the inbuiltForth editor, and the
vocabulary called DEBUGnight hold the words to do with thegh-level debuggerThe use
of vocabularies keeps things tidier and makes for shorter search paths thawingsbnevast
pool of words. It also permits the reuse of the same n&mesgordswith different actions.
This is usefulwhere words have context sensitivehaviour, such as KEWhich has one
meaning whernnputting textbut adifferent meaning wheplaying with cipherqgas inchapter
12). Although one might be mainly working within oparticular vocabulary it isimple to
'reach out' and access words from other vocabularies if needed.

Every Forth worchas aheader which contains the name of the woravel as some linking
information. Thislinking information is to acertain extenimplementation dependent, but
always includes a pointer back to the logically preceding word in this vocabulary. This may be
several words back physically with the intervening words being part of other vocabularies. It is
the link which “stitches' words together into vocabularies, and which ismmedavocabulary

is searched for garticular word. Since a worchasonly one linkback tooneother word, it
canonly really bepart ofoneparticular vocabulary. The totality of all vocabulariesasied

the dictionary. The words in each vocabularg actuallysubdivided into 64subgroups in

FPC. A hashing technique is used so that words are spread as evenly asljgiasiblethese
sub-groups or threads. This is donspeed up searching as it takedy 1/64th ofthe time to
searchonethread thabnly has 1/64th of words o Thetime saved is morthan thetime it

takes to work out which thread the word would be on if it were in the dictionatly &/hen a

word is to be searched for in a vocabuldhg thread isdentified and then th&ast word on

that thread i€hecked. If it is not thene needed, the link is followed to the preceding word on
that thread of that vocabulary. Thiscleecked irturn andthe process repeated until either the
word is found or the end of the thread is reached.

Creating anew vocabulary consists of building a list of tlearrentend addresses of the
threads, and initialising these. The run-time behaviour of the vocabwlay invoked is
unlike anything else discussedfan. Wewill postpone discussing for a short vhile until the
context stack has been described.

A new vocabulary is created with the defining Ws\dCABULARY . For example:
VOCABULARY OXFORD

will create a vocabulary callddXFORD. To arrange for thisew vocabulary tareceive all
our new definitions from now on (or at least until eexide tostartplacing them irsome other
vocabulary) we only need to issue:

OXFORD DEFINITIONS

To return to adding definitions to the directory called FORTH, we only have to type:

Pagel00 Real Time Forth

FORTH DEFINITIONS.

The vocabulary order control words.

Since we may have different words called by the same batstored in different directories,
we must have a way to control the order in whichvibeabularies areearched so as to ensure
that wefind the definition wewant. FPChas a stack of vocabularies that it searches. If no
word with the name given is found in the top vocabulary, the next one down is searched. If it is
still not found there, the nerhe belowthat is searched. Thgoes on until either the word is
found or the vocabulary stack is exhausted. Vocabularies cadbd to or removed from the
top of this stack, which is called the context stack. The run-time behaheuarthe name of a
vocabulary isnvoked is toputitself as the togtem on the contexstack,replacing what was
previously there The depth of thestackdoes not change. We control thearch order by
controlling the contexstack. Obviously this requiresnorethan just replacinghe topitem,

and the following words allow full control of the context stack.

ONLY - empties the context stack leaving only two entries, both of which areR@IQa .

ALSO - duplicates the tojtem on thestack so thaanother vocabulary can la&lded without
the current top vocabulargeing lost from thestack altogether. Théength of thestack
increases by one.

PREVIOUS - drops the top items from the stack, the length of which decreases by one.

The current vocabulary is thene currently receiving definitions. It iset by copying
information from the top of the context stack as follows.

DEFINITIONS - set the current vocabulary to be the same as the current top of the context
stack.

The topmost vocabulary is the easiesalier and issometimes referred to as ttransient
vocabulary. If you altethe vocabulary toeceiveyour definitions, yowvill also have tanake

it the first vocabulary inthe search order replacing what used to be at the top of the list (at
least for a briefvhile). Of course, you don't have tdhange the vocabulathat receives the

new definitions irorder to altethe top vocabulary in the search ordast typing the name of

a vocabulary makes it the first in the search order.

Changes to the vocabularibslow thetop in the contexstack takes a little bitnore effort.
You can prune thatack back by using PREVIOUS atfien add other vocabulariegth
judicious use of ALSO and the desired vocabulary names. laggnot certain of the current
content of the contexdtack in a progranthe only way is tdirst clearthe list of allbut the
mostbasic vocabulary (ROOWith the word ONLY and then add the other vocabularies you
want to top of thestack. Ifyou wish to increase the number of entries onstaekyou must
use the word ALSO.

For example, ONLY FORTH ALSO will give three vocabularies on the stack.

ONLY root root
FORTH root forth
ALSO root forth forth

Note that FORTH is in both the top two places B@OT inthe third. During a word search,
Forth will be searchedirst andthen if the word were looking for is not found ROOT will
searched. Although @ppeardwice, Forthwill only be searched once &P C only searches
any particular vocabulargnce whenit's nameappearstwice in succession on the context
stack. Then issuing:

Chapter 14: Vocabularies Pagel01

FORTH DEFINITIONS

would result in FORTHbeing thevocabulary towhich definitionsare to beaddedbut would

not change thdop vocabulary on the contestack (FORTHwould be overwritten by
FORTH). Actually justthe wordDEFINITIONS would have produced the samasult. If we
now type:

OXFORD

the search ordewould beOXFORD -> FORTH -> ROOTwith definitions still beingadded
to FORTH. Obviously it is useful to be able to cheskat search order is in plagéen one
wishes. The wordORDER will cause the search order and tmeme of thevocabulary
receiving definitions to be printed. Tharrent and context vocabularies adgpear irthe top
right hand corner of the screamenFPC isrunning. The current vocabulary can dxsily
distinguished as it is at thp in a different colour. The contestack isunderneath
represented asstack. Donot be confuseflist becauséhe current vocabulargppears on the
screen above the top of the contstetck, that is justhe way theyare presented. The current
vocabulary is not kept on the contaxack butquite separately. The word VOG@8Il print a
list of all vocabularies, no matter whether they currently appear on the context stack.

The order in which vocabularies are searched can be altered as needed, even within a definition.
For example, suppose that we wish to compile a word that uses the @®fdwhich is in our
MISLAID vocabulary. We do not wish to have MISLAID aur search pathormally as it
contains an old definition diOST and we normally wish to use tmew definitionkept in

another vocabulary. We can 'reach out' for the old definition while compiling if we need the old
version for some reason. For example:

NEW-WORD
wordl word2 word3 \ compile as usual
[also mislaid] \ add mislaid to search order
lost \ find lost in it
[previous] \ compile as usual

The [turns offthe colon compiler sthat 'alsomislaid' are performed immediatelyrather than
being compiled) and add mislaid to to@ of the contexstack of vocabularies. Thelen re-
startsthe colon compiler. When tlagldress of the desired versionL@ST hasbeen obtained
from the MISLAID vocabulary we again interrupt compilation, tinise to removeMISLAID
from the search order with the word previous. This concepawhg multiple definitions with
the same name is explored in the exantps follows, where we achieveur purpose by
switching vocabularies, and therefore definitions, according to the context. Vocabudages
definite use inkeeping things logicallyfidy, but alsohave other usethat transcendhis
mundane but important purpose.

Formatted printing using vocabularies.

A source that is formatted is normally far more readable than one that is not. Ahaiigl
automatically format can be quite useful. Vocabulansske such a utility simple to
implement and the rest of this chapter is devoted to the descriptime@fogram to ‘tidyup' a
source. ltwill make thesource more readable by automaticétigentingand outdenting so
thatthe controlstructure isrevealed. It willalso printselected words icapitals so thathey
stand out. Apresented here it does not use bold printingthis iseasy to add if your printer
supports it.

The basianethod is taead the sourcene word at a timeEach word idooked up to see if it
is on a list of wordshathave special significance regarding the desired page layoutvaifda

Pagel02 Real Time Forth

is on thelist, then the instructions associated with this word onligteare carried out to
achieve thecorrect formatting. If a word is not on thist, it is just printed agiven. An
example of one entry on the formatting list might be:

When 'if' is read, move to a new line, print IF in

capitals and then print any comment that immediately

follows the IF, then move to a new line and move the left
hand margin in one indent step.

Similar instructions would be given for all defining and program control flow words.

A simple way toimplementthis is tokeep thdist in a separate vocabulary on @&n. This
canthen be searched by the wourdsvelopedor compiling. WhenForth compiles a word it
looks the word up in theop vocabulary on the contegtack. Ifthe word is foundts start
address issompiledin. If it is not found then the nextocabulary on the contestack is
searched, and so on until either the word is found ostdiek of vocabularies is exhausted.
Theonly real dfferences inour program is that wenly want to searclonespecific dictionary
and, if the word is found, it is to be run rather than compiled.

Keepingour formattingdefinitions in aseparate vocabulary also ensuttest these definitions

do not getmixed up with the normal definitions. Invoking tfemat version of when we
mean touse thecompiling version of would be asure recipe for disaster. Obviously we must
keepour formatting vocabulary ofthe contextstack or itwill be searchedvhen compiling.
This is not as easy to do as it seems owing to one aspect of the wiag ifmatrmal) version of

: doesits job. Having to prevent the format vocabulary from getting on the costexk is
probably the only subtle part of the program. Even so, it is not difficult as will be seen below.

We will need to keep a few variables, the uses of which are mostly obvious.

VARIABLE LEFT# \ current left hand margin
VARIABLE LINE-FINISHED \ set when logical line finished
80 VALUE H# \ max width in columns

VARIABLE O>IN \ pointer to current word

VARIABLE VOCAB \ vocabulary to search

Left# is a variable thatontains the current position of the left hand margivihen we do a
carriage return, wevill usually automaticallynovethe cursor to thigposition by issuing the
required number adpaces. Welefine a few simplevords to manipulate this variable and a
word to do a carriage return and position at the correct current margin.

: LHEDGE O left#!; \ set margin to left hand edge
:+STEP 2 left# +!; \ move left hand margin in two
:-STEP -2 left# +!; \ move left hand margin out two
. ->LHM \ move to current left margin
#out @ left# @ > \ past current start of a line?
if crlf then \ if so move onto the next line
left# @ #out @ - \ how far from target are we?
0 ?do bl emit loop \ move to starting position

Every string in the sourcwill need to beprinted sooner otater. To furtherimprove
readability, wewill use uppercase to emphagisfiningwords and the names Bbrth control
wordsbut leave everything else as entered. Provided you don't type everythipgen case,
this will make it easier to findvhere a word is defined. By the timar program is ready to
print a word, it is incounted string form 8lERE. FPChas aword UPPERwhich changes a
word to upper case. We alseed aword to typeour currentword as itwasprovided, we can
not just typethe copy aHERE as itwill usually havebeen converted topper case during the
vocabulary search process.

Chapter 14: Vocabularies

Pagel03

:UTYPE (HERE--)
count
2dup upper
type
bl emit

:PTYPE (HERE --)
count nip 1+
h# #out @ -
over < if ->lhm then
o>in @ 'tib @ +
begin dup c@ bl =
while 1+
repeat
swap type

*S (n--)

\ type word at HERE in capitals
\ get adr and count of string
\ force it to upper case
\ and print it
\ finish with one blank

\ print word as given
\ get length inc trailing blanks
\ room left on line
\ new line if not enough room
\ get ptr to where word starts
\ check for leading blanks
\ move over any leading blanks

\ then print word

\ print n stars

0 ?do ascii * emit loop

We alsoneed to beable to handle comments. Thesan be of three typeszomments in
bracketsmulti-line comments (between commearttd comment;) andommentsstartedwith \
which last until the end of the line. Once@anment isstarted, wordsvithin the comment have
no formatting significance at all until the terminating condifmmthe comment iseached. To
implementthis easily, the program searches a different vocabulaen printing comments to
the one itsearchesvhen it isformatting. Thisnew vocabularyonly contains thecomment
terminating words, and so all other worddl just be printed ags. Theterminating words
have the action of returning to searching the formatting vocabulary. carhenent printing
words we need are:

:.TO) (adr--) \ print from adr to). Update >in
dup c@ emit \ print (
begin
1+ dup c@ \ get next character
dup emit \ print it
ascii) = \ was it the closing)?
until \ keep printing until it is
'tib @ - 1+ \ get number done so far this
line
>in ! \ update >in
:\ (adr--) \ print from adr to end of line
dup 'tib @ - \ how many we processed so far?
#tib @ swap - 2- \ calculate length of this
comment
h# over - \ max starting column (Cmax)
#out @ over > \ past that column already?
if crlf then \'if so new line

#out @ h# 2/ <=
if h# 2/ min then
#out @ - spaces

\ on left hand half of paper?
\ min of 1/2 way or Cmax
\ move to starting column to use

type \ and print it
line-finished on \ mark new line of source needed
crlf \ new line, postpone indenting

: FIND-CHAR (-- adr)

>n@ 'tb @ + 1-
begin

1+ dup c@ bl <>
until

\ get next char (ignore blanks)
\ work out where we are up to

\ skip over any leading blanks
\ until we find a non-blank

Pagel04 Real Time Forth

: 2.COMMENT \ print following comment(s) if any
find-char dup @ \ get next non blank character
dup 8232 = \ a (followed by a blank?
if

drop 1- .to) \ print to) and adjust >in
find-char dup @ \ get next non-blank character
then
8284 = \ a "\' followed by a blank?
if .\ \ yes print comment
else drop \ else do nothing
then

. WORD&COMMENT
here utype \ print word in capitals
?.comment \ plus any following comment

Now that wehave the words to do thectual formatting operations, we cdefine the words
with special formatting implications and what action is to be tak®mn one of theseords is
encountered. Therare some commorieatures to the actions of several words andwiile
define conveniencevords to perform them. As theew definitionsmustonly berun when
formatting, weput them intheir own vocabulary ananly search thisvhenformatting. There
is onetrap when compilingthis formatting vocabularyFor somereason insists on replacing
the top position on the contestack bythe current vocabulary (thene receiving the
definitions) andhusmaking it thefirst one to besearched during compilation. Thisuld be
fatal when weare giving formatting definitionsfor important Forth wordglike : itself for
example) as we would find ourselves executing the formatting defimtiem we were trying
to compile. So we define NO-SEARCH to undo this action of : by replacing the vocabulary on
the top contexstack bythe vocabulary undeét. No-search must be ammediate word as we
need it to do its work when we are compiling this program.

: NO-SEARCH (--)

previous \ remove current vocabulary ...
also \ ... from search order
; Immediate \ do it as soon as encountered
: DEFINING \ code for definition starting
words
here utype \ type this word in upper case
bl word \ get next blank delineated word
utype \ type it in upper case too
?.comment \ print any following comment
Ihedge ->lhm \ nothing else goes on this line
: NL-DEFINING
lhedge ->lhm \ ensure we start on a new line
defining \ then process definition word
: TERMINATING \ code for definition ending words
#out @ left# @ = \ at left hand margin of a line?

if
lhedge 13 emit

\ CR to get to column zero

#out off \ reset #out this line to zero
else
lhedge ->lhm \ move to start of line
then
.word&comment \ print this word (and comment)
crlf lhedge \ and that's all on this line
"IN \ code for an indent requiring

word

Chapter 14: Vocabularies

Pagel05

->lhm \ new line unless already done
.word&comment \ print word (and comment)

+step ->lhm \ move margin in and new line
: OUT \ code for an outdent requiring word

-step ->lhm \ move margin out, new line
.word&comment \ print word (and comment)

->lhm \ new line
: OUT-IN \ code for a word that temporarily

\ moves out one step

-step ->lhm \ out one step, new line
.word&comment \ print word (and comment)

+step ->lhm \ and back in one step

Now we can finally create the two vocabularigsefor general formatting information and the
other for comment terminatingvords. After theyare createdthey are made thecurrent
vocabulary in turn teeceive their definitions. To dis they have to be added to tog of
the contexsstack andhen made theurrent vocabulary with definitions. Sint®y must not
be on the contexdtackwhen compilatiortakes placethey have to be removed from there with
'previous'.
Create a vocabulary for special formatting versions of words

VOCABULARY (FORMAT)
Create a vocabulary for special versions of comment words

VOCABULARY (COMMENT)
Now to prepare to add definitions to (format). First add (format) to the context stack,

also (format)
then make it the vocabulary to receive definitions,

definitions
then lose it off the context stack,

previous

and, finally, duplicate what isow thetop entry on the contexdtack so: hassomething to
overwrite.

also

We don'tneedwarningthatthe names ware about taefineare already in use, wadready
know this as we are deliberately redefining them!

warning off

Here are some sample definitions tioe format vocabulary, not all possiltiterth defining and
control words are here. The missing ones can be added if needed.

: CONSTANT no-search defining ;

: VARIABLE no-search nl-defining ;

: VOCABULARY no-search nl-defining ;

- no-search nl-defining +step ;
- no-search terminating -step ;
: DEFER no-search nl-defining ;

: CODE no-search nl-defining +step ;

: END-CODE no-search terminating -step ;
CIF no-search in ;

: ELSE no-search out-in ;

: THEN no-search out ;

: BEGIN no-search in ;

Pagel06 Real Time Forth

- UNTIL no-search out ;

: WHILE no-search out-in ;

: REPEAT no-search out ;

o no-search line-finished on ;

A\ no-search 'tib @ >in @ + 2- .\ ;

(no-search 'tib @ >in @ + 2- .to) ;

: COMMENT:
no-search
[l (comment) \ switch to searching ..
vocab ! \ .. comment vocabulary
->lhm here \ type COMMENT: ...
count type \..on anew line
4 spaces h# 16 - *s \ add some *s
crif ; \ new line, postpone indenting

Now to prepare to addefinitions to the (comment)ocabulary. Firsteplace the top of the
context stack by (comment),

(comment)
then make (comment) the vocabulary to receive definitions,
definitions
as soon as this is done, lose it off the context stack,
previous
and once again duplicate the top entry so that : has something to overwrite
also
Here are the actual definitions for the comment vocabulary.

: COMMENT; \ Terminating word for comments starting with
comment:
no-search
['] (format) vocab ! \ switch to searching (format)
->lhm here count type \ print COMMENT;
4 spaces h# 16 - *s \ add some *s
crif

o \ Terminating word for any line other than a
comment
no-search line-finished on

Now we return to adding definitions to Forth.
previous definitions

From now on we need to knoabout anyname duplication athis is theend of the code in
which we intentionally re-use names

warning on

Now for the wordsthat reacthe file word by word and check each word in the vocabularies
that we just created. LINEREAD readdiree from the open file into &uffer which we then
make thegemporary input buffer (the TIB). WORBXxtractsthe next word from thine and
copies it toHERE, ready forthe dictionary lookup words HASH and (FIND) to process it.
WORD returnsthe address tavhich it copied the word as the position I8ERE varies as
definitionsareadded(it is actually on theend of the information in codgpace, but akng as

we know the address where it is we don't need to worry about such details).

HASH, given theaddress of thérst threadendaddress of a vocabulary and the address of a
string, returnsthe endaddress of the thredthat the string would be on if itvere in this
vocabulary at all. (FIND) then checks to see if it is in this thread.

Chapter 14: Vocabularies

Pagel07

\ check vocab specified in VOCAB for a word

: FIND-WORD?
if found

not found
dup count upper
dup
rot >body
hash @
(find)

: GET-LINE

open file into a buffer

lineread

dup count + 2-
31776 over !
32 swap 2+ c!
dup 1 swap +!
settib
line-finished off

: DO-LINE
get-line
span @ 3 >
if
begin
>in @ o>in!
bl word
vocab @ swap
find-word?
if
execute
else
lefté @
#out @ -
?dup 0 >
if
spaces
then
ptype
then
line-finished @
until
then

’

: SHOW
80 ['] h# >body !
['] (format)
vocab !
sequp
file
0.0 seek
inlength off
Ihedge ->lhm
begin
do-line
inlength 0=
until
seghandle
hclose drop
seghandle
clr-hcb
seghandle
b/hcb -

hndls max %!> seghandle

(vocab-cfa HERE -- adr-of-word true)
(vocab-cfa HERE -- HERE false) if

\ convert to upper case string
\ 2 copies of pointer to string
\ get adr of voc thread table
\ find which thread it would be in
\ see ifitis there

\read 1 physical line from the

\ get line, return buffer adr
\ calculate where crlf will be
\ replace with blank |
\ and add another blank
\ we increased length by 1
\ make this buffer the TIB
\ reset flag

\ format one physical line
\ get one line
\ not just terminal string?

\ then start processing
\ save pointer to current string
\ get one string to HERE
\ get vocabulary to search
\ is the string there?

\ yes, do what needs to be done

\ are we before the current...
\ ..left hand margin?

\ move to it if so

\ and then print it as provided

\ repeat for rest of line

\ show a file formatted on the screen
\ set width of the 'paper’
\ start by ...
\ .. searching (format)
\ move up one handle
\ open file
\ reset file pointer
\ clear input buffer
\ initialise margin

\ do one line
\ no input left to process?
\ continue until that is true
\ get current handle
\ close current handle
\ get current handle
\ clear handle array
\ get current handle
\ select next handle down
\ make it the current one

Pagel08 Real Time Forth

span @ >in ! \ mark we have processed all

As provided here we only show a file on the screen. It would nleatueto add to this so that
we could print on a printer with headers and footersiase whenprinting from the FPC
editor. A slightly extended version othis source is provided on disk in thide
CH14CODE.SEQ.

Exercises.

Q14-1. Write aword ENCODE that accepts a string wbrds and lookshem up word by
word in a >codevocabulary. If the word exists in ttrecode vocabulary it isun. The
encodable words in the >code vocabulargt print their codes. Any word not in the
vocabulary is just printed directly as plain text.
For the trivial >code vocabulary

: THE no-search ." 12" ;

: CAT no-search ." 352 ";

: PURRED no-search ." 31 ";
entering the text

ENCODE THE CAT PURRED END
will result in an output 012 352 31

Note that ENCODE processdbe words following using the CODE vocabulary until the
END isencountered. ThEND (or any otheword of yourchoice) is needed tmark the end
of the text to beencodedand must exist in theode vocabulary. Whenrun, it will stop
ENCODE from running and return things to normal.

A DECODE word will be neededthat differs from ENCODEonly in the vocabulary it
searches. It must search the CODE> vocabulary.

The code> vocabulary to match the trivial >code vocabulary shown above would be

112 no-search ." THE " ;
1352 no-search ." CAT";
131 no-search ." PURRED " ;

so that entering
DECODE 12 352 31 END
will result in an output oTHE CAT PURRED

Notethatthe vocabulanlCODE> alsoneeds to include the woEEND and that thiglefinition

of END couldneed tadiffer form the version in EODE depending on the/ay youimplement
it.

The words for searching a specific vocabulargy be taken directly from the formatting
example given in this chapter.

Why would it behard to write arencipher and a decipherer using #&pproach above™int:
ciphers work on character by character substitution not on word by word substitution.

Chapter 15:- CREATES, DOES>and a glimpseinside. Pagel09

Chapter 15: CREATE, DOES>and a glimpseinside Pagelll

Chapter 15

CREATE, DOES> and a glimpse inside

More on definitions.

You will recall from beforeéhat a Forthword hasthree main componentg's name, what it is
to do when activated (it's run-time behaviour), and any 'personal’ informatmeeds to dd's
run-time behaviour (known as it's paramefergjaking the example we saw earlier,

12 constant DOZEN

This contains aefining word(or compiler) calledCONSTANT, which builds a word with the
nameDOZEN, gives it thespace to storene 16bit number,puts 12 in this spacandgives
DOZEN the run-time behaviouhat it returns this 12 (put it atme top of thestack)when
executed. Other words built BFONSTANT will have the samestructure andun-time
behaviourbut each will involveit's own particularnumber and name. There is nothingtop

you defining a differentonstant with the same value if it makes your program easier to read
(12 constant MY_DOG'S_AGE). You may even re-define a constant with a new value, such as

13 constant DOZEN

if at the time you were dealing withakerswho are popularly supposed to use such a
definition. A re-definition such as thisould notalter the behaviour of anythingompiled
using the old version of dozeoyt everything definecfterwill use thenew definition. When

you do re-define dozen you will get a warning messhggtells youthatdozen is not unique.
As long as you intended to redefine dotais can be ignored, of course, though if you get a
"not unique" messag&henyou were not intentionally redefining anything you should check it
out carefully. Consider théollowing example whichillustrates this aswell as the word
FORGETwhich erases atlefinitions entered since the one specified téobgotten (no matter
which vocabulary they are in).

For example:-
12 constant DOZEN \ define dozen to be twelve
: TWO-DOZEN dozen 2*; \ define two-dozen to be 24
1 A note for people familiar witlobjectoriented programmingYou will noticethat Forth has

aspects of objeatriented programming ithat eachtype of compiler compiles instances of its class.
CREATE DOES> are th®ols to build new classes. fmrmal Forth, an instance ofctasshasonly
one method (onéhing it knows how to dopnd so it is nohecessary to pass it a message to tell it
which method to use; sincedhly knows one it always dodisat. By includingmany differentypes

of behaviour inthe DOES> sectiorandallowing a number passed tre stack toalect which one is

to run, you can extend to multiple methalgjects. This isdone in some dhe examples ithis book.
Inheritance angbolymorphismcan besimply added to Forth as needed, are outsidethe scope of
this book.

Pagel12 Real Time Forth

\ test these definitions

dozen . \ the number 12 will be printed
two-dozen . \ the number 24 will be printed
13 constant DOZEN \ now define a bakers dozen

FPCwill warn youthat dozenisn't unique but don't be alarmed as yontended to redefine
dozen.Justrememberthat you canonly easily get to théatestdefinition associated with a
name. Now to test our new definition.

dozen . \ the number 13 will be printed
Re-check our word two-dozen

two-dozen . \ 24 will still be printed
Forget everything back to the last definition of dozen

forget dozen
Test our definitions again

dozen . \ the number 12 will be printed
two-dozen . \ the number 24 will be printed

Producing a defining word.

Consider now howlCONSTANT doesit's work, using thigime as an example the processing
of:

20 CONSTANT SCORE

The 20 (like all numbers) is placed on thgtack andthen CONSTANT is activated.
CONSTANT is adefining wordand anydefining word is ahaysfollowed by the name tgive

to the 'thing' it is to define CONSTANT firstgoes to work to build a word. takes what
immediately follows it in thenput string to use as thmefor the word to build (in this case
SCORE) and places thrsame in the dictionary. It thelakes the number on the top of the
stack and places it ithe dictionary taking a further two bytes, aadjuststhe pointer to the
end of thedictionary accordingly to showthat this space hdseenallocated. Thicompletes
the building. It theradds instructions abotite run-time behaviouhat SCORE is tdave
(what it is to dowhen activatedy. This is to place the numbémat is stored apart of its
structure on the top of the stack when called.

CONSTANT could have beerdefined using the wordsCREATE (which starts the
instructions thatlefinewhat to build) and DOES¥$which startsthe list of instructionghat
specify the run-time behaviour) as follows:

: CONSTANT CREATE , DOES> @ ;

CREATE starts the building process by adding a name to the dictionary, using the next word in
the input string (the wordfter CONSTANT) forthe name, ('score’ in the example above). It
thenrunsthe wordghatfollow CREATE until it reaches DOES> or runs out of input.this
example the comm@) reserves two bytes and initialistsem bystoring the number from the

top of the stack at thend of thedictionary and advancing the dictionary pointer (the pointer to

2 To be picky, it doesiot usually place an instructicthere, it places a call to where the
instructions are. However this is a point of implementation detail that can be safely ignored here.

3 It isn't in most systems, it is defined as a primativaha interests ogpeed. But it could
have been.

Chapter 15: CREATE, DOES>and a glimpseinside Pagell3

the next available free space at émel of thedictionary). DOES>startsthe series of run-time
behaviour instructions with the minimum action, which is to return the addressfostltleing
CREATE built aftetthe name. In the case of a constant this is the address of the stored value
so the only other action needed is to read the value stored there with a normal fetch.

The only use of adefining word is toproduce ‘offspring’ words with certaidesired
characteristics. Producing defining word simplyconsists of specifyingnow to build the
desired structure ofhe offspring word and what run-time behaviour eledow the new
offspring word with. Both thestructure andun-time behaviour may be as simple or as
complicated as you wish. In thest of this chapter othexamples will be given adefining
words that build more complexstructures andendow them withrather more powerful
behaviour than CONSTANT has.

Now thatdefiningwords have been introduced, you neaye to return to chapter 11 and read
the example in which we definecgpher building word. This is a simplerexample than the
one that follows and probably should be understood before proceeding with this chapter.

A 1-of list of clauses.

As an example of a more power&tructure, wewill producewhat | will call a 1-of list of
clauses. This is a number of clauses, eagtith can be asimple or as complex as you
wish. The clauses agrouped inpairs,the first one ofeachpair must return a true dalse

flag on the top of thetack. Theun-time behaviour ighatthefirst clause is run anthe flag

that it leaves is inspected. If this is false the next claussetiund of théirst pair, isskipped

and thefirst of the nextpair is runand the flag it leaves is inspected. However, if the [8&g

was truethe second of theair thatproduced thdrue flag is run anexecution of the list
terminated. If no first clause returns a true answer, no second clause at all in the list is done.

For example, suppose weere considering the letters of a word withiew to dividing it into
syllables. A smalpart ofthe pairs of clauses waight write could be as follows ifparks the
end of one clause and the start of the next).

Is this character aszowelbut the last charactewasnot? | Mark as an inter-syllable gap in
front of this character and increment the number of syllables found |

Is this a 't' and was the last character an 'h'? | Do nothing, not an inter-syllable gap |

Are both this and the last character consonants? | Mark as a possible inter-syllable gap in
front of this character |

In each case we apply a tasefirst clause othe pair, andonly run the second of thpair if
the test returnettue. As allthetests are in hierarchical ord@nce ondest haseenpassed
we knowthat noother test can be of significanc&or this reason wénishing processing as
soon as any second clause of a pair has beeh run.

4 The example we arabout to build is reallanother example afyntactic sugar. Itould be
written as:

clause la IF clauselb EXIT THEN

clause 2a IF clause2b EXIT THEN etc.
The definingword weare developing may, in some circumstances, méeeunderlying structure of
the program clearer by hiding the IFs, THENs and EXITs.

Pagell4 Real Time Forth

Shown diagrammatically below is tlsructure weneed tobuild when producing adefining
word to construct 1-of types of words with the desired run-time behaviour. exdmple
shows a case witfust onepair of clausegand the terminating clause with an addreszeod

put on by 1-OF;.Notethat part ofthe structure is built irthe codespace angbart inthe list
space. The structure faach clause is jughe same as thstructure for a regulacolon
definition, excepthatthere is no namassociated with each clause as there would be with a
colon definition. However we will bable tomakeuse of many of the words used tmpile
colonwords. The actual list ahings to do in each clause (or in e@dfon definition) is kept

in a separate region of memory, and, as a consequence of the way this region is addressed, each
list muststart on a paragragtoundary(at anaddress that is an exauaultiple of 16). Each
clause produceBve bytes incode space, a jump téhe normal routine to handle alon
definition (the routine is called 'nest’) and then part of the address of the stasexfubace of
words that make up this clause. The rest of the address is kept in the V&&B@Be The end

of the list of clauses iglentified by having amddress of zero afténe ‘jump nest'. Thstart
address of theequence of word addressesare currentlycompiling intolist space iseld in
XDPSEG and the length so far of the word addresses we are compiling is held in XDP.

1 1 2 2 3 3
- Jmp Nest | Address 1 Jmp Nest Address 2 Jmp NestI Zero -
CODE SPACE
LIST SPACE
1 2 2
- List 1 Un-nest Empty List 2 Un-nest | Empty -

VAN /\ /\

X I

[] APARTOF CLAUSEX The structure of a 1-OF: pair

of clauses, together with
the terminating clause
added by 1-OF;

] EMPTY (WASTED) SPACE

Il rARTS OF OTHER WORDS

- J

Most of the code to build thetructure isconcerned with ensurinpat wehave something in
the input buffer to compile and initialising each of these variables as wesgarticompiling a
clause. The actual construction of the list of addresses in list sphweeiby thdist compiler

]. Once] is invoked it compiles tlaeldresses of words into list space until @mgountered at
the end of aclause. Weneed to know when tetop compiling clauses; wewill then put an
address of zero in place Hmat atrun-time we will know where thést of clauses ends. The

Chapter 15: CREATE, DOES>and a glimpseinside

Pagell5

end of theclauseswill be marked with the special worttOF; which bears anobvious
relationship to the name-OF: that wewill give this definingword. 1-OF;will let us know
that it istime tostopcompilingclauses by turning the false fldgat wehave on thestackinto

a true flag.
follows.

: 1-OF:
CREATE
BEGIN

BEGIN
CHARREAD BL <>
UNTIL
required
-1 >IN +!

()

too
233 C,
>NEST
HERE 2+ -,
“nest'
XHERE PARAGRAPH +
a multiple of 16
DUP XDPSEG !
XSEG @ -
this clause and

clause
XDP OFF
FALSE
ICSP

and

]
UNTIL
false flag into a true flag
DOES> (--)
>R
structure to return stack
BEGIN R@ 3+ @ 0 <>
structure <> 0
WHILE
to do
R@ EXECUTE
IF
R>5+
EXECUTE EXIT

REPEAT

Waewill use | to separatiie clauses.

Thactual definitions of these words

\ register the name
\ main loop to compile clauses
\ move to next non-blank ..
\ .. character, refilling ..
\ .. input buffer if

\ back up to process that
\ put in the code for “jump'
\ get absolute adr of "nest'
\ convert to offset to
\ set start address of clause to

\ save start address in XDPSEG
\ calculate offset to start of

\ save it to identify this

\ initialise clause length to O
\ put a false flag on stack,
\ set up compiler checking

\ then compile clause
\ repeat until 1-OF; turns

\ start of run-time definition
\ move adr of first clause

\ check address in next clause
\ if so there is another clause

\ do this flag returning clause
\ if true
\ point to next clause
\ do next clause and leave
\ if false
\ move on two clauses

\ go and try again

\ we only get here if we run out of clauses

R>DROP

the compiler)

\ clean up return stack
\ end of the run-time definition (and

\ Other words needed to complete the whole 1-OF package

| ()

?CSP

COMPILE UNNEST
definition

[COMPILE] [
. IMMEDIATE

: 1-OF;
compilation

()

\ mark between clauses
\ check for compile error
\ finish the pseudo colon

\ turn off the compiler

\ word to treminate

Pagell6 Real Time Forth

[COMPILE] [\ stop compiling

NOT \ turn the false flag into
true to exit loop in 1-OF:

0 HERE 2-! \ make the last address 0
; IMMEDIATE

If you wish watch these words operaten them under the debugger. If yaant to inspect
what is constructed in code space use either the Watch option in the debugger or DUMP; if you
want to inspect what is built in list space use XDUMP.

An Example of a 1-of list of clauses

Thefollowing is a very simplaise of a 1-of list of clauses, too trivial to be really walting
this way, but suitable as a demonstration. Note the list consists of three pairs of clauses.

1-OF: TRY (n--)

dupl-= | drop ." A one" |

dup 2 5 between | drop ."2to 5" |

6 10 between | " >5 and <10" |
1-OF;

Forthe example shown above, typingr@ <cr>f causes 2 to 5 to be printed. Typing 12 try
f will not cause anything to be printed asfinst clause was satisfied. very trivial example
to be sure, but remember that the clauses can be as complicated as you like.

:CODE and :USES

DOES> isused tostartthe HIGH LEVEL CODE definition of the run-time behaviour of all
words built by thedefining word in which ilappears. Thisnakes the writing of the run-time
routine particularly easyUnless weare afterthe veryfastest operation dahe offspring words
of this defining word weneednot ever do anything else. Theressme speegenalty for
routines written irhigh level codeand ;CODE is available for situatiomsere everthis small
penalty cannot be accepted. The outline adeéining word definedusing CREATE and
;CODE is:

: CREATE <name> structure-building-instructions ;CODE; run-time-
behaviour-in-assembly-code ENDCODE.

For comparison, the outline of a defining word defined using CREATE and DOES> is:

: CREATE <name> structure-building-instructions DOES> run-time-
behaviour-in-high-level-code ;.
As the name suggests the ;;@ODE terminates the higlevel structurebuilding part that
commencavith the : and th&€€ ODE startdhe run-time behaviour definition in assembly code.
This assembly section is terminated with END-CODEpeed is not of prime importance for
the structurebuilding part of the definition asthis is only run during compilation of the
offspring words. For this reasorthere is no reason to have to go toék&awork of writing
in assembly code. Assembly code will be covered in chapter 18.

Sometimes two different definingords will eaclhgive their offspring words the same run-time
behaviour. Under this circumstance it is wasteful to vaitethe run-time routine separately
for eachdefinition, it is morepractical to write itonceand let eacldefining worduse it. This
can bedone with the wordUSES. This terminatefe structurebuilding part ofthe defining

Chapter 15: CREATE, DOES>and a glimpseinside Pagell7

word and uses the womhmediately following;USES aghe run-time routindor the offspring
words. The outline of a defining word defined using CREATE and ;CODE is:

: CREATE <name> structure-building-instructions ;USES run-time-

word.
For example, suppose washed to define a defining wotbat buildstime variables thastore
both minutes antlours, buhave the same run-time behaviourf@sa regular constant. That
is thefirst word (the minutes) of the current value of thmuble variable is returned. This
behaviour could be required because the second number stored is only of interéisstfche
is somespecial value. The run-time routine for constan®@CONSTANT. Thedefining
word could be defined by:

: TIME

CREATE \ build the header

0,0, \ allocate 4 bytes, initialised
to0
USES DOCONSTANT \ install the run-time routine

;USES can baisedwhen therun-time routine we requir@as been previously defined, no
matter if it was defined in another defining word or just as a regular colon definition.

The words ;CODE and ;USES am®t standardbut words with equivalent function, if
different names, exist in many implementations of Forth.

Review Questions2 Pagell9

Review Questions 2

These questions are all concerned with material from the last two chapters.

Use CREATE DOES > tobuild an array defining word (call it ARRAY) that expects a
number on thetack atcompile timethattells it how many 1ebit words of storage to allocate.
The runtime behaviour oéll wordsdefinedusing ARRAY is to expect a number on the stack
that is the array index andreturn the actual address of thaglement of thearray.
That is 5 ARRAY FRED builds anarray FREDwhich has 516 bit storage locations. 3
FRED will then returnthe address of the third of the b storage locations shat you can
easily write there or read what is there.

Define a type of word calleédATRIX. This word is to build matricees where each cell of the
matrix contains a 16 bit number. It is to be used as follows:-

4 5 matrix BOARD \ set up a four by 5 matrix called BOARD

21 BOARD @ \ read the 16 bit entry in
position 2,1

12345 2 3 BOARD ! \ set position 2,3 to 12345

Write a minumum string handling package.

STRING FRED " abcdbuilds an unalterable string callé¢€RED thatconsists of abcd.
FRED when run should return its address.

n BUFFER JOEdefines abuffer calledJOE with spacefor n characters. JORhen run
should return its address.

Define CLEAR-BUFFER (adr --) to empty a buffer.

Write a word to print a string.§) which expects theddress of the string on tls¢gack and
leaves nothing, ie (adr --).

Write thebasic stringhandling wordthat, given theaddress of a string and the address of a
buffer, copies ajiven section of thetring andadds it to the current contents of tispecified
buffer. Call this wordtPART$>BUFF with the stack action (dest-adr source-adr n m --)
where n is the first character to copy and m the last character to copy.

Using CREATE and DOESxwvrite a word SQUAREwhich builds offspring words of type
square. These offspring wordshen correctly called (see belowjlraw a square of given
size with the giverorigin. You will need torecord the size and origin inside the offspring
word.

To set the size or origin use the words (which you must write)
SIZE (n--)and ORIGIN (nm --) (see example below).

Pagel20 Real Time Forth

The offspring word (FRED in the example belomill need to receivénformation on the stack
to tell it what to do. The informationrieeds to do the requestaction (if any) will be on the
stack under the informatighattells it what to do. A case statement mall be useful at the
start of the run time action of all offspring words of type square.

The colour to use when drawing the square is to be kept in a variable@all€dUR. Define
a word, DRAW, toput the colourfor white into COLOUR, and another, ERASE, puit the
colour for black into COLOUR.

Thus you could produce a dialoge:-

SQUARE FRED \ define a square called Fred
5 SIZE FRED \ give it a size of 5

10 20 ORIGIN FRED \ and centre it at 10 20

DRAW FRED \ now draw Fred

ERASE FRED \ blank Fred

20 30 ORIGIN FRED \ move Fred

DRAW FRED \ and re-draw it

Using your answer to question 5 of Review Questions 1, repeat question 4 above for circles.

Use deferred words dbat you can set the wordSIZE, ORIGIN, DRAWand ERASE to
control either squares or circles at your choice. Test.

Define a type of worthat wemight call an action-list. This is a list of pairs wbrds (testl
actionl test2 action2 etc). Each test can be assumed to return a flag. fime hehaviour
is to runeach test word and to perform those actioi®se test returned a true flag.

Suggest use:-

ACTION-LIST CLEAN-UP

dirty-hands? wash-hands dirty-feet? wash-feet dirty-mind?
declare-normal

END-LIST

Assuming that dirty-hands? returned a true flag, wash-hamasuld be run (only).
This problem requires thdefining word 1-OF to bechanged in a different defining word
ACTION-LIST. Thiswill not require any change to tlséructurebuilding words,just to the
run time definition. The new run time behaviour is to be to run the first clause gbaiactmd
to runthe second clause of tipair only if thefirst of the pair returned a true flagUnlike 1-
OF, this process continues until the end of the pairs of clauses instead of stopfinsg tthe
the second of pair of clauses is runThe solution tdhow to convertl-OF to ACTION-LIST
will be found in the answers in appendix two, if you can't work it out for yourself.

Write a wordENCODE that accepts a string wbrds and lookshem up word by word in a
>CODE vocabulary. If the word exists in the >CODE vocabulary riiis The encodable

words in the >CODE vocabulary just print their codésy wordnot in the vocabulary is just
printed directly as plain text.

Review Questions2 Pagel21

For the trivial >CODE vocabulary
: THE no-search ." 12 ";
: CAT no-search ." 352 ";
: PURRED no-search ." 31 ";

(no-search is defined in chapter 14) entering the text

ENCODE THE CAT PURRED END

will result in an output 012 352 31

Note that ENCODE processable words following using the CODE vocabulary until the
END isencountered. ThEND (or any otheword of yourchoice) is needed tmark the end
of the text to beencodedand must exist in theodevocabulary. It,whenrun, will stop
ENCODE from running and return things to normal.

A DECODE word will be neededthat differs from ENCODEonly in the vocabulary it
searches. It must search the CODE> vocabulary.

The CODE> vocabulary to match the trivial >CODE vocabulary shown above would be

112 no-search ." THE " ;
1 352 no-search ." CAT ";
131 no-search ." PURRED " ;

so that entering
DECODE 12 352 31 END

will result in an output oTHE CAT PURRED

Note that the vocabulary CODE> also needs to include a termination word such as END.

The words for parsing the next word from the input stream and searching a specific vocabulary
may be taken directly from the formatting example given in chapter 14.

Why would it be hard to write an enciperer andkaipherer using th&proach aboveMint:-
ciphers work on character by character substitution not on word by word substitution.

Pagel22 Real Time Forth

Chapter 16:- Multi-tasking. Pagel23

Chapter 16

Multi-tasking

Multi-tasking has been part of almost all versions of Forth except the first of the gharikin
versions (FIGforth). It is ngtart ofthe 1983 standartiowever. Unlike a time-slicetype of
multi-tasking, in which eacltask has to surrendéne processor to the netesk after a pre-
determined time interval whether it 'likes' it or not, FPC (like most versions of Forth) uses a co-
operative scheme. In thigask passesontrol onlywhen it isready, thusimplifying thetask
of keepingtrack of whatneeds to be saved so task can be resnedlater andmaking the
task interchange veryast. The 'cost' is thabne cannot reliably predict exactiywhen task
interchange wiltake place and, bnetaskgets into an endless lotipat does not contain the
voluntary transfeword PAUSE everything elsetops forgood. This latter isthe fault of the
programmer not the language. Witlare the task latency time (theintervals between
successive periods of activity on a task) cambde verysmall, especially since all the words
to do with human interaction, ameghose execution timegre therefore unpredictable, already
have the task interchange word PAUSE built in.

Different tasks share all resourcether than thetacks,although a group of variabldss to

be assigned to eadhsk tokeep arecord of internal processor information during tinee

when other tasks have control. Theasksinvolved in the multi-taskingare linked into a
circular list, each receiving control from the preceding one and passing it to the sucoeeding
Each task on the list can be active or asleep. In the latter state it passes control on as soon as it
receivedt. Otherwise it executes until the word PAUSE is encountered, either explicitly or as
part of an input or output word. A task can be activated by ue eford WAKE andgut to

sleep withSLEEP. Multi-taskingin toto can be turned off or on by the wortiBJLTI and
SINGLE. These could be used withintask if for somereason théask had to retainontrol

for a certain period even though some input or output words (which would normally case a task
interchange) are to be executed.

The multi-tasking words in FPC (in the file MULTASK.SEQ) are described below.

A list of multi-tasking control words

SINGLE (--)

Disable multi-tasking by vectoring PAUSE to a null word. Leavectlreent taskunning as
the only task. Don't alter the circular linked list of tasksnves want to resume multi-tasking
later.

MULTI (--)
Enable multi-tasking by vectoring the deferred word PAUSE to (PAU&RGh actually
handles the task interchange.

BACKGROUND: (--)
The defining wordthat compiles atask andincludes it in the round robin multi-tasker. It

Pagel24 Real Time Forth

allocates a stachrea of 40Mytes (100 fotthe return stack an@00 forthe data stack) and
links in thetaskleaving it in the sleep condition. A word defined WVBACKGROUND: can

only be run bythe multi-tasker; typing thtaskname willreturnthe address at's parameter
field (pfa) rather than activate the task. See comment on this name below.

WAKE (‘adr --)
Wake up theaskwhoseparameteffield address (pfa) is othe stack so that iwill execute
next time control is passed to it.

SLEEP (adr --)
Make the addressed task pause indefinitely until it is woken again (if ever).

STOP (--)

Put the current task to sleep. If a task ends (doesn't run continuously in an endless loop) then it
must end with this word and only be rance. Otherwise &skwill try to execute the random
memory contentsafter the end of thecurrent word with unpredictablbut certainly very
undesirable resultsSince one-use only wor@senot very useful, all multi-tasking words are

in fact built as endless loops.

PAUSE (--)

The task inwvhich this wordappears stopshenthis word is encountered and control is passed
to the nextask inthelist. PAUSE exists in all input and output words exdbpseinvolving
input and output portdirectly. If none of thesavords areused (implicitly or explicitly) the
task will never release control to the next task and will continue to run forever.

ACTIVATE (task --)
A word to force the specified background task to execute new code rather than its old code.

An example of multi-tasking.

The use of these words candsen from the following example (load the l&JLTASK.SEQ
before trying the example if you have not alrea@dyeso). First we will use the special
defining wordBACKGROUND: to build atask that prints 20 asterisks the screen anlihk
it into the round robin which, until we link theew word in, will only consist of the outer
interpreter that handles our keyboard input.

Background: PRINT*S

200
do \ set up outer loop

ascii * emit \'send one *

100 0 do \ set up a time wasting loop

pause \ wait a bit, give other tasks a
go
loop

loop \ loop to send next
stop \ terminate task

Note the wordstop'. It isneededbtherwise when 20starshave been printednd thetask is
over, disastewill strike as the computer tries to execute the random contents roethery
after the end of theodefor print*s! Also notethat wehave an inner loop to slow thingswn
a bit, otherwise all theasteriskswill appearbefore we have a chance to do anything. This
inner loop is a good neighboand givesveryone else a go by including the weUSE in
the loop. Thepause irthe loop meanthat wewill not print astarmore frequentlifthanonce

Chapter 16:- Multi-tasking. Pagel25

ever100 tripsround the entire round robin. Howevegthingunusual happens on tlsereen
as we have not turned multi-tasking on. We can change that easily by entering

Multif.

Still no asterisk appears. This is becausen atask is built andinked it is put in the
sleeping condition. Hence we must enter

print*s wakef

to wake itup. We can carry otyping at the keyboarldut onthe screemur inputwill appear
mixed with asterisks. Well, it will for 20 asterisks, then things will return to normal.

If we entered print*s wake again it wouMiOT causeanother batch of 28tars to appear.
Don't doit, the taskwill resume with the (non-existent) woedfter STOPand disastewill
strike. As it stands print*s is a one shot model only.

If, during this batch of *s, we had managed to type
print*s sleepf
the output of *s would have stopped at once.

The same would happen if we were to type single alththighwvould 'lock’ thgprocessoonto
keyboard inputvhich would have been thask inwhich that input occurred. Thether tasks
would not beput tosleep and wouldtartaway as soon as multias issued withoutaving to

be awakened. If thiask inwhich the single commanatcurred was ndhe keyboard handler

and had no way of inputting the multi command, there would be no way of regaining control
short of a system reset.

Background: adds a new task into the round robin; hovooamemove #ask that is ndonger
needed?The simple answer is - you cannot. Yaan assigmew instructions to theld task
name,but you must not forget theld task asthe circular listwould be broken and disaster
would strike as th@rocessor tried tmoveround if. To assign aewset of instructions the

word ACTIVATE is used which associates the new instructions with the old name and wakes it
up immediately. We will use ACTIVATE to assign a new version to print*s, one which will be
re-useable. It is essential to realibat ACTIVATE may only be usedhside a colon
definition because of the way it handles tkéurn stack.Attempts to use it interactivefyom

the keyboard will cause a system crash.

:NEW-PRINT*S
print*s \ task to receive new definition
activate \ start of new definition
begin \ set up an outer loop
200
do \ set up inner loop
ascii * emit \'send one *
100 0 do
pause \ wait a bit, give other tasks a go
loop
loop \ loop to send next
stop \ stop when 20 sent
again \ loop forever
1 Of course, it is possible to write a wditht patches théoop sothat it no longeincludes the

word you have finished with, but thevord cannot then béorgotten. Wheryou forget a word you
forget itandall words entered aftét. Sinceyou can't reclaim thenemory, itisn't worth writing the

word to alter the loop structure. yibudon't want a task, just put it to sleep. The idedyofamically
moving tasks on and off the multi tasking loop is quite alien to the philosophy of Forth, which is to do
the compiling at compile time and the running at run time in the interests of clarity and efficiency.

Pagel26 Real Time Forth

This version ignuch better,when it is woken umgain afterrunning to ‘completion’, it just
loops andruns over again. The original version is replaced with tieg version by just
running NEW-PRINT*S, either interactively from the keyboard or from within another word.

You should only have enoudhsks inthe circular list toservice the maximum numbénat

must everrun concurrently, and, if fosomereason you canjust leaveall your tasksthere

waking them as neededse taskre-definition tomove tasksinto and out of thdist. Task
interchange igast, but itdoesn't take zertime (evenfor tasks that are asleep), the fastest
execution will result from the smallest possible number of tasks on the loop. Experience shows
that whatyou gain from only having activéasks onthe loop is usually noenough to
compensate for the overhead of defining and re-defining these tagkge In short, activate is
rarely useful.

Vast possibilities ariselom the ability torun tasksfreeze themand later re-starthem, for
tasks to stop anstartothertasks,and for tasks to be able gpab allthe processing power for
time-critical parts byissuing SINGLE andhen later MULTI. However thevirtues of
simplicity are nowherestronger than in multi-taskingAll tasks must cooperate and the
problem of keeping in mind theossible effects of all combination e¥ents rapidlyoecomes
daunting.

| personally do not like the name ustd the word background: as it suggests to me a
master/slave relationship rather thacoaperative arrangement. Also the default allocation of
400 bytes is not always ide&l 00 bytes foithe return stack anthe rest forthe data stack).

Of course in thespirit of Forth, ifyou don't likeit, changeit. The formal definition of
BACKGROUND: is:

: BACKGROUND:
400 task: \ define task with the name following
\ and with 400 bytes total for both stacks
xhere \ reach into head segment to get the..
@link 2- \ ..address of the task we just defined
set-task \ initialise the new task
Icsp \ initialise compiler error checking

\ compile following code so it will be
\ executed by this new task

This is a shortefinition and easy tmodify as to thé¢otal number of bytes required for the
two stacks. Aftemodification it could be saved &8ULTI-TASK or COOP-MEMBER or
any other name whictiakes your fancy. Similarly Wwould prefer REDEFINE-AS for
ACTIVATE but that is a personal matter. If you wish to change the name it can easilgebe
with:

: REDEFINE-AS activate ;
which makes REDEFINE-AS just run ACTIVATE in its stead or with:
" activate ALIAS REDEFINE-AS

which makes the two names mean exactly the same. ALIAS builds a feraBR&DEFINE-

AS and gives it thaddress from the top of tlstack(in this case the address of ACTIVATE)

as its code field address. As a result using either REDEFINE-AS or ACTIVATE will cause an
immediate jump to the same code, unlikefirst method in whictREDEFINE-ASonly got to

the ACTIVATE code after an extra jump.

If you wish to allocate more or lesan 100bytes to theeturn stack/ou will need to redefine
TASK: andthen useyour new definition in a newersion of background:. To find where to
changetask:, decompile it(SEE TASK:) andthen re-enter it changing tH&®0 you will find
just after half way through tevhatever number you wish. Thiata stackwill get the

Chapter 16:- Multi-tasking. Pagel27

difference betweewhat youput in yourversion of TASK: and théotal allocation for stacks
you define in your version of BACKGROUND..

Chapter 17: Timing Pagel29

Chapter 17

Timing

Real time computing in general, and interfacinganticular, is all abouiming, getting things

to happen at the requiredte insynchronism with the outside world. In order to achieve this,
it is essential t&know how long it willtake words to executeUnlike other compilersvhich

call library routines to insulatéhe user fromthe 'dirty business' of interacting with thetual
hardware, Forttwill let you see the inner workings of any word and is idealhardware
manipulation. The first step is fimd out how longwords take taun, using the built invord
timer.

If they are too slow find the bottle-neck and recode it in assembleorth provides &ull
featured assembler for this purpose. Better thahit allows the full use of conditional and
high levelcontrol structures iassembly codeShortpieces of codean be assemblddline.
The assembler is described in the next chapter.

If words run todfastthey must be kept inactive andly allowed torun atspecified times. A
word DOWN-COUNTER is described in this chapter which can be added to FPC (or any other
Forth) to provide this capability.

Once thingsare running at the correatate itremains to synchronise them with the outside
world. This can, of course, lbene withstatus bitsand polling as in any languagélowever
this is not efficientenoughfor frequently occurring events and the usandérrupts for this
purpose is described in chapter 19.

TIMER - measuring the execution time.

A completeset oftime and date manipulation wordesbeen provided i-PC. Here is an
explanation of their usage:

TIMER ()

TIMER performs the Forth words following it on the same command linendret) they finish
execution, TIMER prints the elapsed time required for their execution.

TIME-RESET ()

Reset the accumulatéiche value in the doubleariable STIME to zero, ieffect resetting the
current elapsetime tozero. This word is used at theginning of a sequence of operations
you want to time. The worcELAPSED is used athe end of theoperations to print the
elapsed time since the last TIME-RESET.

.ELAPSED (---)
Print the elapsed time since the last TIME-RESET was performed.
TIMER word1 word2 ... wordN

Pagel30 Real Time Forth

is equivalent to typing
TIME-RESET wordl1 word2 .. wordN .ELAPSED

DOWN-COUNTER - making it happen at the right time.

One of the requirements inlaboratory (oranywhere else where interfacitakes place) is for
multiple taskseach to be performed at regulart different intervals. Forth does not directly
provide this real-time capabilitpWhile using multitaskingasdiscussed in thiast chapter) it
can perform multiplegasks apparentlgimultaneously, ithas no internatimer to schedule
events at specified times. Wisluch a timer petask andthe multitasker we caarrange for

events taoccur at predestined times, or at least at very close to thest.each timer is set to
the initial value. Eaclaskchecksits timer whenits time slice comesound. Iftime is up it

does whatever needs to be damel resets the timer to the initial value; if nojust passes
control onto the next task.

The accuracy dthe timing depends on the frequency of thekinterchange in the multitasker
and the resolution of the timers. Thete of taskinterchange is under the control of the
programmer as a tagkchange takes plagehenever the wor@AUSE is executed. Although
this can be placed liberally throughout the code, earsly input or outputword has PAUSE
embedded int, this isthe major cause of latency and the timeednot have a venhigh
resolution. For tasks thahave torun at, say,intervals of minutes, it is not hard to arrange
things so that the maximum time latency is only of the order of a fraction of a second.

All that we need to add to standard Forth are the timer(s). One method of achieving this is with
a new definingword which | have calleOWN-COUNTER since thenore obviousname
TIMER is already taken. DOWN-COUNTER creates a DOWN-COUNT#Hfch can be

preset to a value anill be decremented at a knowate. Periodic checking of the value in

this DOWN-COUNTERwill provide the cue toun thetask associatedith it. Although only

one newword, DOWN-COUNTER, isaddedfor direct usethe system dependepért of the
definition is factored into another word called (read_clodkhen called, (read_clockgturns

a number on the top of tretack, and thisumber must be maintained by the host computer
hardware insomeway and increase at a regular dmbwnrate. Inthe IBM RC family a
suitable timer is available and may be obtained by reading the DOS real-time clock.

An example of use of DOWN-COUNTER is:
DOWN-COUNTER <name>
which creates a DOWN-COUNTER called <name>.

<Name>, when run, returns the address where the count for this DOWN-COUNTER
that it can benitialized with a normal store or read with a normal fetttowever <Name>
does mor¢han that. When it is called iupdates the value its counter (based dhe amount
of time since iwas last updated)efore it returnghe counter address. This updatinglose
on a 'when needetfasis to saveprocessing time as the value in the coumeednot be
updated until it is to be read (obviously) or initialized (less obviously).

Internally each DOWN-COUNTEReeps two valuespne (theuser value)that the user
initializes and reads andhich steadilycountsdown from theinitial value to zero (and
beyond!), and a second (the internal value) which is the \taltewasobtained from the
system clocKast time it was read. When aDOWN-COUNTER is activated it reads the
system clock andubtractsthe system clock value redasttime (obtained from the internal
value). Then it decreases thger value by this amount and upddtesinternal value When

Chapter 17: Timing Pagel31

a DOWN-COUNTER timer i$eing initialized both theiser and internal valueged to be
set, otherwise the first read of the timer will produce unpredictable results.

CREATE and DOES*>areused to define the twparts ofthe new definingword TIMER as
follows.

DOWN-COUNTER is defined as:
: DOWN-COUNTER

create (--) \ no stack effect when creating

4 allot \ space for two variables
does> (--adr) \ address put on stack at run-
time

(read_clock) \ get new value from clock

over 2+ @ \ and last value

over - \ calculate change

2 pick +! \ update user value

over 2+ ! \ save latest value read

DOWN-COUNTER builds aaame and thepace for two 16 bit variablethefirst for the user
value and the secorfdr an internal value. The run-time behavigiven to the wordeing
defined withDOWN-COUNTER is to read the retine clock,subtractthe lastvalue it read,
correct the user variable, put the address of the user variable sindckendfinally to update
the latest value read.

A definition for (read_clock) tesuitthe IBM PC and=PC isgiven below. Itreturns anumber
which is incremented193180/65536imesper second (granted strange numbehut that is
how it is!)

code (READ_CLOCK) (--n)

push ax \ ax must be preserved
mov ax, # 0 \ ah=0 to read clock
int 26 \ 1Ahex=26=real time clock interrupt
pop ax \ restore entry ax
push dx \ low 16 bits of time to stack
next
end-code
An example

After (READ_CLOCK) (or a substitute to suiifferent hardware) and DOWN-COUNTER
(as given above) are entered, the following can be used as a test.

DOWN-COUNTER CLOCK

: TEST
begin
clock @ \ get user variable
dup u. \ print 1 copy so we can see it
0<= \ decremented to or past 0?
until
" Timed out!" \ print message to show we timed
out

Then if you enter the line

1 Perhaps, like meyou often readbooks bydipping here and there as tfency takes you
rather than reading isequence frorstart to finish. If that is thease, | suggeshat unlessyou are
already comfortable with these two words, now would be a very good time to read chapter 15.

Pagel32 Real Time Forth

180 clock ! test

a series of decreasing numbers (the user variabllepe printed which shouldast for just
under 10 seconds before the "Timed out!" message appears.

These timersare not suitable for shortime intervals as they have a resolutionoofly about
1/20th of a second. A fasteicrementing counter is requiredlifis technique is to be used for
waiting for shortime intervals, and then thiene for the word DOWN-COUNTER toun and
for the value to be fetched must be taken into account.

Down counters, such as tlome givenabove, ardhe way to ensurthatthings happen at the

right rate. They cannot, however, ensure that they happen synchronised with the outside world.
For this tohappen the outside world must provide at least synchronisingignal. Once
synchronised, a dowoounter carkeep events synchronised as long as the cloekcgsrate
enough. Clocklrift can beovercome by periodic re-synchronizationater, in chapter 19, we

will considerinterrupts, a perfect way fahe outside world to provide a synchronization
signal.

Chapter 18: PASM, the F-PC assembler Pagel33

Chapter 18

PASM, the FPC assembler

When you need the ultimate in speed, assembly language is the only geayBatthink your
problem out well first, as it may be your factorisation of the proltlehisslowing you down.
Assembly language will only give you a modest improvemenbifr Forth wasefficiently
written. FPCprovides a powerful assembler fast those occasionshen wereally doneed
all the speed we can get.

Writing assembly language programs requires attentiomany little details, and it is to
protect the user from such (often tedious) détaithigh levellanguages were developed. It is
not appropriate for an idepth discussion of the satisfactions &udtrations ofworking with
low level code inthis book. This chapter istended to introduce theser tothe assembly
language environment provided FPC. It provides a good environmemor you to do
experiments using assembly language, because youfirsanverify the algorithm and
methodology in high levdtorth codeand gradually reducing thede to the assemblgvel if
you find youneedthe extraspeed. You will find numerous examples in B#C sourcewhere
the high level coddasbeen recoded in assemlty extraspeed, in addition to many of the
FPC kernel words which have to be in assembler.

One of the best ways to leag886assembly language is provide yourself with an introductory
book on8086assembly language and then M toexperiment. Armed witlall the code
words in FPC ascommentedexamples, andeven templates, you camry variations and
extensions and teitem to see if they work immediately. Remember gaadecompile any
existing colon wordsand, if youfirst load the fileDISASSEM, you can disassemble any
assembly codevords, although thewill appear in postfix notation. The sour@ecessible
with VIEW) is better though, as it provides comments.

To speed up youcode wherethis is absolutely necessary, factor ydugh level words
carefully so thawvords at the bottorfevel can beconveniently recoded in assemblyake the
kernel words as templatesgtartwith, andmodify them sahatthey will do exactiywhat you
wantthem todo. Fortherest of this chapter a badinowledge o80x8x assembly language
programming is assumed.

Prefix or postfix?

PASM supports dual syntaxes. The words PREFIX ROSTFIX switch between the two
supported modes. The postiode isthe traditionaimodefor Forth and preserveke normal
reverse polish entry dforth. Prefixmode, which is thelefaultmode, is thdraditionalmode
of almost all other assemblers and allows a symtaigh is much closer tfASM syntax as
used by Intel and Microsoft. Howevemlike other assemblerBASM allowsthe use of our
normal controlstructures (IF...THEN....ELSE, BEGIN....UNTIL faxample) within your
assembly code.

Pagel34 Real Time Forth

PASM accepts a sequential text file for source code,ghasuraging the programmer to write
programs in the verticatode style withone statement pefine. This style is what the
traditional assembler requireEPCworkswell in this style, if you choose to dm. However,
FPCdoes not prevent you from writing in the horizontal cetige, in which youwcansqueeze
many statements intane lineand make yowwn life miserable. You do not have $eparate
your assemblygode into sseparate file, aBASM assembly codean happily coexist with any
other type ofFPCsource. Thelefiningwords switch various compilers on and o8ome of
these turn PASM on when required.

The assembly of a machinesiruction is generally deferred unthe of the following three
eventsoccurs:when thenext assemblynnemonic isencountered, at the end of a line wren

the command@&END-CODE or A, is executed. Thereforeg@od style in writing codevords in

FPC is to pubneassembly instruction iane line, followed by th@arameter specifications or

the arguments. Multiple assembly instructi@re allowed in the same line, excefar the
assembly directives which build contsituctures in a@odeword, such as IF, ELSE, THEN,
BEGIN, WHILE, AGAIN, etc. These directives must be fivet or the only irstruction in a

line because thegctimmediately, not waitindor the next assembly instruction. It isgaod

idea toput thesestructure words in separaliaes with properindentation sdhat the nested
structures in a code definition can be perceived more readily. As an aside, the assembler works
by virtue of the power of CREATES DOES>. The assembly instructions are categorised and a
separatedefining word iscreated for each categorhe run-time behaviour of which is to
compilethattype of instruction. Thuswhen a mnemonic imterpreted it executdss run-time
behaviour which is to assemble itself.

PASM glossary

Here we will only give a sall list of PASM words in this glossary. The structaentrol
words behaveust asthe high level codeversions although thewre actuallydifferent
definitions and produce code suitable ifdine assembly codeThe assemblgtructurecontrol
definitionsare inthe assembler vocabulawhich is thefirst to besearched during assembly
code compilation. Thus they, not the identically named versirisgh level code definitions,
arefound and used. The availald&ructure control wordare IF, THEN, ELSEBEGIN,
UNTIL, AGAIN, REPEAT, DO,and NEXT. The availableonditionaltest words t@enerate
the conditional branches used by #teicture control wordare 0=, 0<>, 0>=, <, >=, <=, >,
U<, U>=, U<=, U>, OV (overflow). Each diese specify the condition in tB&x8x flag that
the conditionalstructureword that follows is to respondo. An example of using control
structureswithin assembly code is given below, many more examples will be found among the
source code, especially in the files kernell.seq, kernel2.seq, kernel3.seq and kernel4.seq.

The fragment of assembtpde below shows an example of ttee of control structure words.
0<> and IF together produce one assembly conditional jump, ELSE produces another.

OR AX, AX \ set flags based on value in AX
0<> \ value non zero?
IF
ADD AX, BX \ if then add BX to it
ELSE
MOV AX, CX \ else use value in CX
THEN
Only the most important FORTH words controlling the assembler are listed here.
PREFIX

Assert prefix mode for the following code definitions.

Chapter 18: PASM, the F-PC assembler

Pagel35

POSTFIX

Assert postfix mode for the following code definitions.

CODE <name>

Start anew code definition named "name". Assemhblyguage follows, terminated by END-

CODE.

END-CODE

Terminates CODE definitions, cheaksor conditions, and makes tiloede definition available
for searching and execution.

A

Completes the assembly of the previous instruction.

BYTE

Assemblecurrent and subsequetiide using bytarguments, if register size is not explicitly

specified.

WORD

Assemblecurrent and subsequertide using 1®it arguments, if register size is rextplicitly

specified.

LABEL

Start an assembly subroutine or mark the current code address to be referenced later.

Syntax comparison

The differences among tHePC prefix mode, theF83 postfix mode, and the Intel MASM
notationare best illustrated bghe following table. Although the table is not exhaustive, it
covers most of the cases useful in doing PASM programming.

PREFIX

AAA
ADC AX, SI

ADC DX, 0[SI]
ADC 2 [BX+SlI], DI
2[BX][SI],DI

ADC MEM BX
ADC AL, #5

AND AX, BX

AND CX, MEM
AND DL, # 3
CALL NAME
CALL FAR [NAME
CMP DX, BX
CMP 2 [BP], SI
DEC BP

DEC MEM

DEC 3[SI]

DIV CL

DIV MEM

IN PORT# WORD
IN PORT#

IN AX, DX

INC MEM

INC MEM WORD
INT 16

POSTFIX

AAA
SI AX ADC
0 [SI] DX ADC
DI 2 [BX+SI] ADC

BX MEM #) ADC
5 # AL ADC
BX AX AND
CX MEM #) AND
3 # DL AND
NAME #) CALL
FAR [] NAME #)
BX DX CMP
S| 2 [BP] CMP
BP DEC
MEM DEC
3[SI] DEC
CLDIV
MEM DIV
WORD PORT# IN
PORT# IN
DX AX IN
BYTE MEM INC
MEM #) INC
16 INT

MASM

AAA
ADC AX,SI
ADC DX,0[SI]
ADC

ADC MEM,BX
ADC AL,5
AND AX,BX
AND CX,MEM
AND DL,3
CALL NAME
CALL
CMP DX,BX
CMP [BP+2],SI
DEC BP
DEC MEM
DEC 3[SI]
DIV CL
DIV MEM
IN AX,PORT#
IN AL,PORT#
IN AX,DX
INC MEM BYTE
INC MEM WORD
INT 16

Pagel36

Real Time Forth

JA NAME

JNBE NAME
JMP NAME
JMP FAR [] NAME
JMP FAR $F000 $E98
LODSW

LODSB

LOOP NAME
MOV DX, NAME
MOV AX, BX
MOV AH, AL
MOV BP, 0 [BX]
MOV ES: BP, Sl
POP DX

POPF

PUSH SI

REP

RET

ROL AX, # 1
ROL AX, CL
SHL AX, #1
XCHG AX, BP
XOR CX, DX

Addressing modes

NAME JA
NAME #) INBE
NAME #) JMP
NAME [] FAR JMP

AX LODS
AL LODS
NAME #) LOOP
NAME #) DX MOV
BX AX MOV
AL AH MOV
0 [BX] BP MOV
ES: BP SI MOV
DX POP
POPF

BP AX XCHG
DX, CX XOR

JA NAME
JNBE NAME
JMP NAME
JMP [NAME]
JMP F000:E987
LODS WORD
LODS BYTE
LOOP NAME
MOV DX,[NAME]
MOV AX,BX
MOV AH,AL
MOV BP,0[BX]
MOVS WORD
POP DX

XOR CX,DX

The most difficult problem most people encounter in uSidgB8x assembler is tchoose the
correct addressingnodeandcode it into arinstruction. You can get @ood ideal of some of
the addressingnodesyntax from the above table. However, thare caseshe table falls

short.

Register Mode

For this reason théection summarizes the addressing symsaxe systematically to
show how FPC handles addresses in the prefix mode.

Source or destination is a register in the CPU. The possible source registers are:
AL BL CL DL AH BH CH DH AX BX CX DX BP SI DI IP RP CS DS SS ES

The possible destination register specifications are:
AL, BL, CL, DL, AH, BH, CH, DH, AX, BX, CX, DX, BP, SI, DI, IP, RP, CS, DS, SS, ES,

Note that the destination registewhich appears ashe first register in a prefixmnemonic,
must include the comma asart ofthe name. This is because the makks arerequired for a
source and destination regiségenot the sameven wherthe same register is involved.hus
two different constants AX and AXaredefined(for example) sahatthe correct mask can be

returned.

Immediate Mode

The argument is present as a literal in the instruction. iniireediate valuenust bepreceded
by the symbol #, which is a word and must be delimited by spaces. For example:

MOV AX, # 1234
ADD CL, # 32
ROL AX, # 3

Chapter 18: PASM, the F-PC assembler Pagel37

Direct Mode

The address needed is present in the instruction. The address is used to specify a location to be
jumped to or a memorpcation fordatareference. The address is used directly as a 16 bit
number. Depending on thestruction, the address may be assembfedodified or assembled
as an eighbit offset inthe branch instructions. To jump or dadlyond a64K byte segment,
the address must be preceded by FAR [] . Examples are:

CALL FAR [] <label>

JMP <dest>

MOV BX, <source>

INC <dest> WORD

JZ <label>
The destination address may be taken fromdtita stacldirectly if this ismore convenient.
For example:

MOV CX, # 16
HERE (save current code address on stack)

LOOPZ (loop back to HERE if condition fails)
Index Mode

One or two registersan be used andex registers tgcan througldata arrays.The contents
of the index register or the sum of the contents of two index registesslded to form a base
address, an offset mdded to thédase address to forthe true address for dataference.
Examples are:

CMP 2 [BP], SI \ compare contents of [BP]+2 with SI
DEC 3 [BX+SlI] \ decrement contents of
[BP]+[SI]+3
MOV BP, 2 [BX] \ copy contents of location [BX]+2 to
BP
The following register index specifications are allowed in FPC:
[SI] [IP] [BP] [RP] [DI] [BX]
[SI+BX] [IP+BX] [BP+DI] [RP+DI] [DI+BX] [BX+IP]
[SI+BP] [IP+BP] [BP+SI] [RP+IP] [DI+BP] [BX+SI]
[IP+RP] [BP+IP] [RP+DI] [DI+RP] [BX+DI]

There must be an offset number precedingrttiex register specificatioeyven ifthe offset is
0. When the indexegister is used as destination, a commsst be appendedmediately.
For example:

MOV 0 [BX+IP], AX
Implied Mode and Segment Override

The implied mode is wherenistakesare most likely tooccur because yowill have to be
keenlyaware ofwhich segmentegister is used by the instruction at any instance. Since the
segmentregister isimplied and not stated explicitly, the bugenerallycan oftenhide very
securely. The code works when you test it but fails when the segment register is modified.

Branch and jump instructions use the CS segment register.
Data movement instructions use the DS segment register.

Pagel38 Real Time Forth

Stack instructions use the SS segment.
String instructions use DS:Sl as source and ES:DI as destination.

If you need touse asegmentregister other than the defaithplied register to specify an
address, use aegment override struction (CS: DS: ES: SShefore the address
specification. For example:

MOV ES: BP, SI \ use ES segment, not DS segment

CMP CS: 2 [BP], AX \ use CS segment, not DS
segment

ADD AX, ES: 10 [BX+DI] \ use ES segment, not DS
segment

The 8086addressingnodesare non-trivial soeven an experiencgaogrammer needs good
80x8x assembly language manual to find the right addressmdeand theFPC assembler
syntax table to determine the correct argument list.

The best way to write assemldgde is to keep the codhort and simple. It is very easy in
FPC tobreak along CODE definition into many small fragments whieneinitially defined as
separate CODHefinitions. After verifyingthat each fragment works, you caudlit out the
CODE, NEXT, and END-CODE lines to combine the fragments irsiogie CODE definition
for the ultimate in speed.

FPC also provides arB086 disassembler with a single-step debugger. It is helpful to
disassemble the ODE word you definedand seavhat the computer thinks yguean it to do.
The 'Do what | meant to tell you to do, not what | actually told you teyawromeaffects all

of us now and then. Stepping through a piece of code one instructiimatia thelast resort

if everything else has failed.

Macros in PASM

Another area of interest is macros, here is the definition of the NEXT macro:
: NEXT >PRE JMP >NEXT A:; PRE> :

The macro itself is simply theequence]lMP >NEXT. The surrounding words aresed for
support. Since PASM supports both postfixaedl asprefix notation, it is noknown on entry
to a macro whainode isselected. The wordsPRE and PRE>select prefix, and restore the
previousmode somacroswill always be inprefix notation. The A; afteeNEXT, forces the
assembly of the JMP instruction before the mode switch.

You canfind many other examples of assembly macrd3AsM.SEQ Jlike 1IPUSH, 2PUSH,
and all the structure building directives.

Local labels

To support large code definitions, 'local labels' are available in FPC. The local lalpttcare
markers $: preceded by a number. Thsyused to mark locations in a largede definition
for forward and backward jumps and branches. They can be usedreglyein a range of
code words and reused to save head space by replacing LABiitilshave global names and
cannot be reused.

Up to 32 local labels can be used to mark addresses of assembly code. They can be referred to
before orafter theirplacements. They can beferencedacrosscode wordboundaries. The
commandCLEAR-LABELS defines theboundarywhere the local label referencing cannot

Chapter 18: PASM, the F-PC assembler Pagel39

cross. Between two consecutivELEAR-LABELS, local labels can bé&eely placed and
referenced.

This technique is especially useful where the one-entry-one-exit dogma iawkeward such
as when a piece of cotl@asmultiple entry points so it can be shasdong many code word
definitions. It allows us to construct structured spaghetti code (pardon?).

Inline code

INLINE allows us toinclude machine code inside a high level colon definitidhis is easily
done inFPCbecause it is built on direct threaded cotl¢hen a word is compiled into@lon
definition it is the codaddress that iadded to thdist of things to bedone. Thecodeaddress
always points t@enuine directly executab®0x8x machine code in the code segment. To
insertinline codelNLINE only has tocompile theaddress pointing to theurrent top of the
dictionary in the code segmenthe assembler cahen be invoked to compile machioede
starting at this address. tlie code is terminated BYEXT or one ofits derivativesthe next
word compiled in the colon definition will be executsterthe assembly code is donEND-
INLINE only has toclean up the assembly environmemid returnthe control back to the
colon compiler.

Here is an example on how trse INLINE and END-INLINE to add assembtpde in the
middle of a colon definition:

: TEST (--)
50
DO
I \ Get loop index to data stack
INLINE
pop ax \ pop |
add ax, # 23 \'add 23
1push \ push sum onto data stack
END-INLINE
. \ print results
LOOP

The topic of the intermixing of assemldgdeandhigh level code is ofireat importance in the
handling of interrupts and is discussed in much more detail in the next two chapters.

Pagel40 Real Time Forth

Chapter 19: Mixing Forth with assemblylanguage Pagel4l

Chapter 19

Mixing Forth with assembly language

There arewo times one may wish tarite small sections of a program in assembibile
using Forth fotherest. One is in very time-critical portions imhich evernthe small overhead
of theForthinner interpreters cannot be tolerated. The othehenwriting interruptservice
routines.

A processor that haseeninterrupted will alvays start its new task expectingit's 'native'
language (which in the case of B@x8xfamily is 80x8x assembly languageather than a list
of tasks to ddwhich is what constitutes much of the body afadon definition). Unless the
whole of theinterrupt service routine is to be written in assemblarethodmust beprovided
to allow a graceful re-invocation &orth from assemblerode. Interrupthandling itselfwill
be discussed in the next chapter.

The twocases, assembbode in aForth definition andhigh levelForth wordswithin a Forth
(assembly) code definition will be discussedhrs chapter. Thegeneral case dforth high

level words within an assembly sequence is postponed to the next chapter. The techniques used
in this (and the next) chapter can be adapted toimplementation ofForth. However, as

given here some words will only work wiiPCbecause they have teakeassumptions about

the internal detail of the implementation used. Appendix Wildelp to make thenature of

that dependence clear if you want to 'translate’ them to another implementation of Forth.

Assembly code in a Forth colon definition.

This is used fowvery time-critical portions of a definition, and is handled by the two words
INLINE and END-INLINE. These have alreattgen mentioned in thehapter on PASM.
There are dew rules to remember, the foremdsingthat the assembly codidnat you write
must not destroy any of the registers that FPC relies on.

These are:
SP which is the data stack pointer,
BP which is the return stack pointer,
and ES:SI which are the next instruction pointer.

Also CS,DS,SSnust be preserved. In practice this camagleeasier as the contents of both
CS and DS ar¢he same i-PC, and soonly onecopy must be saved. AXyhich is the
current word pointer, contains information that is only important within a colon definition when
it is executing. During hardware interrupts you may interrupt duringxkeution of a colon
word and so the contents of AX should be saved, ifaremot using hardware interrupts you
neednot save AX. The direction flag DF is assumedARC to be irthe zero or increment
state, ifyou change this bgsure to return it beforexiting your assembly codeBX, CX, DX

and DI can be used fanything you wish without a second thought, if you needany of the
other registers, the contents must be saved before ydabeamsand restored with their original
contents by the end of your assembly code.

Pagel42 Real Time Forth

The assemblgode sectiomustend with eithe™NEXT or one ofit's derivatives (1PUSH or
2PUSH). NEXT is aword that will ensure asuccessful re-entry to the colon definition of
which the assembly code fragment ipart. 1PUSH saves AX anthen performaNEXT.
2PUSH saves DX anthen AX, andthen jumps tdNEXT. If your assembly portion must
returnmorethan two values, or if these valuae not in AX andDX, you musttransfer the
values to thestack with explicit PUSH instructions and just u$¢EXT. The NEXT (or
derivative) word must béollowed by END-INLINE, which compiles no codbut changes
from the assembler compiler to the colon compiler.

The formal definitions of inline and end-inline are:

- INLINE [COMPILE] [SETASSEM HERE X, ;
: END-INLINE [ASSEMBLER] END-CODE] ;

For those interested, this isow the twowords work. INLINE starts bycompiling the
instruction to turn offthe colon compilef]). As [is animmediate word it would normally
executed immediately Wasencountered. Since we wish to compile fua later it has to be
preceded by[COMPILE] to override this normal behaviour.SETASSEM sets up the
assembler environment to allow tle®nstruction of acode word. The normal Forth
environment will berestored aftethe code word is completeddERE returnghe address of
the first available space ithe code segment where the code word wilbbigt and X, stores
this in the next free space in the list directory. As a resultdlos innerinterpreter which is
sequentially turning control over to the routindsoseaddresses are in list spawegl], when it
comes to theaddress we just saved, turontrol over to thestart ofthe code we compiled into
codespace.All that wehave to do is to ensutkat atthe end obur code wereturn control to
the colon inner interpreter sodan go on processing the list of addresses ispiate. This is
the reasorwhy we must terminateur code word withNEXT (or aderivative ofit). END-
INLINE, which is in the assembler vocabulary so it can be found eslséy compiling ecode
word, first stops anyompilation by going to thénterpretmode. It then ensurdbat the
assembler vocabulary is on the top of the search order (yooheage search orders in an
code definition if youwant to), andthenreturns tocompiling. END-CODE terminates the
compilation of a code definition and then] restarts the colon compiler to continue compiling the
rest of the word.

An example using INLINE and END-INLINE

Here is a (very) simple example of howugeinline and END-INLINE to add assembgode
into a colon definition. There would be poactical reason to go to assemiolyde in the
middle of aloop that | canthink of, speed not being ajreat importanc&henprinting, but it
makes a suitable example.

: EMBEDDED-CODE-EXAMPLE (--)

50DO \ set up a loop to go round five times
I \ get the current index to the

stack

INLINE \ declare that inline assembly
code follows

POP AX \ get the index from the stack to
AX

ADD AX, # 48 \ add 48 to get the ASCII
equivalent

1PUSH \ return this value to the stack,
all assembly

\ code MUST end with NEXT or 1PUSH or

2PUSH

END-INLINE \ mark the end of the inline assembly
code

EMIT \ print the ASCII character we just

Chapter 19: Mixing Forth with assemblylanguage Pagel43

calculated
BL EMIT \ and a blank to keep it pretty
LOOP \ loop around until all five are
printed

Forth code in an assembly definition.

At first sight it does noseem veryseful to be able to write a Fortlode definitionthat has a
block of high level code iit. If speed isuper critical itshould all be in assembler, if speed is
not critical it should all be in Forth. It is, however, usefben handlingnterrupts(which will

be described in the next chapter) and with the prothiseit isrelevant it will be considered
here as a stepping stone on the way to understanding the full solution.

It is important to not@ne verysignificant simplification, thisigh levelForth code is inside a
Forth assembly code definition. Thigeanghat,although the processor is executing assembly
code as it comes up to the high level codegat to the assembly code from tR@rth
environment. Inparticular, the important registers listed at tls¢éart of this chapter are
guarantied to contain 'Forth suitable' values. Wusld not betrue if the processor had got
into this assemblgode from theDOS environmentfor example when theseegistersmight
contain anything at all.

One caution: you cannot Iserre thathe contents of the registers at #vel of theembedded

high levelwords will be the same as the contents atsthet ofthe high levelwords. Forth

uses many registers (BX,CX,DX,DI) as scratch registers. Just as FPC will not mind if you use
them in assembly code, it too will feel freeusethem whenever thenood takes it without
preserving the previous contents. If yaed to beble to rely on the contents of anytloése
registers, you must preserve a copy ondiaekbefore you go into the high levelords and
restore them on the way out.

The high levelwords are bracketedith >H and H>. These wordstween thenconstruct a
moderately complex structure with the assembly code definitions in the code s@apnesual)

and the action addresses of thigh level Forth words inthe list segment(as usual). They
install calls to two special words HDOES aiBET. HDOES irthe code segment is reached
by a normal assembly call, the action addreddRET IS WRITTENInto the list section as
needed bythe colon inneiinterpreter. HDOES anH#iRET handle thetransfer to androm
assembly code inside the colon definition, assuming that the structure shown above is set up.

A simple, indeed trivial, example of the use of high level words within a code word is:

CODE TEST
PUSH AX \ Save AX, it may be important
MOV AX, # 104 \ load ASCII 'i' to AX
PUSH AX \ stick it on the stack
MOV AX, # 105 \load ASCII 'h' to AX
PUSH AX \ stick it on the stack
>H \ go to high level (colon) words
emit emit \ this line is all the high level
H> \ you MUST come back with "H>"
POP AX \ restore original AX
NEXT \ must end with NEXT or a derivative
END-CODE

The structure built to handle test above is:

Pagel44

Real Time Forth

In code space:
First
followed by
followed by
followed by

In list space:
first
followed by
followed by

the assembly code for first five instructions
a call to hdoes

the list segment offset to the first 'emit'

the rest of the assembly instructions

the address of emit
the address of emit again
the address of hret

>H, H>, HDOES and HRET in detall

The definitions of>H, H>, HDOESandHRET are adollows. The definitionsare inthefile
CODEHIGH.SEQ. Theode is not normallpart of FPCunless youput it there by loading

this file.

only forth
Forth

also assembler

root.

definitions also

LABEL HDOES

we

start running.
pop ax

xchg rp, sp
we

push ax

xchg rp, sp
sub ax, # 3
the address

ax, get
paragraphs

segment.
jmp >nest
first word

processes
END-CODE

CODE HRET
xchg rp, sp
pop 1p

pop es

pop ax

xchg rp, sp
add ax, # 2
byte

jmp ax

END-CODE

\ clear context stack to root and
\ search assembler, then forth, then

\ Add definitions to assembler

\ LABEL not CODE as when we call HDOES

\ want it to return its address, not

\ copy top address from the data
\ stack to the return stack as

\ will need to get back after we have
\ done the high level words
\ nest expects three less than
\ currently in ax. It will add 3 to
\ the number there and add it in
\ to the start address of the list
\ Now we have the adr of the

\ to do, the colon interpreter

\ each high level Forth word as usual.

\ reclaim the three
\ registers the colon
\ interpreter has
\ putonthe
\ return stack
\ add two so we skip over the 2

\ offset of the first word in the
\ list segment and return to the
\ rest of the assembly instructions

The two words >H and H:are responsible for constructintipe structureabove ready for

HDOES andHRET to use.

>Hbbtains the current address of g of thdist segment, and

Chapter 19: Mixing Forth with assemblylanguage Pagel45

installs a call to hdoes in code space followed by the offset address in paragraphs $tam the

of the list space to the current end of list space which is where the addrestrsif tirgh level

word will go. It thenstartsthe normal colon compiler to build thist of high level word
addresses. When the colon compiler reaches H> it executes it ratheortilingits address

as it is an immediate word. As H> executes it installs the address of hret in list space and turns
off the colon compiler sthatthe assembler continues with trest ofthe definition incode

space. The definitions of >H and H> follow.

:>H (---)
xhere \ adjust the end address of list space
to
paragraph + \ a whole number of paragraphs.
dup \ Save this in xdpseg, keeping a copy
on the
xdpseg ! \ stack, and zero xdp (the
current
xdp off \ length of this list)
also forth \ we need forth, so add it to the
context
\ stackin case it is not there
already
>pre \ activate the assembler in prefix mode
call hdoes \ assemble the call to hdoes
a; \ then turn off the assembler
xseg @ -, \ calculate and store the offset
from the
\ start of the list segment to the
address..
\ ..where the first high level word
will go
pre> \ set assembler mode back to previous
mode
\ start colon compiler to place
addresses..
\ ..of the high level words into list
space

Note that H> which follows is immediate, sohat it will run when encountered during
compilation.

s H> (--)
previous \ remove Forth, >H put it on the
context stack
compile hret \ add address of hret onto list in list
space
\ so it will be the last high level
word done
[compile] [\ and turn off the colon compiler, we
have no
\ more high level words to add to the
list

; IMMEDIATE

Pagel46 Real Time Forth

Chapter 20Interrupts and Forth Pagel47

Chapter 20

Interrupts and Forth

Either hardware or software timetsat areunder control of a program can be used to
synchronise events when the time at which the ewvenist occur isdetermined bythat
program. The programvill be able to carry onwvith its maintask, safe irthe knowledgethat
the timer will tell itwhen the timéhascome to do dime-criticaltask. Of courséhe program
mustknow when eventare to bescheduled taccur, otherwise it will not beable to set the
timer. Timers were described in chapter 17.

It is an altogether different problewhen theoutside world sets the timing, especiailigen the

timing is variable and inconsistent. The progfzes no way oknowing something is going to
happen before thenoment at whictoccurs. Of course, it is possible ftre processor to
periodically stop doing its main task and look to see if somethingapeneqgust in case, but

the chance of missing an event is very high unless an enoprmuxtion of the processing

time is spent looking at very frequent intervals. A better way to respond to random events is to
use special hardware to inform the processioen an evenhas occurred. linforms' the
processor with a special signal, called an interrupt, which is an electrical signal applied to a pin
on the processor amhich triggers off the interrupt responsgchanism inside therocessor.

The processawill (normally) immediatelysuspend théask it isdoing, establish exacthyhich

of the possible sourcgsst interrupted and takehatever actiomasbeen deemedppropriate

to handle interrupts frorthat source. Afteperforming this action, the processall return to

carry onwith thetask it wasdoing before thenterrupt occurred. Bynaking the processor
subservient to special interrupt hardware, the programmer can write a pitbgtagivesit's

full attention to the main task. The programs to handle each of the passhlepts arejuite
separatgieces of code with theeansfer of activity fronthe main program tthemand back

again handled automaticallyvhen aninterrupt occurs. However, before the hardware can
handle it automatically, it must be set up.

The response mechanishuilt into the actual processor igenerally very similar in all
processors. Firghe processor finishes tleirrent instruction it is on anthen saves the
information that will be needed laterrmesume as if nothing had happened. Then the processor
jumps to a pre-established address stagtsexecuting the instructions there. The (usually)
short program thathe processor executes in response to an interrupt is called the interrupt
service routingor ISR for short). There adten a number of them, eastarting atdifferent
addresses. Thesstart addresses arknown as thenterrupt vectors. Usually there is one
interrupt service routine (ISR) for each possible interrupt source, although it is possible for two
or more interruptingources to trigger off the same routine to service all of them. There must
be a special instruction at trend of each ISR that causeshe processor to rescue the
information it saved before going to tH#&R and use this to return to what it wédging when it

was interrupted and carry on as if nothing had happened.

Preparing a processor teceiveinterruptsinvolvesfirst puttingthe interrupt service routine(s)

in place in memory, and then arranging for each interrupt to cause the processor to find it's way
to the correctSR. How this is to belone depends on timeocessor, irsome simple systems

the startaddresses of the interrupt service routifeesall the possible interruptare specified

Pagel48 Real Time Forth

by the manufacturer and cannot be altered. In this caleaglisrequired is tgput the ISRs

into memorystarting atthe pre-specified addresses. Mooenmonly atable ofstartaddresses

of thelSRs iskept in memory.This allows thdSRs to beanywhere in memory, of arlgngth

and, most importantly to be quickly changed by just changing the appropriate entry in the table.
In this later casepne physical interrupt service routine can be used to semimethan one
interrupt source, if the response is to be the same to each of the sources.

Fromnow on we will limitthis discussion to th80x8x processofamily on whichFPC runs.

In this family a table o256 addresses is kept, each entry consisting of a four byte address in
segment:offset form. Possibieterrupt sources arsumbered from 0 t@55, and identify
themselves byhat numberwhen theyinterrupt. Wheninterrupt source zero interrupts, the
processor reads the zeroth entry in the tajges tothat address aneixecutes théSR there.

The response to an interrupt from source nuroberis the samexceptthat it isthefirst entry

that is read, and so on. The table of ISR start addresses is called the interrupt vector table.

There aretimes when arinterrupt would be anacute embarrassment, such wlsen the
processor is placing (ochanging) the entries in thiaterrupt vector table, owhen the
processor is running piece of codeahat is sotime critical thateventhe briefest interruption
cannot be tolerated. To alldfer these situations, two special instructions contrioétiver the
processomwill respond tointerrupts. Themachine level istruction set interrupt flagSTI)
allows it to respond, the instruction clear interrupt flag (Gitdps it fromresponding. There
are alsanon-maskable interrupts (NMBut, asthesearenot often used in end-user programs,
from now onwhen wesay interrupt wemean a normal maskabieterrupt. The processor
automatically disables further interrupts agoes to do anSR and re-enablethem as the
final instruction of thdSR, the special instructiofRET, isexecuted. If it is the intenticimat
a particular ISRmay be itself interrupted if a more important (urgentgrrupt occurs, the
programmer must re-enable interrupts witBH assoon as it is safor another interrupt to
be recognised.

Interrupts can be triggered ®ither external hardware, as described above, or by software
command. The assembly language instrudtioh O will cause interrupt zero to be run just as

if a hardware interrupt signal hdeen received fronmterrupt source zero and similarly for all
other interrupts. This is very useful for testing purposes.

It is most important to realise that once an interrupt occurs and is responded to, the processor is
running normal machine code, natter what it wasunningwhen theinterrupt occurred. So,

1 The most usual type of interrupts which carsiétched on ooff at will are calledmaskable
interrupts. There aralso non-maskable interrupts (NMI) which cannot be turofédnside the
processor. These are normallyeserved for responding to emergency situations, sughowasr
failing, the consequences of whialiould be so cataclysmithat responding to them must lmeore
importantthan anythingelsethe processor could be possibly be doinghe response mechanism is
almost identical to thevay the processor responds to maskabigerrupts, and thevords we will
develop in this chapter will work with either maskable or non-maskable interrupts. The address of the
non-maskable interrupt service routine is entry number 2 in the interrupt vector table.

For IBM PC family users, non-maskalitgerruptscan be turnedff by hardwareexternal to the
processor. Indeed, theyare turnedoff at power up (butturned back on bythe BIOS almost
immediately afterwards). They may tiened on by a program writing 80 hex to 1/0 port A0 hex or
turnedoff by writing O to the same port. Thisseshardware provided othe PC motherboard to
control a gate which allows or prevethe actual electrical NMI signal reaching the chipddés not
exercise contralithin theprocess as CLAndSTI do for maskablenterrupts. If the electrical signal
for a non-maskable interrupt reaches phecessor, no power aarthwill prevent theprocessor from
responding to it.

Chapter 20Interrupts and Forth Pagel49

if we were running Forth, Forth no londsais control after an interrup©Our ISRmust at least
startout written in assembly code. With the inbuilt assembler described in cidptand a
few conveniencevordsthat wewill develop shortly, interruptdbecome simple tase in the
Forth environment. The speci#R compilerthat allows ISRs to bewritten in Forthmakes
them even simpler to handle without the programmer having to descassetobler. The ISR
compiler will be described later in this chapter.

Forth and ISRs written entirely in assembler.

The main thing to remembe&rhenwriting ISRs inassembler code that, afterthe ISR has
executed, we wish teeturn to let Fortlcarry on as ihothing had happened. 8den we go
back no register shouldave been altereand the machinstack,used as thelata stack by
FPC, must be left by the ISR just as it foundBefore any register of importanceforth can

be used in théSR, acopy must be saved by pushitiat registeionto thestack. Then, after

the ISR has done its work, the registers that have been altered must be returned to their original
state bypopping the original contents back from 8tack. Don'forget to restoré¢hem in the
reverse order to that in which you saved them, the last one pushed must bedhe figgped,

or else you will end up witlall the right numberdut in the wrong registers.Somewhere
within the ISR you must set the interrupt flagSTI) so that further interrupts can be
recognised. Where you do tlispends on whether or rtbis ISR may itself be interrupted by
another interrupt arriving ke it is still being done. No other maskabl@errupt will be
recognised until the STl instructidis processed. The STI goes as soon as it would be safe for
another interrupt to be processed. If i8R should never beterrupted, theSTI goes at the

end of the ISR just before RETI. If it is necessary you can use STl and CLI alterngtaly in
ISR todefineareaswhereinterrupts are acceptable and othehere theyare not. Finally, an
IRET instruction must finish théSR. Registeravhose contentsust be preserved during an
ISR for 'safe’ re-entry to Forth, and their use, are:

The data stack pointer SP

The return stack pointer BP

The next instruction pointer ES:SI

The current word pointer AX

The scratch pad registers BX, CX, DX, DI
The segment registers CS, DS, SS.

The direction flag DF

To handle a source afterrupts,one would have térst write the interrupt service routine and
then install it by putting the address of tHf&R inthe correct place in the interrupt vector table

in the memory regiorirom 0:0 to0:3FFH. Before you write the address of yooew ISR,
however, you should note tloeirrent service installetbr that interrupt (apparentlynused’
interrupts mayhave atrap service installed). The address currently there should be saved so

2 Special hardware external to tipeocessor, called amterrupt priority controller;, may
further control what interrupts occur. Interrupt® assigned prioritiegnd an interruptay only
interrupt the ISR of an interrupt of lower priority than itself. For example, if an ISR iottamupt of
priority 3 is currently being executed, anerrupt of priority 4 will beallowed tointerruptprovided
the processoimterrupt enable flag iset (STlhasbeen executed). However, nmatter what the state
of the interrupt enable flag is, an interrupt of priority 1 will noallewed tointerrupt thelSR of the
priority 3 interrupt. The external priority controllevould recognisehat the source seeking to
interrupt is oflower priority than theone whosenterrupt is currently beingerviced. It will refuse to
pass the interrupt request on to the processor until the higher priority ISR has been finished.

Pagel50 Real Time Forth

that the original service can be restored later. Of course, i@gaure/ou will neverwant to
restore the original service, you can write owerTo assiswhenusing interrupts wittFPC,

three convenience words will be defined in a moment. ?INTERRUPT will return the address of
the current interrupt service routine, INSTALL-INTERRUPT will writgigenaddress into a
specified position in the vector table dBREMOVE-INTERRUPTwiIll install the address of a
‘do-nothingbut returnroutine. You mushever get into theituationwhere aninterruptvector

'points to' (is the address of) #R that ndonger physically exists imemory. Disaster is
assured if you do and this interrupt occurs.

The syntax to construct an all assembly language interrupt service routine is as follows:
LABEL <int-name> <machine code sequence> IRET

The defining word LABEL was introduced in chapter 17stétrtsthe assemblgust as CODE
does. However, whereg3ODE would give the run-timéehaviourthat the machinecode
sequenceafter <int-name> would be executed, LABEL gives the run-time behaviwtrthe
address of thérst of the machine codmstructions is returned and the instructitmsmselves
arenot run by issuing <int-name>. This ixca@anvenience since #aves having to obtain this
address with the ' (tigperator. Once defined th&SR can benstalled in the table as the entry
for interrupt n by:

<int-name> n INSTALL-INTERRUPT

An interrupt service can removed by the wor@EMOVE-INTERRUPT,which expects an
interrupt number as input, and replaces the existing interrupt vectonéoyo asafe 'do-
nothing' routine that is always available.

WARNING: After you exit fromForth, or ifyou use the worFORGET to érget back to or
before your interrupt service routine, the interrupt service rowilheno longer be protected
and thememory it occupies will beavailable for use. When the memory image gfour
interrupt service routine gets overwritten, it NONGER EXISTS. Ifthe source yowvere
servicing generates anothaterrupt, and younave not (re)installed the address of an existing
ISR, THE SYSTEM WILL CRASH ashe processowill try to execute whatevenastaken

the place of the service routine. You mignoveall the interrupt vectors you installed and
replacethem before quittingrorth. This isbeing mentioned repeatedlytimis chapter as it is a
very common mistake. | bet you still do it at least once thdugh!

?INTERRUPT is the convenience wargkntionecearlier thaffinds the address of the interrupt
service routine currently installed as the specified entry imnteerupt vector table. It uses a
service provided bypOS to obtain thisnformation. This service is obtained byaking a
software request for interrupt number Béx (which signalghat werequire a service from
DOS) and then requesting service 35 hex.

hex
CODE ?INTERRUPT (int# -- seg offset)
pop ax \ get interrupt number
push es push bx \ preserve these registers
mov ah, # 35 \ load DOS service number to AX
int 21 \ call DOS to do the work.
mov dx, es \ segment returned in ES
mov ax, bx \ offset returned in BX
pop bx pop es \ restore registers we preserved
2push \ put answer on the stack
END-CODE

DOS has apecial service to install an interrupt service routine adfivesss. Ittakes care of
controlling theinterrupt disable flag sthat wecannot be interruptedhile weare altering the

3 | positively refuse to tell you how many times | have done it!!

Chapter 20Interrupts and Forth Pagel51

table. Again DOS isinvoked byusing software to trigger interrupt number 21 hex, tihg

the number of the service we are after is 25 BEXS expects the interrupt number to be in the
AL register, thesegmenpart ofthe address to be in the DS register and the gftsettof the
address in the DX register. Ndteat aswritten here, INSTALL-INTERRUPT expectnly

the address of &orth word asknown toFPC onthe stack(the address asnown toFPC is
actually the offset from the start of the code segment to the first byte of executable code for this
Forth word). DOS, however, requires an absolute address consisting of deggiment and
offset. INSTALL-INTERRUPT obtainghe segment informatiofor itself from the code
segmentregister. INSTALL-INTERRUPTcould not be used as it stands to re-install the
address of a previously installedbR obtained using?INTERRUPT. RE-INSTALL-
INTERRUPT, which follows INSTALL-INTERRUPT, can beused for thistask. The two
words differ only in where they obtain the segment address information from.

hex
CODE INSTALL-INTERRUPT (addr int# --)
POP AX \ get interrupt number to AX
POP DX \ and ISR offset address to DX
PUSH DS \ preserve DS for later
restoration
MOV AH, # 25 \ we require DOS service 25 hex
PUSH CS \ ISR segment address is in CS
POP DS \ so copy it via stack to DS
INT 21 \ let DOS do the work
POP DS \ restore original DS
NEXT \ no values to return, just use NEXT
END-CODE
hex
CODE RE-INSTALL-INTERRUPT (seg offset int# --)
pop ax \ get interrupt number to AX
pop dx \ and ISR offset address to DX
push ds \ preserve DS for later
restoration
pop ds \ and pop ISR segment address to DS
mov ah, # 25 \ we require DOS service 25 hex
int 21 \ let DOS do the work
pop ds \ restore original DS
next \ no values to return, so just use NEXT
END-CODE

If, for somereason, you do not wistor arenot able) to us®OS, interruptservice routine
addresses may be installed aechoved by writing directly into thiaterrupt vector table. One
must write the code address and the code segment into the interrupt vectamiablstarts at
segment O, offset 0. As each vector consists of four ygesntryfor interrupt nwill start at
location 0:4*n. [In this address representation the number beforeolkhie is thesegment
address in paragraphs and the number after the offest within the segment. As a paragraph is 16
bytes, the absolute address is found from 16 *stgmentddress + the offset address. This
provides morghanone segmerffset combinatiorthatwill give any specifiedactual address.
Use can be made tfis quaint addressirgchemgand is inFPC toallow simple manipulation
of list spacgsee appendix onedut mostly it just causesonfusion with the uninitiated.] It is
our responsibility talisabled interruptsvhile modifying thevector table so as to ensure that
disastemwill not happen ifthis interrupt occurs during the very brief period dunvigch we
are alteringhe entry in the table. We must also re-enable interlafgis Apartfrom DS we
are only able to use registers whose contents are not required by FPC between words.

CODE PLACE-INTERRUPT-VECTOR (code-offset int# --)

cli \ disable interrupts
pop bx \ get interrupt vector number
add bx, bx \ double and re-double to get the
add bx, bx \ offset to this entry in the
table

mov cx, ds \ save data segment

Pagel52 Real Time Forth

Xor ax, ax \ clear AX

mov ds, ax \ point ds to segment O

pop 0O [bx] \ copy code offset to DS:BX

mov 2 [bx], cs \ copy code segment to DS:BX+2

mov ds, cx \ restore data segment

sti \ enable interrupts

next \ no values to return, so just use NEXT
END-CODE

An interrupt service address can'tmmoved' by overwritingts address ithe table with the
address of a 'do nothing, just retwsatvice routine located &000:FF53 irthe genuindBIOS.
Again interrupts must be disablechue thetable is changed. However, be careful as not all
clones have 'a do nothing' routine at this address - if there is any doubt that thethdtlyess
areoverwriting isFO00:FF53 damot use REMOVE-INTERRUPBut save theactual address
with 2INTERRUPT and restore it later with RE-INSTALL-INTERRUPT

HEX
CODE REMOVE-INTERRUPT (int# --)
cli \ disable interrupts
pop bx \ get interrupt number
add bx, bx \ double and re-double to get
the..
add bx, bx \ offset to this entry in the
table
mov cx, ds \ save data segment
Xor ax, ax \ clear AX
mov ds, ax \ point ds to page O
mov ax, # ff53 \ noop routine offset
mov 0 [bx], ax \ put in place at DS:BX
mov ax, # f000 \ noop routine segment
mov 2 [bx], ax \ put in place at DS:BX+2
mov ds, cx \ restore data segment
sti \ re-enable interrupts
NEXT
END-CODE

It is sometimes convenient tarn interrupts off and odirectly with high levelForth words.
Here are two trivial Forth words to do just th&8on'ttry them from thekeyboard, as the IBM
PC uses interrupts internally frequently. If yiamn interrupts ofthere is no way téurn them
on as the keyboard you would enter that int-on command from cannot be used &mytipng
unless interrupts are enabled. The main use of these words will become apparent later.

code INT-ON STI NEXT END-CODE
code INT-OFF CLI NEXT END-CODE

An interrupt driven counter.

A timer was introduced in chapter 1which was based on a counténat incremented
approximately 18 times a secondThis counter was based on a coumteintained by the
BIOS and read by a call tbOS. In this example wproduce ourown interrupt driven

counter, which will be incremented at the same rate as the BIOS counter.

External hardware interrupts the processor inBh-PC family at aregular rate. Asvell as
producing interrupts used by the BIOS in @&, this hardware signal triggers interrupt 1CH
which normally is serviced by the 'do nothing' ISR. We may re-vector this interropt tavn
ISR thatincrements a 3Bit counter. The interrupt occurs 8.2 Hzand so our countewill

4 Much of thecodethat | write ends uprunning onmany different machines. Aftesome bad
experiences | never use REMOVE-INTERRUPT any more,abuéys use ?INTERRUP&nd RE-
INSTALL-INTERRUPT. | strongly recommend that you do the same.

Chapter 20Interrupts and Forth Pagel53

be incremente@pproximatelyonce every 55 milliseconds. As well as being Usediming,
the value in the counter can be used as a (not very) random number generator.

We will provide two functionally equivalenSRs inthis chapter, firstlyone inassemblycode
only and secondlpne where théSR iswritten in highlevel Forth. This isthe assemblgode
only version.

2variable ticks

label ticking \ start an interrupt service
routine

push ds \ current DS must be saved
because

\ INC needs it for address generation

push cs \ make DS the same as CS to
access

pop ds \ TICKS defined as a variable

inc ticks 2+ word \ increment lower 16 bits of
TICKS

0o=if

inc ticks \ increment upper half if

overflow

then

pop ds \ restore DS

iret \ all done
end-code

To test TICKING, it must beompiledand then thestartaddress of TICKING written as the
twenty-eighth entry in interrupt vector table (1C hex = 28 decimal).

hex

1c ?interrupt \ get old address and keep it on
the stack

ticking 1c install-interrupt \ put our new address in
place

A couple of other minor wordsre needed, one to initialisgero) the value in the counter and
the other to read and display the current value in the counter. These are simply defined as:

- init-ticks (--) \ initialise the counter to zero
0 0 ticks 2!

: ticks? () \ read and display the counter
ticks 2@ ud.

Now the whole counter can be tested. First zero it by typing INIT-TICKS. Then type TICKS?
a few timesand seghatthe value in the counter is changing. Go andReséh for something

else, such aediting a file. Despite 1@terrupts occurring at no douisiconvenient times, all
continues as it should sinGdCKING preserves all registers it alters. In short TICKING
meets the requirements of a gd&dR. It is short, fasand it leaves ntrace of itseltbehind on

any stackwvhen ithasfinished running. Nowemove thesector to our interrupservice routine

and replace it with original vector by typing:

re-install-interrupt

This lastline assumes that whgou were doing did not leave tlseack in an alteredondition.

If there is a chance dhat, keep the oldaddress in a double variable and reload it from there.
Here isthat cautioragain! Interrupt 1C ‘fires' 1fimes or so every second. Saritist always

be vectored to a physically existil§R. Don't leaveFPCand load another program without
performing the remove-interrupt above, or else the systencraih aghe memory image of
the ISR code of ticking get overwritten.

Pagel54 Real Time Forth

Writing ISRs in Forth rather than assembler.

As discussed before, interrupts can ibeoked by either asoftware command or by an
electrical signal generated by external hardware and applied to the processor. If a software
commandcauses an interrupt,hile Forth is runningour programthe environmenthat the
processor is in at thieme of theinterrupt isknown. It will be inForth, because it is our Forth
programwhich initiates theinterrupt. Asthe processor maseceive theinterrupt part way
through a Forth word, we cannot be absolutely sinieh, if any, of thescratch registerssed

by FPCcontain significant informatiothat will be needed whethe interrupt service routine
hasbeen finished. So before doing anything elseinterruptservice routine should play safe

and save the initial contents of all the registheg it will use andvhich are aeither 'normal’
register that Forth always uses or a scratch register that Forth could be using.

A hardware initiated interrupt may occur at any tireegn wherfForth is temporarily not in

control. Forth seeks a service fr@®S from time to timewhen it needs tase the screen, the
keyboard or the disks. To handiardware interrupts successfully Wwave to preserve all the

same registers as ftre software initiated cagasmost of the timd-orth will be in control)

and any registers over and above these that DOS might use (just in case). The net result of this
is that to beguite sure wdnave to save all registers at start of ourinterrupt service routine

and restore them all just before we return from processing our interrupt.

If we wish to write the body obur interruptservice routine inForth we canmake no
assumptions abouthe contents of any registgDOS could well have changedhen
temporarily) and must reload all the ones absolutely required by Forthdbtitescratchones

as we will always be going to the start of a Forth word). fri@anghat we mushave a copy

of what Forthwould like in theregisterssomewhereand must load up all the registers dear to
Forthwith suitable value$or a controlled re-entry to process therth ISR. So ouskeleton
interrupt service routine looks like:

assembly code to save all registers

assembly code to load Forth's registers as it needs them
>H to switch to high level code

high level code to do what has to be done

H> to return to assembly code

assembly code to reload the registers we originally saved

assembly code instruction to return from interrupt (IRET)

This seems quite a mouthfudut fortunately the saving and >H section and the restoring and
H> sectionare alwayshe same. We can writeem as twawvords (calling thebit before the
high level coddSRENTRY andthe bit after ISREXIT). Thiswill reduceour interruptservice
routine skeleton to:

label <INTERRUPT-SERVICE-NAME>

call isrentry

<high level code goes here>

call isrexit
end-code

A bit more thought suggestsfarther refinement. We could have a definingrd, say INT:,
that starts an ISBefinition. This has to buildhe listthat isthe user suppliedhigh level code

just aswould be done in a colon definitionThe definition termination wordsay INT;,
appends théigh level (colon) version dérexit automatically as thiastitem on thelist. The

Chapter 20Interrupts and Forth Pagel55

run-time behaviouthat ISR:gives to thdSR it is building is to do exactly whdERENTRY
does and then to process tis¢ just as if itwere a normal colon definitioh.Our ISRskeleton
iS now:

ISR: <name> high-level-Forth-words ISR;

This is conceptually neater and encourages the programmer to concentrate tmewhae
trying to do rather than the details of how it is being done.

The definitions oiSRENTRY, ISREXIT, ISRandISR; are afollows. It is not necessary to
understandhem inorder to use interruptfut, given the memorymap detail ofFPC in
Appendix One, thewrenot hard and worthy of studyi-or onething, theycan act asnodels
for other speciatompilingwords. Also it is easier to use a teall whenyou understand it
thanwhenyou just use it by rote.However, feel free takip forward to the examplaelow if
you just wish to see how taise theséiigh level ISR defining words at this time. You can
always return to this bit later when your curiosity gets too strong.

When the interrupt occurs we do not know where the stacks pointers usedippint, nor do
we know how much roorexists on thesstacksbefore we write over somethimgportant. If
we were to be iDOS when theinterrupt occurred there may be very litttom indead. The
only safe thing to do is to set uppair of new stacks(onefor data,onefor return addresses)
exclusivelyfor the use of thignterrupt. We canndtave only ongair of stacks available, as
this interrupt may itself be interrupted. Weed as manyairs of stacksavailable as the
maximum depth to which we will allownterrupts to be nested. In shorstack of pairs of
stacksthe depth of which determines the maximumerruptnesting depth. In the description
following this is set arbritrarily at 5. Oentry to the SR avariable STACK-BASE is read to
get the initial value of the data stack pointer and then this is incremented by STACK-SIZE so it
points to the nexstack to usehould this interrupt be interrupted. Tiwturn stack pointer is
initialized to thedata stackpointer minusRSTACK-OFFSET. Athe time of exit from the
ISR the value of STACK-BASE idecremented b TACK-SIZE. Inthe interests of speed, no
check is made to sekatyou do notrun out of ISR stacks (that veinterruptsnested too
deep).
hex
\ define # stacks = nesting depth of ISRs
5 constant STACK-NUMBER
\ create a place to keep the top of the current stack
variable STACK-BASE
\ define the size of a data/return stack pair
100 constant STACK-SIZE
\ define depth of data stack (offset to return stack)
A0 constant RSTACK-OFFSET
\ create a pointer to the bottom of stack of stacks
create ISR-STACKS
\ allocate the # of bytes the stacks will take
stack-size stack-number * allot
\ calculate top of first data stack
isr-stacks stack-size +

\ and initialize base pointer
stack-base !

When we get tdSRENTRY, the stack already contains foutlems of interest tas. The
contents of the instruction pointer, tbede segmernegister and the flag register wegyat on
automatically by the interrugtandlinghardware built into the processor. Tim&imum run-

5. This behaviour of adding an ‘unseen’ word to the end of the user defined list of things to do is
not unique to ISR;.This isexactlywhat ; does taterminate acolon definition,and ishow control is
returned to thevord that called it when a colofist hasbeen fully processed. USHEW to inspect

the source of : and ; and related words - they make very interesting reading.

Pagel56 Real Time Forth

time behaviour ofCREATE puts orthe address of the worafter the call to the run-time
routine. In this case, as forcalon definition,this contains the offset from ttetart ofthe list
segment to thetart ofthe list of things to do. Aew more thinganust be saved tgive us
room to obtain the offset from this origiretackbefore we switch t@ur interrupt stack. The
remainder of the things we need to save are placed on this new stack.

LABEL ISRENTRY
\ (stack on entry = pc cs flags n)
\ (‘old stack on exit = pc cs flags n ax di bp bx ds)
\ (‘new stack on exit = es si old-sp old-ss cx dx)
\ n is the offset in list space to the list of high level words to
do in this ISR. We
\ first use the stack we are in when the interrupt occurred to
save some information
\ and make some room to work in
PUSH AX PUSH DI PUSH BP

MOV BP, SP \ stack pointer to bp

MOV DI, 6 [BP] \ adr of offset (n) to di
MOV CS: AX, 0 [DI] \ get actual offset

PUSH BX \ we will also need BX
PUSH DS \and DS

\ The old stack is now pc cs flags n ax di bp bx ds. Register ax
contains the
\ actual offset into Forth list space. Switch to new stack

MOV BP, SP \ old stack pointers to bp
MOV DI, SS \ and di

MOV BX, CS \ make new stack segment=..
MOV SS, BX \ new code segment

MOV DS, BX \ ditto data seg

MOV BX, # STACK-BASE \ get new stack pointer
MOV SP, 0 [BX] \ new stack set up

\ First adjust the stack-base in case this interrupt gets
interrupted, then finish
\ setting up the registers for Forth and saving any registers not
already saved.

ADD 0 [BX], # STACK-SIZE WORD \ adjust stack-base

PUSH ES PUSH SI \ save registers we need
ADD AX, # XSEG @ MOV ES, AX \ point es to list segment
SUB SI, SI \ zero part of Forth IP

PUSH BP PUSH DI PUSH CX PUSH DX

\ Set up new return stack pointer below the data stack
MOV BP, SP SUB BP, # RSTACK-OFFSET

\ Ready for ISR. New stack now es si old-sp old-ss cx dx
NEXT

END-CODE

When we come to the end of ttf&R wecannot jusjump back into what wevere doing before
the interrupt occurred.First we must return athe registers exactly as they wavben the
interrupt occurred. For this reason, tB& compiler added aaxtraword at the end of thiest
that makes up thaser supplied portion dheISR. Thisspecial word must reclaiverything
from the interrupistack, resethe interruptstack pointedown one levelswitch back to the
original stack,reload all the information we saved there, lose the list offbeth is still there
but nolonger neededand then issue the spec@mmandthat signifies to the PC hardware
interrupt controllerthat the current interrupt ifinished, and finally let the processor do its
normal end of interrupt housekeeping.

CODE ISREXIT

\ Old stack on entry = pc cs flags n ax di bp bx ds

\ New stack on entry = es si old-sp old-ss cx dx
\ Both stacks empty on exit

MOV BX, # STACK-BASE \ adjust stack-base..

SUB 0 [BX], # STACK-SIZE WORD \..down one level

POP DX POP CX POP AX \ restore the registers we..
POP BP POP SI POP ES \ ..saved on the ISR stack
MOV SP, BP \ finished with ISR stack,.

MOV SS, AX \ ..return to the entry stack

Chapter 20Interrupts and Forth Pagel57

POP DS POP BX \ restore most registers..
POP BP POP DI \ ..we had on entry stack
MOV AL, # 20 \ re-enable PC's HW int controller..
OUT # 20 AL \ ..by writing 20hex to port 20hex
POP AX \ restore last register we saved
ADD SP, # 2 \ lose offset to list we processed
IRET \ finished with this interrupt
END-CODE

Having defined the words that let us get into a Ft8fand back out again, weed to define
the wordgthatbuild ISR type words. ISR: markihe start of an ISRdefinition. It builds the
list of things to do in list spagast asthe colon defining word : does. However unlikehich
installs NEST asthe runtime behavioulSR: installsthe wordISRENTRY which we just
wrote.

1 ISR: \ Interrupt Service Routine defining
word
\ Builds the name and list of things to
do
create \ build header (in head seg) and call
to
\ DOVAR runtime routine in code space
xhere paragraph + \ set list pointer to multiple of
16
dup xdpseg ! \ save one copy into xdpseg
xseg @ -, \ calc offset from xseg to where
list
\ will start and save this after the
call

\ to the run-time routine in code space
xdp off \set xdp to O
\ compile the list of the colon

words that
\ make up the ISR in list space,
continuing
\ until ISR: turns off the compiler
isrentry \ address of run-time routine to
use
last @ \ point to name field of this
definition
name> \ move pointer to start of code field
1+ \ move over the opcode byte
(call)
tuck 2+ - \ calculate relative offset
swap ! \ make isrentry target of call not

DOVAR

The list compiler ill continue to build thdist until turned off. The wordhat markshe end
of the definition,ISR;, turnsoff the list compiler andhenadds the special wolGREXIT to
the end of thdist. It is whenthis word is processdtiatthe registerarereloaded and control
returned to whatever was going on before the interrupt.

1 ISR;

state @ 0= \ check we really compiling
abort" Not compiling an ISR!" \ abort if not

2csp \ check stack , abort if error
compile ISRexit \ add exit word to the ISR list
[compile] [\ so ISR; will turn off list
compiler

; iImmediate \ this word must run when

compiling

Pagel58 Real Time Forth

An example of a high level ISR.

This is the same example ams doneearlier in this chapter, exceftat previously the ISR
was written in assembly language. Thise theactual ISR iswritten in highlevel code,
compare it with the section between LABEL and END-CODE in the original version.

: DINC (adr --) \ increment a double variable
dup 2@ 0.1 d+ rot 2!

ISR: TICKING
ticks dinc
ISR;

When the original 'tickingivasinvoked, it returnedts address, thisersion doesiot. So one
small changehas to bemade to the installation line. To get taddress of this version of
'ticking' the tic operator is needed. Our installation becomes:

hex

1c ?interrupt

' ticking 1c install-interrupt

decimal
This version performs exactly as the assembly language version, assesm lxy testing it in
exactly the same way. Despite havingdédine a word to increment a doubariable, it is
simpler to write and clearer to understand. It takes very sligtdhg time tocactually perform
the ISR, but this is often of no significance.

Lean, mean, interruptable interrupts and DOS.

Interruptservice routines should be as short anthasatexecuting as possible. They should
never perform anjnput or output (forexample) if it can be possibbvoided as both dhese
operations take considerable time. The idea is to service the interrupt butratdetas small

an interruption to the main program as possible. I'8feshould do the most time-criticphrt

of thetotal service and, if there isi0ore service to dget a flag so thahe main program can
complete thetask when it is convenient.For example,when collectingdata sample under
interrupts,the ISR shouldjust acquirethe value from the inpyport andput it in aholding

buffer. It then sets a flag so that the main program knows to process the values from the buffer
when it is convenient. Using a mutasker inconjunction with flags makes this process
particularly simple.

When using-PCwith DOSthere is another reasevhy you shoulchot makeuse of any DOS
based input or output. Recall thabove we arranged faur interrupts to behemselves
interruptable; we (arbritrarily) seéhe maximuminterrupt depth at 5. Tachieve this we
arranged to have a number sihicks available for use hite ISR, eachISR automatically
using the nexbneabove thdastoneused. DOS has no such facility. It always ubessame
stack for a given function. So if, for example, we are outputtinbaescreenDOSwill set up
a stack for its use at a fixed place. If, part way through this output operation, another interrupt
occurs and the new interrupt algoes tooutputsomethingDOSwill try to set up aewstack
directly on top of theold one. This will cause no trouble faihe interruptthat is currently
being servicedhut whenthat isover and the processgoes to finish the interruptedterrupt,
the information it need$as been overwritten. Disaster isnow but a few pulses of the
processor cloclaway. Avoiding DOS service inour ISRs ighe only way to ensurthis never

Chapter 20Interrupts and Forth Pagel59

occurs. Some operating systems do not share this deficiency, those which do not are referred to
as 're-enterant '.

Extra Information for IBM PC Users.

The informationgiven sofar in this chapter describeBow the processor itselthandles
interrupts. Many computers use extra hardware exterrthbtprocessothat providesextra

control overinterrupts, in particular texercise various forms of priority contnehich allow

high priority interrupts to takgrecedence over loweriority ones. The IBMPC/XT/AT

family is no exception ankdas an 8259A interrupt priority controliehich provides a number

of features at the cost of having to be programmed. A full discussion of this chip is outside the
scope of this bookut the following section should provide enough information to allse to

be made of thenterruptlines on thel/O bus ofthe IBM PC family of computers. For
information about features not discussed here, sucbhasging the priorities of the various
interrupt request signals, the user is referred to the 8259A data sheet.

The 1/0Obus ofthe IBM PC and XT providesix lines,called IRQ2 throughlRQ7, each of
which signalsghat an interrupservice is requirevhentaken high. Therare alsawo other
lines whichare onthe motherboardut arenot bought out onto th#O bus. The electrical
signals on these lines havepassthrough the interrupt controller chip to get to the processor.
The controller decides which, in tlkase of multiple requests, mdeed ifany request should
be passed onto the processordetideghis based on the priority of the interrpthether this

is of high enouglpriority to beallowed tointerrupt what the processor is currerdlying) and
whether ithasbeen explicitly been disallowed fropassed on this type of interrupt. Each of
the signals from the eight lines may be disabled by writing a 1 tagheopriate bit in a
register inside the 8259A. Bit 3 of this register contiinksIRQ3 etc. The IBM AT hasore
IRQ lines on the secondaryO channel connector and uses the noriRE2 to indicate
activity on the secondary connector IRQ lines.

The six interrupt reques$ines on thd/O bus,their normal use, and the interrupt numthrey
aremapped taarelisted below. Each of thEknes may be used by othkardware than that
listed, although difficulties will be experienced if the normal 'owner' of the lises it at the
same time. If you do install yowwn interrupt service routinéor any of theseinterrupts,
make sure you restore the one normally there when you are done.

IRQ2 This is reserved in the PC aXd. It is used in the AT family and vectored to
interrupt number OAhex.

IRQ3 This is normally used by the secondary asynchronous communicatenige
(COMS2) and is mapped to interrupt number OBhex.

IRQ4 This isnormally used by the primary asynchronous communicatieniee(COMS1)
and is mapped to interrupt number 0Chex.

IRQ5 This isnormally used by the fixed (hard) disk and is mappenhterrupt number
ODhex.

IRQ6 This isnormally used by the diskette (floppy disk) and is mappeadtésruptnumber
OEhex.

IRQ7 This isnormally used by the parallel printd?RN) and isnapped to interrugtumber
OFhex.

For completeness the two lines that do not appear on the I/O channel are:

Pagel60 Real Time Forth

IRQO This is used for system timing applications and is mapped to interrupt 8. Interrupt 8 on
completion passes control to interrupt 1Chex which is the user timer interrupt and whose vector
normally points to a simple IRET.

IRQ1 Thisis used for the keyboard and mapped to interrupt vector 9.

An interrupt can be signaled by bringing the relevant IRQ line from the low to the high state. It
must be kept in thaigh state untilthe interrupt service routinfor this interrupt haseen
begun. As initialized by thBIOS, the interrupt controllewill not pass asecondinterrupt

signal onto the processor untilnasbeen given aignal to do so. This signal given by the
processor writing 20 hex toutput port 20 hex. This can ld®ne as soon as it would be
convenient to receive anotherterrupt. Do not confuse this signalhich re-enables the
external interrupt priority controller chip with the interrugtable flag inside thprocessor.

The external interrupt priority controller can stop any hardware interrupt signal from passing
onto the processor. The processor interremmble flagwill stop orallow all maskable
interrupts, hardware or software triggered. TR®O signal is handled binterrupt 8before
beingpassed onto us at interrupt h&x and thenterrupt 8code resets thiaterrupt priority
controller. This iswhy theuser timer interruptvas used irthe examples of bothigh level
interrupt handlers above, as it saved having to introducextrecomplication of resetting this

chip at that time. However, for all other hardware interrupts we can eadilgldef, we need

to be prepared thandle the chore of resetting this chip. Nbigt ISREXIT (which is called

by ISR;) automatically does this for us at the end of an ISR written in Forth.

The mechanism by which the relevant IRQ line was held high until the ISR was started (usually
a flip-flop) must be reset by tH8R routine itself as the interrupicknowledge signal from the
processor is not bought out onto the I/O bus. Thus the ISR will need to have two extra items in
it over and above what it needs to suit the processor and the main ISR tagkne bé& needs

to reset the interrupt priority controller and it needs to reset the IRQ generating mechanism.

The 8259A is quite a tricky chip. Althoughoitly occupies tw@utput ports it igorogrammed

by sending information by way strings of bytes written in carefully controlled sequences to
these twoports. Torewrite the contents of the interrupt mask register (the regigimh
determines whicinterrupts areategorically not to be allowed througb)je needs to do more
than just writethe onebyte that controlseach of the eight lines. The sequence required is: 13
hex to output port 20 hex, 8 hex to output port 21 hex, 9 hex to output port 21 hérabyd
the interrupt mask toutput port 21 hex. The valugs/en here willresult in the interrupt
mask being changeblut preserve all the other features as set up by the BIOSysé¢m
initialization. See arB259A datasheet or "Interfacing to the IBM Personal Computer” by
Lewis C. Eggebrecht, published by Howard 8&ams & Co., fothe meaning of eadbit and

the sequences needed to alter other features.

Review Questions3 Pagel61

Review Questions 3

Since we have no special hardware ttaeonly two interrupt sources that we ceasily get
to - the keyboard (interrupt number 9) and the system tick (interrupt n@&peAll numbers
on this sheet are in decimal.

In each caseelow write a wordhat saveshe oldinterrupt vectors, installs theew interrupt
vectors, does whdtas to bedoneand then replaces the origiriaterrupt vectors as it exits.
After the word has run, everything should be left as it was before the word was run.

It is suggestethatyou write the body of thé&SR as anormal colon definition so yoocan test
it, whenyou are sure this works packageb#tweenlSR: andISR; so that itbbecomes a real
ISR.

Replace the regular keybod®R byone ofyour own whichprintsthe scancodes of theéeys

as youpress or release key¥.ou will need taget thescancode. Ascancode which identifies

the keyand whether ihasbeen pressed or releaseisilable by reading inpygort 96. The

scan code is the number of the key in the keybaamaly,with bit 7 clear if this was a press, or

set if this was &eyrelease. The arrangement of the keys on the keyboard, and therefore their
scan number, is nothe same as their ASCII value. well as readingnput port 96 toget the

actual scartode(use pc@)you alsoneed to send an acknowledgignal to the keyboard by
pulsing bit 7 ofthe keyboardstatus port (output port 97)While you dothis, you must not

alter any other bit othe keyboardtatus port. You can read the current keyboastadtus by
reading input port 97. The following code fragment does this.

96 pc@ \ read scan code from the keyboard
97 pc@ dup \ read keyboard status, make copy
128 or 97 pc! 97 pc! \ form and sent a reset pulse

Keeptrack ofthe number ocancodes you have generated atdp (cleaning upafter you)
whenyou have printed tenNote that you normally NEVER print or do any other slow 1/O
inside an ISR ifthe i/o uses a DOS function call as DOS is not re-enterent. We ternié
only so you can see that your program is working. Remember that d8&% are lean,
mean and fast.

Set up a background task to ptim numbers from (sap00down to 0, one numbegrer line.
Arrange forthetask to do itover and over againNow from the keyboardurn multi-tasking
on and wake the backgroutask. PAUSE is builinto the print routine and seeednot be
explicitly put in yourbackground word.Decompile a word usin§EEand observe the display
on the screen, observe thatput. You see why if multipleoutines are to usie screerthey
must be kept within their own windows? Return to single tasking and add a second background
task. This is texecute an empty do lod®00times and then soundBEEP. Itdoes this
endlessly. Turn multi-tasking back on and wake upt#sk. Check bothitasks run apparently
independently, turninghem onand off from the keyboard. Finalbiterthe tasks so that the
number print routine printsne numbeand therputsitself to sleep simultaneoustgarting the
beeptask. This afteone beeputsitself to sleepstartingthe number printask. Check all
works as you expect.

Use anlSR that isdriven by the system tick (whicbccurs approx 18.8mes a second) to
maintain a clock. Every time tH&R occurs itincrements a variable e simultaneously

Pagel62 Real Time Forth

checkingits value. When thevariable reaches a predetermined number|$femust set a
flag. The ISR's interrupt vectors al@aded by another worthat you invoke from the
keyboard and whichafter installing thenew interrupt vectors sitsvaiting for this variable to
be set. When itis, re-installthe original interrupt vectors and print a suitalessage so we
know that the job has been done.

Using thelSR you wrote above as lzasis,write a realtime analogue clocKisplay. The ISR
will decrement acounter. A background taskill plot thetime on a single hand analogue
display using the simpline drawing algorithm giveearlier. Only plot evensay, 5 ticks and
don't forget to erase thald line! Startall this from the foreground keyboatdsk, which
checks the counter contents astdps everything whernthis reaches zero. Chethkat the
keyboard is still usable as the foregrouadk by alsabuilding in an ‘ifkey pressedabort
timing ' function. Note that this too must replace the original interrupt vectors!

Chapter 21:- Input output revisited. Pagel63

Chapter 21

Input output, revisited

Simple input anautput(l/O), really just passing bytesddtathroughdata ports, wasovered

in chapter 5. Thenly stepmadetowards synchronising and controlling thew of data was

to usestatus bits, These ensuretthat datavould not be losbut did not controwhen it would

be processed. Nothat interrupts andnulti-tasking have been covered, it is time to revisit
input and output awith these techniques wean also exercise control owehenour 1/O is
processed. The three possible scendrasw illustrate how the techniques dtatus bits,
multi-tasking and interrupts can work together when performing 1/O.

The simplest of all possible casesvisen it would be nice iflata was transferred, butwould
be no real problem if odoytes were missed along tivay, and the exatiming of the trasfer
was not important. Such uncritical situations do not oseuy often, but updatingsome
slowly changing status information for casually interested humakeepingtrack ofthe value
of a slowly changing quantityight occasionallyall into this category. The&chniqueneeded
is simplicity itself. When theprogram gets around i just read omrite the value directly to
or from the port. It doesn't matter if the value over writes a previous and still umeseat if
you re-read the value that you already read last time.

The next scenario, synchronised sldata transfer, isshen it doesiot matter exactlyvhen the
data iswritten or readput it is essentiakthat you get every sampleThat is,none may be
missed owing to overwriting or nomeadmorethanonce owing to overeading. This isvhen
the use of status bits to co-ordinate the flow of data betweeimde@pendently timed processes
is essential. Often the routitieat actually transferthe datawill be a backgroundaskwhich
just pauses any time it is not able to transfer data (there is no data to get or send).

The third and most critical scenario, synchronifsexi data transfer, iwhendata musnhot be
lost, or overread, and it musgither be handled now or ptecise intervals. It is relatively
obviousthat thiswill require theuse of interruptdut, perhapsiot as obviously, it will often
involve multi-tasking as well.The rest of this chapter devoted to considering theksest two
scenarios in detail.

Svynchronised slow data transfer.

In synchronised slowlata transfer status bitendleall the synchronisation and ensuhat
both sender and receivstay in step. Ithe natural data rates dfoth source and receiver are
similar, for examplevhen thecomputer has to dguite a bit ofhousekeeping when getting the
data tosend or saving theata it getsthere may not be time to do anything eldelevthedata

is beingpassed. Under these conditions looping is thest way tohandle the wholalata
transfer. The program can carry on once the transfer is done.

If there is something else whitlas to belone it will benecessary to make tidata transfer as
efficient as possible so as to leave as mupidtessoitime available for this othetask as
possible. If timing is not toritical then thedata transfer task can larned into a

Pagel64 Real Time Forth

backgroundask. With care, and akbng as the foregrounthsk pausefrequently enough to
allow an adequate averadata transfer ratdyoth thedata transfeand maintaskrequirements
can be met at once.

Efficiency can beenhanced when the matask is either to use thelata received or is
generating thelata tosend. Under these conditions the maisk cancontrol the wake/sleep

status of the background task to advantage. If there is data to send, for example, put the output
in a buffer andvake the backgrounthsk tosendit. If the backgroundask ever manages to

output all the buffer contents, it just stops (puts itself to sleep). As newetzimes available

from the maintask, it isadded to théuffer and the backgrounisk woken again. If the
background task is alreadyvake this has no effediut if the buffer hadbeen emptyand the
background taslasleep this is necessary to ensure riae data is sent. Byputting the
background task tsleep, you save théme that would be wasted by the backgroutask
continually checking the buffer to see if there is data to be sent.

It is possibleput less likely, to imagine using similar schemeor input. Herethe maintask

collects data and puts it in the buffer and wakes a background task to process it. As before, the
background task stops if it runs outds#ta. This isnore improbabldor input as it requires

the dataprocessing (which iprobably themain task) being controlled by thelatacollection

and the data therefore being collecte¢padbably) irregular intervals to suhlte processing. It

could happen idataloggingfor example when thdataacquisition is more importahan the

data storing.Even then thelatawould have to be very slowly varying in order to tolerate the
timing inaccuraciesvhich inherently come witoftware polling. For fastervarying data you

would need tohave thedata acquisition (or at least itéming) handled by annterrupt as
described below.

Svnchronised fast data transfer.

This is when thedata mustnot be missedor double read) and it must be readher
immediately it isavailable or at an exact time. Obviously this isgbg of situation irwhich
interrupts are so useful.

Consider as an examphata inputfrom a source with unpredictable timing, such as a
communications link. Théme betweerdatabytes arriving is quite unpredictable, it may be
guite substantiabr, if onedatabyte immediately follows théast, very short. As eacldata
byte must be read before the naxtives, we must be able bandle theshortest possibleme
interval efficiently.

Naturally itwould be an inefficient use gfocessotime to be forever looking to see ifdata

byte has arrived, wevould allow thearrival of a databyte to generate an interrupt.
Remembering that, unless we specifically permit it, out interrupt service routine cannot itself be
interrupted should anothelatabyte arrive (or forthat matter by anyther interrupt source
which happens tdecidethat this ishe moment to "dats thing"), it isimperativethat wekeep

our ISR as short gsossible. For this reason we must resisé temptation to do anything in

the ISR that could be postponed.

Our ISRshouldjust grabthe data,and perhaps thstatusbyte that tells if any transmission
error occurred, andutthem in abuffer. Thenthe ISR wakes a backgroun@sk to process it
and finishes. The backgroutask readshe buffer, checks if a transmissiogrror occurred,
takes appropriate action if so, reatti® data byte and processes it if not. It continues
processinglatauntil the buffer is empty. If thisveroccurs it putstself to sleep, safe in the
knowledgethat it will be wokenagain by thdSR assoon as morédata is available Together
the ISR and the backgrounthsk efficiently handle thedata input taskwith the databeing

Chapter 21:- Input output revisited. Pagel65

collected as soon as possibfeer arrival andvithout wasting any processtime on idle loops
waiting for things to happen.

To illustrate this, assume weave acircular buffer and avord to add a byte to this buffer
(ADD-BYTE). A circular buffer isonethat islogically organised as a ring with no fixed
beginningand enddata isadded to theurrentendand theend pointer advanced, agata is
removed it comes from thrmurrentstartand thestartpointer is advanced. The buffer is full if
the endpointer ever catches up to te&rtpointer, the buffer iempty if thestartpointerever
catches up to thend pointer. Wewill also assume a word GET-BYTlhich reads abyte
from the buffer, which returns a byte with a true flag on top if a byte is available or just a false
flag if no byte is available. ADD-BYTE and GET-BYTHEandle thebuffer pointers and
handle anybuffer overflow conditions. Therest of the words assumed (READ-LINK-
STATUS etc) should be self explanatory. The following doggements the combination ISR
and background task data transfer described above.

BACKGROUND: PROCESS-DATA

begin
get-byte \ try for a byte from the buffer
if \ we got one-its a link status byte
(zero if no error)
0= \ all well?
\ now get the data byte

if get-byte

if
process-data

else
Something wrong.

abort" Lost data bye!"

condition
then

else
error!

abort" Coms error!"
then

pause
routine

else

stop _
when some is

then
again

ISR: COLLECT-DATA

read-link-status add-byte
add to the buffer

read-link-data add-byte
and add to the buffer

process-data wake
asleep

ISR;

\ we got data
\ process it
\ status byte but no data byte?

\ handle this error

\ we had a communication link

\ be a co-operative multi-tasking

\ no data available
\ go to sleep, we will be waken

\ get the link status and
\ get the actual data from link
\ wake processing routine in case it is

\ and out of here

Pagel66 Real Time Forth

Supposing for anomentthat wewished to sendlata outover this link, thedatalink would
indicate with an interrupthat it could handle anothetata byte. The ISR would get one if
available from a buffethat wasbeing filled by whatevewasgenerating thelata. If no data
was availablghen a possible problem coutdtcur. When databecame available the signal
from thedatalink that it could handle moreéatawould be long goneand no other 'give me
data' interruptvould be generated ungfter another byte was serBut, inthe absence of this
signal, nodatabyte would ever be loaded to be sent. Sol8#, finding the buffer empty,
would need to signal that one byte of data should be passed to the data link as soon as available
without any further signal from the link. This could d@ne bysetting a flag to tell thelata
generation routine tpassthe next byte oflatadirectly to the linkrather than put it in the
buffer. While efficient whenthere is only oneroutine feeding the link, itcan become
cumbersome whethereare many. Under these conditions it istter to have a background
task per output buffer th#te ISR wakeswhenthis buffer runs out oflata. Thishackground
task isonly used to 'prime' the link witits first byte, itlooks at thebuffer until it finds it not
empty and then passes one byte to the link and puts itself to sleep.

Assuming the same words & the example above, tHellowing codeillustrates thedata
output described above. Notihat the routine(s) placinglata to be outpuheednot be
concerned whether tltatabyte theyare passing ithefirst into an emptybuffer or not. They
aretherefore simpler to write, understand and maintain than routihefs)id. Theextra step
hasbeenseparated into a little routine $ own that isitself simple to write. This division of
complex multifaceted routines into a number of simple sipglipose routines igfficient
factorising and leads to much enhanced programmer efficiency.

BACKGROUND: PRIME-LINK

begin
get-byte \ try to get a byte from the
buffer
if \ if we got one...
byte-to-link \ send the byte to the link
stop \ and go to sleep, our job is
done for now
else \ if no byte available yet
pause \ give everyone else a go
then
again \ now loop to wait for a byte to be
available

ISR: SEND-DATA

get-byte \ try to get a byte to send
if \ we got one?
byte-to-link \ pass it onto link so it get
sent
else \ no byte available at the moment?
prime-link wake \ wake word that will handle

arrival of the next byte
then \ in either case get out of here
ISR;

Chapter 22: Interfacing with the basicPC input/output resources Pagel67

Chapter 22

Interfacing with basic PC input/output
resources

Interfacing to the parallel (printer) port.

The IBM PC normallyhasone 25pin D connector on theear designated as 'the parallel
printer port' orLPT1. Itmay have a second connector calld&ir2 aswell, though if itdoes
the only difference between them is the addresses they occupy.

The nameéport' is rather a mnomer, as the connectioas all orpart ofthree processor input
ports and all opart oftwo output portsconnected tat. Indeednot all printerports are built
the same way, tradition@nesare builtfrom discrete logic and behave as described below.
There are alsdi-directional printerports that are builfrom programmable parallel input
outputdevices(such as the 8255A4pr which each lindoought to the connecter can be altered
betweeninput and output under software. These can be witbdsoftware to duplicate the
fuctions of the traditional printgvort, but are also capable lbéing used in othawvays. In
particularyou can use inpyport 378hex to reaceight singlebit values intothe computer.
This is not possible with the traditional pringgort. What iswritten belowrefers to the
traditional printer port.

The connectohasonegroup ofeight output bitscontrolled by processgrorts 378hex, one
group offive lines controlled byprocessor ports 37A hex, four bits which can beeither
outputs or(with some difficulty)inputs, and a group of 4 input bitentrolled by processor
ports 379hex. The portnumbers forLPT2 arefound by subtractinglO0 hex from the
corresponding address for LPT1.

The eightoutput bits of processor output port 38 appear orconnector pins ashown
below. Datawritten to outputport 378hex is latched there. If you read processor igout
378hex, you willread the current values timeseoutput pins (that ithe lastthing you wrote

to output port 378nex). Apart from this ability to read what yolast wrote this is a
conventionabutput port. Access it withPC! andPC@. Note that the output fromport 378
hexarenormal TTL compatible signals and these lines must not be driven from outside the
computer. In other words although you can read whatigsiwrote to outpuport 378 hex

you must not try to use input port 378 hex to read any signal from the outside world.

Only four of the five bits from ports 37Ahex are connected to the 25 pin connec{see
below). Theseare bits 0 to 3nclusive. Bit four is used internally tenable or disable
generation ofRQ7 interrupts asvill be describedshortly. You can write thedaits by just
writing to output port 37Ahex and read what is there by reading irgmrt 37Ahex with PC!
and PC@. However, since bits 0 to 3 are connected to open collector outputs youtioam use
as inputs in théollowing way. Anopen collectooutput ishigh unless pulled low. A number
of open collector devicasan have theioutputswired together to produce an Qfate. Itdoes

Pagel68 Real Time Forth

not matterhow many devicearetrying to pull thecommonoutputlow, if one or mords, the
output will be low. If you write a high to one of these four bits and then later read the bits back
to find that it islow, you candeducethat it hasbeen pulled low by a signal wired that pin
from outside. In this way, providing yanly connect open collectgates to these pins, you
can use them as inputslowever the morstraightforward four inpuiines ofport 379hex are
easier to use and are probably to be preferred: of course, fiegaumorghan four inputines
from the system printgvort you have no choice! It is convenient todi#e to read input port
37A hex anccheckbit 4 tosee ifIRQ7 interrupts arenabled. Noté¢hatunlike the other two
groups thesareinverting outputs, a 1 written tthese pins produces a lodisv and be read
back to the processor aslagic low. An externally imposed lowead from these pingill
appear as a low at the processor.

PORT 378 Hex PORT 37A Hex
Hex Port# Bit# Pin# Active Hex Port# Bit# Pin# Active
378 0 2 High 37A 0 1 Low
378 1 3 High 37A 1 14 Low
378 2 4 High 37A 2 16 Low
378 3 5 High 37A 3 17 Low
378 4 6 High 37A 4 (IRQ7 control)
378 5 7 High
378 6 8 High
378 7 9 High OUTPUT AND INPUT.
Output port 37A is open collectoand may be
OUTPUT ONLY. driven by other open collectdecives. Reading

input port 37A will show the latestvalues at
The lastvalue written tooutput port 378 may | pins 1,14,15 and 16.
be read by reading input port 378ut no

external signalsnay be connected ioput port PORT 379 Hex
378. Hex Port# Bit# Pin# Active
379 4 13 High
379 5 12 High
_ 379 6 10 High
LPT1 Pin and Processor Port 379 7 11 High
Assignment. LPT2 ports are 100 hex
less. INPUT ONLY.

—

Input port 379 is read just like any other inpu
port. Do not assume any particular values on
pins 0 to 3.

Bits 3 to 7 inclusive of inpuport 379 hex are directly connected t@ins on the 25 pin
connector. These may be read by reading ipptit379(see the assignment list abové&jote
thatsince you can udgits 0 to 3 of port 37/ex as inputs awell asbits 4 to 7 of input port
379hex, you can have affective 8bit input port. To read §ou need taread input port 379
and 37A hex, mask of their unuskeits, and andhe two results together to get ami8 input.
Assuming weareworking in hex, the following code will dihis (notethat bit 3 of input port
379 is wasted in this case).

: READ-8IN (-n)

37A pc@ OF and \ read inputs from 37A, keep only

bits 0 to 3
379 pc@ FO and \ read inputs from 379, keep only

Chapter 22: Interfacing with the basicPC input/output resources Pagel69

bits4to 7
and \ combine to form final answer

Bit 6 of input port 37%ex may be morthan just asimple inputhit, depending on the setting

of bit 4 of port 37Ahex which control$RQ7 interrupts. If bit 4 of 379 is set,hegh to low
transition on bit 6 of 37Will cause an IRQ7 interrupt to occurtPT1 isusuallyconnected to

a printer and by usintRQ7 the printer,which is a slow devicesan interruptwhen it needs a

new character thus allowing the processor to carry on with something else the rest of the time.

Interfacing to the serial ports.

The IBM PC normallyhasone, sometimesvo, serial ports, usuallseferred to a€OM1 and
COM2. Each otheseports is capable dabking characters frorthe processor, addingart,
stop and parity bits as requireshnverting them into aerial bit stream and transmittitigem.
Each serial port can alseceiveserial bit streams and re-assentblese intacharacters. The
machineBIOS provides four services, all accessed through interrupt 20 (14hex). The first
service is to initialize the parameters of a sepalt (baud ratenumber ofcharacter bits,
number of stopbits, if parity is to baused and if so of which polary The second service is
to sendout one character. The third is teeceive acharacter andhe fourth is toreturn a
detailedstatus report ofhe serial channel. Thigill include the type orror (if any)which
just occurred, whether the transmitter can accept another character to trahsthiérthere is
a character waiting at the output of the receiver.

Where time is notritical these servicesan, of course, bealled fromFPC. A detailed
discussion of the informationeeded bythe BIOS and the way the resulise reported is
beyond the scope of this book. A brief outline, just sufficient to use them, is giver?—below

The first andsecond services expect informatiorAin, the service number required (0 or 1) in
AH and returnghe simplestatus report in AH. This can lkeasily handled irPC bythe two
words below whichreturnsthe simplestatus report athe bottom &its of the number on the
top of the stack.

code SERIALO (n-m)
pop ax \ load given information
int 20 \ get it done (20 decimal=14 hex)
mov al, ah \ status to lower 8 bits
1push \ answer back to stack

end-code

and

SERIAL1 (char--m)
256 + \ apart from being service one
serial0 \ this is just like service 0!

The set-up information required by tfiest service is coded as followsits 5, 6 and 7 set the
baud rate (000=110, 001=150, 010=300, 011=600, 100=1200, 101=2400, 110=4800,
111=9600). Bits 3 and determine theparity to beused (0 = none, 1 = odd, 2 = none, 3 =

1 | assumethat the reader is familiar witthese term&nd will not definethem in thisbook.
For the readewho has notcome acrosthem beforethere are innumerablbooks that describe
asynchronous serial communication.

2 If more detail is desiredpok up BIOS serviceldhex in abook such as Peter Norton's
"Programmer’'s Guide to the IBM PC" (Microsoft Press).

Pagel70 Real Time Forth

even). Bit 2 determines the number of stop bits to use (0 = one, 1 = two). Bit 1 must be set and
then bit O determines the character size to use (0 = 7 bits, 1 = 8 bits).

The third and fourth services do not expect any input. The third seetices asimplestatus

in AH and thecharacterreceived inAL, the fourth serviceeturns a full 16 bistatus report
using all of AX. Again the number of the service required (2 or 3) must be in AH on entry.
These services can Bendled with the two words below. Notieat serial2 returns the
character in the bottoml@ts ofthe number on the top of tiséack andhe simplestatus in the

top 8 bits.

CODE SERIAL2 (--m)

mov ah, # 2 \ load service number
int 20 \ get it done (20 decimal=14 hex)
1push \ answer back to stack, lower byte
\ character received, upper byte
status.
END-CODE
and
CODE SERIAL3 (--m)
mov ah, # 3 \ load service number
int 20 \ get it done (20 decimal=14 hex)
1push \ answer back to stack
END-CODE

The error codes returned are listed below.
The 1 byte error codes are:

Bit 7 set = An error occurred as identified below
Bit 6 set = Transfer shift register empty

Bit 5 set = Transfer holding register empty

Bit 4 set = Break detected

Bit 3 set = Framing error

Bit 2 set = Parity error

Bit 1 set = Overrun error

Bit 0 set = Data ready

The 2 byte error codes are:

Bit 15 set = Time-out error

Bit 14 set = Transfer shift register empty
Bit 13 set = Transfer holding register empty
Bit 12 set = Break detected

Bit 11 set = Framing error

Bit 10 set = Parity error

Bit 9 set = Overrun error

Bit 8 set = Data ready

Bit 7 set = Received line signal detect

Bit 6 set = Ring indicator

Bit 5 set = Data set ready

Bit 4 set = Clear to send

Bit 3 set = Delta receive line signal detect
Bit 2 set = Trailing edge ring detector

Bit 1 set = Delta data set ready

Bit 0 set = Delta clear to send

Chapter 22: Interfacing with the basicPC input/output resources Pagel71

It may seem, witlsuch facilities providedhatthere would be naeed to handléhe serialport

directly, ratheryou would alvays use theBIOS. Thismay betrue in non-time critical
situations, but much time can be wasted (if the processor has anything else useful to do) by just
using these services. The third service, to receive a character, will sit and wait until a character
is available. Even if you use théourth service ta@heckthat a character is available aorly

call the thirdwhen onds, you will not be efficiently using time. The endless polling using the
fourth servicegust in case a character is readgpy absorbsignificant amounts of processor

time.

To avoid this wastage ttunly servicethatneeds to be replaced is ttimrd (service2). Rather
than polling, the serigort should be set to interrupthen acharacter igeceived. Then the
processor will be able to give undivided attention to the ek, secure in th&&nowledgethat
when acharacter arrives will be told in nouncertain termsOneinterruptline is provided for
COM1 (IRQ4)and a seconflRQ3) for COM2. Inorder to get an interrupt tccur, bit 3 of
the modemcontrol register must be seigh or nointerrupt from the serigbort will be passed
onto the processor. Tmeodemcontrol register is outpyiort 3FChexfor COM1 and output
port 2FChex for COM2. There are actually foupossible types of interrughat can be
generated by each serial channel. In order of decreasing priority (and withastatbelone
to reset the interrupt signal) these are:

« Receiver line status (an overrun, parity, framing or break error has occurred). rébit is
by the act of reading the line status register.

« Receiveddataavailable (character waiting to Ipicked up). This is reset byhe act of
reading the received buffer register.

« Transmitterholding register empty which iseset by theact of writing to the transmitter
holding register.

« Modemstatus (clear t@end, ordata set ready, aing indicator, or received line signal
direct active). This is reset by the act of reading the modem status register.

Each ofthese sources can be turned on by writirana to theappropriate control bit of the
Interrupt Enable Register, or off by writing a zero. Bit O contitdsreceivediataavailable
interrupt, bit 1the transmitteholding register emptyinterrupt, bit 2the receiver linestatus
interrupt and bit 3he modemstatus interrupt.The interruptenable register is autput port
3F9 hex (2F9 hex for COMZ2) providedthat bit 7 of port 3FBhex (2FB hex for COM2) is
zero3

If more than one of these four possible sources is enabled, the first thing that oo Beto
find out which of thesources generated thigterrupt. This isdone by reading thinterrupt
Identification Register at inpyiort 3FAhex(2FA hexFor COM2). Thisregister can be read
at anytime you wish,bit O will be set if there is an interrugtending, andits 1 and 2will
identify 'who donet' with one offour values. A value of 11 indicates this isegeivedline

3 This dependence dhe state of bit 7 of poBFB hexmay seem odd. It is due tioe way the
registers internal to th6ART are organised Processomput andoutput ports 3F&nd 3F9 hex are
actually each able to be connected to two registers internal to the UART. Whichrdbeypnected to
depends on the state of bit 7 of the line control register whicbnisected to processor p8fB (or
2FB) hex. This bit is the Data LatchccessBit (DLAB) and, if set, connects 3F&nd 3F9 to the
Divisor Latch least significarttyte and most significanbyte respectively. If clear output port 3F8 is
connected tdhe transmitbuffer, input port 3F9 isconnected tdhe receive bufferand input and
output ports 3F9 areonnected tdhe Interrupt Enable Register. Tbévisor Latch is used to set the
baud rate of th&JART. Except wherhis is being doneDLAB should be set to zero. TEHOS is

well behaved and, although it may set DLAB for its own purposes, always leaves DLAB set to zero.

Pagel72 Real Time Forth

status interrupt, 10 eeceiveddataavailable interrupt, 01 a transmittieolding registerempty
interrupt and finally 00 a modem status interrupt.

An example.

Imagine the following scenario in whicimterrupt driven serial communicationgre an
advantage. A PC is reading a series of instruments and using their values to soonérol
process. This takes most of the processor's time. Howevertifnento time the computer is
required to respond to requests diata abouthe situation. Let us further assumhat these
requests are in plain ASCII, arrive via COM1 and are all terminated with LF.

This can behandled efficiently by defining thredhings. First is amain word (PROCESS)
which reads the instrument and performs the process control. This is assumed to exist and is
not discussed further except tbeneedfor it to include PAUSE (see below). A seconrdrd
(PROCESS-MESSAGE) expects @&ssage in ASCII in an input bufflRBUFFER),when it
gets one it forms the answerputs this in asecondbuffer (TBUFFER), passethe first
character othe answer to the serial transmitter and enables transhotting registerempty
interrupts. Multi-tasking is used #loat boththese words catappear to) run atnce. This is
why PROCESSmust contain PAUSEs explicitly or implicitly. PROCESS-MESSAGE,
however, is normally aslegmaturally it must be aendlesstask, seechapter 15 omuilti-
tasking). <PROCESS-MESSAGE> probaBllyould also contain PAUSE ¢bat the main
task PROCESSloesn't come to atandstill vhile the answer is deduced, unlessfast as
possible message response is required.infemrupt service routine idefinedand installed to
respond tdRQ4. Thetwo types of interruptoncerningcharactetrreception fromCOM1 are
always enabled, as nmodem is inuse modemstatus interrupts are alwayksabled and
transmitter holding register empty interrupts are enabled and disabled as needed.

The ISR first checks whichserial interrupt it is to process by reading the interrupt
identification register. If it is @haracter available interrupt, it gete character byeading
input port3F8 hex (withbit 7 of port 3FBhex reset). If theharacter isanything other than
LF it just adds ionto what is already in theuffer. If it isLF, it adds it andhen wakes up
PROCESS-MESSAGE to procet® input. Asnoted beforePROCESS-MESSAGEnNables
the transmitteholdingregister emptynterrupts and sends tffiest character to be transmitted.
After this, eachtime acharacter is sent, IRQWill be triggered and reading thaterrupt
identification register will reveathat the transmitter is askingpr more data. Sothe ISR
passes a new character from the output buffer by writing it to output pohe3R&ithbit 7 of
port 3FD hex reset. As the last character (LF) is #amlSR justdisables transmittdrolding
register empty interrupts.

The errorecovery is primitive in the extreme in this example. fléeeive linestatus interrupt
occurs,the ISR justempties the receivieuffer and sets a flag swthing is written intahat
buffer again until aftethe next LFhasbeenread. The corrupted megg isjust thrown away
without anyone being told about it, probably not a very good idea in practice.

The key words are shown below, <process-message> is assumed to exist. It anespsga
in counted string form in the input buff&RBUFFER, processes it and pladbke answer as
another line feed terminated counted string in TBUFFER. If there is no answengtiebyte
in TBUFFER is set to zero.

To use this background message responding facility, first both buffers are emptied. Then using
serviceO, thdaud rate andther parameterare setup. TX-INT-OFF isused to ensure that
receiverinterrupts areenabled and transmitter amdodeminterrupts are disabled. Multi-
tasking is turned on and then the mi@isk PROCESS ientered. Thdéime thatwill be spent

in the multi-tasking loopjvhen PROCESS-MESSAGE iasleep is much smallénan would

Chapter 22: Interfacing with the basicPC input/output resources Pagel73

have been spent polling teerial chanel via thBIOS services.While in this example you can
simultaneously send and receive, you had betteaube thaione messagbasbeen processed
before the next messagerives. Withonly one receiveand one transmit buffer there is no
capacity for banking messages up.

comment:

These are the key words for the senario outlined above. As it

cannot be run using just one PC, some words are not given, such as
PROCESS and <COMS>. The two buffers used (RBUFFER for receiving
messages and TBUFFER from which to send messages) hold the normal
form of Forth counted strings. That is, the first byte is the

length byte of the string that immediately follows in the buffer.

A buffer returns the address of the length byte when called. In

this example messages are restricted to a maximum of 80 bytes, no
check is made for overflow.

comment;

hex

variable USE-CHAR?
message.
use-char? on

\ true unless in corrupted
\ set to true, its normal state.

\ create 2 buffers with 1 length byte and space for 80 characters.
create RBUFFER 0 c, 80 allot
create TRUBBER 0 c, 80 allot

\ Enable or disable transmitter buffer empty interrupts. Keep
both

\ receiver interrupts enabled. Assume that DLAB is zero.

: TX-INTS-ON 7 3F9 pc!; \ enable tx int (and receiver
int)

: TX-INTS-OFF 5 3F9 pc! ; \ disable tx int only

BACKGROUND: PROCESS-MESSAGE (--)

begin
<process-message> \ process message, leave answer
terminated
\ by LF in TBUFFER. Leave zero if no
answer.

tbufferc@ 0 >
if
tbuffer 1+ c@

\ message length > 0?
\ there really is a message to send
\ get first character

3F8 pc! \ put it in transmitter buffer
1 tbuffer ! \ mark first character as having
been sent
tx-ints-on \ need to know when character has
been sent
then
sleep \ finished till next message, pass
control on
again
: CHAR-IN (--) \ word to processes received
characters.
serial2 \ Use BIOS, get character in bits
0to6
\ and bit 15 set if error occured.
dup 8000 and \ isolate error bit from top copy
0= \ any error?
if \ this is a valid character
7f and \ get 7 bit character
use-char? @ \ how have we done so far?
if \ we are OK so far this message
dup \ make two copies of character

rbuffer 1 over +!
space in buffer
dupc@ +c!

\ advance ptr to next empty

\ get address and put character

Pagel74 Real Time Forth
there
LF = \ did we just get line feed?
if \ end of message
process-message wake \ start process-message to deal
with it
then
else \ we got a good character in a bad
message
LF = \ignore unless line feed

if
true use-char? !
next message
then
then
else
drop
false use-char? !
characters until next LF
0 rbuffer c!
then

: CHAR-OUT (--)
characters.
1 tbuffer +!
buffer
tbuffer dup c@ + c@
dup
3F8 pc!
LF =
message?
if tx-ints-off then
when it is sent if so

: COMS-ERR (--)
false use_char? !
until
next LF O rbuffer c!

ISR: COMS (--)
handle IRQ4

3FA pc@
identification register

should be

case

7 of coms-err endof
interrupt

5 of char-in endof
interrupt

3 of char-out endof
empty interrupt

drop

endcase
ISR;

\ line feed => set afresh with

\ there was an error
\ lose character
\ mark so we use no

\ empty the receive buffer

\ word to processes transmitting
\ move onto next character in tranmit
\ get next character to transmit
\ need two copies
\ send one
\ was that the last character of

\ we don't need to know

\ word to processes UART error.
\ mark not to use any characters

\ empty the receive buffer

\ ISR that will be installed to
\ read the interrupt
\ (assume that DLAB is zero), bit O
\ set to show a coms interrupt occurred
\1 11 =received line status
\'10 1 = received data available
\ 0 11 = tx holding register

\ ignore - shouldn't be anything else!

Moving data very fast - direct memory access.

The mostcommonform of I/O data transfer isimple programmed/O in which thedata
transfer isdone entirelyunder program control.Data isread in from the source into the
processor anthen from theprocessor written out to the final destination. Occasiorta
will need to be handled dast thatthere will not be timeavailable forthe into-proccess-and-

Chapter 22: Interfacing with the basicPC input/output resources Pagel75

then-straight-out-again overhea#or these situations Direct Memory Access (DMA) enables
data to bemoved directly from the source to the destination with@aing through the
processor at all. Special hardwaraérd athe sourcahatwishes tomove data tomemory
fast or at the device which needs to receive data from memory so fast. This harcwadeds

to handle the special DMA signals. During DMA thesses are shard@tween the DMA
action and the normal processor action, in the original P@thémum DMA rate was 476
kilobytesper secondwhich requirechalf of thebus capacityand so slows process throughput
down to one half of the normal value.

A special controller outside the processangeded t@ontrol the DMA process. It is set up to
know wheredata is tacomefrom, where it is to go to andow much of it is to béransferred.
The data source informs the DMA controNenen ithas a byte ready. As®on as possible the
DMA controller takes control of theusfrom the processor, signals the sourcpubthe data
on the bus and the destination device to reatt thenreturns bugontrol to the processor and
waits forthe next byte to be ready. Thexe four DMA controllergcalled channels) in the
PC andXT, therearemore in theAT. Thedevicethatcontains thes®ur channels controllers
is referred to a§HE DMA controller. Some channelare used by the system, channel O
(which normallyhasthe highest priority in thevent of morghanone channel wanting the bus
simultaneously) is used for system refresh. Only touch it if you are feeling suicidal! Channel 1
normally hasthe next highespriority. Channel 2, with the next priority, is used by thek
controller normally. Channel 4 normally has the lowest priority.

In order to do transferdsetween a device witbMA capability andmemory, a chann¢hat is
not already in use must be found dhdtchannel's controller initialized by providing it with a
number of pieces of information. The DMA controller uses processor inpuudipgt ports O
to OF hex, channelsre programmed by writing information the thgserts, statusnformation

is available by reading thegorts (not all inputports are actually used)initialization takes
several steps, typically as follows.

1 Selecting whether thiwill be aread frommemory or awrite to memoryoperation,
and,

2 defining whethelbytes will betransferredsingly or in groups(single byte orburst
mode), and,

3 specifying the total number of bytes to transfer, and,

4 defining the first memory address to be involved in the transfer, and finally,

5 enabling the channel to start as soon as the source requests it to.

To perform these initializatiosteps requires writing to registdrside the DMA controller.
This must be done with care so as not to upset any of the regjistdie BIOS setip. DMA

is used for refreshinthe dynamic memory, and anythitigat changes how or how frequently
this is performed is very dangerousléed. This can bedoneby, for exampleattempting
memory to memonDMA using channel Owhich is dedicated to memonmgfresh. A full
description of all the registers and the significance of their individitalvill not be covered,
only what is needed to bring another channel inté.use

To select whether thiwill be aread frommemory or awrite to memoryoperation, and, to
define whethebytes will betransferredsingly or ingroups(single byte otburst mode), one
writes to the mode register (at processor port OB hex). Bits 0 and 1 select the @hiaoré,

4 For a full description see, for example, "Interfacing tolB Personal Computer" byewis
C Eggebrecht, published by Howard W Sams & Co.

Pagel76 Real Time Forth

bit 1=0selects channel zero, B#0, bitl=1channel 1 etc.) anbits 2 and 3he mode(if bit 3

is zero and bit 2 isne awrite mode isselected,; ibit 3 isoneand bit 2 zerdhen areadmode

is selected). Bit 4 is used to select (1) or desélyc¢he auto-initialization mode. lifis mode

when thecurrent count register reaches zero and a terminal count signal is issued from the
controller, the current address and current count registergloaded with the values in the
base address and count registers. This allbscontroller to automatically proces®re

DMA requests. Bit 5 selects whether addrassincremented1) or decremented0). The

final two bits, 6 and 7select whether single, bloclemand orcascadanode oftransfer is to

be used. Focompatibility with thememoryrefresh requirementsnly singletransfermode

may be selected (bit 7 set to 0 and bit 6 set to 1).

To initialize the value in the channel address and count registersjxXtaanbit valueshave to

be written into special registers. The starting addreisedDMA operation is loaded into the
base address register, andl automaticallyalso beloaded into thecurrent address register.

As the operation proceeds the address in the current address regilstbe steadily
incremented or decremented (depending on the state of bit 5 of the mode register). The number
of bytes to transfer is writteimto the base count register, and also automatically into the
current count register. The current count register gets updated jirgt B8A procesgoes

on as the current address register does. Reddesgcurrent registerwill tell how the
operation is proceeding. The sixteen sixtbitrregisters (four for eacthannel)are accessed
through the eight ports O to 8. This obviously requires some further coding. Each channel uses
two ports only, the lower for addresses #&melupper for countsChannel 0 useggorts 0 and 1,
channel Iports 2 and 3 and so on. Writingtte lowerport forthe channel will load thbase
address register and the current register, reading frotowtee port will read the contents of

the current address register. Writing to tipger porwill write to thebase count register and

the current count register. Reading from the upper port will read the current count register. To
enter a sixteetit number through &ingle 8bit port, it must beentered as two bytes and
therefore some way must be found to indicate which byte is which. Writjpgrt®Chexwill

set an internal flip-flop sthatthe next byte entered or requested from any ofli#tia transfer
portswill be the lowerbyte. Note nactual data isnvolved in settinghis flip-flop as the act

of accessing processor output portl& is enough. Reading or writing atigtafrom any of

the eight data ports O to 8 will reset this flip-flop.

To enable the channel to respond to DMA requests, the individual channel has to be masked on.
This isdone by writing toprocessor port port hex, bits 0 andggdecify the channel arult 2

sets or clears the mask bit. A value of 05 hex would mask off channel 1, a value of 04 hex
would mask channel 3 on.

After thesestepshave been don&)MA can be used by an input or outpigvice with the
necessary hardware capability. This hardware haspeement thefull handshakethat is
required to control data flow on the bus. For example assume that the relevant DMA controller
is set up as described abovestgpport DMA inputfrom an input source. The inpdévice
must have the byte afataready toput onthe busand then request a DM#ansfer bytaking
the DMA requestine for that channel high. The DMA controllewill arrangewith the
processor to release thas to it asoon as possibkend,whenthis hashappened, will indicate
to the inputdevicethat it is to putthe data onthe bus bytaking the relevant DACK (DMA
acknowledge) line low.The controller manages thes in all respectsther than providing the
data (such aproviding the address thiata is to bevritten to, managing the read/writine
etc.). The inputdevicemusthold thedata orthebusuntil told it is no longeneeded byaking
the relevant DACKine high. The inputdevicemust be tri-stated at aiimes it is not putting
data onthe bus. Using DMA to anoutputdevice issimilar exceptthatthe meaning of the
DACK line changes talataavailable orbus. The datashould be taken on the risimglge of
DACK. See the reference in footnote 4 of tbigapter for example circuits t@chieve this
handshaking.

Chapter 23: An examplewith the lot to go Pagel77

Chapter 23

An example with the lot to go

This chapter iglevoted to an examptiat useghe techniques developed & in this book,
especially multi-tasking anohterrupts. It is naturallyconcerned with real-time processing.
The example isntended to beun and so cannly use the resources of tseandard®C. For
this reason thenly input device used is the keyboamdd theonly outputdevices usedre the
internal speaker and the screen. With these limitationgrilyaeal possibility is agame in
which sometask has to bechievedagainst the clock. As games go tbise isnot very
interesting or absorbindput then it is intended to be an example onlyhe code is in thdile
CH23CODE.SEQ.

The game is to type tHetters of the alphabet in reverse ordéthin a certaintime period
(approximately 17 seconds). To make it more difficultl#teers you type do not go on the
screen directly, theyare held in abuffer. Every 3seconds (approximately) the buffer is
emptied onto the screen in reveosder. If the letterappear orthe screen in the wrong order,
you fail. If you do notomplete thalphabet in théime allowed, youfail. To succeed, you
should (say) type FEDCBA in tH@st three seconds, theamhen theyare put orthe screen in
reverse order as ABCDEF, type LKJIHG. succeeding three second timséots, type
RQPONM, XWVUTS, and finally ZY. Tdelp you know how time is going, a toneersitted
starting at dow frequencyand rising as théme for a bufferdump drawsear. Toget each
group within the three second time slot is not éasy.

The internal design.

In order to beair we mustknow exactlywhen a key igpressed so we can process it without
delay. The normal word KE¥hat wehave used waitkr a key, which is nosuitable in this
situation where there are other things to be donesisiswait for keystrokes. Even KEY? is
not really suitable as weill need toput it in apolling loop and could bbusy elsewhere so
that it might be some time before we notice the keystrokeor immediate response we
substitute oupwn interrupt service routindSR) forthe one normallysed by thé8IOS. Our
routine collects thecancode (the number of the kélyat hasheenpressed, not the same as its
ASCII code). A differentode is generated when a keypigessed tahat generated when it is
released. Ware only interested in kegepressions, whicbur ISR just puts it in aariable.
Before finishingour ISRwakes up dask toconvert thescancode toits ASCII equivalent and

1 | can'tbeatthis game as type with two fingers, a thumiand atongue on thespacebar. |
also hate being beaten. If you are like aieat be creative. Change the success criterion iffifthe
last line of(empty-buffer) from Z to ararlier letter, like L oeven F (which will onlyrequireyou to
type one letter every three seconds!).

Pagel78 Real Time Forth

add it onto the keystrokes vaee accumulating ready ftine next reverse order dump onto the
screen.

There are actually four BACKGROUNDypetasks andhe foreground or masteask aswell

as the new ISR. One of these backgrauasits, TASK1 irthe listing,has justoeen described.
The only extra note isthat TASK1 only runs once each time it is wakened, although it is
naturally an endless task it contains a SLEEP statement.

A second backgrounigisk, TASK2 inthe listing, flushes the keystrokes accumulated onto the
screen in reverse order. Actually, two buffer®e used. This is so we can hdding
keystrokes onto one while we empty the other. Before TASK3tzahtoempty thebuffer we
have just been adding onto, it must switch the other buffer (the last one we empitied)itsis

the new buffer to be added onto. TASK2 also only runs once each time it is woken.

The third task, TASK3 inthe listing, runs all the time. It continually checks the two
downcounter timers to see if it is time for a buffer dump yet or if the player has runtmoe of
It wakes the dump task (TASKZ2) if the former is true and sets a flag if the latter is true.

The lastbackgroundtask, TASK4 inthe listing, alsoruns contiuously. It modifies the
frequency of the sound from the speakeaking the frequency higher as the time left in the
REVERSE-TIMER decreases to zero.

The main word, PLAY-GAME in the listindirst initializes all timers and variables. Then it
ensureghat all tasks are itheir correct sleep/wakstate (tasks are put the sleepstatewhen
theyarecompiled,but wemay want taun PLAY-GAME severatimes without re-compiling).
Since we must be able teturn to normal keyboard behaviourthé end of the game, the
existing interrupt vector fahe keyboard interrupt (interrupt 9) is saved befmrenew vector
is installed. Multi-tasking is then turned on aawlay we go. Thenaintaskthenjust watches
until the variableRESULT becomes non-zero, meanititat the playerhaseither won orost.

It re-installs the original interrupt vectawrns things off and therprints an appropriate
message.

A few points of detail.

In order torun, multi-tasking, highlevel interrupts anddlowncounter codenust have already
been loadedThe wordNEEDS is aconvenient way of ensurirthat this is so. Théle name
following NEEDS is checked for, and it is loaded if it has not already been loaded.

The keyboard of the PC generates a signal on IRQ1 whenever a key is pressed or released. The
IRQL1 line triggers interrupt 9. A scarode which identifies the keand whether ihasbeen

pressed or released is available by reading ipprit96. The scarcode is the number of the

key in thekeyboardarray,with bit 7 clear if this was a press, or set if this wdsewarelease.

The arrangement of the keys on the keyboard, and thereforedhrinumber, is ndhe same

as their ASCII value. Theode given igor a 102key keyboard. The alphabetiey with the
lowestscancode is Qand the alphabetikey with the highesscancode is M. The values of

the scan codes from these keys and the array which is used to establish the relattnship

scan code and ASCII code could need to be altered to suit your keyboard.

Once thenterrupt isbeing processed, the keyboamterrupt generation hardwaneeds to be
reset. This iglone bypulsing bit 7 of outpuport 97. Asthe othelbits of output port 97 are
nothing to do with the keyboard and should not be alteredyust be able to take a 'snapshot’
of the current outputs from port 97. We are able to obtain thisdamg inpuport 97which

is just connected to the output lines from output port 97.

Chapter 23: An examplewith the lot to go Pagel79

The speaker of the PC is driven from the zero coutput of a physicadlowncounter. This is

fed with thebasictiming signal of thePC, 1.19318MMhz, andloaded with an initial value.

Every time theinput pulses, the contents of the couraee decreased by one. When the
contents of the counter reach zero, the merputline is pulsedand the counter is reloaded

with the initial value again. By altering this initial value, thge atwhich the counter reaches

zero, and hence the frequency of the drive to the speaker, can be altered. The highest frequency
is obtained by loading an initial value of 1 (giving a frequenci.@®3180 Mhzwhich the

speaker cannot of course handle) and the lowest by lo&&iR§ hex which gives a frequency

of about 18.2 Hz.

We load anew initial value by writing182 to output port 67pllowing this with the initial
value we wish to use written tutput port 66. The initial value is a 16 bit quantity, and so
has to be written itwo bytes. It is writtedow bytefirst. Whenever a nevinitial value is
loaded, it is immediately placed in the downcounter whRigrts tocountdown from that
value. If we were forever loadingew initial values we could get in the situatiohat the
counter never hatime to get down taero before aewinitial value wadoaded. If thiswere
to happen, it would neveeach zero, the zemutputline would never be flaggednd there
would be no sound atll. This iswhy we onlybother to load aew frequency ithe time in
REVERSE-TIMER haghanged sincéasttime it looked. Remembehat, since two of the
tasks arasnormally asleeponly being woken up wherequired to do something, and the other
tasks are very quick, the frequency determining task is run thousands of time a second.

Looking at thestructureused forthe backgroundasks,you will noticethat it consists of a
normal colon definition which performs the function required which is then incorporated into a
background definition whiclconsists of the colon definitiopause and almostothing else.
The reason for this structuressnple: the debuggean debug aolon definition,but it cannot
debug a background task. Once the code is known to be good one can, of coursesdise the
to movethe body of the colon definition into the background definitidinis will say a(very)
little time everytime the backgrourtdsk is run. As it is myntention that the readeishould
experiment with theource, | have left things #seyare. Thetime saved would be very slight
anyway. Perhapgou feelthat agame is not complete unless thersasne animation on the
screen. Justwrite anothertask and add iinto the skeleton.Perhaps animatte characters
falling out of the buffer and into place on the scredimat should provide another distraction
for the user to have to cope with!

The listing.

\ An example of interrupt driven multi-tasking in the form of a
game.

\ Frrekkkkeeeekk* |f not already loaded
kkkkkkkkkkkkkkkhkhkkkkkhkhk

NEEDS HLINT.SEQ \ load high level interrupt
handler *

NEEDS MULTASK.SEQ \ load multi-tasker *

NEEDS DOWNCNTR.SEQ \ load down counter code *
l***

*

CREATE ARRAY1 11 allot \'1 count byte + up to 10
keystrokes

CREATE ARRAY2 11 allot \'1 count byte + up to 10
keystrokes

VARIABLE ADDARRAY \ points to array we are currently

adding onto

Pagel80 Real Time Forth

VARIABLE DUMPARRAY \ points to array we are dumping in
reverse order

VARIABLE NEWKEY \ where the ISR puts the scan
code it receives

VARIABLE LASTKEY \ the last ASCII key we got ("A"-
1 initially)

VARIABLE RESULT \ 0= no result, 1= wrong, 2= time
out, 3= done!

VARIABLE LAST-FREQ \ the last frequency determining byte
used

2VARIABLE OLD-VECTOR \ to save the original 09 interrupt

vector

DOWN-COUNTER REVERSE-TIMER \ times when to swap and flush buffers
DOWN-COUNTER OVERALL-TIMER \ times if maximum time used up

50 CONSTANT REVERSE-TIME \ count between reversals

300 CONSTANT OVERALL-TIME \ count defining overall time

\ Frkkkkkkkkr SCAN CODE TO ASCII CONVERSION INFORMATION
*kkkkkkkkkhkik

\ Note - could need to be changed for other keyboards

\

kkhkkkkkkkkkkkkx
kkkkkkkkkkhkk

16 constant Q \ scan code for Q on 102 key keyboard
50 constant M \ scan code for M on 102 key keyboard
create SCODES " QWERTYUIOPO0O00ASDFGHJKL0O0000ZXCVBNM"

\

kkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkx
kkkkkkkkkkhkk

\ kkkkkkkkkkkkkkkkkkkkkkkkkkk TAS Kl
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkk

\ Picks up scan code left by our keyboard ISR, converts it to
ASCIl and

\ adds it onto the end of the current add array.

\

kkhkkkkkkkkkhkkkx
kkkkkkkkkkhkk

: (PROCESS-KEY) (--) \ get and add char onto end of
current buffer
newkey @ \ get keystroke
dup Q M between \'in the range from Q to M?
if Q - scodes + 1+ c@ \ yes, look up key (non letters
all 0)
else drop ASCII 0 \ if out of range setto O
then
pause
addarray @ dup c@ + 1+ \ adr of byte on end of array
c!' 1 addarray @ +! \ store char and increment count

BACKGROUND: PROCESS-KEY \ get and add char onto current buffer

begin
(process-key) \ process the keystroke we were
woken to do
stop \ sleep until another one is ready
again

\ kkkkkkkkkkkkkkkkkkkkkkkkkkhkk TAS K2
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

\ Switch the buffers over, flush the new dump buffer in reverse
\ order. Check for sequence error, set result to 1 if one found.
\

kkhkkkkkkhkkkkkkx
kkkkkkkkkkkk

Chapter 23: An examplewith the lot to go Pagel81

: (EMPTY-BUFFER) (--) \ Switch buffers, empty dumparray
addarray @ dumparray @ \ get array addresses
addarray ! dumparray ! \ restore them in reverse order
pause
dumparray @ dup c@ tuck + \ count and adr of last char
swap 0
?do \ set up a loop if there are any to

output

dup c@ dup emit \ get and print one
dup dup lastkey @ - 1 <> \ not one more than last
key printed?
if 1 result ! then \ if so mark they got it
wrong
lastkey ! \ and update last key received
ASCII Z =if 3result | then \thata Z? If so they done it!
1- \ now, point to previous one
pause
loop \ loop to do all
0 swap c! \ zero count byte

BACKGROUND: EMPTY-BUFFER

begin
(empty-buffer) \ do it once
stop \ wait until someone wakes us up to do
it again
again

\ kkkkkkkkkkkkkkkkkkkkkkkkkkk TAS K3
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkk

\ If time to flush the current add buffer wake up the task to do
it

\ Check if the game is over and set flag result to 2 if it is.

\

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkx
kkkkkkkkkkhkk

: (TIME-CHECK)

reverse-timer @ 0 <= \ time to reverse the current
buffer?
if empty-buffer wake \ yep, wake up the task to flush
it
reverse-time reverse-timer ! \ and reset timer
then overall-timer @ 0 <= \ game over?

if 2 result ! then \ mark it so

BACKGROUND: TIME-CHECK
begin
(time-check) pause
again

\ kkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkk Task 4
kk

\ Output a sound to show how long to go until the next buffer
flush
\

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkhkkkx
kkkkkkkkkkhkk

: SOUND-ON
97 pc@ 3 or 97 pc! \ set port 97 bits 0 & 1, don't alter
others

: SOUND-OFF

Pagel82 Real Time Forth

97 pc@ 252 and 97 pc! \ clear port 97 bitsO & 1, leave
other bits

: SET-FREQUENCY (n--)
dup 2 <if drop 2 then O \ avoid too high frequencies
182 67 pc! 66 pc! 66 pc! \ send string to set frequency

: (MAKE-SOUND)

reverse-timer @ \ get new frequency from reverse
timer

last-freq @ over <> \ not the same as last time?

if dup last-freq ! \ yes, update last frequency sent
out

set-frequency \ and set frequency

else drop \ no, don't re-load (sound is off

during loading)

then

BACKGROUND: MAKE-SOUND
begin
(make-sound) pause
again

\ kkkkkkkkkkkkkkkkkkkkkkkkkkk 1116 IESFQ
kkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkk

\ Activated by any key movement, only uses key presses not
releases.

\ Puts scan code in NEWKEY and wakes the routine to process the
key.

\ Remember the ISR compiler automatically handles re-setting the
\ interrupt priority controller.

\

kkhkkkkkkkkkkkkx
kkkkkkkkkkhkk

ISR: GET-SCAN
96 pc@ \ read scan code from the keyboard
97 pc@ dup \ read keyboard status, make copy
128 or 97 pc! 97 pc! \ form and send a reset pulse
dup 128 < \ scan code a key press code?
if newkey ! \ if so put it in newkey
process-key wake \ and wake up routine to deal
with it
else drop \ if a key release we don't want
it
then
ISR;

\MHMMMMHMMMMH*THEMASTERROU“NE
kkkkkkkkkkkkkkkkkkkkkkkhkhkkkk

\ Performs initialization, installs new ISR, and waits for result
\ variable to change from 0. When it does, re-installs original
ISR

\ turns things off and prints an appropriate message.

\

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkhkkkx
kkkkkkkkkkhkk

: PLAY-GAME
cls \ initialize
O arrayl c! O array?2 c! \ .. arrays to empty
0 newkey ! O result ! \ .. to no key and no result
64 lastkey ! \ .. lastkey to one less than ASCII A
reverse-time reverse-timer ! \ .. reversal timer

overall-time overall-timer ! \ .. overall timer

Chapter 23: An examplewith the lot to go Pagel83

0 last-freq ! \ .. last frequency set out
arrayl addarray ! \ .. and which array ..
array2 dumparray ! \ ..iswhich
10 10 at ." The alphabet is:- " \ prepare to show results
9 ?interrupt old-vector 2!
['1 get-scan 9 install-interrupt \ set up to use our own key
ISR
process-key sleep \ ensure that these two
routines..

empty-buffer sleep \ .. sleep until we need them
time-check wake \ wake time keeping task
sound-on make-sound wake \ and sound generation
multi \ then turn multi-tasking on
begin

pause \ give every one else a go

result @ 0 > \ wait until we get a result
until
old-vector 2@ \ get normal key routine address
9 re-install-interrupt \ return to normal key ISR
single \ turn off multi-tasking
sound-off \ and sound
result @ \ now how did they do?
10 20 at \ put cursor ready for message
case

3 of ." Done! In only "
overall-time reverse-time @ - .
S ticks!"
endof
." Oh dear, do try again, you " \ print if anything other
than case 3
2 of ." ran out of time!" endof
1 of ." got the order wrong!" endof
endcase crlf

Pagel84 Real Time Forth

Chapter 24

Turnkey, Meta and Target Compiling

Forth consists of a series @mpilers each of whicadds extracode ofvarious types onto the
existing program. The programvhen finishedstill contains all the compilerthat were used
to produceit. This differs from other programming environments in whimhe compiler
produces a completelgeparate prograrwhich generally contains no compiler afl. Of
course, this latter process,féd the sourceode of the compiler, will producereew copy of
the compiler itself. This process of generatingew versions of oneself is called meta
compilation. The process of producing a stand-alone prognamdoes not include the
compiler(s) is calledarget compilation. Up untihow in this book we havenly considered
FPC inthe 'normalForth mode ofadding applications otop of the existing code. It can also
produce larger or smaller versions of itqéifat iswith or without certain special features) or
stand alone-prograntlat contain nothing oFFPC except those featurébat the application
requires to perform its allottedsk. This chapteronsiders whyandhow one might dany of
these things.

Why do any of the above?

Many programs are runfaw times on the machine on which they were developedgriat
demandsare placed on them inespect ofhow much memory they mayse, or whabther
programsthey must co-exist with. Thiact thatthey still include the headerdevelopment
tools and editothatwere neededuring their evolution is of no consequencealht Forthose
programs all thamight be desired over and abowvbat hasbeen described dar is thatthey
could be saved in a form that is immediately readyito NoloadingFPCand then loading in
the application. A snap-shot of@mpleteprogram can be saved with the word FSAVE,
which onlyrequires that &ile name be given under which ¢ave it all. You canmake it your
application program self-starting by assigning your top word as BOOTexBarple, suppose
thatyou wish to produce a program callbtly-PROG.EXE tostart uprunning the endless
word MY-FUNCTION. Youwould loadall the sourcecode ontop of FPC so that MY-
FUNCTION was ready to run and then enter

"MY-FUNCTION IS BOOT FSAVE MY-PROG.EXE

at the terminal. A file calledMY-PROG.EXE would be saved on theurrent drive and
entering MY-PROG from DOS would load and start your application running.

If you wanted a prograrthat automatically ran yoiterminating) word MY-PROG1 artthen
fell through to the normdFPCouter interpreter, yowould have to adiY-PROG1 onto the

Chapter 24: Turnkey, Meta and Target Compiling Pagel85

normal boot sequencelhis could bedone by adding a new definitidoefore the normal boot
word START as in

: MY-BOOT MY-PROG1 START ;
"MY-BOOT IS BOOT FSAVE MY-PROG1.EXE

which would produce an automatically running program called MY-PROG1.EXE.

However, usually you do not wish to save what is gmwhg to beused. Memory may be
limited on the machine thprogram is to run onyou may wish to se#hat no-onehas the
ability to get into the program tmodify it or you mayevenwish to run it on adifferent
machine. We will now look at the various ways available to meet these requirements.

Making a turnkey program.

A turnkey program i®ne whichloads and thestarts up to run aord automaticallyjust as
described above. However, it does not sal/éhe system. Headeasenot saved, sthat no
interpretation could be possible in the turnkey program if your wasl notendless. Some
initialization is done, a single file may be opened by followiogr turnkey program with the
file name. The combination BWWORD can be used to pick uporeparameters to HERE for
inspection if requiredyut you will have to write code to handle them explicitly (yaannot try
to execute them as no headexsst so you canfind them!). If yourtop word is noendless,
your program must handle the chore of returning to DOS after it has finished.

The word to produce a turnkey prograsn naturallyenough,TURNKEY. Firstyou install
your word as the word to be done when you start, such as

'MY-FUNCTION IS BOOT
then turnkey followed by the file name of your choice, such as
TURNKEY MYAPP.EXE

will result in afile called MYAPP.EXE being stored on theurrent disk. A full pathmay be
added to the file name if you wish. Or2948 bytes of stack spaceabBocated forthe two
stacks, but this should be plenty for most uses.

Meta Compiling

Metacompiling is theprocess byvhich a version oForth (the parent) producesiaw version

of Forth (thechild) which may have more or lesatures than the parent version. The new
version cannot be built onto the old, it must be created as a totally separigtén a region of
memory ofits own and then savedWhen loadednd run it isquite independent of thearent
version that 'gave it life'.

While it is not necessary tknow how the meta compilevorks in order to usé, a general
understanding will make therocesseemless mysterious, and providegaod introduction to
the following section on target compiling. Meta compiling can takestejos, each afhich is
done from DOS, not from inside FPC.

Pagel86 Real Time Forth

Forth is, largelywritten in Forth. However theprocessor in the P@nly understands its own
native assembly language. The musticelements of th&orth language therefolave to be
written in assembler, theest canthen be written inForth usingthesebasicelements. This
mostbasiccollection of Forth words isknown as the kernkl As more and more powerful
elementsaaregenerated they iturn can baised innewextensions. In this way Forth grows to
become ever more powerful.

Actually generating aew generation of-orth involves morethan might atfirst be imagined.

A newversion of the kerndlas to be producedAlthough the controbtructures, andnaybe

the disk read facilities, of the parent may be used, all addrezsgiiedmust be addresses in
the childForth. Thisnew kernel iouilt in thememory reservetbr the newversion, and any
references within it must be to itself, not the to the version okéheel in theparent. The
kernelmust have the ability to read andmpile a disk file. It is a small compldterth, able

to compile extensions onitself. It no longemeeds thgparent and is saved $oat it can be
loaded andun on itsown. To addeven mordeatures to this child, it isxtended by opening
and compiling source file after source file, each addorge neweature(s)which becomepart

of thenewForth. Finally thisnew completeversion is saved, ready to be bought back and run
as required. In time it may become the parent of an even more powerful or customised Forth.

The meta compiler loads @op of the normaFPCand uses the normal pardife processing
and high level compilatiorwords, but addsew low levelsearch andompile words sdhat
new definitions are added to the child bdgjt in thetarget space. THew levelwords used
by those high levelvords during metacompilation search the child's vocabularies, and add
things to the currergnd of the child'slictionary. During metacompilation theaeeinevitably

a number of forward references (situatioisenyou have to reference wordsat have not
been compiled in the child yethd amethodhas to berovided to automatically resolve these.
All these additions andlterations arenade to theparent and it is thenodified words in the
parent thatontrol thewhole process. Iill be well on in the child generatigorocess that it
acquires the capability to process files itself, awmen therthat will only be to load from a
file.

In order to meta compile a new Forth kernel or nucleus, younged to maksuch changes as
arerequired to the source files of the kertieht will achieve the modifications you require.

This is then compiled from DOS by typing META This file expects to process the fdilers
KERNEL1.SEQ through KERNEL4.SEQ.Making changes to the kernel (successfully)
requires thatyou have a very goo#nowledge of how everything ifPC works, since
everything depends on the kernel. Even the most innocuous looking changes could have the
strangest repercussions. Itis not to be lightly undertaken. The file produced will be saved with
the nameKERNEL.COM, so it is agood idea tosave a copy of the old kernel in case
everything does not go as you please andngmd toreturn tothe old version. Otourse, if

you do not alter the kernel, there is no point in performing this step.

1 There argrocessors, known as Forth engirtestuse basid-orth primitives as their native
‘assemblylanguage. These, of course, need no kerrfabme extension words for conventional
processors are written in assembler for the upmost in speed. Both of thesedfaetilshat do not
invalidate the general discussion in this section.

Chapter 24: Turnkey, Meta and Target Compiling Pagel87

Once the kernel is as you wighyou then use it to load extension filestkat it grows into its
final form. The filethat defines the extension to théC kernel isSFPC.SEQ(assuming you
use the normabatchfile EXTEND.BAT). You copy this and themodify the copy sdhat it
defines the final form yowant. If you want all the features of the distribution version of FPC
plus extensions you have creatgdst addyoue extensions at the end of g of files to
FLOAD in that file. If you are trying to produce a strippmivn of FPC,removewhat you do

not want and then add the sped&dtures of your application. But be carekdme of the
files later inthe list nFPC.SEQequire files earlier in thist. If youwish you carmake this
new version auto start in exactly the same way as you would for a turnkey version.

The file EXTEND.BAT is simple, normally being:
KERNEL - FLOAD FPC.SEQ SAVE-EXE FPC.EXE BYE

which loads the program KERNEL.COM and runs it. The rest of the line is passédeasfa
Forth to be processed. It loadBC.SEQwhich actually consists of a list dile to be loaded
(remember that FLOADs can be nested), and then saves the resulting langerapdwerful
copy under the name specifiége? C.EXE inthe example giveabove. The 'normal’ version of
FPC.SEQ is shown below.

\ FPC.SEQ Extend file for KERNEL.COM
CFGHNDL IHCB FPC.CFG \ Change configuration file name

FLOAD TIMER.SEQ \ Timing and measurement words.
FLOAD TIMESTUF.SEQ \ More timing words

OCOMPILER \ Reset the compiled line counter
WARNING OFF \ Don't warn me about any re-

definitions.

.(Loading extensions to KERNEL.COM, with all HEADERS PRESENT.)
CR

\ What follows is the file load commands required to add all of

the

\ extensions to KERNEL.COM to make FPC.EXE. Some may not be needed
\ and may be commented out. These files are marked at the right

edge

\ of the column for easy identification.

FLOAD COMMENT.SEQ .(.) \Allow multi-line comments in source.

FLOAD UTILS.SEQ .(.) \ Some low level utilities.
FLOAD BRACES.SEQ .(.) \Comment tool using { }
OPTIONAL

FLOAD VOCABS.SEQ .(.) \Forths ONLY ALSO vocabulary
structure.

FLOAD BEHEAD.SEQ .(.) A utility to remove some heads from
FPC

HWORDS \ DON'T Throw away heads
FLOAD DEFERS.SEQ .(.) \ Adds DEFERS and UNDEFERS
FLOAD BUFSET.SEQ .(.) \ Automatically adjust read
buffer size.

FLOAD DECOM.SEQ .(.) \ Decompiler,
OPTIONAL

FLOAD DUMP.SEQ .(.) \ Dump utility,

Pagel88

Real Time Forth

OPTIONAL

FLOAD CASE.SEQ
FLOAD PASM.SEQ
8086/8088

FLOAD LOADEXE.SEQ

mechanism

FLOAD SAVEEXE.SEQ

mechanism

.(.) \ A CASE utility needed by PASM.SEQ
.(.) \ Prefix/Postfix assembler for

.(.) \ The load part of the SAVE-EXE
.(.) \ The save part of the SAVE-EXE

\ Now we can save the system back to disk at any time.

FLOAD DBGFIX.SEQ
\ Used by DEBUG
FLOAD DEBUG.SEQ

OPTIONAL

FLOAD PATHSET.SEQ

OPTIONAL

\ FLOAD MULTASK.SEQ
FLOAD HYPER.SEQ
FLOAD SEARCH.SEQ
FLOAD LARGEST.SEQ
FLOAD WORDS.SEQ
FLOAD IBMCURSR.SEQ
FLOAD MONOCROM.SEQ
FLOAD COLOR.SEQ

OPTIONAL

FLOAD COLORIZE.SEQ
FLOAD BOXTEXT.SEQ
FLOAD SAVESCR.SEQ

CAPS ON

FLOAD qvideo.seq
OPTIONAL
FLOAD pertype.seq

TYPE
FLOAD hello.seq
FLOAD ledit.seq
FLOAD view.seq
FLOAD status.seq
OPTIONAL
FLOAD fl.seq
FLOAD wfl.seq
FLOAD needs.seq
needed files.
FLOAD filstat.seq
OPTIONAL
FLOAD environ.seq
FLOAD exec.seq
etc)
FLOAD menus.seq
OPTIONAL
FLOAD print.seq
OPTIONAL

true #if
editor?

FLOAD editstuf.seq
overlay

.(.) \ Change inline NEXT to JMP NEXT.
.(.) \'High level debugger,
.(.) \Includes paths on files,

.(.) \ Multi-tasking, OPTIONAL
.(.) VA simple hyper text tool
.(.) \' String comparison & search stuff

\ Find the largest word in a list
.(.) \WORDS,

\ IBM cursor shape control words

.) \ Monochrome support, always needed.
.(.) \'Support for Color

)
()
OPTIONAL
()
(
.(.) \'Leon Dent's COLORIZER OPTIONAL

.(.) \Ability to draw boxes
.(.) \ Screen save and restore.

.(.) \'speed up screen display
.(.) \Imbedded display attributes in

.(.) \ Cold start init & introduction.
.(.) \'Line editor utility

.(.) \ Source VIEWing words OPTIONAL
.(.) \ Status line,

.(.) \File selection.

.(.) \WINDOW File selection OPTIONAL

.(.) \Allow optional loading of
.(.) \ Display file loaded or open

.(.) \ Environment words.
.(.) \DOS interface (things like DIR,COPY

.(.) \'Menu driver for FPC

.(.) \ Print to a file words.

\ Do we want to load the SED
\ If not change this true to false

.(.) \Allow loading editor NOT as an

Chapter 24: Turnkey, Meta and Target Compiling Pagel89

FLOAD sedcode.seq .(.) \ SED assembly definitions.
FLOAD seditor.seq .(.) \ The editor SED. Written by Tom
Zimmer.

FLOAD sedit2.seq .(.) \ The second part of the editor
body.

comment:

If you DO NOT load these it will save you about 28 thousand bytes

in the executable file. Some of these can be individually removed
without adversely effecting SED's operation. Place a \ symbol

before any of the following files you don't want to load. Any

functions not loaded will generate a NOT AVAILABLE message if you
try to use them.

comment;
FLOAD prtctrl.seq .(.) \ Printer control, generic
OPTIONAL
FLOAD printing.seq .(.) \ Printing part of SED. Alt-P
OPTIONAL
FLOAD PROPRINT.SEQ .(.) \IBM PROPRINTER, use with PRTCTRL
OPTIONAL
FLOAD sedcase.seq .(.) \ Case convert, Date Alt-O_U, L,
P OPTIONAL
FLOAD seditwp.seq .(.) \Word wrap,reformat,Alt-S_R
Ctrl-B OPTIONAL
FLOAD sedjust.seq .(.) \Left margin adjustments Alt-L
OPTIONAL
FLOAD seddraw.SEQ .(.) \ Character line drawing F9
OPTIONAL
FLOAD sedsort.seq .(.) \ Paragraph line sorting F7
OPTIONAL
FLOAD sedcopy.seq .(.) \Cut Copy & Paste Alt-X, C,V
OPTIONAL
FLOAD sedapnd.seq .(.) \Append text (req SEDCOPY) Alt-A
OPTIONAL
FLOAD sedpage.seq .(.) \ Goto page command for SED Alt-G
OPTIONAL
FLOAD sedwind.SEQ .(.) \Window adjustment utility Alt-

S_W OPTIONAL
FLOAD SEDCHARS.SEQ .(.) \ Graphic char select Alt-O_A

OPTIONAL
FLOAD sedshell.seq .(.) \ SHELL to DOS utility ESC-F-D
OPTIONAL
FLOAD htype.seq .(.) \'Hyper text display TYPE
OPTIONAL
FLOAD sedwhelp.seq .(.) \'Help within editor on words
Alt-H OPTIONAL
FLOAD topedit.SEQ .(.) \Top level editing words
FLOAD helplink.SEQ .(.) \'Linkin the F1 help keys
OPTIONAL
FLOAD editset.seq .(.) \Allow editor command key
redefinition.
FLOAD sedmenu.seq .(.) \'Menu utility for SED ESC
OPTIONAL
behead

only forth also definitions

FLOAD NEWFILE.SEQ .(.) \'New file creation utility.
OPTIONAL

Pagel90 Real Time Forth

FLOAD editerr.seq .(.) \Automatically edit on load

error OPTIONAL

#ENDIF

FLOAD sound.seq .(.) \ Change BEEP to use TONE
OPTIONAL

FLOAD scan.seq .(.) \Word scanning utility used by REF
OPTIONAL

FLOAD ref.seq .(.) \ A cross reference utility
OPTIONAL

FLOAD fwords.seq .(.) \'Hilevel file manipulation

words. OPTIONAL

FLOAD winstack.seq .(.) \Pulldown .STACK Press SHIFT

keys OPTIONAL

FLOAD xexpect.seq .(.) \Aline editor for EXPECT
OPTIONAL

\

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkhkkkkk

*

comment:

By not loading the following two files MOUSE.SEQ and MOUSEY.SEQ,

you

can disable mouse support. It will save you about 3k or so of .EXE

file space.

comment;

FLOAD mouse.seq .(.) \Low level mouse interface
OPTIONAL

FLOAD mousey.seq .(.) \ Development application support
OPTIONAL

FLOAD macros.seq .(.) \ Add keyboard macros to FPC.
OPTIONAL

FLOAD browsepr.seq .(.) \ Print re-direction to browser

OPTIONAL

warning on \ From now redefinitions mean

trouble!

mark empty \ Mark the end of the dictionary.

yhere fence ! \ Set fence,no FORGETIing beyond YHERE

\ Default configuration parameters

\u autoediton autoediton

\u backupon backupon

\u fast fast

\u >colo ' >color is initcolor

\u colorizeon colorizeon

\u white-on-black white-on-black

\u blankoff blankoff

\u decimalbase decimalbase \ default to DECIMAL on any error

\u size-save size-save \ save the .SIZ file of

word sizes

.compstat

7400 =: #listsegs \ give me a BIG dictionary
0 =: #ovbytes \ no overlays for now

0 =: #ovsegs \ no overlays for now

Chapter 24: Turnkey, Meta and Target Compiling Pagel91

"again"

cr .used \ show size of everything on
screen

To produce as small a file as possible withgoihg to the extreme dérgetcompilation (see
below), you can metaompile(if required) and extend omitting everythititat isunneeded in
the situatiorfor which the child is beingrepared. Theewversion is saved without headers
as described above. This produces a version with the nBP@structure(code andstacks

in one segmerdnd lists in up to four others) except there ihead segment. If yooeed a
version with only soméeaders deletethut therest in ahead section where thepan befound
and used, you camake morause of the header control words (see theRRECH.SEQ for an
example).

Target Compiling.

During meta compilation the wordkefined injust the source files specifiegire added to the
growing child version. Even inside the files added there wellybe somevordsthat are not
required by the final applicationTrue one coulddissect the files into smaller and smaller
pieces, loading only thactual wordghatyou do needbut thiswould be venjaborious. Even

then, you would have the sarbasic structureindirect threading, separated heatsjes and

lists, as the parent had. The ultimate compiler would allow you to change the internal structure
of the child sahat it was ndonger the same as tparent (direct threaded coder example),
andevenconstruct thechild to run on adifferent processor if desired hile at the saméme
ensuring that nothing that was not needed was included. This is the aim of the target compiler.

There is a targetompiler to match witi=PC, although at the time of writing it does not
support all ofthe features oFPC,vocabularies and multi-tasking nbeing available. 1t is,
however, growing rapidly and able to compile for any of a number of processorsarnbef
the targetcompiler isTCOM2. The figuresgiven in thecomparative table at thend of this
chapter refer to the versiaimat produces 8088ode. TCOM also implements a direct
(subroutine) threaded version of Forth, rather than the indirect threading of FPC.

The target compiler itself is written in FPC and is loaded on top of the normal FPC. The target
compiler first allocates a spac@ne segment only giresent) to build the chilgrogram,
counting allchild addresses as offsets from #iart ofchild space. It also sets up space to
keeptarget headers dbat it knowswhat hasbeen loaded where in the child. These headers
areonly for use duringcompilation and will be discarded at thad of the compile. Ithen

reads afile and compiles it into thearget space usinthe samesort of modified store
operations as were used in the meta compiler. Howevéarthet has né&ernel assuch, and

2 TCOM is written by Tom Zimmer, as is most of F-PC. tdb is in the public domain.
Copiescan be obtaineffom this author, oOffete Enterprises Inc., 1306 South B Street, $#ateo,
CA 94402, USA. Versions of TCOM exist fother processors agell asthe 8x86family. At the
time of writing these are the 8080, 6805 and 80192. Others are on the way.

Pagel92 Real Time Forth

any word it wished to compile that has not alrelbegn compiled into thiarget (and so has an
entry in the target header list) is looked for in the target library.

The target library contains dthe wordsthat yourfile is allowed toassume. An entry in the
library, such as EMIT foexample, does nairint theitem on thetop of theFPC datastack
whenrun, rather it installsnto thetarget acodesubroutine thawill, when it isrun, print the

item ontop of thetarget data stack. It also addstie temporargargethead space aentry

that shows that EMIT has been compiled into the target and the address it starts at. In this way
only onecopy of the subroutinEMIT is ever loadedbut since it is installed as a subroutine
everyone maywse it. Somelibrary entries do not install a subroutine (or call an already
installed subroutine) but rather just install in-line machine code. This is usually because the in-
line codetakes less spacbut could be in the interests of absolute speed. Sincantfiise

code is not usable by anyone else no reference is made to it in the headers. This in-line addition
is done where the overhead associated with a call is not warrantedd®linction can be

done withjust one or twoinstructions, or for control words, such as UNTIL fample,

which have to worlout the offsetnvolved to the matchinBEGIN andthen install acondition

jump. Forward jumps, such as from IFTBIEN, arehandled by IF compiling no code but
leaving the address in target space to jump back to for the THEN to find and use. The fact that
you may only used word$efined in thdibrary (or in yourfile) is not as restricting as fight

seem, as thkbrary containsover 500 words! Extrawords you use oftenan, of course, be
added to thdibrary. Tochange tdargetcompilingfor a different processoignehasonly to

change thdibrary. Tochange from 88086 targettompiler to a68000 targetompiler, for
example,one would need to changdl the definitions in thdibrary so thatwhenrun they
installed 68000 machine code to duplicate the top item odatzestackhowever you chose to
implement the data stack on the 68000) rather than the 8086 code to do the same thing.

Once it is realisedhat the library consists of wordshat installtheir run-time code into the
targetwhenrun, the operation of theargetcompiler becomes relativegtraight forward. The
source is processed word by word, with fbiéowing sequence of decisioagd actions taken
for each word®

Hasthe word alreadypeen compiled into thearget? If so is it a datgem? If yes, get the
address allocated in target space for this data item ready for the next word to use.d#taot a
item, is it the name of subroutine that has alreabgen installed? I$o,compile acall to the
address of that subroutine aexit to get the next word. If notdataitem oralready installed,
check to see if you can find it in the library.

Is the word in the library? If so is it ammediate or in-line word? If it is (a control word for
exampleyun it. If it is inthelibrary but isnot an in-line wordcompile a'call blank' and add
this word to the list ofibrary words to be rurnwhen this definition is complete and record
where its start address (when known) will replace the 'blank’. Then exit to get next word.

3 Actually afew points of detail are omittednd afew simplifications are made in what
follows as it is myintent to paint the general picture. Tbomissionsand simplifications refer to

implementation rathethan conceptual detail. For full informatioseethe substantial information
that comes with TCOM.

Chapter 24: Turnkey, Meta and Target Compiling Pagel93

If the word is not in théibrary, try toconvert it to a valid number in the current numbase.
Is it a valid number? If so code it as an in-line literal and exit to get the next word.

If it is not know, in thdibrary or a numbergompile acall to a (fornow) blankaddress, and
add this word and the plasehereits addresswill need to beput when it is known to the
unresolved list. Then go and get next word.

At the end ofeach definitiorrun the words on the 'to be installed from tieary list' and put
the addresses in the correct places. Add the words just installed from the library onto the target
header list so we don't load them again.

Finally when the file isexhausted, chedkateach word on the unresolved likies nowexist,
and go through inserting the correct addressewaded. Remove iterfi®m the unresolved
list as they are resolved. If the unresolvedd&stomes empty, save ttagetcode in a file. If
there is anything left unresolved, print an error message and do not save file.

By this method, nothing is loaded unless itaistually needed. Further optimisation can be
done by looking at the code as it is compiledhstd sequencethat collectively do nothing can
be deleted (incrementing ragister and thermmediately decrementing, or popping adata
value and themmmediately pushing iback again). With optimisation turned onsiaple
terminal emulation program produced a COM file of just over 3K bytes (see below).

Comparative performance.

FPC alone (without terminal program)
saved withFSAVE 154064 bytes

Terminal program loaded on top of FPC and

saved withFSAVE 156512 bytes
saved withTURNKEY thusomitting headers 117376 bytes
meta compiled omitting editor 66638 bytes
meta compiled omitting editor & saved WilURNKEY (no headers) 46625 bytes

Terminal program compiled with TCOM
(with varying initialization and optimisation)

initialization optimisation code data total bytes
full off 5024 621 5645
full on 3872 621 4493

limited on 2800 438 3238

Pagel94 Real Time Forth

To give an idea of thepace saved by using tkechniques described above, an application
program wagienerated and saved a numbewafs. The application wasRS232 interrupt
driven dumb terminal emulatigorogram thatould use eithe€OM1 or COM2 at data rates
up to 115.2 Kbaud. Ithe form compiled it worked €600 baud andisedCOML1. It is
capable of bottsending and receiving in full duplex, providing2&6 byte input buffer for
messages. The only significant difference between the two versions of the pcogrpited is
that the FPC version automatically uninstalls interrupts on exitilev the target version
produced byTCOM never ends and so doest. The space taken by the various programs is
shown above.

Note thatthe application adde®448 bytes on top dhe normalFPC package, andemoving

headers dropped the total space by almost 40,000 bytes. The versions produced with the target
compilerare much smallethan thatproducedeven by omitting manyeatures in thaneta

compiler child version.What this tabledoes not show ithatthe version produced byCOM

ran much faster that the version produced by FPC. This is mainly duefamtttree TCOM is

direct threadedvhile FPC isindirect threaded, not becausee ismeta compilegnd the other
targetcompiled. IfFPCwere to be direct threaded, there would be little differencgpérd

between it running the application and the target complied version.

Appendix 1: The internal organization of F-PC Pagel95

Appendix 1

The internal organization of
FPC

FPChasthree types of information storediinthe headers, the code, and lists. These are
held in quiteseparateegions of memory called the headpace the codespace and the list
space respectively. This appendixes an introduction to these thrggaces. Thaim is to
provide sufficient informatiorior the curious to understarfw somewords in this book do
what they dowhich is different from knowing how tase themFor somewords thiswill
require aknowledge ofthe internals ofFPC. In particular, hile the words described in
chapter 19 can be used withdmowing how theywork, the curious shoulfind this appendix
explains many things. If yoarenot curious feel free toskip this appendix.FPC will work
for you just the same whether you understand how it works or not.

Header Space

The header space contam®e longphysical list of the names of &brth wordstogether with
their code fieldaddresses and thenking information that logically organisesthem into
vocabularies and thread$Vhen a word is being searchied, thelastentry (thestartaddress
of which is held in LAST) is checked. If this is not the one wanted, the lioKas/ed back to
the next logically previous entry and this is check&His process isontinued until either the
word is found or the logical end of thlread of words is encountered. The wdrdt is
logically next may in fact be physically many words back.

The header space may occupy up to 64 KbytesménsegmentThe segmentddress iseld in
YSEG,; the offset to the curreahd of theheaders itield in YDPand is returned by YHERE.
The headesegmentan be read from or written to by Y!, Y@, YC! and YC@ withloating
to specify the segment explicitly (the valueYiSBEG will be used). Versions of regularords
that operate on header space all start with .

There isone special word YHASHthat, given a nameand a vocabularywill return the
vocabulary thread in which the word will be found (iindeed is irthat vocabulary).Without
dividing thevocabulary into threads, thiene tosearch linearly fronone end of avocabulary
to the other coulbecome long enougthat compilation becomegritatingly slow. FPC
divides eaclvocabulary into 64 threads, distributing the waeglenly among them. Once you
know which thread to searchonly the words inthat threadneed to be checked. FPC
distributes the words fairlgvenly among théhreads based on tength of the name and the
first two characters ithe name. For the curious a word is assigned to the threachber
given by 2*(2*charl+char2)+length evaluated modulo 64.

If there is no furtheneedfor searching, foexampleafteryou have compiled a version of your
program for use in stand alone form, you can discarivtizde headespace. A progrardoes
not normallyneedthe information in the header spagben it isrunning, as everythinghat

Pagel96 Real Time Forth

needs to know has already been told all the code field addresses it requires.

HEADER1 HEADER2 HEADER3 | | LAST-HEADER

< ydp >

YSEG

HEAD SPACE - KEY ADDRESS & offset

List Space

Colon definitions have as their main body a list ofdbde fieldaddresses of things thaye to
do. Over 90% of albefinitions are usuallycolon definitions. While good programming
practice strongly suggests ttegtich individual list be kept reasonablert,thetotal of all lists
can be large.

80x8x processorform their address from twparts,the segmenpart which is specified in
paragraphs (1®ytes) and the offset in bytes. The absolute addred®ms 16 times the
segmentddress plughe offset address. Thmeaximum offset into a segmettitat the 80x8x
processor family can support is 64K, which meansttieataximunspace available farolon
lists would be64K if only one segmerdddress was used for athlonlists. 64Kmay not be
enough. FPC gets around this restriction by forcing eamdton list to start at a paragraph
boundary so thahe starting address can be forced to such-and-sisggmentaind an offset
of zero. Only a way ofletermining the segment valoeed bestored in thecode segment (see
below) sothatthe correct list can be found. The offset addressdinot be stored as it is
always zero. If a listloes not fill up a compete numberparagraphsthe fewbytesbetween
where it does endnd the nexparagraph boundary are wasted. Thithes pricefor having
greater than 64K bytes available for lists.

Compared to the head codespacesFPChas tokeep morevalues forthe listspace. lkeeps
the start address of the very first list in XSEGparagraphs) Everything is specified relative
to this value sthat DOS cartoad this anywhere imemoryandonly the value inKSEG need
be altered. FPC keeps the offset (iparagraphs) téhe most recent definition IKDPSEG.
The offset in bytes from thstart ofthe most recent definition to trend of the most recent
definition is kept inXDP. Foreverylist there is aLIST SEGMENT OFFSETwhich is the
offset inparagraphg$rom thestart ofthe first list to the start ofthis list. This isthe actual
value stored in the code file space definition of the word of which this list is a part.

LIST1 LIST2 IST3 ISTn LAST-
LIST
Commmmeen list segment offset to list <--xdp--
n-------- > >
XSEG XDPSEG

LIST SPACE - KEY ADDRESSES & offsets

Appendix 1: The internal organization of F-PC Pagel97

XHERE returns the full address of the end of the latest list (from XDPSEG and XDP) while X,
is used to add 16 bit numbessto the end of th&atest list. You can inspect what is in list
space by specifying the lisegment offset to thist you are interested in and then using
XDUMP.

Code Space

This is asequence of entries which reallye executable code. There @geentry forevery
word. Stored aftethe name of a word in heagace is the offset from tistart ofcodespace
to the executable coder this word. This offset igalled the code fieléddress (cfa). The
start address ofcode space is noteld in avariable but inthe processor'sode segment
register. If you must you can obtain this value with A@8:donot alter it as this is instantly
fatal. To activate avord only requires thatontrol be transferred tthat words codefield
address. Of course, to enstinat we carcontinue in a controlled fashiatfter the word has
been run, we may need to have done some other housekeeping first.

At the code fieldaddress there is generally a call to the run-time rotitiatgives the word its
special characteristicépllowed by any speciadata (other than aolon list) needed bythis
word. Note that the call automaticatiives thestartaddress of thdata. As alcode is in one
segment there is neeedfor inter-segmentalls. Exceptions tthe above occur in two cases.
In a colon definition a jump is usedther than a call abe informatiomeeded taetrieve the
list segment offset iglready in word pointer (AX) and so the 'return’ addm@ssided by
CALL is unnecessary. In the case af@leword, there is no special run-time routine to call.
The codestarting athe code fielcaddress directlgives the wordts characteristicsHowever

a code definition must end with IMP NEXT to successfully carry on under Forth.

S S— CODE FIELD STRUCTURE ----------=--- > WORD TYPE
<emnem Machine Code ----> <--- Jmp Next ---p CODE
<---- Jmp Nest ----> <- List Segment Offset -> COLON
<--- Call DoVar --->| <-------mommmmeem Data ------=-=-=-==--- > VARIABLE
<--- Call DoCon --->| <--=----mmmmmmmmem Data --=----=-=-==-=-- > CONSTANT
<-- Call DoDefer -->| <---- address of word pointed to--{> DEFERRED

SAMPLE CODE SPACE STRUCTURES FOR A FEW TYPES OF WORD.

The structure of several types of wordsli®wn diagrammatically above. In eawdse the

code field address is the address of the start of the first entry. We can obtain the actual address
of the end ofwhat is currently ircodespace wittHERE and can use , or C, to adito the

end of code spacedDUMP allows us to inspect what is code space.

This appendix has given an introduction only and the words mentivredt formallydefined
here. Use the VIEW facility and the help and sowade files provided asart of FPC to get

a fuller understanding. You may al8od the'FPC Technical Manual' written by DIC. H.
Ting and published by Offete Enterprises, 14806 South B Street, San Mateo, CA 94402 to
be very useful.

Appendix 2:- Answersto problems.

Pagel99

Appendix 2

Answers to selected problems

This bookwas written to accompanyane semeset@ourse. As a resultdecline to give worked
solutions to all the problems posed in the book. Téeyall solvable, of course, as years of
students have foundut. But if you knowall the answersre inthe back of the bookhuman
nature will ensure that little peeks just to heiy happen. Then the khewthat'phenomenon will
take over and littlevill have been learned. Programming isaatandneedspractice. So answers
to the early problems to help you ggarted, buthem youare on youiown. | have solutions, so,

if you are really stuck, contact me!

2-1 :REVERSE3 (n1ln2n3--n3n2nl)
swap \'nln3n2
rot \n3n2nl
2-2 :REVERSE4 (n1n2n3n4--n4n3n2nl)
swap \'n1 n2n4 n3
2swap \n4 n3 nln2
swap \n4 n3n2nl
2-3 Four ways, using no more than two words, to duplicate the

item under the top item on the stack on top of the item on the top of
the stack. (n1n2--n1n2nl)

Solution 1 over \nln2nl
Solution 2 swap \n2nl
tuck \nln2nl
Solution 3 2dup \nln2nln2
drop \nln2nl
Solution 4 1 \nln21
pick \nln2nl
2-4 Three ways, using no more than three words, to convert n1 n2
into n1 n1 n2.
Solution 1 over \nln2nl
swap \'nlnln2
Solution 2 swap \n2nl
dup \n2nlnl
rot \nlnln2

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page200 Real Time Forth

Solution 3 2dup \nln2nln2
rot \nlnln2n2
drop \'nlnln2
3-1 <= (n2nl--flag)
> not
3-2 : IN-RANGE? (nlh--flag)
rot \stack now I hn
tuck \'stack now Inhn
> \'h >n? Stack now | n flagl
-rot \ save answer, stack now flagl I n
< \I<n? Stack now flagl flag2
and \ combine flags for final answer
4-1 : SUMA (#1#2 --sum)
0 \ initialize sum to zero
-rot \ put sum under two input numbers
2dup < if swap then \ sort so smallest is on top
1+ \ don't want smallest number itself
do | + loop \ sum from smallest+1 to larger-1

\ print result

4-2 : SUMB (#1 #2 -- sum)
0 \ initialize sum
-rot \ put sum under input numbers
2dup < if swap then \ get smaller on top ready for DO
1+ \ don't want smallest number itself
?do \ skip summing loop if index=boundary

| + loop \ sum from smallest+1 to larger-1
. \ print result

4-3 : SUMC (#1#2--sum)
0 -rot \ initialize sum, put under input
2dup < if swap then \ ensure smaller on top
2dup-1> \ do inputs differ by 2 at least?
if 1+ \ if so,start at smallest number +1
do | + loop \ sum from smallest+1 to larger-1
else 2drop \ else lose numbers leaving 0
then . \ print result
4-4 : STAR
begin 42 emit \ send one star
key? \ check if a key has been pressed
until \ loop if not until it is

Review Questions 2, number 7.
To get ACTION-LIST: you just need to change the bit between IF and
ELSE in the DOES> part of 1-OF as follows.

IF
R@ 5+ EXECUTE \ do next clause

THEN

R>10+>R \ move over clause we just did

replaces

IF \if true
R>5 + \ point to next clause
EXECUTE EXIT \ do next clause and leave

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 2:- Answersto problems. Page201

ELSE \ if false
R>10+>R \ move on two clauses
THEN

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page202 Real Time Forth

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page203

Appendix 3

An ASCII list of useful Forth words

A list of Forth words available iRPC isgiven below. Theseonsist of both standard amdn-
standard wordsyith explanations. Therare stillmany speciapurpose words available in FPC
that arenot listed her§FPC comes with morghan 2000words!). This is aeference and not
intended to be usddr learningForth. Do notiry to memorizethis list (!) orfeel obliged tary to
useeveryone of theseordssomewhere every time you write coddany will not be needed at all
unless you wish tonodify theinternals ofFPC,they are herefor completeness. If the liseems
daunting, ignore it.

Notation.

Special attributes of the words are shown at the very left of the definition line.
83 means part of the Forth-83 required word set.
83D means part of the Forth-83 double word set.
NS means that the word is not defined in the 83 standard.
C means compile only - it is only to be used while in the
compilation
state, normally in a colon definition.
I means immediate, it is a word that executes during the
compilation of a colon definition.
M means that in a multi-tasking system it may relinquish
temporary
control to other tasks.

The list.

83 ! (16b-value address --)

The 16 bit value is stored at the address, both values being removed from the stack.
Forth programmers pronounce this "Store".
Related words ON OFF C!

83 # (+dl--+d2)

Used to convert double precision numbers from internal form to displayable ASCII tifBachis
usedone moreASCII digit is determined. The remainder ©dl1 divided by thevalue of BASE is
converted to a\SCII character andppended to the front of the put string. Pictureshumeric

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page204 Real Time Forth

outputconversion works from right to left (lowest significance digit to highest significance digit).
This meanghatformatting characters such as # must be written in reverse ordetheoway the
final result looks. +d2 is the quotient and is maintaifmedurther processing. Nothatthere is

no equivalent to #hatworks on single precision numbers. Yimust convert to double precision
before using the output formatting features. Typically used between <# and #>

Related words <# #S HOLD SIGN #>

Pronounced "sharp”

83 #> (+d -- addr +len)

Numericoutputconversion is endednd the remainder d is discardeaddr isthe address of the
first character of resulting output string that has been btién is the number afharacters in the
output string. addr and +len together are suitable for TYPE.

Related words <# # #S HOLD SIGN

Pronounced "sharp-greater"

83 #S (+d--00)

+d is converted appending eagsultant significant digit onto theumericoutput string until the
guotient (see: #) is zero. gingle zero is added to tloaitput string ifthe numbemwas intially
zero. Typically used between <# and #> .

Related words <# # HOLD SIGN #>

Pronounced "sharp-s"

83 #TIB (--adr)

A variable containing the current length of the TIB (Terminal Input Buffer). Pronounced "number-
t-i-b"

83M ' (-- cfa-addr)

Used in the form: ' <name>

addr isthe compilation addregsfa) of <name>. An erraondiion exists if <name> is ndound
in the currently active search order. Nearly always you should use [] insteadnly'times you
use ' are if you are outside a colon definition, or if you are writing your own variantbigfe the
name of the word to be looked up will parsed later.Warning! in Forth79 tick waSTATE-
smart and returned the pfa instead of the cfa.

Related words [EXECUTE

Pronounced "tick"

83*IM ((--)
(--) (compiling) IMMEDIATE
Comment initiator used in the form: (Just a Comment).

(..) are comment delimiters. The characferst aCommentdelimited by) (closing parenthesis),
areconsidered comments. Commeatse not otherwise processed. The bldokowing (is nec-
essary, and not part of Just a Comment. (mdyekl/ used whilenterpreting or compiling. The
number ofcharacters in Just@omment may be from zero to the numbecludiractersemaining
in the irput stream up tthe closing parenthesis. By convention, Yissially preeded by apace,
howeverthis is not necessary. (doest ensure there is jgair of bracketsand cannot handle any
paired () inside the comment.

Related words \ ;S

83*IM)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page205

FORTH comment terminator.See (above.

83 * (n1*n2--n3)
16- bit multiply, multiplies n1 by n2 leaving thesult n3. Workswith either signed or unsigned
guantities.

12 2*-- 24 -12 2*---24 12-2*---24 -12-2*-- 24

Overflow is ignored; only the least significant 16 bits of the result are kept.
Related words */ */MOD

Pronounced "times" in Forth.

83 */ (n1n2n3--n4:allsigned)

(n1*n2/n3 -- quot-n4)

nl is firstmultiplied by n2 to produce an intermediatet82result. n4 ighe quotienthat results
from dividing the intermediate 3Bit result bythe divisorn3. The prodct of nltimes n2 is
maintained as an intermediate BR result for greater precision thdahe otherwise equivalent
sequence: nl1 n2*n3/. */is very similar to *MOD excephtbws away the remainder. There
iS no unsigned version of this operator.

Related words division, */MOD

Pronounced "times-divide".

83 *MOD (n1n2n3--n4n5:allsigned)

(n1*n2/n3 -- rem-n4 quot-n5)

Uses signed floored division. Remainder has same sign as n3

nl is firstmultiplied by n2 producing an intermedi&2-bit result. n4 ishe remainder and n5 is

the floor of the quotient of the intermedieB@-bit resultdivided by the divisom3. A 32-bit
intermediate product is used for */ for greater precision than the otherwise eqisealasice: nl

n2 * n3 /mod. n4 has the same sign as n3 or is zero. Very similar to */ except */MOD provides the
remainder as well as the quotient.

Related words division, */

Pronounced "star-slash-mod"

83 + (n1n2--n3)

Adds nl and n2 leaving the result n3. Works with either signed or unsigned quantities.
12 2+--14 -12 2+---10 12-2+-- 10 -12-2+---14

Overflow is ignored; only the least significant 16 bits of the result are kept.

Related words +! 1+ 2+ 4+ D+ +LOOP

83 +! (N ADDR -- : adds n to memory)

add value N to contents of address ADDR.
Pronounced "plus-store”

83Cl +LOOP (increnent --) executing

Used in the form:

100DO ... 2+LOOP Index values lused=02468

010 DO ... -2 +LOOP Index values lused =1086 420

Used in loopghat rundowninstead ofup, orwhich run up by itrements other than one. The
increment (positive or negative) is added to the loop index. Ihéwe indexwas incremented
acrossthe boundarybetween limit-1and limit then the loop is terminated and loop control
parameters are discarded. In other words loops back if | < N ifdrerient is positive and loops

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page206 Real Time Forth

back if | >= N if the increment is negative. When the loop is not terminated, execution continues to
just afterthe corresponding DO +LOOP compiles ag+LOOP) token followed by &BRANCH

style offset back to the token after the offset after the (DO).

Related words DO ?DO (DO) (?DO) LOOP (LOOP) (+LOOP)

Pronounced "plus-loop”

83 : (16b--)

ALLOT space forone 16bit quantity (increase value tfie pointer to thend of the dictionary
(which is returned byHERE) by 2)thenstore 16b at HERE -and HERE -1 . This issed to
compile numbers into the dictionary.

Related words C, ,C C,C

Pronounced "comma”.

83 - (n1n2--n3)

Subtracts n2 from nl leaving the result n3. Works with either signed or unsigned quantities.
12 2---10 -12 2----14 12-2--- 14 -12-2----10

Overflow is ignored; only théast significant 16 bits dhe esult are kept. Daot confusewith

unary NEGATE.

Related words 1- 2- D- NEGATE ?NEGATE DNEGATE ?DNEGATE

Pronounced "minus"

NS -1 (--1)

A predefined constant which places -1 on the stack. -1 is the normal value of the true flag, although
any non-zero value works.
Related words ON TRUE

NS -ROT (abc--cab)

Reversaotate. Equivalent tabut faster thaflROT ROT. Rotates the top number on tsiack to
the thirdstack position. Constructions thfe form >R... R>can often bdandled more efficiently
with -ROT.

83 -TRAILING (addr +nl -- addr +n2)

Trims off any trailing blanks from a string. The length may be 0 or 1 or any other positive number
less thar64K, butnot negative. Theharacter count +nl of a text stribgginning ataddr is
adjusted to exclude trailing spaces. If +nl is zero, then +n2 is also zero.

If the entire string consists of spaces, then +n2 is zero.

Related word SCAN

Pronounced "dash-trailing or minus-trailing"

83M . (n--)

Destructively types the value of the signed number on the top of the data stack. The ehlselute
of n is displayed in a free fiefldrmat with aleading minus sign if n is negative afutlowed by a
space. Uses the current BASE.

Related words .S U.

Pronounced "dot"

83CIM . ()

(--) (compiling)
Used to TYPE string literals. Used in the form: ." My message"

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page207

Only used inside colon definitions. Outside cotifinitions, use .(My message) insteddater
execution will display theharacters "Mymessage" up tbut not including the delimiting " (close-
guote). The blank following ." is necessary andpast of Mymessage. A blank space before the
closing " will be considered a part of the string.

Take care if using words originally written in Forth 79 in which ." was STATE-smart.

Related words .(

Pronounced "dot-quote”

83*IM (()

(--) (compiling)

Used to type string literals.

Used in the form: .(My message) Normally used only used outside colon definitions.tHaside
use ." My message" instead. Ttlearacters My meage up tobut not including thedelimiting
(closing parenthesisire displayed. The blankollowing .(is necessargnd not apart of My
Message. A blank space before the closing) will be considered a part of the string.

Related words ."

Pronounced "dot-paren”

NS S ()

Dumps thedata stacknon destructively. Used in debugging. [iés/s thestack inthe current
base.

83 / (numerator divisor -- quotient)

Signed floored 1@it division, dividesnumerator by denominator to leave quotient. Usgsed
integer division with a flooredesult Use/MOD if you want both the remainder and quotient..
MOD gets justhe remainder. 2/ divides rapidly by 2 by using an arithnediitt. Notethat the
unsigned version U/ is faster than /.

Related words division 2/ /MOD MOD U/.

Pronounced "slash"

83 /MOD (numerator divisor -- remainder quotient)

Signed floored 16 bit division, gives both the quotient and the remainder . Rentaistter same
sign as the divisor. The unsigned version U/MOD is faster than /MOD.

Related words / (gets just the quotient), MOD (gets just the remainder), U/MOD.
Pronounced "slash-mod"

83 o< (n--flag)

Flag is true if n is less than ze(pegative) using a signecbmpare. Notdhat 0< NOT is
equivalent to but slower than 0>=.

Related words 0<= 0> 0>= 0= DO= 0<> NOT

Pronounced "zero-less"

NS O<= (n--flag)

True if n is less than or equal to 0. Note that 0<= NOT is equivalent to but slower than 0>.
Related words 0< 0> 0>= 0= DO= 0<> NOT

NS 0<> (n--flag : true if n not equal 0)

Normally there is no need to use this since any non-zero value is conJiB&iEdanyway. "X @
IF" is a better way to express "X @> IF". HoweverO<> is needed ifyou wish tocombine

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page208 Real Time Forth

flags with AND e.g. X @0<> Y @ 0<> AND, but it isiot usuallyneeded ifyou wish tocombine
flags with OR because "X @ Y @ OR" is equivalent to "X @0<> Y @ 0<> OR IF". 0<>
NOT is equivalent to but slower than 0=.

Related words 0< 0<= 0> 0>= 0= DO= NOT

83 0= (n--flag)

Flag is true if n is zero.

This is not quite the same &4OT". 0= alwaysleaves 0 or -1 on theata stack. "NOTWwill
leave O or -1 if it operates on a canonical flagy, it will leave the one'somplement othe value if
it is anything else. Related words 0< 0<= 0> 0>= DO= 0<> NOT

Pronounced "zero-equals”

83 0> (n--flag)

Flag is true if n is greater than zero ussigned corpares. Note that 0> NOT isequivalent but
slower than O<=.

Related words 0< 0<= 0>= 0= DO= 0<> NOT

Pronounced "zero-greater"

NS 0>= (n--flag)

Flag true if n is greater than or equal to O ussigned corpares. Note that 0>= NOT is
equivalent to but slower than 0<.
Related words 0 0< 0<= 0> 0= D0O= 0<> NOT

83 1+ (nl--n2)

Increment by 1. n2 is theesult of addingone to nlaccording to the operation of +. Do not
confuse with 1+! which adds one to memory. 1+ is equivalent to 1 +, but executes more quickly.
Pronounced "one-plus”

83 1- (n1--n2)

Decrement by 1. n2 is thesult of subtractingnefrom n1 according to the operation of -. Do
not confuse with -1 which simplyuts a -1 orthe data stack. 1- isquivalent to 1 -but exeutes

more quickly.
Pronounced "one-minus"
NS 2% (n1--n2)

n2 is the result of shifting n1 ledinebit. This works on botkigned and unsigned numbers. 2* is
equivalent to 2 * . A zero is shifted into the vacabédposition. Notethat 2* is NOTdouble
precision multiplication.

Related words multiplication * */ */MOD

83 2+ (nl--n2)

n2 is the result of adding two to n1 according to the operation of + . egyigalent to 2 + . Note
that 2+ is NOT double precision addition.

Related words + 1+ 4+ D+

Pronounced "two-plus"

83 2- (n1--n2)

n2 is the result of subtracting two from n1 according to the operation of - . 2- is equivalent to 2 - .
Note that 2- is NOT double precision subtraction.

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page209

Related words - 1- D- NEGATE
Pronounced "two-minus"

83 2/ (n--ni2)

Very quick signed divide by @sing a shift. n2 is the result of arithmetically shifting nl right one
bit. Thesign is included in the shift and remains unchanged. Equivalent to 2 /tHdbt2/ is
NOT double precision division.

Related words division / SHIFT D2/

Pronounced "two-slash"

83D 2DROP (nn--)

32b isremoved from thalata stack -- i.etwo stack entries -equivalent toDROP DROP but
executes more quickly.

Related word DROP

Pronounced "two-drop"

83D 2DUP (n1n2--n1n2nln2)

Duplicate32b. Analternative way ofooking at it isthat it duplicateghe toppair onthe data
stack.
Pronounced "two-dupe”

83D 20VER (32b1 32b2 -- 32b1 324b2 32b3)

32b3 is acopy of 32b1. This is OVER fodouble words. Alternatively can beoked at as
manipulating 16 bit quantities as (n1 n2n3 n4 --n1 n2n3 n4 nl1n2)
Pronounced "two-over"

83D 2ROT (32b1 32b2 32b3 -- 32b2 32b3 32b1)

The top three double numbers on the data stack are rotated, bringing the third double number to the
top of thestack. Alternatively can bdooked at asnanipulating 16 bit quantities as (n1 n2 n3 n4
n5n6 --n3n4n5n6nln2)

Related words ROT -ROT

Pronounced "two-rote"

83D 2SWAP (32b1 32b2 -- 32b2 32b1)
The top twodouble numberareexchanged. Another way lmioking atthis is (n1 n2 n3 n4 -- n3
n4 nln2)
Pronounced "two-swap"
83 : (--)
A defining word executed in the form:
: <name> ... ;

This creates a wordefinition for a new <name> and compiles it into the dictionary. Tasvly
created word definitionfor <name> cannomnormally be found in the dictionary until the
corresponding ; or END-CODE is successfully procesdear. recursive definitions the current
word beingbuilt can be found bRECURSE. The : must always fmlowed by aspace. When
the name idater used, it must bgpelled exactly the same way although a diffecaise may be
used.

Related words ; RECURSE

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page210 Real Time Forth

83 ; ()

Stopscompilation of a colon definition, REVEALSs to allow the <name=hi$ colon definition to
be found in the dictionary, sets interpret state and compiles as EXIT.
Related words : END-CODE

83 < (n1n2--flag)

Flag is true if nl is less than n2 usisigned corpares. Notdhat < NOT isequivalent to but
slower than >=. See the warning about comparing addresses.

Related words U< D< <= > U> D> >= = D= <> MIN MAXOT 0< 0<= 0> 0>= 0= DO= 0<>
AND NAND OR NOR XOR NEGATE

Pronounced "less-than”

83 <# (D1--D1)

Initialize numericoutput conversion of internal binary to displayatdSCIl. The ASCII text

string resultwill stored in right-to-left ordejust undetthe PAD with the rightmosthar at PAD-1.

Note that <# works on unsigned double precision numbers. There is no single precision equivalent.
Related words # #S HOLD SIGN #>

Pronounced "less-sharp”

NS <> (n1n2--flag)

Flag is true if n1 is not equal to n2. Woskih both signed and unsigned numbers. Niog =
NOT is equivalent to but slower than <>.

Related words < U<= D< > U> D> >= = D= <= MIN MAXOT 0< 0<= 0> 0>= 0= DO= 0<>
AND NAND OR NOR XOR NEGATE

Pronounced "not-equal”

83 = (n1n2--flag)

Flag is true if n1 is equal to n2. Wonkdth both signed and unsigned numbefar alogical bit-
wise equal comare use XOR NOT. Note than = NOT is equivalent to but slower than <>.
Related words < U< D< <= > U> D> >= = D= <> MIN MAXOT 0< 0<= 0> 0>= 0= D0O= 0<>
AND NAND OR NOR XOR NEGATE

Pronounced "equals”

83 > (n1n2--flag)

Flag is true if nl is greater than n2 using signed compares. > NOT is equivdletsltaver than
<=.

Related words U> < U< D< <= > D> >= = D= <> MIN MAXOT 0< 0<= 0> 0>= 0= D0= 0<>

AND NAND OR NOR XOR NEGATE
Pronounced "greater than"

83 >BODY (cfa -- pfa)

Converts cfa (code field address) to pfa (parameter field address). Note that primitive words (those
written in assembler) do not have a pfa. CONSTANTSs do not have pfa's either.

Related words BODY> NAME>BODY >NAME >LINK >VSR

Pronounced "to-body"

83 >IN (--addr)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page211

A variablewhich contains the presedharacter offsetvithin the inputstream {0..the number of
characters ithe input stream}. The offset may be either inThi& or in the screen being inter-
preted.

Related words WORD SOURCE

Pronounced "to-in"

83C >R (16b --)

Removedl 6bfrom thedata stacland transfers it tthereturn stack. Must always be paingith
R>. This is a very useful word but see the dire warnings on its use under Return Stack.
Related words R> R@ RDROP EXIT

Pronounced "to-r"

NS 2DO (nln2--)

(-- back-addrl back-addr2 3) (compiling)

Used in the form ?DO .. LOOP or ?DO .. 2 +LOOP

Starts doop. Like DO excepthat it has an extreheck in it to see if n1 R2. If theyareequal

the entire loop is bypassed. Nokat if n1 < n2the loop still attempts toarry onwith usually
disastrous results! ?DO compiles as a (?DO) token followed by a BRANCH style offset for leave.

83 2DUP (16b -- 16b 16b) or
(0--0)

Duplicate 16b if it is non-zero

Normally used in the form ?DUP LE THEN soyou don't have to discard the O flag in the false
clause.

Related words DUP 2DUP

Pronounced "question-dupe”

NS ?ENOUGH (n--f)
Checks if there at least n items on the stack, returning the answer as a flag.
NS ?INTERRUPT (int# -- seg offset)

Given aninterrupt number ?interrupt returtize full addresgsegment and offset) of theterrupt
vector currently installed there.

83 @ (addr -- 16b)

Fetches the 16 bit value stored at addr. The 2-byte value is stored in ram LSB first.
Related words ! C@ PC@ P@ COUNT
Pronounced "fetch"

83 ABORT ()

Clearsthe data stackand performs the function @UIT. No message is displayed. ABORT
clears both the return and data stacks whereas QUIT just clears the return stack. ABORT also sets
FORTH as the CONTEXT vocabulary. This will help you recover from errors where you mess up
the transient or resident context search order vocabularies.

Related words ABORT" QUIT

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page212 Real Time Forth

83CIM ABORT; (flag --) executing
(--) compiling
Used in the form: ABORT" my error message”

When executed, ABORT" takes the top item from the stack and uses it as a flag. If this flag is true
the characterswy error messageéelimited by the "'s, are displayed along with the name of the most
recentlyparsed word. Then an ABORT is performed. If the flag is fseution continues as
normal. The blankollowing ABORT" is necessary and notpart of the error message. A true

flag means bad news.

83 ABS (n-—-u)

u is the absolute value of n. In other words ABS makes n positive. If ntisen @heresult is -n.
If n is greater than €hen theresult issimply n. If n is-216then ABS cannot work properly as
there is no positive equivaletitat can beexpressed in 1éits, so in that casthe result is
unchanged at -216.

NSC ACTIVATE (task --)

A word to force the assignedsk inthe multitaskingcircular list toexecutenew coderather than
its old code. May not be used interactively.
Related word BACKGROUND:

NS AGAIN

Used in the form BEGIN ... AGAIN
Generates an endless loop. Dy wayout of it is to use an EXInside the loop. Notéat in
this implementation LEAVE is NOT allowed inside a BEGIN AGAIN loop.

83 ALLOT (+n--)

Adds n bytes to thparametefield of the most recently defined word in ttigtionary. HERE --
the address of the next available (unused) dictionary location is updated accordingly.
Related words HERE , C,

NS ALSO ()

Allows you to set up more than one VOCABULARY to be searched. Used in the form:

ONLY FORTH ALSO EDITOR ALSO HIDDEN DEFINITIONS

This would set up the search fost look in HIDDEN, then in EDTOR then inFORTH, then in
ONLY. New definitions would be added to thEDDEN vocabulary. The transient vocabulary
becomes thdirst vocabulary inthe resident portion of the search order. Up toldsethree
resident vocabulariesill also be preserved, in ordéorming the residergearch order. Note that
ALSO need not be immediately preceded or followed by the name of a vocabulary.

Related words ONLY FORTH ORDER WORDS FORGET DEFINITIONSSEAL
VOCABULARY

83 AND (n1n2--n3)

n3 is the logical-and on all 16 bits. Thus BINARY 0101 0011 AND is equal to 0001 -- if both bits
are 1the result is 1. If eithdpit is a Othe result is a 0. If you use canonical flaten this bit-

wise AND hasthe same meaning as the word "and" in English. paiicular if n1 and n2 are
canonical flags (0 or -1) then ANDING two flags on the top of the stack gives:

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page213

true true --true false true -- false true false -- false false false -- false
Related words OR XOR NOT
NS ASCII (-) at compile time

(-- ¢) at run-time.

Used tocreate character literals. ASCII dompiles the consta@b. At run-time, the literal is
placed on the stack. A state-smart literal that can be used inside or outside colon definitions.

NS ASSEMBLER ()

Execution replaces the first vocabulary in the search order with the ASSEMBLER vocabulary.
Related words VOCABULARY

NS BACKGROUND: ()

Contains adefining wordthat defines atask inthe round robin multi-tasker. It allocates a stack
area of 400 bytes (100 fdrereturn stack an800 forthedata stackand links in theaskleaving

it in the sleep condition.

Related word ACTIVATE

83 BASE (-- addr)

The address of a variable containing the cumenteric conversioradix. {2..72}. Forexample
BINARY is defined as BASE !. WhenBASE = 16 all numberwiill be printed inHEX and all
numbers typed in or compiled will be interpretedHiSX. Be very careful to distinguish the
between the value of ti®ASE when a definition is compilednd the value of the BAS&hen the
definition is executedWordslike HEX controlthe execution timBASE where worddike [HEX

] control the compile tim&ASE. There ionly onevariable BASE that isised to control both
compile-time and execution time conversions.

Related words .BASE CONVERT <# # #> . .S

83Cl BEGIN (-)

Used in the form

BEGIN ... flag UNTIL

BEGIN ... flag WHILE ... REPEAT

BEGIN ... AGAIN

BEGIN marks thestart of aword sequencéor repetitive execution. A BEGIN-UNTILoop will
be repeated until flag is true. A BEGIN-WHILE-REPEAT loaili be repeated untilag is false.
The words after UNTIL or REPEAT will be executetien either loop is fished. The BEGIN ...
AGAIN loop runs forever. Thenly way out would be anEXIT in the loop. Notehat in the
current implementation, LEAVE cannot be used to terminate a BEGIN style loop.

NS BL (-- 20Hex)

A constant thatleaves the ASClicharacter value for blank or space (20h) tbe stack.
Pronounced "b-I". Watch out! In the ASSEMBLER vocabulary it meanwwherder byte of the
BX

NS BYE (--)
Terminates FPC and returns to DOS. Closes all files.
83 Cl! (value address --)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page214 Real Time Forth

Stores low order byte of value at address. Works on both signed and unsigned quantities.
Related words ! +! ON OFF
Pronounced "c-store"

NS C, (c-)

ALLOT one byte then store the least-significant 8 bits of 32b at HERE 1- in the pfa dictionary.
Pronounced "c-comma”

83 C@ (addr--c)

c is the 8bit contents othe byte ataddr. Thehigh order byte is zero filled -- not siggxtended.
There is no 1-byte fetch with sign extend

Related words C! @

Pronounced "c-fetch"

83 CMOVE (from-addrl to-addr2 length --)

Move length bytesbeginning ataddress addrl to addr2. The byte at addrinesed first,
proceeding toward high memory. If length is zero nothing is moved.
Related words CMOVE>

83 CMOVE> (from-addrl to-addr2 length --)

Move u bytesbeginning ataddress addrl to addr2. The byte at addrl+lengthaiovedfirst,
proceeding toward low memory. If u is zero nothing is moveMOVE> works from right tdeft
thus you can slide a string on top of itself to higher omwmbutyou will get in deegrouble if you
try to slide it partly on top of itself tdower memory. The lengtmust be undeg4K. Thelength
may be 0 or 1, but not negative.

Related words CMOVE WMOVE

NS ()

A defining word executed in the form:

CODE <name> ... END-CODE
Creates alictionary entry for <name> to lakefined by a following sequence of assembly language
words. Words thuslefinedare called code definitions.This newly created word definition for
<name> cannot be found in the dicty untilthe corresponding END-CODE is successfully pro-
cessed. Executes ASSEMBLER to invoke the words in the ASSEMBLER vocabulary.
Related words END-CODE

NS COMMENT: ()

Marks the start of a multi-line comment. Everything is skipped over unticimenent terminating
word COMMENT; is found. If the input is exhaused before this is found an error is reported.
Related words COMMENT; \ ()

NS COMMENT; (--)

Marks the end of a multi-line comment. See COMMENT: above.
Related words COMMENT: \ ()

83 COMPILEname (-)
At run-time name is not executed but is recompiled.
83M CONSTANT (16b--)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page215

A defining word executed in the form:

16b CONSTANT <name>
Creates a dictionary entry for <name>tBatwhen<name> is later executetiob will be left on
the data stack.

NS CONTEXT (--addr)
The address of a variable which determines the dictionary search order.
83 CONVERT (+d1 adrl -- +d2 adr2)

Convert the stringtarting at adrl+1 to double number.Add this to d1 togive d2. Leave the
address of the first non-digit in the string (adr2) on the stack

NS COUNT (addrl -- addr2 +n)

Used topreparecounted stringor TYPE. addr2 is addrl+and +n is the length of the counted
string at addrl. The byte at addrl contaimesbyte count +ifollowed by thestring. Range of +n
is {0..255}

83M CR ()

Displays a carriage-return (ASCII char 13) diné-feed(ASCII char 10). Also doesOUT 0! to
reset the count of characters in a line.
Pronounced "c-r"

83M CREATE (--) when compiling
(-- pfa : when <name> is executed)

A defining word executed in the form:

CREATE <name>
Creates a dictionary entry for <name>. After <name> is cretitedhext available dictionary
location (obtainable using HERE) ike first byte of <name>'s pfa (parametiéeld address).
When <name> is subsequently executedatiidress of thérst byte of <name>'s parameteézld
is left on thedata stack. CREATHoes not allocate argpace at all in <name>'s paramédieid.
However it does generate assemldede at <name>'sfa whoseduty is to push the pfahen
<name> is executed. Most often used inside a colon definition like

: KIND CREATE n ALLOT DOES> ... ;
or outside a colon definition like

CREATE XXX nl1,n2,
If the name of the word beinGREATEd already exists ithe CURRENT DEFINITIONS
vocabulary, normally yowill get a warning message (unless y@se WARNIGOFF). Whether
the word is defined in sonwher vocabulary other thahe CURRENT one isimmaterial e.g. No
message is given if the word is in one of @@®NTEXT resident vocabularies. Wordike :
VARIABLE and CONSTANT all use CREATE to set ube nfa of thenewly defined word in the
CURRENT DEFINITIONS vocabulary.
Related words CURRENT DEFINITIONS

NS CSP (--addr)

A variable that storethe compilerstack pointer, used ISP and?CSP as part dhe compile
time error checking.

NS CURRENT (-- addr)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page216 Real Time Forth

The address of a variable specifying the vocabulawhich newword definitionsare appended.
It is sometimes called the corfggion vocabulary or th®EFINITIONS vocalulary. CURRENT
@ gets you the address of these ofthe vocabulary storage regiol€URRENT @ @gets you
the latest definition added to the current vocabulary.

Related words CONTEXT DEFINITIONS FORGET LATEST

83 D+ (wd1 wd2 -- wd3)

wd3 is the arithmetic sum of wd1 plus wd2. Adds two signed 32b numbers
Pronounced "d-plus”

83D D- (wd1 wd2 -- wd3)

wd3 is the result of subtracting wd2 from wd1. 32 bit subtraction.
Pronounced "d-minus”

NS D. (d-)

Prints a 32-bisigned integer number followed byspace. The absolute value of dlisplayed in
a free field format. A leading negative sign is displayed if d is negative.
Pronounced "d-dot"

NS D.R (d+n--)

d is converted tASCII using the value of BASE arttien displayed right aligned infeeld +n
characters wide. A leading minus sign is displayed if d is negative. If the nuntuberatters re-
quired to display d is greater than +n the field is simply widened to accommodate it.
Pronounced "d-dot-r"

83D DO= (d--flag)

The flag is true if d is zero
Related words 0< 0> 0= 0<> NOT
Pronounced "d-zero-equals”

83D D2/ (dl--d2)

A quick 32bit divide by 2. d2 is theesult of d1 aritmetically shifted righbnebit. Thesign is
included in the shift and remains unchanged.

Related words SHIFT division 2/ /

Pronounced "d-two-slash"

83D D< (d1d2 - flag)

Flag is true if d1 is less than d2 using signed 32 bit compare.

Related words < > U> D> = D= <> MIN MAXIOT 0< 0> 0= DO= 0<>AND NAND OR
NOR XOR NEGATE

Pronounced "d-less-than"

83D D= (d1d2 - flag)

The flag is true if d1 equals d2. Can alsoused to compare the two setspafirs of 32 bit
numbers for equality.

Related words < D< <= > U> D> = <> MIN MAKIOT 0< 0> 0= DO= 0<>AND NAND OR
NOR XOR NEGATE

Pronounced "d-equal”

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page217

83D DABS (d-ud)

ud is the absolute value of d. In other words DABS makes d positive. If d is < O tmesuithés
-d. If d is greater than then theresult issimply d. If d is-232then ABS cannot work properly
as there is no positive equivalghiat can beexpressed in 3bits, so in that casthe result is
unchanged at -232.

83 DECIMAL ()
Set the input-output numeric conversion base to ten.
NS DEFER (--)

Used in formDEFER XXX. Creates aewword that does nothing.Lateryou use []YYYY IS
XXX to give XXX a new meaning.Thereafter XXX acts as an alias f6¥YY. Use ALIAS for
static aliases.UseDEFER as fodynamic ALIASes. Youwan also use [] and EXECUTE to get
similar effects. The DEFER...IS method is faster and cleaner but non-standard. e.g.
VARIABLE "XXX

: XXX XXX @ EXECUTE ;

"YYYY XXX

is quite standard and is equivalent to the non-standard:
DEFER XXX

"YYYY IS XXX

Related words IS EXECUTE PERFORM [1"

83 DEFINITIONS (--)

The compilation vocabulary shanged to be the same as fing vocabulary inthe search order.
Makes the CURRENT vocabulary same as CONTEXT.
Related words CURRENT CONTEXT

83 DEPTH (—-+n)

n is the number dt6-bit valuesontained in thelata stack Here n was placed aine data stack.
Note that DEPTH is measured in 16 bit chunks -- not bytes.

NS DLITERAL (d--) compiling
(--d) executing

Used in form [4.0 3.0 D+] DLITERAL instead of 7.0
also used internally to create double precision inline constants.

83D DMAX (d1d2--d3)

d3 is the greater of d1 and d2.
Related words MIN MAX DMIN
Pronounced "d-max"

83D 2DMIN (d1d2--d3)

d3 is the lesser of d1 and d2.
Related words MIN MAX DMAX
Pronounced "d-min"

83D DNEGATE (d1--d2)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page218 Real Time Forth

d2 is the two's complement of d1 i.e. -d1
Pronounced "d-negate”

83Cl DO (n1n2--)

Begins a loop which terminates based on control parameters. Used in the form:
DO ... LOOP

or DO ...n +LOOP

The loop index begins a2, and terminates based the limit n1. SeeLOOP and +LOOP for
details onhow the loop isterminated. The loop is always executed at least once. mbse
common type of loop to execute n times is of the form n 0 DO. 1 (the current index valubgmvill
have the values 0, 1 .. n-1 on successive times through the loop. DCateops designed to
execute zero times e.g. 1 1 DOBBIIT LOOP will loop almost endlessl{65356times actually).
If there is a possibility that n1 could equal n2 use ?DO instead.

Related words ?DO LOOP +LOOP LEAVE (LEAVE)

83ClI DOES> (--) (compiling)
(--addr)

Defines the execution-time action of a word created Imgh-level definingword. Used in the
form:
: <namex> ... <create> ... DOES> ... ;
where <create> is CREATE or any usedefined word which executeSREATE. All words
subsequently defined wiknamex> will have the run-time behavialefined by the codafter the
DOES>
Thus then using <namex> to define a new word <name> by
<namex> <name>
builds <name>'s with the run-time behaviour defined by the code after the DOES>
CREATE DOES> isthe most powerful feature dforth. It is bestunderstood by examining
examples. For example ifyou wished tacreate yourown slow running version dEONSTANT
using CREATE DOES> you could code it like this:
: MY-CONSTANT

CREATE

, (compile time behaviour to store value at pfa)

DOES>

@ (run-time behaviour to fetch value from pfa) ;

NS DOWN-COUNTER (--) compile time
(-- adr) run-time

A defining wordthat creates aaxample of a downcounter whiclan beloaded with a valu¢ghat
will then be decremented atsteadyrate. The value can bbaded or rereaflist as if itwere a
normal variable.

NS DP (-- addr)

Variable containing the address of the next available dictionary location aodiespacepart of
the dictionary. There isnly one DP -not one per VOCABULARY. HERE actsike DP @.
You should not meddle directly with DP, use HERE and ALLOT instead.

Related words HERE ALLOT

83 DROP (16b -)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page219

16b is removed from the data stack and discarded.
Related words NIP 2DROP

NS DUMP (addrlen --)

Debugging tool to examine an area of code space memory in both HEX and ASCII. Relaed
exist for inspecting head space (YDUMP) and list space (XDUMP)

83 DUP (X--xx)
Takes the top item on the stack and duplicates it.

NS DUP>R (n--n)
Copy top of stack to the return stack.

NS EDITOR (-)

The name of the VOCABULARY where the wortlsat make up the screen editare kept.
EDITOR makes this vocabulary the CONTEXT vocabulary -- the one first in the search order.

83Cl ELSE (--: executing)

(backaddr 2 -- backaddr 2 : compiling)
Used in the form:

flag IF ... ELSE ... THEN
ELSE executesafter the true partfollowing IF . ELSE forces exaition to continue gjust after
THEN . sysl ishalanced withits corresponding IF . sys2 is balanced with corresponding
THEN .
Related words IF THEN

83M EMIT (c-)

The ASCII characterepresented by the least-significanbi®s of the topitem on thestack is
displayed. EMIT can be redirected to the screen with CONSOLE or to the printétRINTER.

You can redirecEMIT by providing yourown emitroutine and vectoring it in with [MY-EMIT
AS EMIT. Normally when you redirect EMIT you also redirect TYPE.

Related words CONSOLE PRINTER AS DEFER TYPE.

NS END-CODE ()

Terminates a code definiticend allows the <name> of the correspondioge definition to be
found in the dictionary. END-CODE is balanced with its corresponding CODE.

Related word CODE

Pronounced "end-code"

NS ENDOF ()

Terminates an OF clause in a CASE statement.
Related words OF ANYOF RANGEOF CASE ENDCASE

83 EXECUTE (cfa-addr --)

Allows you to execute a routingassed as a parameter via its cfa address. Similar to Pascal's
Procedure parameters. The wordirdgbn indicated byaddr is executed. Aerror condition

exists if addr is not aompilation address. The address is nearly alyweyaded byl or . [] X
EXECUTE isequivalent to X. ThéDEFER ASmethod solves a&imilar problem to the one

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page220 Real Time Forth

EXECUTE does but it executes more quickly.
Related words ' ['] DEFER AS

83C EXIT (-)

EXIT is used to force a premature exit from a high level definition.

Compiled within a colon definition su¢hatwhenexecutedthatcolon definitionreturns control to
the definitionthat passedontrol to it by returning control to thesturn point onthe top of the
return stack. An error cdition exists if theop of thereturn stackdoes not contain a valigturn

point.

83M EXPECT (addr +n --)

Receivecharacters fronthe keyboard and store each imbe@mory. Thetransferbegins at addr
proceedingowardshigher addressesne byte per character untdither a "return” igeceived or
until +n characterdiave beertransferred. Namore than +n characterwill be stored. The
"return” is not stored inttnemory. Nocharacters areeceived ortransferred if +n is zero. All
characters actuallyeceived and stored intoemory will bedisplayed, with the "return” displaying
as a space. The strimgll be delimited by aHex 00 nullcharacter. The variable SPAN is set to
the length of the string not counting the return or null.

Related words SPAN

NS FALSE (-0)

ALIAS for 0, the value of a false flaglAny flag value othethan O is taken tmeanthat a flag is
true, even though the strict value of a true flag is -1).

NS FENCE (-- addr)

A variable used to contain tlefa of aword not to be forgotten. Words at or lower than this cfa
will be safe from FORGET's ravages.
Related words FORGET

83 FILL (addr n byte --)

n bytes ofmemory beginning aaddr are set to byte. No actionta&en if n is zero. n may not
negative. n must be under 64K.
Related words BLANK ERASE CMOVE CMOVE>

83 FIND (addr - addr 0) not found
(addr -- comp-adr -1) found, non-immediate
(addr -- comp-adr 1) found, immediate word

Addr must be thestartaddress of a countestring, that isthe length bytehat isfollowed by a

string in ascii. The string must tige name of a wordThis word islooked up in the dictionary

using the current search order. The stack after execution depends on wether the word is found and,
if so, whether the word is immediate or not.

NS FLIP (nl--n2)

Exchange the high and low bytes of the number on the top of the data stack.
83 FLUSH (--)

Empty and then de-allocate all buffers. Used before changing diskettes.

83 FORGET (--)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page221

Used in the form:

FORGET <name>
If <name> is found in the compilatic@URRENT DEFINITIONSvocabulary,delete <name>
from the dictionary and all wordadded to the dictionarafter <name> regardless of their
vocabulary. Failure tind <name> is arerror condition. Anerror conditionalso exists if any
CURRENT or CONTEXT vocabulary deleted. If new voabulariesvere definedafter <name>
they too will be forgotten, along withl the words in them. The word yGWORGETmust have a
cfa and pfa e.g. @olon definition. Thusyou cannot use a CAGNANT asthe object of a
FORGET. Typically a dummy colon routine such as : TASK ; is used as the object.
Related word FENCE.

83 FORTH (--)

The name of th@rimary vocabulary. Execution replaces tinst vocabulary irnthe search order
with FORTH . FORTH ignitially the compilation vocabulary and ttiest vocabulary in the
search orderNew definitions becompart ofthe FORTH vocabulary until a differertompilation
vocabulary is established. FORTH is not immediate.

Related words VOCABULARY

83 FORTH-83 ()

Assures that a FORTH-83 Stand&@wgstem is available, otheise anerror condition exists. If
Forth-83 (rather than, say, Forth-79) is in tisen the word~orth-83will be found. Itdoes

nothing, but if it is searched for and found then you are using a Forth-83 standard package. FPC is
Forth-83 standard, with literally hundreds of extensions.

83 HERE (-- addr)

The address of the next available dictionary location in the pfa (pardiettexddresspart of the
dictionary. There is only one HERE -- not one per VOCABULARY. HERE acts like DP @.
Related word DP

NS HEX (-)

Set the numeric input-output conversion base to sixteen.
Pronounced "hex";
Related words BINARY DECIMAL BASE .BASE

NS HIDDEN ()
The name of a vocabulary used to hold definitions you do not want users to see or experiment with.
83 HOLD (char--)
Add the character to the output string being built.
83 I (-n)
n is a copy of the loop index. May only be used in the form:
DO ...I... LOOP
or DO ... 1... +LOOP

The mostcommonloop hasthe form n 0 DO LOOP. In that casthe loop is executed n times,
and the loop index has the values 0, 1, 2, ... n-1. Therdep never equals n. Because lthap
index is stored on the return stack in a modified formpbtsynonymous with R@. Watch out!
Related words J R@ DO LOOP

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page222 Real Time Forth

83 IF (flag -)
(-- backaddr 2) (compiling)

Used in the form:

flag IF ... ELSE ... THEN
or flag IF ... THEN
If flag is true,the words following IFareexecuted and the wordisllowing ELSE until just after
THEN are skipped. The ELSE part is optional.
If flag is false, words from IF through ELSE , or from IF through THEN (when no ELSE is used),
are skipped. IF can only be used inside colon definitions.

83 IMMEDIATE ()

Marks the most recently created dictionary entry as a word which will be exeedted
encountered during compilatiorather thancompiled. Wordssuch as IF and DO are
IMMEDIATE becausethey execute at compile time, ensuring balanpads and computing
offsets, andeave behindhon-immediatenvords such as ?BRANCH and (D@)at perform the
actualwork at execution time. Notthat VOCABULARIES such asFORTH and ONLY are
NOT immediate. This is theForth-83convention. In Fig-Forth anBorth-79 vocabulariesere
immediate.

NS INT-ON (--)

Enable maskable interrupts at the processor. Does not control the interrupt priotity controller in
the IBM PC family of computers.

NS INT-OFF ()
Disable maskable interrupts at the processor.
NS INTERPRET (-)

The Forth interpret loop. Acquirtie next word from the input. If the next worddsfined,
executdat. Otherwise convert itry to avalid number and, if successful, push it on skeck. If it
is not defined and not a valid number, abort and complain.

Related words WORD ENCLOSE EXPECT >IN ABORT QUIT LOAD QUERY TIB SPAN

NS INSTALL-INTERRUPT (adrint# --)

Installs the address adr as the interrupt veotointerrupt number int#.Any future triggering of
interrupt number int# will cause control to be transferred to the adalesshere there had better
be a routine to service the interrupt!

Related words ISR:, ISR;, RE-INSTALL-INTERRUPT, ?INTERRUPT,REMOVE-
INTERRUPT.

NS ISR: ()

A defining wordthat startghe definition of annterrupt service routinghat iswritten in highlevel
Forth. Before it can be used, an interrupt service vector pointing to this ISR must be installed.
Related wordsISR;, INSTALL-INTERRUPT, RE-INSTALL-INTERRUPT, ?INTERRUPT,
REMOVE-INTERRUPT.

NS ISR; ()

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page223

This marks the end of an interrupt service routine written in high level Forth.
Related wordsISR:, INSTALL-INTERRUPT, RE-INSTALL-INTERRUPT, ?INTERRUPT,
REMOVE-INTERRUPT.

83 J (-n)

n is a copy of the index of the neoditer loop. Mayonly be used within a nest&O-LOOP or
DO-+LOORP in the form, for example:

DO...DO...J ... LOOP ... +LOOP
Because thigmplementatiorstoresmodified values of the loop index on theturn stack, &annot
be used to get at elements buried in return stack.
Related words | R@ DO ?DO

83 KEY (-c)

The least-significant 8 bits e next ASClicharacterreceived from the keyboard. All valid
ASCII characters anthe IBM exended &it set can beeceived. In addition thstandardd-lead

in sequences for function keys can be received. Control charaecst processed by the system
for any editing purpose. Characters received by KEY will not be displayed

NS KEY? (—-f)

Checks to see if a kdyasbeenpressed. It does nogad the key, nor wafbr a key to bepressed.
Useful for terminating amtherwise endless loop at tbperators discretion. If KEY? returns true
and you do not want ararewhich actualkey was used, discartthe keyvalue by followingwith
KEY DROP.

83 LEAVE ()

(--) (compiling)
Transfersexecution tgjust beyond the next OOP or +LOOP. Thdoop is terminated antbop
control parameters are discarded. May only be used in the form:

DO ... LEAVE ... LOOP
or DO ... LEAVE ... +LOOP
LEAVE may appeamwithin other controktructuresvhich arenested within the do-loogtructure.
More thanone LEAVE may appearwithin a do-loop. LEAVE compiles as a (LEAVE) token.
LEAVE does not alter pairs placed on the data stack at compile time by DO.

NS LINK> (Ifa -- cfa)

Not normally used by programmers. Converts Ifa (link field address) to cfa (code field address)
Related words >LINK LINK>NAME LINK@ PREV-NFA
Pronounced "from-link"

NS LIST (n--)
Types a whole screen starting at line n in the current file.
83 LITERAL (--16b)

(16b --) (compiling)
Handles creation inline literals.
Typically used in the form:
[16b] LITERAL
Most commonly used to compute expressions at compile time into inline constants: e.g.

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page224 Real Time Forth

[Xy+]LITERAL
Related words LITERAL DLITERAL.

83CI LOOP ()

Increments th&O-LOOP index by one. If theew indexwasincrementecacrossthe boundary
between limit-1and limit the loop is terminated and loop conpralameters are discardehen

the loop is not terminated, execution conéa to just aftethe correspondind®O. The most
commonform of LOOP use is 10 0 DQ. LOOP. The loop is executed 10 times with tlhep

index taking the values 0, 1,.2 9. LOOP compiles as (LOOP)-token followed byBRANCH

style offset back to; the token after the offset after the (DO)

Related words DO ?DO +LOOP

83 MAX (n1n2--n3)

n3 is the larger odigned nIn2. n MAX is used teut afloor under an expression #uat it never
gets below n. In other words n MAX sets the LOWER bound on an expression.

Related words MIN DMIN DMAX

Pronounced "max"

83 MIN (n1n2--n3)

n3 is the smaller of signed mR. n MIN isused toput aceiling on an expression $eat it never
gets above n. In other words n MIN sets the UPPER bound on an expression.

Related words MAX DMIN DMAX

Pronounced "min"

83 MOD (numerator denominator -- remainder)

16 bit signed floored division to get the remainder In contrast /MOD gets remainder and quotient. /
gets just the quotient. Note that the unsigned version UMOD is faster than MOD.
Related words division /MOD / UMOD

NS MULTI (--)

Enable multitasking by vectoringause tothe active word (pauseyhich handles thdask
interchange.

Related word SINGLE

NS NAME> (nfa -- cfa)

Not normally used by programmers. Converts nfa (name field address) to cfa (code field address).
Related words >NAME NAME>BODY NAME>LINK
Pronounced "from-name"

83 NEGATE (nl--n2)

Changes the sign of a value. n2 is the twormplement ohl, i.e. -n1 odifference of zero less
nl. The value -231 cannot be properggated because+231 cannot be expressed in 32 bits.
Thus thisvalue is left unchanged. Note SWAP-isichfaster than - NEGATE or SWAP -. In
contrast NOT calculates the one's compat.

Related words subtraction, SWAP- ?NEGATE ABS

NS NIP (nln2--n2)

Drops second from top of data stack. Equivalent to but faster than SWAP DROP.
Related words DROP TUCK SWAP

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page225

83 NOT (16b1 -- 16b2)
16b2 is the one's complement of 16b1.

For exampleBINARY 101010101010101Pecome£101010101010101 after NOT hfasished
with it -- every 1turnsinto a zero and every fiirnsinto a one. Us®&EGATE to get the two's
complement or negative of a number.

Related words 0= NEGATE
NS NUMBER (Addr--d)

Converts ASCII to binary using the current BASE. a8idr there is @ounted string (usually at
HEREB) that must b&llowed by aSPACE. NUMBER abortsvith an "Undefined" message if
invalid characters aréound in the string. The string ménave a leading minus sighut not a
trailing one. The string may not have griys signs. NUMBEReavesDPL=-1 if thereare no
decmals otherwis®PL isthe number of digits to the right of the decimal. Nbt&tthe result is
always signed double precision. There is no wogiie you single precisiodirectly. NUMBER
was designed to parse inline literals, and is probably of not too much use generally.

Related words CONVERT

NS OCTAL (--)

Sets BASE to 8 so than input and output conversions are done in base 8.
Related words BINARY HEX DECIMAL BASE .BASE

NS OFF (addr--)

Stores a 16-bit 0 at addr. Equivalent to but faster than 0 SWAP !
Related words ON 0! ! ERASE

NS ON (addr--)

Stores a 16-bit -1 at addr. Equivalent to but faster than -1 SWAP !
Related words OFF O!'!

NS ONLY ()

Select the ONLY vocabulary as both the transient vocabulary and the resident vocabulary in the
search order.All other vocabularies -evenFORTH are ndonger searched. It does reftange

the CURRENT (DEFINITIONS) vocabulary.When youwant to set up aew set of multiple
vocabularies to search you would use ONLY like this:

ONLY FORTH ALSO EDITOR ALSO HIDDEN DEFINITIONS

This would set up the search fost look in HIDDEN, then in EDTOR then inFORTH, then in

ONLY. New definitions would be added to the HIDDEN vocabulary.

Related words ALSO FORTH ORDER WORDS FORGET DEFINITIONSSEAL
VOCABULARY

83 OR (16b1 16b2 -- 16b3))

Bit wise logical inclusive or orall 16 bits. b3 isthe logical or of bl and2. Forexample
BINARY 0101 0011 OR is 0111. lother words, if eithebit is one, the resultis a 1. If both bits
are 0, the result is a 0. Note that b1 NOT b2 NOT AND is better expressed adlORzhd bl
NOT b2 NOT OR is betteexpressed as bl b2 NAND. If you use canonical flagsbthisise
OR behavegust like "and/or" in English. Irparticular if n1 and n2 areanonical flags (O or -1)
then:

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page226 Real Time Forth

true true --true false true -- true true false -- true false false -- false
Related words XOR NOR AND NAND NOT XOR
NS ORDER (--)

Display the vocabulary namdsrming thesearch order in their present search oskgjuence.
Then show the vocabulary intwhich the new definitions will be placed CURRENT
(DEFINITIONS). Note this does not show all vocabularies -- just the ones being searched now.
Related words VOCABULARY VOCS CURRENT CONTEXT WORDS

83 OVER (16b1 16b2 -- 16b1 16b2 16b3)
16b3 is a copy of 16b1. Duplicate one from top of data stack.
83 PAD (--addr)

The lower address ofscratch areased to holdlata forintermediate processing. The address or
contents of PAD may change and theta be lost ithe address of the next available dictionary
location is changed. The minimum capacity of PAD is 84 charadigsivalent toHERE 256 +.
Every time youALLOT the PADmoves. When youse worddike <# #and #> the string is built
just under the PAD.

NS PAUSE ()

The task in which this word appears stops and control is passed to the next task in the list. PAUSE
exists in all input and output words except those involving input and output ports directly.
Related words SLEEP STOP WAKE

NS PCl! (¢ port# --)

Writes the byte c to i/port port#. 1/0 ports are nivered 0 .FFFF. This bypasses DOS and
goes directly to the hardware.
Related words PC@

NS PC@ (port# --c)

Reads a byte from an ifwort. 1/0 ports ar@umbered 0 .FFFF. This bypasses DO&ndgoes
directly to the hardware.
Related word PC!

83 PICK (+n--16b)

16b is a copy of the +nth data stack value, not counting +n itself.
0 PICK is equivalent to DUP
1 PICK is equivalent to OVER
Related words DUP OVER ROT ROLL

83 QUIT (--)
Return to the terminal with the parameter stack unchanged and no message displayed.
83 R> (--16b)

16b isremoved from theeturn stack and transferredttee data stack.You must alwaypair >R
and R> within a routine. See the dire warnings on its use under the heading Return Stack.
Related words >R R@ RDROP EXIT

Pronounced "r-from"

NS R>DROP ()

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page227

Discard the top number from the return stack.
83 R@ (--16b)

16b is a copy of the top of tmeturn stack. Itdoes notdisturbthereturn stack.Useful forgetting
many copies of a number stored on th&urn stack so thahey can be usednside a colon
definition. As it is a non-destructive copy, remove the value from the return stack befenel thfe
the colon definition or crash.

Related words >R R> RDROP EXIT

Pronounced "r-fetch"

NS RECURSE (--)

If you want to recursively call the routine yatedefining youuse the wordcRECURSE instead of
thetrue name of theoutine. If you used theue name of the routine you would get ®©&D ver-
sion (if any) of the same routine or an error message. e.g.
: FACTORIAL (n -- : computes N factorial)

DUP 1 > IF DUP 1- RECURSE * ELSE DROP 1 THEN ;
The word RECURSIVE is preferred.
Related words RECURSIVE

NS RECURSIVE ()

An immediate word whichyhenplaced inside a colon definition, allows it to be self referenced at
any point later in the definition. e.g.
: FACTORIAL (n --: computes N factorial)
RECURSIVE DUP 1 > IF DUP 1- FACTORIAL * ELSE DROP 1 THEN ;
This is preferred to the word RECURSE.
Related words RECURSE

83 REPEAT (--)

Used in the form:

BEGIN ... flag WHILE ... REPEAT
At execution time, REPEAT continue.
Related words BEGIN WHILE UNTIL

NS RE-INSTALL-INTERRUPT (seg offset int# --)

This word is used to replace an interrupt vector obtained with ?interrupt.

Related words ISR:, ISR;, INSTALL-INTERRUPT, ?INTERRUPT, REMOVE-INTERRUPT.
NS REMOVE-INTERRUPT (int#--)

This word removes the interrupt vector installed for inturrupt number int# and replaces it by the 'do
nothingjust return'dummyISR provided at heXr000:FF53 irthe BIOS. May be fatal orlones

who may haveheir 'do nothingust return'dummyISR atsome differentaddress. Far béter to

use the 2INTERRUPT and RE-INSTALL-INTERRUPT pair of words.

Related words ISR:, ISR;, INSTALL-INTERRUPT, ?INTERRUPT, RE-INSTALL-
INTERRUPT.

83 ROLL (+n--)

The +nthdata stacktem, not counting +n itself, is'emovedand transferred to the top of tbata
stack, moving the other values that were above the nth item down one place.

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page228 Real Time Forth

2 ROLL is equivalent to ROT

1 ROLL is equivalent to SWAP

0 ROLL is a null operation
Related words PICK SWAP ROT

83 ROT (16b1 16b2 16b3 -- 16b2 16b3 16b1)

The top three data stack entries are rotated, bringing the deepest to the top.
Related wordsROT 2ROT
Pronounced "rote"

NS SCAN (addr len char -- index, true: if found.)
(‘addr len char -- false : if not found)

Scan string left to right searching fdnar. The left most charcter isindex 0. If the length of the
string is 0, SCANwill always return false. Thien may be)..64K butnot negative. Addneed
not be canonical but it must cover both ends of the string.

Related words <SCAN SCAN<> <SCAN<> WSCAN SEARCH <SEARCH

NS SINGLE (--)

Disable multitasking by vectoringause to a null word. Leavése currentaskrunning as the
only task.

Related word MULTI

83 SIGN (n--)

If n is negative, an ASCII "-" (minus sign) is appended to the nunoemjout string,otherwise

nothing happens. Normally used before <##md Since sign consumes the &6 number on the
top of thestack we mustnake a copy of théop byte of thedouble signed number we wish to
convert before calling sign. After sign the double precision number must be conveneiyted
with DABS as <# only works on unsigned numbers.

Related words <# # HOLD #S #>

83 SLEEP (adr -)

Make the addressed task pause indefinitely until it is woken again (if ever).
Related words WAKE STOP

83 SPACE (--)

Displays an ASCII space. Equivalent to BL EMIT.

83 SPACES (+n--)

Displays +n ASCII spaces. Nothing is displayed if +n is zero, n cannot be negative.
83 SPAN (-- addr)

A variable containing the count oharacters actuallseceived and stored by thest execution of
EXPECT not counting the return or hex 00 null.
Related word EXPECT

NS SPLIT (n1--n2n3)
Split two bytes of nl into two seperate numbers, n2 low byte, n3 high byte.
83 STATE (--addr)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page229

A variable thatkeepstrack of whetherForth should compile or exeite the next wordTrue if
compiling (i.e. in middle of a colon definition). More precis8IJATE is avariable containing the
compilationstate. A -lcontent indicates compilation is occurringve are inthe middle of
compiling a colon definition), a 0 content indicatieat execution (sometimes called "interpreting")
is occurring. A standard program may not directly modify this variable.

NS STOP (-)

Putthe currenttask inthe multi-tasker to sleep. If @skends (doesnttun continuously in an
endless loop) then it must end with this word.

83 SWAP (16b1 16b2 -- 16b2 16b1)
The top two data entries are exchanged.
83 THEN

Used in the form:

flag IF ... ELSE ... THEN

or

flag IF ... THEN
THEN is the point where execution continuaer ELSE, or IFwhen noELSE is present. In
earlier versions of ForthHEN wassoméimes calledENDIF. For along while theravas a battle
between the logicians who thoudgBNDIF more closely describethis function, and thgeople
who hate typing who like the nice short THEN. The THEN folks finally prevailed.
Related words IF ELSE

83 TIB (--addr)

The address of the text inpoaiffer. This buffer is used taold charactersvhen theinput stream
is coming from the current input device.

Related words #T1B WORD

Pronounced "t-i-b"

NS TRUE (---1)
An alias for -1
NS TUCK (n1n2--n2nln2)

Tuck a copy othe top of thedata stackunder the second entry on ttiata stack.Equivalent to
but faster than DUP ROT ROT
Related words NIP DUP ROT

83 TYPE (addr +n --)

+n characters ardisplayed frommemory beginning with theharacter at addr ancbntinuing
through consecutive addresses. Nothing is displayed if +n is zero. +n must b84kddarYPE
is a deferred word and can be redirected to the screenO@MSOLE or tothe printerwith
PRINTER. You can redirect TYPE by providing yawn type routine and vectoring it in with [']
MY-TYPE AS TYPE Normally when you redirect TYPE you also redirect EMIT.

Related words AS DEFER CONSOLE PRINTER EMIT.

83 u. (u--)

u is displayed as an unsigned number in a free-field format followed by a space

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page230 Real Time Forth

Pronounced "u-dot"
NS UR (u+n--)

u is converted using the value of BASE and then displayed as an unsigned number right aligned in
a field +ncharactersvide. If the number atharacters required to display u is greater than +n, an
error condition exists.

Pronounced "u-dot-r"

NS U< (ul u2 --flag)

Flag is true is ul is less than u2 usimgsigned compares. See the warnatgutcomparing
addresses.

Related words < U<= D< > U> D> = D= <> MIN MAKOT 0< 0> 0= DO= 0<;AND NAND
OR NOR XOR NEGATE

Pronounced "u-less-than"

NS U<= (ulu2 --flag)

Flag is true is ul is less or equal to u2 using unsigned compares. See the warning about comparing
addresses.

Related words <= U<= D< < > U> D> = D= <> MIN MAXOT 0< 0> 0= DO= 0<> AND

NAND OR NOR XOR NEGATE

Pronounced "u-less-or-equal”

NS u> (ul u2 --flag)

True if ul is greater than n@sing unsigned compares. See the warribhgut comparing
addresses.

Related words < U< D< <= > D> >= = D= <> MIN MAXOT 0< 0<= 0> 0>= 0= D0= 0<>
AND NAND OR NOR XOR NEGATE

Pronounced "u-greater"

NS U>= (ul u2 - flag)

True if ul is greater than a¥qual to n2 using unsigned compares. See the waafingt
comparing addresses.

Related words >= < U< D< > D> = D= <> MIN MAXIOT 0< 0> 0= DO= 0<>AND NAND
OR NOR XOR NEGATE

Pronounced "u-greater-or-equal”

83 um* (ul u2 --ud: unsigned)

ud is the unsigned 3ait product of ultimes u2(16-bit * 16-bit = 32-bit). All values andarith-
metic are unsigned.
Pronounced "u-m-star"”

83 UM/MOD (num-32 denom-16 -- rem-16 quot-16)

Unsigned floored division.Don't confuse this with MU/MOD which gives32-bit quotient. To
get just the remainder us&eM/MOD. To get just the quotient, us&M/. The slower-running
signed version is called M/MOD.

Related words division UMMOD UM/ M/MOD

Pronounced "u-m-divide-mod"

83 UNTIL (flag)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page231

Used in the form:

BEGIN ... flag UNTIL
Marks the end of 8BBEGIN-UNTIL loop which will terminatebased on flag. If flag is true, the
loop is terminated. If flag is false, execution continugsigb afterthe corresponding BEGIN. A
BEGIN-UNTIL loop runs at least once. In contrast a BEGIN WHILE REPHEO®P may execute
the loop zero times.
Related words BEGIN WHILE REPEAT.

83 UPDATE (--)
Mark the last referenced buffer as modified.
83 VARIABLE ()

A defining word executed in the form:

VARIABLE <name>
A dictionary entry for <name> is created and two byiésbits) areallotted in its parametdield.
This parametefield is to be usedor contents othe variable. The application is responsible for
initializing the contents of the variabighich it creates. When <name> idater executed, the
address of its parameter field is placed on the data stack.

NS VOC-LINK (--- addr)

A variable thatontains the head of the VOC-LINK chaifhis chain threads all the vocabularies
together independently of the current search order. VOC-LINK @ points to the back pointer in the
newest vocabulary. VOC-LINK @ 4- points to the pfa of the newest vocabulary.

Related word VOCABULARY

83 VOCABULARY (--)

VOCABULARY XX creates anewvocabulary callecKX. XX hasthe run-time behaviouthat,
when itexecutes it makes itself tlfiest context vocabulary searched for wordsddes not effect
the CURRENT vocabularyvhere new definitionsre placed. Ifyou want a legalisticlefinition,
VOCABULARY is a defining word executed in the form:

VOCABULARY <name>
A dictionary entry for <name> is creat@dhich specifies anew ordered list of word definitions.
Subsequent execution of <name> replacedithevocabulary inthe search order with <name>.
When <name> becomes the compilatimzabularynew definitions will be appended tmame>'s
list. If you want youmew vocabulary to always beart ofthe CONTEXT search order, it is a
good idea to define your vocabulary in the ROOT vocabulary.
Related words DEFINITIONSCURRENT CONTEXTONLY ALSO VOC-LINK VOC-SIZE
VOC-THREADS FORGET VOCS WORDS ORDER

NS WAKE (adr --)

Wake up the task whose pfa is on the stack so that it will execute in its next turn.
Related words SLEEP STOP

83 WHILE (flag --)

Used in the form:

BEGIN ... flag WHILE ...REPEAT
Selects conditional execution based on flag. When flag isexeeution continues fost after the
WHILE through to theREPEAT which then continues executidrack to just aftethe BEGIN.

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page232 Real Time Forth

When flag is false, execution continues to just after the REPEAT, exiting the control structure.
Related words BEGIN REPEAT UNTIL.

83 WORD (char -- addr)

Parsesext word in the input stream. Generateanted string by non-destructively accepting
characters fromhe input stream until thdelimiting character char igncountered or the input
stream is exhausted. Leading delimitarg ignored. The entireharacter string is stored in
memory beginning aaddr as aequence dbytes. The string ifllowed by ablank which is not
included in thecount. The firstyte of the string is the number dharacters {0..255}. If the
string is longerthan 255 charactershe count is unspecified. If the input stream is already
exhausted as WORD is called, then a zengthcharacter stringvill result. Ifthe delimiter is not
found the value ofIN is the size of the input stream. If tdelimiter is found>IN is adjusted to
indicate the offset to the character following the delimiter. #TIB is unmodified. The counted string
returned by WORD is not ready to benverted to an inlindteral until it is moved toHERE.
WORD will never parse pasthe end of the null at the end of thi8 even if it isrepeatedly called
after the null has been found.

Related words ENCLOSE >IN

NS WORDS ()

Display the word names in tHeONTEXT transient vocabularystaring with the most recent
definition. Itprints outthe words inust onevocabulary -- not all the vocabularies in the current
search order. Usually used in the form: MY-VOZORDS. Ifgiven with atext string after it,
WORDS then showsall words in all vocabulariesvhose names include thext string. For
example WORDS dupwill show all words in all vocabulariethat contain the letters llowed

by u followed by p somewhere in their name.

Related words ORDER VOCS VOCABULARY

83 XOR (16b1 16b2 -- 16b3))

16b3 isthe exclusive logical on all 16its of 16b1 and.6b2. For gample BINARY 1100 0101
XOR is 1001 i.e. the result isvthere thebits match and Where they differ. If yowse canonical
flags, this bit-wise XOR behaves just like "or ... but not both" in English. In particular if 16b1 and
16b2 are canonical flags (0 or -1) then:

true true --false false true -- true true false -- true false false -- false
If you are comparing canonical flags, XOR is a faster equivalent to <>.

XOR has a magical property useful in encryption. If K is a secret key, and M is a
message then M K XOR is a scrambled version of that message. To descramble the
message you simply K XOR again and out pops M.

For doubly linked lists you need to store both forward and backward pointers. But if
you are short of space, you can store both pointers in the same slot by storing the
XOR of the forward and back pointers. You can then reconstruct the forward pointer
by XORing with the known back pointer and visa versa.

Xor has the following properties:

AxorA=0 AxorB=BxorA A xor -1 = not A Axor0=A

Related words <> OR NOR AND NAND NOT

Pronounced "x-or"

83 [(-)

Suspend compilation and s&hte to interpret. The tektom the input stream is subsequently
interpreted i.e. ware effectively executing not compiling a colon definitiommplemented as

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 3:- An_ASCII list of useful Forth words. Page233

STATE OFF

Most often used in the form

[xy +] LITERAL to evaluate expressions at compile time to literals.
Related words | STATE

Pronounced "left-bracket"

83 [1 (--cfa)
Used in the form:
[1 <name>

Compiles the compilation addreaddr of <name> as a literalVhen the colon definition ikater
executed thefa isleft on thedata stack. An errarondition exists if <name> is not found in the
currently active search ordekVhen youareoutside a colon definition you have to use ' <name>
instead.

l.e. Use : X []Y EXECUTE put 'Y EXECUTEoutside colon definitions. Warning! Forth79
"was STATE-smart and returned the pfa instead of the cfa.

Related words LITERAL ' EXECUTE

Pronounced "bracket-tick"

83 [COMPILE] (--)

Used in the form:

[COMPILE] <name>
Forces compilation of thiellowing word <name>.This allows compilation of aimmediate word
when it would otherwise have beerecuted. Usually found in the definition ohew immediate
wordthat is a variant adome existing immediate worde-g. anew kind of IFthatdoes the same
thing as the old IF but a little bit extra.
Related words COMPILE [] IMMEDIATE
Pronounced "bracket-compile”

NS \ ()

The rest ofine is treated as @omment. Must befollowed by atleastoneblank. Caronly be
used on screens, not when keying directly.
Related words ()

83] (- : resume compilation)

Setscompilationstate. The texfrom the input stream is subsequerdtympiled. That is we are
effectively backinside a colon definition. Implemented 83 ATE ON. Mostoften used in the
form

[x y +] LITERAL to evaluate expressions atcompile time to lierals.

Related words [STATE

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 4: Forth Words sorted by function. Page235

Appendix 4

Forth Words sorted by function

This appendix iglesignedor usewhenyou knowwhat you want to dobut donot know what

words are available toelp you ddt. Thewords are sorted by category and giken withjust a

stack picture for guidancé/hen you find a wordhatlooks interesting, check in the index to see

if it is described in either the body of the book or in the alphabetical listiigpith words in
appendix three. The list here is faidgmplete and contains words which do appearelsewhere

in the book. If the only reference to a word is in this appendix, do not panic. Remember the source
of all words is available to you with the VIE\(¢r LL) command. This will often give you
information from a help fildoo. Of course, VIEW cannly find something if it isavailable,

which in practice meanghatyou will need tohave allFPCfiles available, preferably on a hard

disk.

Symbol definitions used in this appendix

nl 16 bit signed number

dl 32 bit signed number

ul 16 bit unsigned number

udl 32 bit unsigned number

fl Boolean flag

cl 8 bit character

nfa Name field address

cfa code field address

Ifa link field address

seg 16 bit absolute segment number
offset 16 bit offset into a segment

<char> A character from the input stream
<name> A name taken from the input stream
<string> A sequence of ASCII characters from the input stream
<filespec> Standard DOS file specification

Separator between stack parameters and input stream
parameters.

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Real Time Forth

Cateqory Titles

Compiling and Allocation words

Conditional Test & Compilation words

Defining and Related Words

Dictionary Field Manipulation words

DOS Interface words

File Manipulation words

Math words

Memory words for VARIABLES and ARRAYS in CODE space
Memory words for VALUES

Memory Manipulation words for External Memory and Ports
Menu Building words

Mode Control and Associated words

Number Conversion & Output words

Printing Related words

Stack Manipulation words

Status Testing and Error Condition Handling words
String Manipulation and Output words

System words

Terminal Input & Output words

Timing Related words

Utility words

VIEW Manipulation words

Window Control words

Compiling and Allocation Words Y@ (al--nl)

YC! (nlal--)
e (<) | vce (al-nt)
ALLOT (nl--) YCOUNT (al-a2 nl)
ASCII (| <char>--cl) YCSET Gyte al -)
C, (cl--) YDP (-al)
DEFERS Ename> --) YHASH (yname vocaddr thread)
DLITERAL (d# -) YHERE (-al)
DP (--al) YS: (al--ysegal)
LITERAL (n1--) YSEG (-al)
NEWINFO () VSTART (a1
X (n1=) || (-
X" (| <string>"--) [(| <name> --)
X>"BUF (--"BUF) [COMPILE] (|<name> --)
XC, (n1-) | \ (-)
XDP (--al) \S (nl-)
XDPSEG (-al) | \UNLESS (| <name> --)
XHERE (--seg nl)] (-)
M (nlal--) ' (command --)
Y, (nl--)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 4:- Forth Words sorted by function.

Page237

Conditional Test & Compilation Words

#ELSE
#ENDIF
#THEN
#IF
+LOOP
o<
O<=
o<>
0=

0>
0>=

<

<=

<>

>

>=

>MARK
>RESOLVE
?<MARK
?<RESOLVE
?7>MARK
?>RESOLVE
?BRANCH
?DO
?EXIT
?LEAVE
?UNTIL
?WHILE
AGAIN
AND
BEGIN
BETWEEN
BOUNDS
BRANCH
CASE
DO=

D<

D=

D>

DMAX
DMIN
DNEGATE
DO

DU<
ELSE
ENDCASE
ENDOF
EXIT
FALSE

I

(nl1--f1)
(nl--f1)
(nl--f1)
(nl1--f1)
(nl1--f1)
(nl--f1)
(n1n2--f1)
(n1ln2--f1)
(n1ln2--f1)
(n1ln2--f1)
(n1n2--f1)
(n1ln2--f1)
(-al)
(al--)
(--flal)
(flal--)
(-flal)
(flal--)

)
(imit start --)
(f1--)
(f1--)
(f1--)

)

)

(n1n2--n3)
()
(n1ln2n3--f1)
(alnl--a2a3)
(--)

(--)
(d1--f1)
(did2--f1)
(did2--f1)
(did2--f1)
(d1d2--d3)
(d1d2--d3)
(d1d2--d3)
(limitstart --)
(d1 dz2--f1)
()

(--)

(--)

(--)

(—-f1)
(--nl)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

IF

J

LEAVE
LOOP
NOT
NRESOLVE
OF (n1
OR
RECURSE
RECURSIVE
REPEAT
THEN
TRUE

U<

U<=

u>

U>=

UNDO
UNNEST
UNTIL
WHILE
WITHIN
XOR

(f1--)
(--nl)

()

(--)
(n1--n2)
(Onln2..n--

)
n2--nl) (n1 nl--)
)

(n1 n2--n3
(--
(--
(-
(-

(-f1
(n1n2--f1)
(unlun2--f1)
(nln2--f1)
(nl n2--f1)
(--)

(--)

(f1--)
(f1--)
(nln2--f1)
(n1n2--n3)

)
)
)
)
)

Defining and Related Words

2CONSTANT
2VARIABLE

;CODE
;USES
ALIAS
ANEW
CODE
CONSTANT
CREATE
DEFER
DEFINED
DOES>
EXEC:
EXECUTE
HEADER
HIDE
IMMEDIATE
IS

ISR:

ISR;
LABEL
PERFORM
REVEAL
VALUE

(d1 kname> --)
(] <name> --)
(]| <name> ... ; --)
(-
(-
(-
(al|<name>--)
(] <name> --)
(kname> --)
(n1 kname>)--)
(hame>)--)
(kname>)--)
(--here 0| airue)
()
(n1--)
(al--)
(] <name> --)
()
()
(cfa--)
(kname> ..ISR; --)
()
(—-al)
(al--)
()

(nl|<name> --)

~— — —

Page238

Real Time Forth

VARIABLE
WIDTH

(| <name> --)
(--al)

Dictionary Field Manipulation Words

D

>BODY
>LINK
>NAME
>VIEW
BODY>
L>NAME
LINK>
N>LINK
NAME>
NAME>PAD
TRAVERSE
VIEW>

DOS Interface Words

A:

B:

C:

ALLOC

CD

CHDIR
COMSPEC$
COMSPEC@
COPY

D:
DEALLOC
DEL

DIR
DOS-LINE
DOS>TIB
DOSVER
DRIVE?
ENVSIZE
EVSEG
FINDFIRST
FINDNEXT
ME$

ME@
PATHS$
PATH@
PATHHNDL
PATHSET
REN
RENAME
SELECT
SET-DTA

(nfa--)
(cfa-- pfa)
(cfa--Ifa)
(cfa--nfa)
(cfa -- vfa)
(cfa--cfa)
(Ifa -- nfa)
(Ifa -- cfa)
(nfa -- Ifa)
(nfa--cfa)

(Al--PAD)

(‘aldirection -- addr')

(vfa--cfa)

(--)
(--)
(--)
(n1--n2n3n4)
(| <filespec> --)
([<filespec> --)
(—-al)
(--)
(<filespec> --)
(--)
(nl1--f1)
(<filespec> --)
(<filespec> --)
(—-al)
(--)
(-nl)
(--nl)
(--nl)
(--nl)
(string -- 1)
(--f1)
(--al)
(--)
(--al)
(--)
(--al)
(handle -- 1)
(<filespec> --)
(| <filespec> --)
(nl--)
(al--)

SETBLOCK (seg size --f1)
SYS (fommand --)

File Manipulation Words

IHCB (al|<name> --)
$>HANDLE (alhandle --)
$HOPEN (al--f1)
$PFILE (al--f1)
$FLOAD (al--f1)
.CURFILE ()
FILE (--)
.FILES (--)
LOADED (--)
.SEQHANDLE (--)
>ATTRIB (handle --attrib-al)
>LINE (nl1--)
>NAM (handle -- name-string-al)
>HNDLE (handle -- handle al)

?DRIVE.EXTRACT (handle -- drive-n1)
?DRIVE.PREPEND (Irive-n1 handle --)

?FILEOPEN (--)
?PREPEND.VPATH (al--al1)
B/HCB (-nl)
CHARREAD (—-c1)
CLOSE (--)
CLR-HCB (al--)
CURPOINTER (andle -- d1-current)
DEFEXT (--al)
ENDFILE (handle -- double-end)
EXHREAD (alnhndlsegl--n2)
EXHWRITE (al nihndl segl --)
FCB>HANDLE (ala2--)
FILE (|<name> --)
FILE>TIB (al--)
FILEPOINTER (--al)
FILES (--)
FILLBUFF ()
FILLTIB (--)
FL (] <name> --)
FLHNDL (--al)
FLOAD (| <name> --)
GET_ALINE (--)
GFL (kname> --)
HANDLE (| <name> --)
HANDLE>EXT (al--a2)
HCLOSE bhandle -- f1)
HCREATE (handle -- error-code)
HDELETE (handle -- f1)
HNDLS (—-al)
HOPEN (handle -- error-code)

HREAD (al nbhandle -- n2)

Appendix 4:- Forth Words sorted by function.

Page239

HRENAME (hndI1 hndI2 -- return-code)

HWRITE
IBLEN
IBRESET
INCLUDE
LINEREAD
LOAD
LOADED,
LOADER
LOADING
LOADSTAT
MOVEPOINTER
NEEDS
NEWFILE
OBLEN

OK

OPEN
OUTBUF
PREPEND.PATH
RWERR
RWMODE
SAVEPOINTER
SEEK
SEQDOWN
SEQHANDLE+
SEQHANDLE
SEQUP

Math Words

*

*/
*MOD
*D

+

/
/IMOD
1+

1-

2*

2+

2-

2/

8*

D+
D-
D2*
D2/
DABS
M/MOD
MAX
MIN

(alnhndl--n2)
(-nl)

()

(| <name> --)
(-al)

(nl--)

(

-)
()
(—-al)

()

(d1-offsebndl --)
(kname> --)
(| <name> --)
(-nl)

()
(kname> --)
(—-al)

tndl -- f1)
(—-al)
(—-al)

(--
(d1 --
(__

--a

= =
~ — — —

(
(

—~ o

(n1n2--n3)

(N1 n2 n3 -- quotient)
(n1n2n3--n4n5)

(n1n2--d1)
(n1n2--n3)
(n1n2--n3)
(n1n2--n3n4)
(nl1--n2)
(n1--n2)
(nl1--n2)
(nl1--n2)
(n1--n2)
(n1--n2)
(nl1--n2)
(d1d2--d3)
(d1d2--d3)
(d1--d2)
(d1--d2)
(d1--d2)

(d1nl--rem quot)

(n1n2--n3)
(n1n2--n3)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

MOD ('num den)smodulus)

MU/MOD (dl1nl--rem dquot)
NEGATE (nl--n2)
uie/ (n1--n2)
u2/ (n1--n2)
Um* (unlun2)--ud)
UM/MOD (ud un -- urem uquot)

Memory Words for Variables and
Arrays in Code Space

!
+

-1!

0O!

2!

2+!

2@

@

@L
@REL>ABS
BLANK

C!

C+!

Co@
CAPS-COMP
CMOVE
CMOVE>
COMP
COMPARE
COUNT
CRESET
CSET
CTOGGLE
DECR
ERASE
EVEN
FILL

INCR
LARGEST
LENGTH
MOVE
OFF

ON

SCAN
SCANW
SEARCH
SKIP
SSEG
UPC

(nlal--)
(nlal--)
(n1--)
(n1n2--n3)
(al--)
(al--)
(dial--)
(dial--)
(al--d1)
(al--nl)
(segal--nl)
(cfa--al)
(alnl--)
(clal--)
(clal--)
(al--cl)
(ala2nl--f1)
(ala2nl--)
(ala2nl--)

(ala2nl--f1)
(ala2nl--f1)
(al--a2nl)
(nlal--)
(nlal--)
(alnl--)
(al)--)
(alnl--)
()--)
(alnlcl-)
(al)--)
(alnl--a2n2)
(al--a2nl)
(ala2nl--)
(al--)
(al--)
(alnlcl-)

(alwlw2--a2 w3)
(sadslenbadrblen -- n1 f1)

(alnlcl--)
(-al)
(char -- char")

Page240

Real Time Forth

UPPER (alength --)

Memory Words for Values

1> (nl|<name> --)
+1> (nl|<name>--)
= (nl|<name> --)
IS (cfa -- data-address)
@> (] <name>--nl1)
DECR> (kname>)--)
INCR> (kname>)--)
OFF> (kKname> --)
ON> (kname> --)

Memory Manipulation words for
External Memory and Ports

IL (nlsegal--)
ClL (clsegal--)
CMOVEL (ssegsptrdsegdptr cnt --)
CMOVEL>

(sseg soffset dseg doffset Igth --)
LFILL (allenvalue --)
LFILLW (seg offsetbyte-len word --)
P! (nl1 port#--)
P@ (port#)--nl)
PARAGRAPH (offset -paragraph)
PC! (nl1 port#--)
PC@ (port#)--nl)
XALIGN (--)
XEVEN (al--a2)

Menu Building Words

ENDMENU (alnl-)
MENU (-alnl)
MENULINE"

(nl1| <string> <func> -- n1+1)
NEWMENU (] <name> --)
NEWMENUBAR (| <name> --)

Mode Control and Associated Words

AUTOEDITOFF
AUTOEDITON
AUTOSAVEOFF
AUTOSAVEON
BACKUPOFF
BACKUPON
BLANKOFF
BLANKON
HELPOFF ()
HELPON ()

1 1 1 H 1
I ! i 1 i 1
N N) N— N P

NS AN A~

HIDELINES
INITCOLOR
INITMONO
NOBACKUP

RESTORESTATE
RESTORE_VECTORS

SAVESTATE

SET_VECTORS

SHOWLINES
SRCOFF
SRCON
STATOFF
STATON
WITHPATH

Number Conversion & Output Words

#

#>
#S
(D)
(U.)
(UD.)

R

<#

?

BASE
CONVERT
D.

D.M.Y
D.R
DECIMAL
DIGIT
DOUBLE?
DPL

H.

HEX

HLD
HOLD
M/D/Y
NUMBER
NUMBER?
OCTAL
S>D

SIGN

u*D

u.

U.R

ub.

UD.R

(d1--d2)
(di--alnl)
(dl1--d2=0)
(di--alnl)
(nl--aln2)
(di--alnl)
(nl--)
(nln2--)
(d1--d1)
(al--)
(—-al)

(+dlal--+d2a2)

(di--)
()

(dinl--)
()

(char base--nl1fl)

(--f1)
(--al)
(u--)

(--)
(--al)
(cl--)

()
(al--d1l)
(al--difl)

(--)
(nl1--d1)
(nl--)
(nln2--d1)
(nl--)
(n1ln2--)
(di--)
(dinl--)

Appendix 4:- Forth Words sorted by function.

Page241

Y-M-D ()

Printing Related Words

FILEPRINT (|<name> --)
FPRINT (file_specs --)
IBM-PROPRINT ()
PCLOSE (--)
PDOS (adrive# -- f1)
PEMIT (c1--)
PFILE (kname> --)
PR-STATUS (nl--n2)
PRINT (|<command-line> --)
PRINTING (--al)
PRNHNDL (--al)
TELETYPE (--)
TOPRINTER (--)

Stack Manipulation words

-ROT (n1n2n3--n3nln2)
S ()
2>R (n1ln2--)
2DROP (d1--)
2DUP (dl--d1d1)
20VER (d1d2--d1d2d1l)
2R> (--n1ln2)
2R@ (--n1n2)
2ROT (d1d2d3--d2d3d1)
2SWAP (di1d2--d2d1)
3DROP (n1n2n3--)
3DUP (n1n2n3--n1n2n3nln2n3)
4DUP (dld2--d1d2d1d2)
>R (n1--)
?DNEGATE (d1d2--d3)
?DUP (n1--n1nl<>0 |n1=0)
?NEGATE (n1n2--n3)
ABS (n1--n2)
DEPTH (--nl1)
DROP (n1--)
DUP (n1--n1nl)
DUP>R (nl1--nl1)
FLIP (nl--n2)
NIP (n1ln2--n2)
OVER (n1n2--n1n2nl)
PICK (n1--n2)
R> (--nl1)
R>DROP (--)
R@ (-nl)
RESTORE> (--)
ROLL (nl--n2)
ROT (n1n2n3--n2n3nl)

RP! (al--)
RPO (-al)
RP@ (-al)
SAVE!> (nl--)

SAVE> (--)

SP! (al--)
SPO (-al)
SP@ (-al)
SPLIT (n1--n2n3)
SWAP (nln2--n2nl)
TUCK (n1n2--n2nl1n2)

Status Testingand Error Condition
Handling Words

?COMP (--)
?CONDITION (f1--)
?CSP (--)
?DOINGMAC (--f1)
?DOSIO (-f1)
?ENOUGH (nl--)
?ERROR (alnl f1--)
?EXEC (--)
?LOADED (] <filename> --)
?MISSING (f1--)
?STACK (--)
ABORT (--)
ABORT" (f1 | <message>" --)
CSP (-al)
STATUS (--)

String Manipulation and Output words

(] <string>" --)
(| <string>" --)

">$ (alnl--a2)
"BUF (—-al)
"ENVFIND (alnl--n2fl1)
"HEADER (al--)
$>EXT (alnla2--)
$>HANDLE (alhandle --)
$>TIB (al1--)

(] <string>--)
(alnl--a2n2)
. (] <string>"--)
((] <string>) --)
.BOX"

-TRAILING

(| <string>" --)
.COMMENT: (] ...COMMENT; --)
ISTRING (allennl -- adden')
?CR ()
?LINE (nl--)
?PAGE (--)

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Page242

Real Time Forth

?UPPERCASE
COMMENT:
PAD

PAGE

PARSE
PLACE

System Words

ICSP

IUSED
#CODESEGS
#HEADSEGS
#LISTSEGS
#THREADS
#TIB

#USER
#VOCS

‘'DOCOL
TIB
‘WORD

(
(FIND)

(al--al1)

(-)

(-al)

(-)
(al--a2nl)
(from count to --)

(—-al)

(| <name> -- cfa)
(—-al)
(—-al)
(—-al)

()

(herelfa -- cfa flag |here flag)

(FRGET) (code-addr relative-link-addr --)

,CALL
,JUMP
,VIEW
.COMPSTAT
.COMSPEC
.DATE
.ELAPSED
.ENV

.FREE
.HELLO

.ME

.PATH
.STATUS
.TIME

.USED
.VOCWORDS
OCOMPILER
>NEST
>NEXT
>PRE

?CS:

?ES:
?FILLBUFF
?INTERRUPT
?VMODE

A;

ADEBUG

()
()

--)
(—-al)
(—-al)

()

(--seg)

(-—-seg)

()
(int# -- seg offset)
()

()

(al--)

ASSEMBLER ()
ATBL (-al)
AUTOSAVE-MINUTES (-nl)
BDOS (nlfunc# --al)
BGSTUFF (-)
BOOT (--)
BUG (--)
BYE (-)
BYTFUNC (--)
CNHASH (cfa--ya)
CNSRCH (cfa ya maxya -- nfeag)
CNT (--al)
COLD ()
COMPILE (lkname> --)
CONHNDL (--al)
CONTEXT (-al)
CONTROL (<char>--nl1)
CRASH (--)
CURRENT (-al)
DBG (] <name> --)
DEFAULT (-)
DEFAULTSTATE (--)
DIVOFUNC ()
DIVOSTRT (--)
DIVIDEO

(status CS IP AXBX CX DX SI BP --)
DLN (al--)
DONE? (n1--f1)
EDITOR ()
EMIT. (char --)
END? (-al)
ENTRY (-al)
ESO (--al)
EXEHCB (-al)
FIRST (-al)
FORTH (--)
FUDGE (--al)
GO (al--)
HASH (str-addr voc-ptr -- thread)
HDEFAULT (--)
HDOS1 (cx dx fun -- ax cf ¢rr-code 1)
HERE (--al)
HIDDEN (--)
INITSTUFF (--)
INSTALLSTUFF (--)
INT-ON (--)
INT-OFF (--)
INTERPRET (--)
INSTALL-INTERRUPT (offset int# --)
LAST (-al)
LIMIT (-al)

LINK (--al)

Appendix 4:- Forth Words sorted by function.

Page243

MAKEDUMMY

MAX.S

MAXNEST

MEMCHK

NO-NAME

NOOP
OSF

OUTPAUSE

PAUSE

PAUSE-FUNC

PRE>
PRIOR

(| <name>)--)
(-al)
(~n1)

RE-INSTALL-INTERRUPT

ROOT
RUN
SEGSET
SEQINIT
SETTIB

SETYSEG

SOURCE

SOURCE-PARSE-WRD

START
STATE
SVINIT
SVSEG
TOS

TOTALWORDS

TRIM
UNBUG

UNINSTALLSTUFF

upP
USER

VMODE-VAR
VMODE.SET
VOC-LINK
VOCABULARY

W.NAME
WARM

WARNING

WORD
XSEG

(seq offset int# --)

()
()
(--)
()
(al--)
()

(--alnl)
(Cl--alnl)

()
(--al)
()

(--segl)

(--al)
(--al)

(faddwvoc-addr --)

()
()
(--al)
()
(--al)
()
(--al)
(| <name> --)
(nfa--)
()
(-al)
(c--al)
(--al)

Terminal Input & Output Words

#LINE
#OUT
#PAGE
(EMIT)
(EXPECT)
(KEY)
(KEY?)

(cl--)
(alnl--)

(—-cl)

(--f1)

-LINE

-TAB
>ATTRIB1-8
>BG

>BOLD
>BOLDBLNK
>BOLDUL
>BUGN
>BUWT
>COLOR
>FG

>|BM

>IN

>LCD
>MONO
>NONE
>NORM
>RDWT
>REV
>REVBLNK
>TYPE

>UL

?DARK
?KEYPAUSE
?PRINTER.READY
AT

ATTRIB
BACKSPACES
BEEP

BELL
BIG-CURSOR
BIOSCHAR
BIOSKEY
BIOSKEY?
BIOSKEYVAL
BL

BLACK
BLACK-ON-WHITE
BLUE
BROWN

BS

CLS

COLS
CONSOLE
CR

CRLF
CROWS
CRTAB
CURSOR-ON
CURSOR-OFF
CYAN

DARK

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

()
()
()
(—-f1)
(col row --)
(—-al)
(nl--)
()
(—-cl)
()
(—-al)
(-nl)
(—-f1)
(—-al)
(—-cl)
(-nl)
()
(-nl)
(-nl)
(—-cl)
()
(-nl)
(cl--)
()
()
(-nl)
()
()
()
(-nl)
()

Page244

Real Time Forth

DKGRAY
DTBUF

EEOL

EMIT
EXPECT
EXTYPE
FEMIT
FORM-FEED
GET-CURSOR
GREEN
IBM--LINE
IBM-AT
IBM-AT?

KEY

KEY?

LDUMP
LMARGIN
LTBLUE
LTCYAN
LTGRAY
LTGREEN
LTMAGENTA
LTRED
MAGENTA
MED-CURSOR
NORM-CURSOR
QTYPE
QUERY

RED
RMARGIN
ROWS
SET-CURSOR
SLOW
SPACE
SPACES
SPAN

SPCS

TAB

TABSIZE

TIB

TILLKEY
TYPE
TYPESEG
VIDEO-SEG
VIDEO-TYPE
WHITE
WHITE-ON-BLACK
YELLOW

(-nl)
(—-al)
()
(cl)--)
(alnl--)
(segalnl--)
(cl--)
()
(-- SHAPE)
(-nl)
0-)
(col row)--)
(-- col row)
(—-cl)
(—-f1)
(' seq offset len --)
(—-al)

Timing Related words

10TH-ELAPSED (-n1)
B>SEC (di1--nl1)
B>T (d1--d2)
DOWN-COUNTER (--adr)
FORM-DATE (d1--al1)
FORM-TIME (d1--al1)
GETDATE (-YMD)
GETTIME (-HMS)
HOURS (nl--)
MINUTES (nl--)
MS (nl--)
SEC-ELAPSED (-nl)
SECONDS (nl--)
SETDATE (hewMY --)
SETTIME (HMS--)
STIME (--al)
T>B (d1--d2)
TENTHS (nl--)
TIME-ELAPSED (--d1)
TIME-RESET (--)
TIMER (|forth_commands --)
TTIME (--al)
Utility words

DEBUG (] <name> --)
DEBUGABLE ()
DLN (al--)
DONE ()
DU (al-- addr+64)
DUMP (al len--)
ED ()
EDIT (nl--)
EMPTY ()
FALLOF (func | fl_specs --)
FAST (--)
FENCE (-al)
FIND (al--cfaflag|al false)
FLOOK (] <string> <fl_specs> --)
FORGET (kname> --)
FSAVE (] <name> --)
INDEX (file_spec --)
INLINE ()
INSTALL (--)
LINEEDITOR (xyalnl--fl)
LISTING (--)
MANY ()
MARK (] <name> --)
POSTFIX ()
PREFIX ()

QUIT (--)

Appendix 4:- Forth Words sorted by function.

Page245

REF
REPAIR
SAVE-EXE
SED

SEE
THESE
TIMES

TOTALLINES

TURNKEY
UNDEFER
UNEDIT

UNINSTALL

USED
USEDIN
WORDS
XDUMP
XREF
YDUMP

(] <name> --)
(kname> --)
(]| <name> --)
(filename --)

kname> --)
(--)
(nl1--)
(—-al)
(] <name> --)
(| <name> --)
()
()

(kcommand_line> --)

(] <name> --)

(] <text> <text>--)

(alnl--)
(Kname> --)
(alnl--)

View Manipuation words

+LINES
-1LINE
-LINES
>VIEWFILE
>VIEWLINE
B

HELLO
HELP
HELPVIEW
L

LIST

LL

N
SETVIEW
VIEW
VIEWLINES
VIEWPATH

(nl--)

()

(nl--)

(cfa -- offset al)
(nl--)

(

(

(kname> --)
(] <name> --)
(--)
(nl--)
(] <name> --)
(--)
(| <path>--)
(| <name> --)
(n1n2--)
(--al)

~)
~)

Window Control Words

BCR
BOX
BOX&FILL

RESTSCR
SAVESCR

('left top right bottom --)
('left top right bottom --
RECOVERLINE
RECOVERSCR

(nl--
(__
(__
(__

~— ~ — —

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 5:A starter setof words

Page247

Appendix 5

A starter set of words

Stack Words

DROP (n--)

DUP (n--nn)
OVER (nm--nmn)
ROT (abc--bca)
SWAP (ab--ba)
TUCK (nm--mnm)
NIP (nm--m)
Arithmetic

+ (ab--atb)
- (ab--a-b)
* (ab--a*b)
/ (ab--alb)
Logic

AND (ab--aANDDb)
NOT (a--nOTa)
OR (ab--aORb)
XOR (ab--aXORb)
Comparisons

All test the top twdtems on thestack and
return a true or false flag.

eg.> (ab--a>b)
Available tests: > < = <> >=<=
16 bit data <-> memory

! (nadr--)
@ (adr--n)

The full listsgiven in appendices 8nd 4 may be somewhaverwhelming when one isist
starting. This list issspeciallyfor peoplejust getting going withForth - it lacksmany words
used later in this book but should be useful for chapters up to about 9.

8 bit data <-> ports

PC! (8bits adr)--)
PC@ (‘adr -- 8hits)

Printing to screen

. (number --)
EMIT (char--)
Defining Words

: NAME list-to-do ;

makes a word called nartieat does list-to-
do in order when executed.

VARIABLE NAME makesa 16 bit
variable called name which returns
the address of the variable.

value CONSTANT NAME makes a
constant called name who returns
the number value.

Control Structures

DO (end#start# --)
loop-body
LOOP

IF (flag --)
do this if flag is true

ELSE
do this if flag is false

THEN
always carry on from here

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

Appendix 5:-A starter setof words.

Page242

BEGIN

do something, leave flag
UNTIL

if the flag is nottrue loop back to
begin and dahe somethinggain. If it is
true just carry on after the until.

Files

ANEW PROGRAM ensures you do not
end up with multiple copies of your
program in memory.

ED allows you to edit the currentlgpen
file.

n LOAD loads the currently open fifeom
line n.

NEWFILE creats a newile, prompts
for name to give file.

OPEN shows you anenu of all files so
you can choose which to work on.

Debugging

DEBUG word sets upword SO you can
single step through whenword is next
encountered.

DBG name sets up the wordtalled
name in single step mode and
immediately starts name executing.

SEE word decompilesvord so you can
inspect it.

VIEW word shows you source of
word.

INDEX

-1
-ROT

-TRAILING
!

#

#>

#S

#TIB
$>EXT
$>HANDLE
$HOPEN
$SYS

'(TIC)

(

(E)

(FIND)
(READ_CLOCK)

)

*

*/
*MOD
+

+!

+Cl!
+LOOP

-ROT
-TRAILING

S TEXT!

(
.(MESSAGE)
(=)

FILES

FS
.LOADED

R

S

/

/MOD

:CODE
:USES
<

206

206

206

6, 10, 25, 203
233

57, 203
58, 204
57, 204
204

97

97

97

95

204

81

204

73

109

133

204

16, 205
16, 205
16, 205
16, 205
25, 205
25

20, 205
26, 197, 206
16, 206
13

59

6, 27, 58, 206
6, 27, 60
207
6, 27, 60
206

97

74

97

58

13, 53, 207
16, 207
16, 207
7,209
7,210
118

118
17,136, 210

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

>R

?CS:
?DO
?DUP
?ENOUGH
?INTERRUPT
@

[

[1
[COMPILE]
]

0O<

O<=
0<>
0=

0>

0>=
1+

1-

1/F
1PUSH
2!

2*

2+

2-

2/

2@
2DMIN
2DROP
2DUP
20VER
2PUSH
2ROT
2SWAP
A:

A;

57, 210
136
210

17, 210

17,136, 210
136
210
145
147
210
140

12, 211

58
197
211

12,211

211

152, 211
6, 25, 211
103, 233
81, 233
8, 233
103, 233

17, 207
207

136, 207

18, 136, 208

18, 208

136, 208

16, 208

16, 208

72
144

25

208

16, 208

16, 208

16, 209

25
217
13, 34, 209

13, 209

13, 209
144

13, 209

13, 209
96

136, 137

ABORT
ABS
ACTIVATE
AGAIN
ALIAS
ALLOT
ALSO
ALT-A
ALT-C
ALT-F10
ALT-F6
ALT-F8
ALT-G
ALT-K
ALT-L
ALT-M
ALT-N
ALT-O L
ALT-OU
ALT-O X
ALT-O-P
ALT-P
ALT-Q
ALT-R
ALT-S
ALT-T
ALT-U
ALT-V
ALT-W
ALT-X
ALT-Y ,
ALT-Z
ALT1.5
AND
ANEW
APPEND TO TEMP.SEQ
ASCII
ASSEMBLER
AT

B:
BACKGROUND:
BASE
BEEP
BEGIN

BL
BLOCK
BOOT
BUFFER
BYE
BYTE

C - CONT
C!

C,

C:

211, 212
17, 212
126, 127, 212
136, 212
128

29, 212
102, 212
44

44, 45
38, 45
44, 48, 49
44, 47, 49
43

47

44

44, 47
44

45, 46
45, 49
45, 46
45, 47
45, 47
43

44

44

44, 48
44

44, 47
44, 46
44, 45
44, 46
43

47

17, 212
39, 42

44

213

213

60

96

126, 213
26, 57, 213
8

21,136, 213
213

100

185

100

213

137

54
7,25,213

26,197, 214

96

C@ 25,214
C@ WITH AUTO-INCREMENT 59
CASE 22
CEILING 73
CHARREAD 97
CHDIR 96
CLEAR INTERRUPT FLAG 150
CLEAR-LABELS 141
CLI 150
CLOSE 98
CLR-HCB 97
CMOVE 59, 214
CMOVE> 59, 214
CNTL-A 43
CNTL-B 45
CNTL-C 43
CNTL-D 43
CNTL-E 43
CNTL-F 43
CNTL-I 43
CNTL-L 44, 46
CNTL-M 43
CNTL-N 44
CNTL-R 43
CNTL-S 43
CNTL-T 44
CNTL-W 43
CNTL-X 43
CNTL-Y 44, 46
CNTL-Z 43
CODE 137
CODE FIELD ADDRESS (CFA) 197
CODE SPACE 25
CODE" 214
COLUMN MOVE RIGHT 45
COMMENT: 214
COMMENT; 214
COMPILE 214
CONSTANT 8,113, 114, 214
CONTEXT 215
CONTEXT STACK 102
CONVERT 215
CONVERT LINE TO LOWERCASE 45
CONVERT LINE TO UPPERCASE 45
COPY 96
COPY TEXT TO TEMP.SEQ 44
COPYING LINES 45
COPYING TEXT TO A FILE 45
COUNT 59, 215
CR 27,59, 215
CREATE 8,114, 215
CSP 215
CTRL-END 43
CTRL-HOME 43

CURPOINTER
CURRENT
CURRENT VOCABULARY
CUT LINES
CUTTING TEXT TO A FILE
D - DONE

D*

D+

D-

D.

D.M.Y.

D.R

D/

D/MOD

D<

D=

DO=

D2/

DABS

DBG

DEBUG

DECIMAL

DEFER

DEFINE A MACRO
DEFINITIONS

DEL

DELETE &N-DELETE LINES

DELETE LEADING BLANKS
DELETE CHARACTER
DELETE WORD
DEPTH

DICTIONARY

DIGIT

DIR

DISASSEM
DISCARD CHANGES
DISPLAYING MENUS
DLITERAL

DMAX

DMIN

DNEGATE

DO

DOES>

DOUBLE?

DOUBLES
DOWN-COUNTER
DP

DPL

DRAWING LINES
DROP

DuU<

DUMP

DUP

DUP>R

99

215
102

44

45

54

65

16, 216
16, 216
58, 216
60

58, 216
65

65

18, 216
18, 216
18, 216
16, 216
217
54

53
6,57, 217
81, 217
44
102, 217
43, 96
44, 46
46

43

44

12, 217
101
58

96
135

45

46
217
17, 217
17

17, 217

20, 136, 218
8, 114, 218

58

70

132, 218
26, 218
58

46

11, 218
18

197, 219
11, 219
13, 219

E

E.

E.R

ED
EDITOR
ELSE
EMIT
END

END OF FILE MARKER ,

END-CODE
END-INLINE
ENDCASE
ENDFILE
ENDOF
ENTER PRINT MENU
ESC
ESCQD
ESCQS
EXEC:
EXECUTE
EXHREAD
EXHWRITE
EXIT
EXPAND TABS
EXPECT
EXPORTING TO FILE
F - FORTH
F!

F#
F#BYTES
F*

F**

F*N

F+

F-

F-ROT

F.

F.R

F/

F<

F<=

F=

F>

F>=

F@

F0.0

FO0.5

FO<

FO=

FO>

F1

F1.0

F1.0+

F10

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

73
73
73
38, 42
219
19, 136, 219
27,59, 219
43
46
118, 136, 137, 219
143
22
99
22,219
45
45, 46
38
39
23
219
98
98
220
45, 46
27, 60, 220
46
54
71
74
70
69, 71
72
72
68, 71
68, 71
71
67, 69, 73
67, 74
69, 71
72
73
72
73
73
71
73
73
72
72
72
45, 47
73
71
39, 45

F10.0
F2
F2DROP
F2DUP
F2DUP<
F2DUP=
F2DUP>
F3

F4

F5

F6

F7

F8

F9
FABS
FACOS
FACOSH
FALN
FALOG
FALSE
FASIN
FASINH
FATAN
FATANH
FCLEAR
FCONSTANT
FCOS
FCOSH
FDEPTH
FDROP
FDUP
FDUPO<
FENCE
FEXP
FILL
FIND
FINFINITY
FINT
FIX

FIX*
FIX/
FIXED
FLIP
FLITERAL
FLN
FLN2
FLOAD
FLOAT
FLOATING
FLOATS
FLOG
FLOG10E
FLOOR
FLUSH

73

43

71

71

72

72

72

44

43

44
44, 48, 49
45, 48
44, 47, 49
45, 46
71

72

72

72

72
220
72

72

72

72

71

70

72

72

70

71

71

72
220

72

59, 220
220
73

72
67,73
67

67

66

13, 220
74

72

73

40, 42, 97
73

70

70

72

73

73
100, 220

FMAX

FMIN

FNEGATE

FNIP

FNSWAP
FNUMBER
FORGET
FORMAT
FORTH
FORTH-83
FOVER

FPERR

FPICK
FPLACES
FPSIZE
FPSTACK
FROT

FSCALE

FSIN

FSINH

FSP

FSPO

FSQRT

FSWAP

FTAN

FTANH

FTYPE
FVARIABLE
GET A LINE

GO TOBOTTOM
GO TO FIRST LINE
GO TO TOP
GOTO LINE START
GOTO FILE START
GOTO LINE END
GOTO LAST LINE
GOTO FILE END
H>

HANDLE

HASH

HCLOSE
HCREATE
HDELETE
HDOES

HDOS1

HDOS3

HDOS4

HEAD SPACE
HELP

HERE

HEX

HIDDEN
HIDELINES
HOLD

71
71
68, 71
71
71
74
39113, 221
96
221
221
71
70

71
66

70

70
71
66
72
72
70

70

72

71
72
72
96
70
44
43
43

43

43
43

43
43
43
145, 147
97
109
98
98
98
145, 146
95
95
95
25

42

26,109, 197, 221

6, 57, 221
221

97
57,221

HOME 43
HOPEN 98
HREAD 98
HRENAME 98
HRET 146
HWRITE 98
I 221
IF 19, 136, 222
IMMEDIATE 7,222
IMPORT A FILE 44
INFO 37
INLINE 143
INS 43
INSTALL-INTERRUPT 152,153, 222
INT 73
INT-OFF 154, 222
INT-ON 154, 222
INTERPRET 222
INTERRUPT SERVICE ROUTINE 149
INTERRUPT VECTOR TABLE 150
INTERRUPT VECTORS 149
IRQO 162
IRQ1 162
IRQ2 161
IRQ3 161
IRQ4 161
IRQS5 161
IRQ6 162
IRQ7 162
IS 81
ISR 149
ISR: 159, 222
ISR; 222
ISRENTRY 158
ISREXIT 159
J 21, 223
JMP NEXT 197
JOIN LINES 44
KEY 27,60, 223
KEY? 27,60, 223
LABEL 137, 152
LAST 195
LEAVE 223
LEFT MARGIN 46
LINEREAD 98, 109
LINK> 223
LIST 99, 223
LIST SPACE 25
LITERAL 223
LL 40, 42
LOAD 38, 39, 42, 99
LOOP 20, 224
LOWER CASE CONVERSION 46
M/D/Y 60

MACROS AND F-PC
MARK LINE

MARKER, PAGE BREAK
MAX

MAX.S

MD

MIN

MOD

MOVE COLUMN RIGHT

MOVE CURSOR BACK ONE WORD

MOVE CURSOR DOWN ONE LINE
MOVE CURSOR DOWN 1 PAGE

MOVE CURSOR FORWARD 1 WORD
MOVE CURSOR LEFT 1 CHARACTER
MOVE CURSOR RIGHT 1 CHARACTER

MOVE CURSOR UP 1 LINE
MOVE CURSOR UP 1 PAGE
MOVEPOINTER

MULTI

N - NEST

NAME>

NEGATE

NEWFILE

NEXT

NIP

NMI

NOFLOATING
NON-MASKABLE INTERRUPTS
NOT

NUMBER

NUMBER?

OCTAL

OF

OFF

ON

ON LINE HELP

ONLINE HELP

ONLY

OPEN

OR

ORDER

ov

OVER

OVER

P!

P@

PAD

PASM

PASTE DATE/TIME
PASTING FROM A FILE
PASTING THE DATE & TIME
PATH
PATHSET
PAUSE

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

47

44

47

17, 224
54

96

17, 224
16, 224
44
43
43
43
43
43
43
43
43
99
125, 224
54

224

17, 224
38, 42
136, 144
13, 224

150

70

150

17, 225
58, 225
59

225

22

225

225

47

45

102, 225
37, 38, 42
17, 225
103, 226
136

11, 226
10

28

28

226
135

45

47

47

96

97

26125, 126, 132, 226

PC! 28, 226
PC@ 28, 226
PGDN 43
PGUP 43
Pl 73
PICK 12, 226
PLACE-INTERRUPT-VECTOR 154
PLACES 71
POP-UP THE MENUBAR 45
POSTFIX 135, 137
PRE> 140
PREFIX 135, 137
PREVIOUS 102
PRINTING DOCUMENTS 47
PROMPT FOR PAGE TO GOTO 43
Q-QUIT 55
QUIT 226
R> 12, 226
R>DROP 13, 227
R@ 12, 227
RD 96
RE-INSTALL-INTERRUPT 153, 227
RECURSE 227
RECURSIVE 227
REFORMAT PARAGRAPH 45
REMOVE-INTERRUPT 152, 154, 227
RENAME 96
REPEAT 21, 136, 227
REPEAT A MACRO 44
REPLACE FIRST 47
REPLACE TEXT 44, 47, 48
ROLL 12, 227
ROOT 102
ROT 11, 228
RWMODE 99
S - SKIP 55
SAVE &EXIT EDITOR 45
SAVE-BUFFERS 100
SCAN 228
SCROLL SCREEN DOWN 43
SCROLL THE SCREEN UP 43
SEARCH FOR FIRST 48
SEARCH FOR NEXT 48
SEARCH AGAIN 44
SEARCH BACKWARDS 44, 48
SEARCH WITH PROMPT 44
SED 42
SEE 41, 42, 55
SEEK 99
SELECT FILE TO EDIT 48
SEQDOWN 99
SEQUP 99
SERIALO 171
SERIAL1 171

SERIAL2
SERIAL3

SET INTERRUPT FLAG
SET LEFT MARGIN

SET TAB

SET RIGHT MARGIN

SHIFT ALT-C
SHIFT ALT-X
SHIFT-ALT-F6
SHIFT-ALT-F8
SHIFT-ALT-L
SHIFT-ALT-V
SHIFT-F6
SHIFT-F8
SHNDL
SHOWLINES
SIGN

SINGLE
SLEEP

SORT PARAGRAPH

SPACE
SPACES
SPAN

SPLIT

SPLIT LINE
STACK
STATE
STATUS LINE
STI

STIME

STOP

SWAP

SYS

TAB

TAB EXPANSION
TAB SETTING
TCOM

THEN

TIB
TIME-RESET
TIMER
TOGGLE MODE
TRUE

TUCK

TYPE

U - UNNEST
u*/

u.

UR

U<

U<=

u>

U>=

ubD*

172

172

150

44

44

44

45

45

44

44

46

47

44, 48

44, 48, 49
96

97

57, 228
125, 228
126, 228
45, 48
27,59, 228
27, 60, 228
27, 60, 228
13, 228
44

5

229

48

150

131

126, 229
11, 229
95

43

47

48

191

19, 136, 229
109, 229
131

131

43

229

229

27, 59, 229
55

65

6, 27, 58, 230
58, 230
18, 136, 230
136, 230
136, 230
136, 230
64

ub*C 64

ub. 58
UD.R 58
ubD/ 65
UM* 16, 230
UM/MOD 16 230
UN-DELETE LINES 44
UNTIL 21, 36, 231
UPDATE FILE 45, 100, 231
UPPER CASE CONVERT 49
VARIABLE 8,231
VIEW 40, 42 55, 135
VOC-LINK 231
VOCABULARY 101, 231
VOCS 103
WAKE 126, 231
WATCH 55
WHILE 21,136, 231
WORD 109, 137, 232
WORD UNDELETE 44
WORDS 41, 42, 232
WRITE ENTIRE FILE 44
X 197
X -SRCTGL 55
X! 26
X, 26
X@ 26
XC! 26
XC@ 26
XDP 26, 196
XDPSEG 196
XDUMP 118, 197, 219
XHERE 26, 197
XOR 17, 232
XSEG 196
Y! 26, 195
Y, 26
Y@ 26, 195
YC! 26, 195
YC@ 26, 195
YDP 26, 195
YDUMP 219
YHASH 195
YHERE 26, 195
YSEG 195

Copyright 1989-93 R.E.Hendtlass. All rights reserved.

	Contents
	Ch1 An Overview of Forth
	Ch2 The Data Stack
	Ch3 Arithmetic, Logic and Comparisons
	Ch4 Basic Control Structures
	Ch5 Moving Data Around
	Ch6 A First Programming Example - Signal Filtering
	Ch7 Entering and Compiling your Program
	Ch8 It Didn't Work - Now What?
	Ch9 Basic Number and Text Handling
	Ch10 Maths - Who Needs it?
	Ch11 Deffered Words
	Ch12 A Conundrum of Ciphers
	Ch13 The DOS Interface and File Handling
	Ch14 Vocabularies
	Ch15 CREATE, DOES> and a Glimpse Inside
	Ch16 Multi-tasking
	Ch17 Timing
	Ch18 PASM, the F-PC Assembler
	Ch19 Mixing Forth with Assembly Language
	Ch20 Interrupts and Forth
	Ch21 Input Output, Revisited
	Ch22 Interfacing with basic PC input/output Resources
	Ch23 An Example with the lot to go
	Ch24 Turnkey, Meta and Target Compiling
	Appendix 1 The Internal Organization of F-PC
	Appendix 2 Answers to Selected Problems
	Appendix 3 An ASCII List of Useful Forth Words
	Appendix 4 Forth Words Sorted by Function
	Appendix 5 A Starter Set of Words
	INDEX

