
Because much of the information found in this book is of the so-called undocu-
mented kind, some of it is available only by peeking inside the operating system

code. The Windows 2000 Device Driver Kit (DDK) provides a powerful debugger
that does a great job in this respect. This chapter begins with detailed step-by-step
instructions to set up a full-fledged debugging environment on your machine. While
reading the following chapters, you will frequently go back to the Kernel Debugger
to extract operating system internals of various kinds. If you are becoming bored
with the Kernel Debugger, you might want to tailor your own debugging tools.
Therefore, this chapter also includes information about the documented and undocu-
mented Windows 2000 debugging interfaces, including detailed inside information
about Microsoft symbol files. It features two sample libraries with companion appli-
cations that list processes, process and system modules, and various kinds of symbol
information buried inside the Windows 2000 symbol files. As a special bonus, you
will find the first public documentation of the Microsoft Program Database (PDB)
file format at the end of this chapter.

SETTING UP A DEBUGGING ENVIRONMENT

“Hey, I don’t want to debug a Windows 2000 program. First of all, I want to write
one!” you might shout out after reading this headline. “Right!” I say, “That’s what
you are going to do!” But why should you start the voyage by setting up a debugging
environment? The answer is simple: The debugger is sort of a backdoor into the
operating system. Of course, this has not been the primary intention of the persons
who wrote this tool. However, every good debugger must be able to tell you some-
thing useful about the system while you are stepping through the execution of your
own code or after your application has died unexpectedly. It is not quite acceptable
to report an eight-digit crash address that points somewhere into the 4GB address
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space, leaving you figuring out alone what really happened. The debugger should at
least tell you which module’s code the offending code was executing last, and, ideally,
it should also tell you the name of the function where the application passed away.
Therefore, the debugger usually must know much more about the system than is
printed in the programming manuals, and you can use this knowledge to explore the
internals of the system.

Windows 2000 comes with two native debuggers: WinDbg.exe (pronounced like
“WindBag”) is a Win32 GUI application, and i386kd.exe is its console-mode equiva-
lent. I have worked with both versions for some time and finally decided that
i386kd.exe is the better one because it has a more powerful set of options. Recently,
however, it seems that WinDbg.exe has improved, causing the people at Open Systems
Resources (OSR) to include an article titled “There’s a New WinDBG in Town—And
It Doesn’t Suck Anymore” in the May/June 2000 edition of The NT Insider (Open
Systems Resources 2000). Nevertheless, all examples in this book that somehow
involve a Windows 2000 debugger relate to i386kd.exe. As you might have guessed,
the i386 portion of the name refers to the target processor platform (Intel 386 family
in this case, including all Pentium versions), and kd is short for Kernel Debugger. The
Windows 2000 Kernel Debugger is a very powerful tool. For example, it knows how
to make use of the symbol files distributed on the Windows 2000 setup CDs, and
therefore can give you invaluable symbolic information about almost any address in
system memory. Moreover, it will disassemble binary code, list hex dumps of memory
contents in various formats, and even show you the layout of some key structures of
the kernel. And it gives away this information for free—the debugger’s command
interface is fully documented in its online help.

PREPARING FOR A CRASH DUMP

This is the good news. The bad news is that you have to do some preparatory work
before the Kernel Debugger will obey you. The first obstacle is that debugging usu-
ally involves two separate machines connected by a cable—one running the debugger,
the other one hosting the debuggee. However, there is a much easier way, eliminating
the necessity of a second machine, if live debugging is not a requirement. For exam-
ple, if a buggy application throws an unhandled exception causing the infamous NT
“Blue Screen Of Death” (BSOD) to pop up, you can choose to save the memory
image that was in effect right before the crash to a file and examine this crash dump
after rebooting. This technique is usually called post mortem debugging (post mortem
is Latin and means “after death”), and it is one of the preferred methods used
throughout this book. Our primary task here is to explore system memory, and for
most situations, it doesn’t matter whether the memory under examination is alive or
a snapshot of the last breath of a dead system. However, some interesting insights can
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be gained by peeking into the innards of a live system using a kernel-mode driver, but
this is a topic to be saved for later chapters.

A crash dump is simply a copy of the current memory contents flushed to a disk
file. Therefore, the size of a complete crash dump file is (almost) the same as the
amount of physical RAM installed on the machine—in fact, it is a bit less than that.
The crash dump is written by a special routine inside the kernel in the course of han-
dling the fatal exception. However, this handler doesn’t write the memory contents
immediately to the target file. This is a good idea, because the disk file system might
not be in good health after the crash. Instead, the image is copied to the page file stor-
age, which is part of the system’s memory manager. Therefore, you should increase the
total size of your page files to at least twice the size of physical memory. Twice?
Wouldn’t the same size be enough? Of course—just enough for the crash dump. How-
ever, the system will attempt to copy the crash dump image to a real disk file during
bootstrap, and this means that the system might run out of virtual memory if it can’t
free the page file memory occupied by the image in time. Usually, the system will cope
with this situation, just throwing some annoying “low on virtual memory” warnings
at you while thrashing the disk, but you can save a lot of time by making the page file
large enough whenever you are expecting an increased probability of a Blue Screen.

That said, you should proceed now by starting the Windows 2000 Control
Panel utility and changing the following settings:

• Increase the overall size of your page files to at least twice the amount of
installed RAM. To this end, open the System applet, select the Advanced
tab of the System Properties dialog, and click the Performance Options…
button. In the Virtual memory frame, click the Change… button, and
change the value in the Maximum size (MB) field if it doesn’t match your
physical memory configuration. Figure 1-1 is a sample snapshot taken on
the system on which I am currently writing these lines. I have 256 MB of
RAM inside my tower, so 512 MB is just enough. Click Set after changing
the settings, and confirm all open dialogs except the System Properties by
pressing their OK buttons.

• Next, configure the system to write a crash dump file on every Blue Screen.
In the System Properties dialog, click the Startup and Recovery… button,
and examine the Write Debugging Information options. You should select
the Complete Memory Dump option from the drop-down list to get a
faithful copy of the entire memory contents. In the Dump File box, enter
the path and name of the file where the dump will be copied to from the
page file. %SystemRoot%\MEMORY.DMP is a commonly used setting
(Figure 1-2). Check or uncheck the Overwrite any existing file option
according to your own preference, and confirm all open dialogs.
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FIGURE 1-1. Setting the Size of the Page File Storage
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FIGURE 1-2. Choosing Crash Dump Options
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CRASHING THE SYSTEM

After having set up the system for a crash dump, it is time to do the most horrible
thing in the life of a Windows 2000 system programmer: Let’s crash the system! Usu-
ally, you will get the dreaded Blue Screen whenever Damocles’ sword is hanging
above your head—typically when a production deadline is due in a few hours. Now
that you are willing to crash the system, you are probably unable to find any unstable
piece of software that will do the job. Try David Solomon’s neat trick described in the
second edition of Inside Windows NT. This is his proposal:

“How can you reliably generate a crash dump? Just kill the Win32 subsystem
process (csrss.exe) or the Windows NT logon process (winlogon.exe) with the
Windows NT Resource Kit tool kill.exe. (You must have administrator
privileges to do this.)” (Solomon [1998], p. 23.)

Surprise, surprise! This trick doesn’t work anymore on Windows 2000! On first
sight, that’s bad luck, but on the other hand, it is good news. What do you think
about an operating system that can be trashed so easily by a tiny and simple tool offi-
cially distributed by Microsoft? In fact, it is good that Microsoft has closed this secu-
rity gap. However, we are now in need of an alternative way to tear down the system.
At this point, it is time for an old and simple NT rule: “If anything seems to be
impossible in the Win32 world, just write a kernel-mode driver, and it will work out
all right!” Windows 2000 manages Win32 applications very carefully. It constructs a
wall between the application and the kernel, and anyone trying to cross this border
will be shot without mercy. This is good for the overall stability of the system, but
bad for programmers who need to write code that has to touch hardware. Contrary
to DOS, where any application was allowed to do anything to the hardware, Win-
dows 2000 is very picky in this respect. This doesn’t mean that accessing hardware
on Windows 2000 is impossible. Instead, this kind of access is restricted to a special
kind of module called kernel-mode driver.

I can tell you now that I will present a short introduction to kernel-mode driver
programming in Chapter 3. For now, it should suffice to say that crashing the system
is one of the easiest things a kernel-mode driver can do. Windows 2000 doesn’t pro-
vide an error recovery mechanism for drivers going berserk—even the faintest
attempt to perform an illegal operation is immediately answered with a Blue Screen.
Of course, the simplest and least dangerous violation of the rules is reading from an
invalid memory address. Because the system explicitly catches all memory accesses
through a NULL pointer, which is probably one of the most common errors in C pro-
gramming, a NULL pointer read is the ideal operation to force a benign system crash.
This is exactly what the w2k_kill.sys driver on the sample CD does. This very sim-
ple piece of software will also be one of the first kernel-mode driver projects pre-
sented in this book.
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Listing 1-1 is a tiny excerpt from w2k_kill.c, containing nothing but the bad
code that triggers the Blue Screen. When writing senseless code such as this, be aware
that the brilliant optimizer built into Visual C/C++ might counteract your efforts. It
tracks all code and tends to eliminate any instructions that don’t have permanent side
effects. In the example below, the optimizer’s hands are tied because the DriverEntry()
function insists on returning the value found at address zero as its return value. This
means that this value has to be moved to CPU register EAX, and the easiest way to
do this is by means of the MOV EAX, [0] instruction, which will throw the exception
we have been waiting for.

The w2k_load.exe application presented in Chapter 3 can be used to load and
start the w2k_kill.sys driver. If you are mentally ready to kill your Windows 2000
system, proceed as follows:

• Close all applications.

• Insert the accompanying sample CD.

• Choose Run… from the Start menu.

• Enter d:\bin\w2k_load w2k_kill.sys into the edit box, replacing d:
with the drive letter of your CD-ROM drive, and click OK.

After this click, w2k_load.exe will attempt to load the w2k_kill.sys file located
in the CD’s \bin directory. As soon as the DriverEntry() routine is executed, the Blue
Screen will appear, with a message similar to the one shown in Figure 1-3, and you
will see a counter on the screen being incremented from 0 to 100 (or so) while the
memory contents are dumped to the page file storage. If you have checked the Auto-
matically reboot option in the Startup and Recovery dialog (see Figure 1-2), the sys-
tem will reboot immediately after the crash dump is finished. When the system is
ready for logon, wait for some time until the disk LED is no longer flashing. It takes
some time to copy the crash dump image from the page file storage to the target disk
file defined in the Startup and Recovery options (see Figure 1-2), especially if you have
plenty of physical memory. Disturbing the system in this phase, for example, by shut-
ting it down too early, might yield an invalid crash dump file that will be refused by
the Kernel Debugger.
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NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING puRegistryPath)

{

return *((NTSTATUS *) 0); // read through NULL pointer

}

LISTING 1-1. A NULL Pointer Read Operation in Kernel-Mode Crashes the System



FIGURE 1-3. Execution of w2k_kill.sys Yields a Nice Blue Screen

In Figure 1-3, the system displays the name of the module that contains the
offending code (w2k_kill.sys), as well as the address of the instruction that caused
the exception (0xBECC3000). This address will probably be different on your system,
because it varies with the hardware configuration. Driver load addresses generally are
not deterministic, similar to DLL load addresses. Please write down the indicated
address—you will need it later after installing and configuring the Kernel Debugger.

A short note of caution is appropriate here: Crashing the system intentionally
is not something you should do every day. Although the offending w2k_kill.sys
code itself is benign, the time of its execution might be unfortunate. If the NULL
pointer read occurs while another thread is in the course of doing something
important, the system might shut down before this thread has a chance to clean
up. For example, the active desktop tends to complain after the reboot that some-
thing horrible has happened and that it needs to be restored. Therefore, carefully
check that the machine isn’t working on precious data and that all cached data has
been flushed to disk before you crash the system. The best time is when the disk
has calmed down after a bootstrap. Note that neither the author nor the publisher
of this book shall be liable for any damages resulting from system crashes forced
by the w2k_kill.sys driver.

INSTALLING THE SYMBOL FILES

After rebooting, you have a snapshot of a Windows 2000 system, including a bad
kernel-mode driver, caught in the course of a NULL pointer read. Peeking into this
file is as good as examining the memory of a live system. Of course, this snapshot is
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like a dead animal body—it can’t react anymore to external stimuli, but that shouldn’t
worry you now. What comes next is the setup of the symbol files that shall be used by
the Kernel Debugger while you are dissecting the crash dump.

MSDN subscribers have to look for the symbol files on the CD named
Windows 2000 Customer Support—Diagnostic Tools, which is part of the dark
green Development Platform (English) CD set. Inserting the CD into the drive will
start the Windows 2000 Internet Explorer with a file named \DBG.HTM. Here you can
click on various setup options. If you are running the free build of Windows 2000,
Install retail symbols is the correct choice. For the checked build, choose Install
debug symbols instead. You can also use the classic symbol file setup by opening
the Explorer and double-clicking the files \SYMBOLS\I386\RETAIL\SYMBOLSX.EXE
(Figure 1-4) or \SYMBOLS\I386\DEBUG\SYMBOLSX.EXE, which are exactly the actions
attached to the setup hyperlinks embedded in the \DBG.HTM file. The setup utility will
copy several .dbg and .pdb files from the SYMBOLS.CAB archive to various subdirecto-
ries of the system’s symbol root, which is named %systemroot%\Symbols by default.
The %systemroot% token symbolizes the value of the environment variable systemroot,
indicating the installation directory of the Windows 2000 system. In the example
below, it is the D:\WINNT directory.

On startup, the Windows 2000 Kernel Debugger will try to locate the symbol
files by evaluating the environment variable _NT_SYMBOL_PATH (note the leading
underscore), so it is a good idea to define this variable right now. Again, you have to
start the System applet from the Control Panel and select the Advanced tab, this time
clicking the Environment Variables… button. Next, click the New... button in the
System variables frame, and enter the Variable Name: and Variable Value: as shown
in Figure 1-5, replacing D:\WINNT by the %systemroot% path of your system. After
confirming all dialogs, symbol setup is complete.
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FIGURE 1-4. Installing the Windows 2000 Retail Symbols



FIGURE 1-5. Defining the Environment Variable _NT_SYMBOL_PATH

The Microsoft documentation is somewhat unclear about which directory path
must be assigned to the _NT_SYMBOL_PATH variable. The kernel-mode debugging
chapters of the DDK say that the Symbols subdirectory has to be included, yielding a
value of d:\winnt\symbols or equivalent. In the Platform Software Development Kit
(SDK) documentation of the dbghelp.dll library, the symbol path setup is described
a bit differently:

“The library uses the symbol search path to locate debug symbols (.dbg file)
for .dll, .exe, and .sys files by appending “\symbols” and “\dll” or “\exe”
or “\sys” to the path. For example, the typical location of symbol files for
.dll files is c:\mysymbols\symbols\dll. For .exe files, the location is
c:\mysymbols\symbols\exe.”
[...] “If you set the _NT_SYMBOL_PATH or _NT_ALT_SYMBOL_PATH environment
variable, the symbol handler searches for symbol files in the following order:
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1. The current working directory of the application. 
2. The _NT_SYMBOL_PATH environment variable. 
3. The _NT_ALT_SYMBOL_PATH environment variable. 
4. The SYSTEMROOT environment variable.”
(MSDN Library – April 2000 \ Platform SDK \ Base Services \

Debugging and Error Handling \ Debug Help Library \ About DbgHelp \

Symbol Handling \ Symbol Paths)

This sounds more like setting _NT_SYMBOL_PATH to d:\winnt rather than d:\winnt
\symbols. To find out which point of view is correct, I tried both variants and was glad
to see that it doesn’t matter which one you choose. The Kernel Debugger finds the sym-
bol files one way or another. If you suspect now that the _NT_SYMBOL_PATH value doesn’t
matter at all, try to set it to an invalid path—the debugger will refuse to run.

SETTING UP THE KERNEL DEBUGGER

The last step in the debugging environment setup is the installation and configuration
of the Kernel Debugger. If you have already installed the Windows 2000 DDK, you
can use the debuggers found in the \NTDDK\bin directory. The Kernel Debugger exe-
cutable is named i386kd.exe. An alternative way is to install the debugging tools
from the MSDN CD Windows 2000 Customer Support—Diagnostic Tools, from
which you have already taken the symbol files. Just click on the Install Debugging
Tools link on the setup page \DBG.HTM, or start the setup in the classic way by dou-
ble-clicking \TOOLS\I386\DBGPLUS.EXE in the Explorer panel. This setup utility will
copy the tools to a directory named \Program Files\Debuggers\bin.

After installing the Kernel Debugger, it is a good idea to create a shortcut that
invokes i386kd.exe with the parameters you need. If you want to examine the crash
dump file generated after the w2k_kill.sys Blue Screen, you can use the -z com-
mand line switch to specify the path of this file, directing the debugger to load this
memory image at startup. Figure 1-6 illustrates typical shortcut properties.

Now everything is set up for the first debugging session. If you double-click the
debugger’s shortcut, you should see a console window like the one shown in Figure 1-7.
The kd> prompt in front of the flashing cursor indicates that the Kernel Debugger is
ready to accept commands. Before doing anything else, please check that the symbol
search path displayed below the copyright banner is set to the correct location. If not,
there is probably a typo in the environment variable specifying this path (see Figure 1-5).
The start message also shows that the debugger has loaded three extension DLLs.
i386kd.exe features a powerful extension mechanism that allows the basic command
set to be augmented by custom commands implemented in a separate DLL. Because
these additional commands have to be preceded by the “bang” character “!” to distin-
guish them from the built-in set, they usually are called bang commands. Some of them
are extremely useful, as you will see later.
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FIGURE 1-6. Creating  a Kernel Debugger Shortcut

In Figure 1-7, I have entered one of the built-in commands: u becc3000. The u
mnemonic means, of course, “unassemble,” and becc3000 is the hexadecimal start
address where disassembly begins. By default, the number radix is 16, but you can
change this setting with the n command, for example, n 10 if you prefer decimal nota-
tion. You can always force a number to be interpreted as a hexadecimal by using the
0x prefix borrowed from the C language. The address becc3000 is the memory loca-
tion where the w2k_kill.sys crash dump occurred (see Figure 1-3). Please try the u
command with the address reported by your system after crashing. You should get a
mov eax,[00000000] instruction, too, as shown in Figure 1-7, although the address is
probably different. Otherwise, you are probably peeking into the wrong crash dump
file—please check your Kernel Debugger shortcut in this case (see Figure 1-6). The
mov eax,[00000000] instruction, loads a 32-bit value from the virtual address
0x00000000 to CPU register EAX, so it is obviously the implementation of the C
expression return *((NTSTATUS *) 0) in Listing 1-1, and constitutes a NULL-pointer
read operation. There is no special exception handler installed for this type of error,
therefore, the system reports a KMODE_EXCEPTION_NOT_HANDLED error on the Blue
Screen, as demonstrated by Figure 1-3. If you want, you can learn more about this
common error code in The NT Insider (Open Systems Resources 1999b).
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FIGURE 1-7. Initiating a Kernel Debugger Session

KERNEL DEBUGGER COMMANDS

Although the debugger commands are intended to be mnemonic, it is sometimes hard
to recall them at the right time. Therefore, I have collected them in Appendix A,
Table A-1, as a quick reference. This table is an edited version of the debugger’s help
output generated by the ? command. The various types of arguments required for the
commands are compiled in Table A-2.

As already mentioned, the Kernel Debugger can execute external commands
known as bang commands that are implemented in one or more associated extension
DLLs. Whenever a command name is prefixed by an exclamation mark (the so-called
bang character), this name is looked up in the export lists of the loaded extension
DLLs. If a match is found, the command is handed over to the DLL. Figure 1-7 shows
that the Kernel Debugger loads the extensions kdextx86.dll, userkdx.dll, and
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dbghelp.dll, in this order. The latter is located in the same directory as the
i386kd.exe application; the former pair is available in four versions: free versus
checked build for Windows NT 4.0 (subdirectories nt4fre and nt4chk), and free
versus checked build for Windows 2000 (subdirectories w2kfre and w2kchk), respec-
tively. Normally, the debugger will use a default search order when locating the han-
dler of a bang command. However, you can override the default by specifying a
module name before the command name, separated by a dot. For example, both the
kdextx86.dll and userkdx.dll extensions export a help command. Typing !help
will yield the help screen of the kdextx86.dll module by default. To execute the help
command of userkdx.dll, you have to type !userkdx.help (or !userkdx.help -v
if you need more verbose help). By the way, you can write your own debugger exten-
sions if you know the rules. An excellent how-to article can be found in The NT
Insider (Open Systems Resources 1999a). It is targeting WinDbg.exe rather than
i386kd.exe, but because both debuggers use the same extension DLLs, most of the
information is applicable to i386kd.exe as well.

Tables A-3 and A-4 in Appendix A show the output generated by the help com-
mands of kdextx86.dll and userkdx.dll, respectively, slightly corrected and heav-
ily edited for better readability. You will notice that these tables list far more
commands than documented in the Microsoft DDK, and some commands obviously
have additional optional parameters not mentioned in the DDK documentation.

THE TOP TEN DEBUGGING COMMANDS

Tables A-1 to A-4 demonstrate in an impressive way that the Kernel Debugger and its
standard extensions offer a large number of commands. Therefore, I will discuss in
detail some of the commands that are most useful for the exploration of Windows
2000 internals.

u: Unassemble Machine Code
You have already used the u command after starting the Kernel Debugger to check
whether the loaded crash dump file is OK. The u command has three forms:

1. u <from> disassembles eight machine instructions, starting at
address <from>.

2. u <from> <to> starts disassembly at address <from>, and continues until
reaching or transcending address <to>. The instruction at this address, if
any, is not included in the listing.

3. u (without arguments) restarts disassembly from the address where a
previous u command stopped (no matter whether it had arguments
or not).
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Of course, disassembling large code portions with this command is quite annoy-
ing, but it comes in handy if you just need to know what is occurring at a specific
address. Perhaps the most interesting feature of the u command is its ability to
resolve symbols referenced by the code—even internal symbols not exported by the
target module. However, in disassembling complete Windows 2000 executables,
using the Multi-Format Visual Disassembler on the companion CD is much more
fun. More on this product will follow later in this chapter.

db, dw, and dd: Dump Memory BYTEs, WORDs, and DWORDs
If the memory contents you are currently interested in are binary data rather than
machine code, the debugger’s hex dump commands do a great job. Depending on the
data types you are expecting at the source address, one of the variants db (for BYTEs),
dw (for WORDs), or dd (for DWORDs) applies.

• db dumps a memory range in two panels. On the left-hand side, the
contents are displayed as two-digit 8-bit hexadecimal quantities; the right-
hand panel shows the same data in ASCII format.

• dw displays the contents of a memory range as four-digit 16-bit
hexadecimal quantities. An ASCII panel is not included.

• dd displays the contents of a memory range as eight-digit 32-bit
hexadecimal quantities. An ASCII panel is not included.

For this command set, the same arguments as for the u command can be used.
Note, however, that the data located at the <to> address are always included in the
hex dump listing. If no arguments are specified, the next 128-byte block is displayed.

x: Examine Symbols
The x command is very important. It can create lists of symbols compiled from the
installed symbol files. It is typically used in one of the following three forms:

1. x *!* displays a list of all modules for which symbols can be browsed. After
startup, only the ntoskrnl.exe symbols are available by default. The symbols
of other modules can be added by issuing the .reload command.

2. x <module>!<filter> displays a list of symbols found in the symbol file
of <module>, applying a <filter> that may contain the wildcards ? and
*. The <module> name must be one of the list yielded by the x *!*
command. For example, x nt!* lists all symbols found in the kernel’s
symbol file ntoskrnl.dbg, and x win32k!* lists the symbols provided by
win32k.dbg. If the debugger reports “Couldn’t resolve ‘x ...’”, try the
command again after reloading all symbols by means of the .reload
command.
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3. x <filter> displays a subset of all available symbols, matched against a
<filter> expression. Essentially, this is a variant of the x
<module>!<filter> command, in which the <module>! part has
been omitted.

Along with the symbol names, the associated virtual addresses are shown. For
function names, this is the function’s entry point. For variables, it is a pointer to the base
address of the variable. The most notable thing about this command is that its output
includes many internal symbols, not just those found in the executable’s export table.

ln: List Nearest Symbols
The ln command is certainly my favorite, because it gives quick and easy access to
the installed symbol files. It is the ideal complement to the x command. Whereas the
latter is great if you need an address listing of various operating system symbols, the
ln command is used to look up individual symbols by address or name.

• ln <address> displays the name of the symbol found at or preceding
the given <address>, as well as the next known symbol following
this address.

• ln <symbol> resolves the given <symbol> name to its virtual address and
then proceeds like the ln <address> command.

Like with the x command, the debugger is aware of all exported and several
nonexported internal symbols. Therefore, it is an important aid for anyone who tries
to make sense of unknown pointers occurring somewhere in a disassembly listing or
hex dump. Note that the u, db, dw, and dd commands also accept symbols where
addresses are expected.

!processfields: List EPROCESS Members
As the bang character preceding the name imples, this is a command from a debugger
extension module—kdextx86.dll, in this case. This command displays the names
and offsets of all members of the—formally undocumented—EPROCESS structure
used by the kernel to represent processes, as shown in Example 1-1.
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kd> !processfields

!processfields

EPROCESS structure offsets:

Pcb: 0x0

ExitStatus: 0x6c

LockEvent: 0x70    LockCount: 0x80

CreateTime: 0x88

ExitTime: 0x90



LockOwner: 0x98

UniqueProcessId: 0x9c

ActiveProcessLinks: 0xa0

QuotaPeakPoolUsage[0]: 0xa8

QuotaPoolUsage[0]: 0xb0

PagefileUsage: 0xb8

CommitCharge: 0xbc

PeakPagefileUsage: 0xc0

PeakVirtualSize: 0xc4

VirtualSize: 0xc8

Vm: 0xd0

DebugPort: 0x120

ExceptionPort: 0x124

ObjectTable: 0x128

Token: 0x12c

WorkingSetLock: 0x130

WorkingSetPage: 0x150

ProcessOutswapEnabled: 0x154

ProcessOutswapped: 0x155

AddressSpaceInitialized: 0x156

AddressSpaceDeleted: 0x157

AddressCreationLock: 0x158

ForkInProgress: 0x17c

VmOperation: 0x180

VmOperationEvent: 0x184

PageDirectoryPte: 0x1f0

LastFaultCount: 0x18c

VadRoot: 0x194

VadHint: 0x198

CloneRoot: 0x19c

NumberOfPrivatePages: 0x1a0

NumberOfLockedPages: 0x1a4

ForkWasSuccessful: 0x182

ExitProcessCalled: 0x1aa

CreateProcessReported: 0x1ab

SectionHandle: 0x1ac

Peb: 0x1b0

SectionBaseAddress: 0x1b4

QuotaBlock: 0x1b8

LastThreadExitStatus: 0x1bc

WorkingSetWatch: 0x1c0

InheritedFromUniqueProcessId: 0x1c8

GrantedAccess: 0x1cc

DefaultHardErrorProcessing 0x1d0

LdtInformation: 0x1d4

VadFreeHint: 0x1d8

VdmObjects: 0x1dc

DeviceMap: 0x1e0

ImageFileName[0]: 0x1fc

VmTrimFaultValue: 0x20c

Win32Process: 0x214

Win32WindowStation: 0x1c4
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EXAMPLE 1-1. Cracking the EPROCESS Structure
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Although this command shows the members’ offsets only, you can easily guess
the corresponding types. For example, the LockEvent member is located at offset
0×70, and the next member follows at offset 0×80, so this member requires 16 bytes,
which looks rather like a KEVENT structure. Don’t worry if you don’t know what a
KEVENT is—I will discuss kernel object structures in Chapter 7.

!threadfields: List ETHREAD Members
This command is another great option offered by the kdextx86.dll debugger exten-
sion. Like the !processfields command, it displays the member names and offsets
of yet another formally undocumented structure named ETHREAD, which represents
threads. Example 1-2 shows a sample output.

!drivers: List Loaded Drivers
The kdextx86.dll goodie !drivers shows detailed information about all currently
running kernel and file system modules. If a crash dump image is examined, this list
reflects the system state at the time of the crash. Example 1-3 is an excerpt of a sam-
ple run on my machine. Note that the last line before the summary shows our bad
Windows 2000 killer device at base address 0xBECC2000, which is obviously one of
the hexadecimal numbers reported on the Blue Screen after the w2k_kill.sys crash
(see Figure 1-3).

kd> !threadfields

!threadfields

ETHREAD structure offsets:

Tcb: 0x0

CreateTime: 0x1b0

ExitTime: 0x1b8

ExitStatus: 0x1c0

PostBlockList: 0x1c4

TerminationPortList: 0x1cc

ActiveTimerListLock: 0x1d4

ActiveTimerListHead: 0x1d8

Cid: 0x1e0

LpcReplySemaphore: 0x1e8

LpcReplyMessage: 0x1fc

LpcReplyMessageId: 0x200

ImpersonationInfo: 0x208

IrpList: 0x20c

TopLevelIrp: 0x214

ReadClusterSize: 0x21c
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kd> !drivers

!drivers

Loaded System Driver Summary

Base Code Size Data Size Driver Name Creation Time

80400000 142dc0 (1291 kb) 4d680 (309 kb) ntoskrnl.exe Wed Dec 08 00:41:11 1999

80062000 13c40 (  79 kb) 34e0 ( 13 kb) hal.dll Sun Oct 31 00:48:14 1999

f0810000 1760 (   5 kb) 1000 (  4 kb) BOOTVID.DLL Thu Nov 04 02:24:33 1999

f0400000 bdc0 (  47 kb) 22a0 (  8 kb) pci.sys Thu Oct 28 01:11:08 1999

f0410000 99c0 (  38 kb) 18e0 (  6 kb) isapnp.sys Sat Oct 02 22:00:35 1999

f09c8000 760 (   1 kb) 520 (  1 kb) intelide.sys Fri Oct 29 01:20:03 1999

f0680000 42e0 (  16 kb) e80 (  3 kb) PCIIDEX.SYS Thu Oct 28 01:02:19 1999

f0688000 64a0 (  25 kb) a20 (  2 kb) MountMgr.sys Sat Oct 23 00:48:06 1999

bffe3000 192c0 ( 100 kb) 2b00 ( 10 kb) ftdisk.sys Mon Nov 22 20:36:23 1999

f0900000 12e0 (   4 kb) 640 (  1 kb) Diskperf.sys Fri Oct 01 02:30:40 1999

[...]

bf255000 fc40 (  63 kb) 2120 (  8 kb) wdmaud.sys Wed Oct 27 20:40:45 1999

f0670000 9520 (  37 kb) 1f40 (  7 kb) sysaudio.sys Mon Oct 25 21:28:14 1999

f094c000 d40 (   3 kb) 860 (  2 kb) ParVdm.SYS Tue Sep 28 05:28:16 1999

f0958000 a00 (   2 kb) 480 (  1 kb) PfModNT.sys Thu Dec 16 05:14:08 1999

bf0dd000 35520 ( 213 kb) 59e0 ( 22 kb) rv.sys Tue Nov 30 08:38:21 1999

bf191000 d820 (  54 kb) 1280 (  4 kb) Cdfs.SYS Mon Oct 25 21:23:52 1999

bed9a000 11f20 (  71 kb) 2ac0 ( 10 kb) ipsec.sys Tue Nov 30 08:08:54 1999

beaaf000 0 (   0 kb) 0 (  0 kb) ATMFD.DLL Header Paged Out

be9eb000 16f60 (  91 kb) ccc0 ( 51 kb) kmixer.sys Wed Nov 10 07:52:30 1999

becc2000 200 (   0 kb) a00 (  2 kb) w2k_kill.sys Sun Feb 06 19:10:29 2000

TOTAL: 79c660 (7793 kb) 15c160 (1392 kb) (    0 kb     0 kb)

ForwardClusterOnly: 0x220

DisablePageFaultClustering: 0x221

DeadThread: 0x222

HasTerminated: 0x224

GrantedAccess: 0x228

ThreadsProcess: 0x22c

StartAddress: 0x230

Win32StartAddress: 0x234

LpcExitThreadCalled: 0x238

HardErrorsAreDisabled: 0x239

EXAMPLE 1-2. Cracking the ETHREAD Structure

EXAMPLE 1-3. Displaying Information about System Modules



!sel: Examine Selector Values
If issued without arguments, the !sel command implemented by kdextx86.dll
dumps the parameters of 16 consecutive memory selectors in ascending order. You
can issue this command repeatedly until “Selector is invalid” is reported to get a list
of all valid selectors (Example 1-4). Memory selector handling will be covered exten-
sively in Chapter 4, and I will present sample code there that demonstrates how you
can crack selectors in your own applications.
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kd> !sel

!sel

0000  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

0008  Bas=00000000 Lim=000fffff Pages DPL=0  P Code  RE A

0010  Bas=00000000 Lim=000fffff Pages DPL=0  P Data  RW A

0018  Bas=00000000 Lim=000fffff Pages DPL=3  P Code  RE A

0020  Bas=00000000 Lim=000fffff Pages DPL=3  P Data  RW A

0028  Bas=80244000 Lim=000020ab Bytes DPL=0  P TSS32    B

0030  Bas=ffdff000 Lim=00000001 Pages DPL=0  P Data  RW A

0038  Bas=00000000 Lim=00000fff Bytes DPL=3  P Data  RW A

0040  Bas=00000400 Lim=0000ffff Bytes DPL=3  P Data  RW

0048  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

0050  Bas=80470040 Lim=00000068 Bytes DPL=0  P TSS32    A

0058  Bas=804700a8 Lim=00000068 Bytes DPL=0  P TSS32    A

0060  Bas=00022ab0 Lim=0000ffff Bytes DPL=0  P Data  RW A

0068  Bas=000b8000 Lim=00003fff Bytes DPL=0  P Data  RW

0070  Bas=ffff7000 Lim=000003ff Bytes DPL=0  P Data  RW

0078  Bas=80400000 Lim=0000ffff Bytes DPL=0  P Code  RE

kd> !sel

!sel

0080  Bas=80400000 Lim=0000ffff Bytes DPL=0  P Data  RW

0088  Bas=00000000 Lim=00000000 Bytes DPL=0  P Data  RW

0090  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

0098  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00a0  Bas=814985a8 Lim=00000068 Bytes DPL=0  P TSS32    A

00a8  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00b0  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00b8  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00c0  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00c8  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00d0  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00d8  Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00e0  Bas=f0430000 Lim=0000ffff Bytes DPL=0  P Code  RE A

00e8  Bas=00000000 Lim=0000ffff Bytes DPL=0  P Data  RW

00f0  Bas=8042dce8 Lim=000003b7 Bytes DPL=0  P Code  EO

00f8  Bas=00000000 Lim=0000ffff Bytes DPL=0  P Data  RW

EXAMPLE 1-4. Displaying Selector Parameters
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SHUTTING DOWN THE DEBUGGER

You can kick the Kernel Debugger out of the system by simply closing the console
window it is running in. However, the clean way to shut it down is using its q com-
mand, where “q” stands for—you guessed it—“quit.”

MORE DEBUGGING TOOLS

On the book’s companion CD, you will find another pair of valuable debugging tools
contributed by two “e-friends” of mine. I am very glad that they allowed me to put
fully functional versions of their great tools onto the CD. Wayne J. Radburn’s PE and
COFF File Viewer (PEview) is a special FreeWare edition for the readers of this book.
Jean-Louis Seigné’s Multi-Format Visual Disassembler (MFVDasm) comes in an
uncrippled but timed demo version. This section is a short introduction to both tools.

MFVDASM: THE MULTI-FORMAT VISUAL DISASSEMBLER

MFVDasm is not just a simple assembly listing generator. In fact, it is more an assem-
bly code browser with several nice navigation features. Figure 1-8 shows a snapshot
of an MFVDasm session in which I examined the Windows 2000 I/O Manager func-
tion IoDetachDevice(). Figure 1-8 does not show the color you would see on the
screen. For example, all function labels, as well as jumps and calls to named destina-
tions, are displayed red. Jumps and calls to anonymous addresses (i.e., addresses that
are not associated with an exported symbol) are blue, and references to symbols
dynamically imported from other modules are violet. All reachable destinations are
underlined, indicating that you can click on them to scroll the code pane to the
address. Using the Back and Forward buttons on the toolbar, you can navigate
through the history of branches, much like flipping through the visited pages in an
Internet browser.

In the right-hand pane, you can randomly select a symbol or target address to
which you can jump. Of course, this list can be sorted by clicking on the column
header buttons. On the lower edge of this pane, MFVDasm has tabs that allow 
switching between Symbols, HexDump, and Relocations. The hex dump view can be
quite useful if you are disassembling a code section that contains embedded strings.
MFVDasm doesn’t choke on very large files such as ntoskrnl.exe, as some other
popular disassemblers do, and, of course, the assembly code can be saved to a text
file. Many more options are accessible via the main menu and the context menus that
appear if you right-click on one of the window panes. If you need more information,
visit Jean-Louis Seigné’s MFVDasm home site at http://redirect.to/MFVDasm.
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FIGURE 1-8. MFVDasm Disassembling ntoskrnl.Io DetachDevice()

PEVIEW—THE PE AND COFF FILE VIEWER

Although MFVDasm shows lots of details about the internal structure of a Portable
Executable (PE) file, its strength is code browsing. On the other hand, PEview doesn’t
show you more than a hex dump of a code file section, but is considerably more
detailed about the file structure. Figure 1-9 is a snapshot of PEview displaying the
various parts of ntoskrnl.exe in tree form. If you click on a leaf node in the left-hand



pane, the right-hand pane displays everything there is to know about the binary con-
tents of this item. In Figure 1-9, I have selected the IMAGE_OPTIONAL_HEADER structure,
which is a member of the IMAGE_NT_HEADERS structure located near the beginning of
the executable.

If you take a closer look to the PEview toolbar, you see navigation arrows that
allow scrolling through the file structure (vertical arrows) and the navigation history
(horizontal arrows). The main menu and the toolbar offer many more display
options that make using this tool a pleasure. Besides applications and DLLs, PEview
can dissect several other file formats commonly encountered in debugging situations,
such as object files, import libraries, and symbol files. More information is available
at Wayne J. Radburn’s Web site at http://www.magma.ca/~wjr/.
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FIGURE 1-9. PEview Dissecting the PE File Structure of ntoskrnl.exe



As mentioned in the Preface, Wayne writes his Win32 software in assembly lan-
guage (ASM). Yes, this is not only possible but also quite easy if you have the neces-
sary tools. In fact, ASM programming is much easier on the Win32 platform than it
was in the old DOS and Windows 3.x days, because you can take full advantage of
the CPU’s 32-bit instruction set. Wayne actively supports Win32 ASM by providing
extensive sample code on his Web site. I have been a die-hard ASM programmer
myself, but I retired from it after discovering that the Microsoft Visual C optimizer
does a much better job than a human ASM coder, because it can use all sorts of tricks
that an ASM programmer should never use—the code would be unreadable and
almost impossible to maintain. The results of my ASM efforts are publicly available
in the form of a FreeWare package for the Microsoft Macro Assembler (MASM). It is
called Win32 Assembly Language Kit (WALK32) and can be downloaded from my
Web site. Just go to http://www.orgon.com/pub/asm/ and get all files that contain the
letters “walk” in the file name. However, be aware that I have abandoned WALK32,
and will not support or update it anymore.

WINDOWS 2000 DEBUGGING INTERFACES

The Kernel Debugger is a powerful tool for everyone interested in exploring the
internals of the system. However, its user interface is somewhat poor, and sometimes
you might wish to have even more powerful commands. Fortunately, Windows 2000
offers two fully documented debugging interfaces that enable you to add debugging 
functionality to your applications. These interfaces are far from luxurious, but they
have the blessing of official documentation by Microsoft. In this section, I will take
you on a short tour of these debugging interfaces, showing what they can do for you
and how you can get the most out of them.

psapi.dll, imagehlp.dll, and dbghelp.dll

For a long time, Windows NT had been criticized for its lack of support for the
Windows 95 ToolHelp32 interface. Some of the critics were possibly not aware that
Windows NT 4.0 came with an alternative debugging interface of its own, buried
inside a system component named psapi.dll, distributed with the Win32 SDK.
This DLL, together with imagehlp.dll and dbghelp.dll, comprise the officially
documented debugging interfaces of Windows NT and 2000. The five letters PSAPI
are the acronym of Process Status Application Programming Interface, and this
interface comprises a set of 14 functions providing system information about device
drivers, processes, memory usage and modules of a process, working sets, and mem-
ory-mapped files. psapi.dll supports both ANSI and Unicode strings.

The other pair of debugging DLLs, imagehlp.dll and dgbhelp.dll, cover a
different range of tasks. Both export a similar set of functions, with the major differ-
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ence that imagehlp.dll offers more functions, whereas dbghelp.dll is a redistrib-
utable component. This means that Microsoft allows you to put dbghelp.dll into
the setup package of your applications if it relies on that DLL. If you choose to use
imagehlp.dll instead, you must take the one that is currently installed on the target
system. Both DLLs provide a rich set of functions for parsing and manipulating PE
files. However, their most outstanding feature probably is their ability to extract sym-
bols from the symbol files you have installed for use with the Kernel Debugger. To
guide your decision as to which DLL you should choose, I have compiled all func-
tions exported by imagehlp.dll and dgbhelp.dll in Table 1-1, where the middle
and right-hand columns show which functions are not supported by which compo-
nent. An entry of N/A means “not available.”

TABLE 1-1. Comparison of imagehlp.dll and dbghelp.dll

NAME imagehlp.dll dbghelp.dll

BindImage N/A

BindImageEx N/A

CheckSumMappedFile N/A

EnumerateLoadedModules

EnumerateLoadedModules64

ExtensionApiVersion N/A

FindDebugInfoFile

FindDebugInfoFileEx

FindExecutableImage

FindExecutableImageEx

FindFileInSearchPath

GetImageConfigInformation N/A

GetImageUnusedHeaderBytes N/A

GetTimestampForLoadedLibrary

ImageAddCertificate N/A

ImageDirectoryEntryToData

ImageDirectoryEntryToDataEx

ImageEnumerateCertificates N/A

ImageGetCertificateData N/A

ImageGetCertificateHeader N/A

ImageGetDigestStream N/A

ImagehlpApiVersion

ImagehlpApiVersionEx
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TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll

ImageLoad N/A

ImageNtHeader

ImageRemoveCertificate N/A

ImageRvaToSection

ImageRvaToVa

ImageUnload N/A

MakeSureDirectoryPathExists

MapAndLoad N/A

MapDebugInformation

MapFileAndCheckSumA N/A

MapFileAndCheckSumW N/A

ReBaseImage N/A

ReBaseImage64 N/A

RemovePrivateCvSymbolic N/A

RemovePrivateCvSymbolicEx N/A

RemoveRelocations N/A

SearchTreeForFile

SetImageConfigInformation N/A

SplitSymbols N/A

StackWalk

StackWalk64

sym N/A

SymCleanup

SymEnumerateModules

SymEnumerateModules64

SymEnumerateSymbols

SymEnumerateSymbols64

SymEnumerateSymbolsW

SymFunctionTableAccess

SymFunctionTableAccess64

SymGetLineFromAddr

SymGetLineFromAddr64

SymGetLineFromName

SymGetLineFromName64
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TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll

SymGetLineNext

SymGetLineNext64

SymGetLinePrev

SymGetLinePrev64

SymGetModuleBase

SymGetModuleBase64

SymGetModuleInfo

SymGetModuleInfo64

SymGetModuleInfoEx

SymGetModuleInfoEx64

SymGetModuleInfoW

SymGetModuleInfoW64

SymGetOptions

SymGetSearchPath

SymGetSymbolInfo

SymGetSymbolInfo64

SymGetSymFromAddr

SymGetSymFromAddr64

SymGetSymFromName

SymGetSymFromName64

SymGetSymNext

SymGetSymNext64

SymGetSymPrev

SymGetSymPrev64

SymInitialize

SymLoadModule

SymLoadModule64

SymMatchFileName

SymEnumerateSymbolsW64

SymRegisterCallback

SymRegisterCallback64

SymRegisterFunctionEntryCallback

SymRegisterFunctionEntryCallback64

SymSetOptions
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TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll

SymSetSearchPath

SymUnDName

SymUnDName64

SymUnloadModule

SymUnloadModule64

TouchFileTimes N/A

UnDecorateSymbolName

UnMapAndLoad N/A

UnmapDebugInformation

UpdateDebugInfoFile N/A

UpdateDebugInfoFileEx N/A

WinDbgExtensionDllInit N/A

In the sample source code following in this section, I will demonstrate how
psapi.dll and imagehlp.dll are used for the following programming tasks:

• Enumeration of all kernel components and drivers

• Enumeration of all processes currently managed by the system

• Enumeration of all modules loaded inside a process’ virtual address space

• Enumeration of all symbols of a given component, if available

The psapi.dll interface is not particularly well designed. It provides a mini-
mum of functionality, although it would have been easy to add a bit more conve-
nience. Also, this DLL queries quite a bit of information from the kernel and then
throws away most of it, leaving only tiny bits and pieces.

Because the psapi.dll and imagehlp.dll functions are not part of the stan-
dard Win32 API, their header files and import libraries are not automatically
included in your Visual C/C++ projects. Therefore, the four directives in Listing 1-2
should show up somewhere in your source files. The first pair pulls in the required
header files, and the latter pair establishes the dynamic links to the API functions
exported by both DLLs.

28 WINDOWS 2000 DEBUGGING SUPPORT



#include <imagehlp.h>

#include <psapi.h>

#pragma comment (linker, “/defaultlib:imagehlp.lib”)

#pragma comment (linker, “/defaultlib:psapi.lib”)
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LISTING 1-2. Adding psapi.dll and imagehlp.dll to a Visual C/C++ Project

SAMPLE CODE ON THE CD

On the CD accompanying this book, two sample projects are included that are built
on psapi.dll and imagehlp.dll. One of them is w2k_sym.exe—a Windows 2000
symbol browser that extracts symbol names from an arbitrary symbol file, provided
you have installed it (see Setting Up a Debugging Environment). The symbol table
can be sorted by name, address, and data size, and a wildcard filter can be applied as
well. As an additional bonus, w2k_sym.exe also lists active system module/driver
names, running processes, and modules loaded inside any process. The other sample
project is the debugging support library w2k_dbg.dll, which contains several conve-
nient wrappers around psapi.dll and imagehlp.dll functions. w2k_sym.exe relies
entirely on this DLL. The source code of these projects is located in the CD directo-
ries \src\w2k_dbg and \src\w2k_sym, respectively.

Table 1-2 lists the functions that are used by w2k_dbg.dll. The column A/W
indicates for all functions involving strings whether ANSI (A) or 16-bit wide Unicode
characters (W) are supported. As noted earlier, psapi.dll supports both ANSI and
Unicode. Unfortunately, imagehlp.dll and dbghelp.dll aren’t that clever and
require 8-bit ANSI strings for several functions. This is somewhat annoying because
a Windows 2000 debugging application usually will not run on Windows 9x and
therefore could use Unicode characters without reservation. With imagehlp.dll
included in your project, you will either have to use ANSI or occasionally convert
Unicode strings back and forth. Because I definitely hate to work with 8-bit strings
on a system capable of handling 16-bit characters, I have opted for the latter
approach. All functions exported by w2k_dbg.dll that involve strings expect Uni-
code characters, so you don’t need to be concerned about character size issues if you
are reusing this DLL in your own Windows 2000 projects.

On the other hand, imagehlp.dll and dbghelp.dll have an interesting feature
that psapi.dll lacks: They are already fit for Win64—the 64-bit Windows every
developer is frightened of, because nobody really knows how difficult it will be to
port Win32 applications to Win64. These DLLs export Win64 API functions, and
that’s OK—maybe we will be able to use them someday.



TABLE 1-2. Debugging Functions Used by w2k_dbg.dll

NAME A/W LIBRARY

EnumDeviceDrivers psapi.dll

EnumProcesses psapi.dll

EnumProcessModules psapi.dll

GetDeviceDriverFileName A/W psapi.dll

GetModuleFileNameEx A/W psapi.dll

GetModuleInformation psapi.dll

ImageLoad A imagehlp.dll

ImageUnload imagehlp.dll

SymCleanup imagehlp.dll

SymEnumerateSymbols A/W imagehlp.dll

SymInitialize A imagehlp.dll

SymLoadModule A imagehlp.dll

SymUnloadModule imagehlp.dll

I don’t go into psapi.dll and imagehlp.dll in depth. This book focuses on
undocumented interfaces, and the interfaces of both DLLs are satisfactorily docu-
mented in the Platform SDK. However, I don’t want to bypass them completely because
they are closely related to the Windows 2000 Native API, discussed in Chapter 2.
Moreover, psapi.dll is a good example of why an undocumented interface might be
preferable to a documented one. Its interface is not only spartan and clumsy—it might
even return inconsistent data in certain situations. If I had to write and sell a profes-
sional debugging tool, I would not build it on this DLL. The Windows 2000 kernel
offers powerful, versatile, and much better-suited debugging API functions. However,
they are almost completely undocumented. Fortunately, many system utilities provided
by Microsoft make extensive use of this API, so it has undergone only slight changes
across Windows NT versions. Yes, you have to revise and carefully test your software
on every new NT release if you are using this API, but its benefits more than outweigh
this drawback.

Most of the following code samples are taken from the source code of
w2k_dbg.dll, found in the CD accompanying this book in the file \src\w2k_dbg\
w2k_dbg.c. This library encapsulates several steps that you would have to take sepa-
rately in convenient opaque functions that return rich information sets. The data is
returned in properly sized, linked lists, with optional indexes imposed on them for sort-
ing and other such functions. Table 1-3 lists the API functions exported by this DLL.
It is a long list, and discussing each function is beyond the scope of this chapter, so you
are encouraged to consult the source code of the companion application w2k_sym.exe
for details about the typical usage (see \src\w2k_sym\w2k_sym.c on the CD).
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TABLE 1-3. w2k_dbg.dll API Function Set

FUNCTION NAME DESCRIPTION

dbgBaseDriver Return the base address and size of a driver, given its path

dbgBaseModule Return the base address and size of a DLL module

dbgCrc32Block Compute the CRC32 of a memory block

dbgCrc32Byte Bytewise computation of a CRC32

dbgCrc32Start CRC32 preconditioning

dbgCrc32Stop CRC32 postconditioning

dbgDriverAdd Add a driver entry to a list of drivers

dbgDriverAddresses Return an array of driver addresses (EnumDeviceDrivers() wrapper)

dbgDriverIndex Create an indexed (and optionally sorted) driver list

dbgDriverList Create a flat driver list

dbgFileClose Close a disk file

dbgFileLoad Load the contents of a disk file to a memory block

dbgFileNew Create a new disk file

dbgFileOpen Open an existing disk file

dbgFileRoot Get the offset of the root token in a file path

dbgFileSave Save a memory block to a disk file

dbgFileUnload Free a memory block created by dbgFileLoad()

dbgIndexCompare Compare two entries referenced by an index (used by dbgIndexSort())

dbgIndexCreate Create a pointer index on an object list

dbgIndexCreateEx Create a sorted pointer index on an object list

dbgIndexDestroy Free the memory used by an index and its associated list

dbgIndexDestroyEx Free the memory used by a two-dimensional index and its associated
lists

dbgIndexList Create a flat copy of a list from its index

dbgIndexListEx Create a flat copy of a two-dimensional list from its index

dbgIndexReverse Reverse the order of the list entries referenced by an index

dbgIndexSave Save the memory image of an indexed list to a disk file

dbgIndexSaveEx Save the memory image of a two-dimensional indexed list to a disk file

dbgIndexSort Sort the list entries referenced by an index by address, size, ID, or name

dbgListCreate Create an empty list

dbgListCreateEx Create an empty list with reserved space

dbgListDestroy Free the memory used by a list

dbgListFinish Terminate a sequentially built list and trim any unused memory

dbgListIndex Create a pointer index on an object list
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TABLE 1-3. (continued)

FUNCTION NAME DESCRIPTION

dbgListLoad Create a list from a disk file image

dbgListNext Update the list header after adding an entry

dbgListResize Reserve memory for additional list entries

dbgListSave Save the memory image of a list to a disk file

dbgMemoryAlign Round up a byte count to the next 64-bit boundary

dbgMemoryAlignEx Round up a string character count to the next 64-bit boundary

dbgMemoryBase Query the internal base address of a heap memory block

dbgMemoryBaseEx Query the internal base address of an individually tagged heap
memory block

dbgMemoryCreate Allocate a memory block from the heap

dbgMemoryCreateEx Allocate an individually tagged memory block from the heap

dbgMemoryDestroy Return a memory block to the heap

dbgMemoryDestroyEx Return an individually tagged memory block to the heap

dbgMemoryReset Reset the memory usage statistics

dbgMemoryResize Change the allocated size of a heap memory block

dbgMemoryResizeEx Change the allocated size of an individually tagged heap memory block

dbgMemoryStatus Query the memory usage statistics

dbgMemoryTrack Update the memory usage statistics

dbgModuleIndex Create an indexed (and optionally sorted) process module sub-list 

dbgModuleList Create a flat process module sub-list

dbgPathDriver Build a default driver path specification

dbgPathFile Get the offset of the file name token in a file path

dbgPrivilegeDebug Request the debug privilege for the calling process

dbgPrivilegeSet Request the specified privilege for the calling process

dbgProcessAdd Add a process entry to a list of processes

dbgProcessGuess Guess the default display name of an anonymous system process

dbgProcessIds Return an array of process IDs (EnumProcesses() wrapper)

dbgProcessIndex Create an indexed (and optionally sorted) process list

dbgProcessIndexEx Create a two-dimensional indexed (and optionally sorted)
process/module list

dbgProcessList Create a flat process list

dbgProcessModules Return a list of process module handles (EnumProcessModules()
wrapper)

dbgSizeDivide Divide a byte count by a power of two, optionally rounding up
or down
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TABLE 1-3. (continued)

FUNCTION NAME DESCRIPTION

dbgSizeKB Convert bytes to KB, optionally rounding up or down

dbgSizeMB Convert bytes to MB, optionally rounding up or down

dbgStringAnsi Convert a Unicode string to ANSI

dbgStringDay Get the name of a day given a day-of-week number

dbgStringMatch Apply a wildcard filter to a string

dbgSymbolCallback Add a symbol entry to a list of symbols (called by
SymEnumerateSymbols())

dbgSymbolIndex Create an indexed (and optionally sorted) symbol list

dbgSymbolList Create a flat symbol list

dbgSymbolLoad Load a module’s symbol table

dbgSymbolLookup Look up a symbol name and optional offset given a memory address

dbgSymbolUnload Unload a module’s symbol table

ENUMERATING SYSTEM MODULES AND DRIVERS

psapi.dll can be instructed to return a list of active kernel modules currently residing
in memory. This is a fairly simple task. The psapi.dll function EnumDeviceDrivers()
receives an array of PVOID slots, which it fills with the image base addresses of the
active kernel-mode drivers, including the basic kernel modules ntdll.dll,
ntoskrnl.exe, win32k.sys, hal.dll, and bootvid.dll. The reported values
are the virtual memory addresses where the contents of the respective executable
files have been mapped. If you examine the first few bytes at these addresses with the
Kernel Debugger or some other debugging tool, you will clearly recognize the good
old DOS stub program, starting with Mark Zbikowski’s famous initials “MZ,” and
containing the message text, “This program cannot be run in DOS mode” or some-
thing similar. Listing 1-3 shows a sample invocation of EnumDeviceDrivers(),
including this function’s prototype at the top for your convenience.

EnumDeviceDrivers() expects three arguments: an array pointer, an input size
value, and a pointer to an output size variable of type DWORD. The second argument
specifies the size of the supplied image address array in bytes (!), and the third argu-
ment receives the number of bytes copied to the array. Therefore, you have to divide
the resulting size by sizeof (PVOID) to obtain the number of addresses copied to the
array. Unfortunately, this function doesn’t help you to find out how large the output
array should be, although it actually knows how many drivers are running. It just tells
you how many bytes were returned, and, if the buffer is too small, it conceals the num-
ber of bytes that didn’t fit in. Therefore, you have to employ a dull trial-and-error loop
to determine the correct size, as demonstrated in Listing 1-3, assuming that the 
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BOOL WINAPI EnumDeviceDrivers (PVOID *lpImageBase,

DWORD  cb,

PDWORD lpcbNeeded);

PPVOID WINAPI dbgDriverAddresses (PDWORD pdCount)

{

DWORD  dSize;

DWORD  dCount = 0;

PPVOID ppList = NULL;

dSize = SIZE_MINIMUM * sizeof (PVOID);

while ((ppList = dbgMemoryCreate (dSize)) != NULL)

{

if (EnumDeviceDrivers (ppList, dSize, &dCount) &&

(dCount < dSize))

{

dCount /= sizeof (PVOID);

break;

}

dCount = 0;

ppList = dbgMemoryDestroy (ppList);

if ((dSize <<= 1) > (SIZE_MAXIMUM * sizeof (PVOID))) break;

}

if (pdCount != NULL) *pdCount = dCount;

return ppList;

}
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LISTING 1-3. Enumerating System Module Addresses

data are incomplete whenever the returned size is equal to the size of the array. The
code starts out with a reasonable minimum size of 256 entries, represented by the
constant SIZE_MINIMUM. This is usually enough, but, if not, the buffer size is doubled
on every new trial until all pointers are retrieved or the maximum size of 65,536
entries (SIZE_MAXIMUM) would be exceeded. The memory buffer is allocated and freed
by the helper functions dbgMemoryCreate() and dbgMemoryDestroy(), which are
just fancy wrappers around the standard Win32 functions LocalAlloc() and
LocalFree(), and therefore aren’t reprinted here.

Listing 1-4 shows a possible implementation of EnumDeviceDrivers(). Note
that this is not the original source code from psapi.dll. It is a random sequence of
characters that happens to yield equivalent binary code if fed to a C compiler. To
keep things clear and simple, I have omitted some distracting details found in the
original code, such as Structured Exception Handling (SEH) clauses, for example. At 
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LISTING 1-4. Sample Implementation of EnumDeviceDrivers()

BOOL WINAPI EnumDeviceDrivers (PVOID *lpImageBase,

DWORD  cb,

DWORD *lpcbNeeded)

{

SYSTEM_MODULE_INFORMATION_N(1) smi;

PSYSTEM_MODULE_INFORMATION     psmi;

DWORD                          dSize, i;

NTSTATUS                       ns;

BOOL                           fOk = FALSE;

ns = NtQuerySystemInformation (SystemModuleInformation,

&smi, sizeof (smi), NULL);

if ((ns == STATUS_SUCCESS) ||

(ns == STATUS_INFO_LENGTH_MISMATCH))

{

dSize = sizeof (SYSTEM_MODULE_INFORMATION) +

(smi.dCount * sizeof (SYSTEM_MODULE));

if ((psmi = LocalAlloc (LMEM_FIXED, dSize)) != NULL)

{

ns = NtQuerySystemInformation (SystemModuleInformation,

psmi, dSize, NULL);

if (ns == STATUS_SUCCESS)

{

for (i = 0; (i < psmi->dCount) &&

(i < cb / sizeof (DWORD)); i++)

{

lpImageBase [i] = psmi->aModules [i].pImageBase;

}

*lpcbNeeded = i * sizeof (DWORD);

fOk         = TRUE;

}

LocalFree (psmi);

if (!fOk) SetLastError (RtlNtStatusToDosError (ns));

}

}

else

{

SetLastError (RtlNtStatusToDosError (ns));

}

return fOk;

}



the heart of Listing 1-4, you can see the NtQuerySystemInformation() call that does
the hard work. This is one of my favorite Windows 2000 functions, because it gives
access to various kinds of important data structures, such as driver, process, thread,
handle, and LPC port lists, plus many more. The internals of this powerful function
and its friend NtSetSystemInformation() have been documented for the first time
in my article “Inside Windows NT System Data,” published in the November 1999
issue of Dr. Dobb’s Journal (Schreiber 1999). Another comprehensive description of
these functions can be looked up in Gary Nebbett’s indispensable Windows NT/ 2000
Native API Reference (Nebbett 2000).

Don’t worry too much about the various implementation details of the
EnumDeviceDrivers() function in Listing 1-4. I have added this code snippet
just to illustrate an interesting aspect of this function that runs like a red thread
through psapi.dll. After obtaining the complete list of drivers in the second
NtQuerySystemInformation() call by specifying the information class
SystemModuleInformation, the code loops through the driver module array and
copies all pImageBase members to the caller’s pointer array named lpImageBase[].
This might seem OK, as long as you aren’t aware of the other data contained in the
module array supplied by NtQuerySystemInformation(). This data structure is
undocumented, but I can tell you right now that it also specifies the sizes of the mod-
ules in memory, their paths and names, load counts, and some flags. Even the offset
of the file name token inside the path is readily available! EnumDeviceDrivers() is
mercilessly throwing away all of this valuable information, retaining nothing but the
bare image base addresses.

This drama gets even weirder if you try to obtain more information about the
modules referenced by the returned pointers. Guess what psapi.dll does if you are
calling its API function GetDeviceDriverFileName() to obtain the image file path
corresponding to an image base address. It runs through a code sequence similar to
the one in Listing 1-4, again requesting the complete driver list, and again looping
through its entries in search of the given address. If it finds a matching entry, it copies
the path stored there to the caller’s buffer. That’s very efficient, isn’t it? Why didn’t
EnumDeviceDrivers() copy the paths while it was scanning the driver list for the
first time? It wouldn’t have been very difficult to implement the function in this way.
Besides the efficiency consideration, this design has another potential problem:
What if the module in question has been unloaded right before the invocation of
GetDeviceDriverFileName()? This entry would be missing from the second driver
list, and GetDeviceDriverFileName() would fail. I don’t understand why Microsoft
has released a DLL that cripples the data returned by a powerful API function until it
is almost useless.
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ENUMERATING ACTIVE PROCESSES

Another typical task for psapi.dll is the enumeration of processes currently run-
ning in the system. To this end, the EnumProcesses() function is provided. It works
quite similar to EnumDeviceDrivers(), but returns process IDs instead of virtual
addresses. Again, there is no indication of the required buffer size if the output
buffer is too small, so the usual trial-and-error loop must be used, as demonstrated
in Listing 1-5. Actually, this code is nearly identical to Listing 1-3, except for slightly
different symbol and type names.

A process ID is a global numeric tag that uniquely identifies a process within
the entire system. Process and thread IDs are drawn from the same pool of numbers,
starting at zero with the so-called Idle process. None of the running processes and
threads have the same IDs at the same time. However, after a process terminates, it is
possible that another process reuses some of the IDs previously assigned to the ceased

LISTING 1-5. Enumerating Process IDs

BOOL WINAPI EnumProcesses (DWORD *lpidProcess,

DWORD  cb,

DWORD *lpcbNeeded);

PDWORD WINAPI dbgProcessIds (PDWORD pdCount)

{

DWORD  dSize;

DWORD  dCount = 0;

PDWORD pdList = NULL;

dSize = SIZE_MINIMUM * sizeof (DWORD);

while ((pdList = dbgMemoryCreate (dSize)) != NULL)

{

if (EnumProcesses (pdList, dSize, &dCount) &&

(dCount < dSize))

{

dCount /= sizeof (DWORD);

break;

}

dCount = 0;

pdList = dbgMemoryDestroy (pdList);

if ((dSize <<= 1) > (SIZE_MAXIMUM * sizeof (DWORD))) break;

}

if (pdCount != NULL) *pdCount = dCount;

return pdList;

}



process and its threads. Therefore, a process ID obtained at time X might refer to a
completely different process at time Y. It also might be undefined at the time it is
used, or it might be assigned to a thread. Thus, a plain list of process IDs as returned
by EnumProcesses() does not represent a faithful snapshot of the process activity
in the system. This design flaw is even less pardonable if the implementation of this
function is considered. Listing 1-6 is another psapi.dll function clone, outlining
the basic actions taken by EnumProcesses(). Like EnumDeviceDrivers(), it relies
on NtQuerySystemInformation(), but specifies the information class SystemPro-
cessInformation instead of SystemModuleInformation. Please note the loop in
the middle of Listing 1-6, where the lpidProcess[] array is filled with data from
a SYSTEM_PROCESS_INFORMATION structure. It is not surprising that this structure is
undocumented.

After having seen how wasteful EnumDeviceDrivers() is with the data it
receives from NtQuerySystemInformation(), odds are that EnumProcesses() is
of a similar kind. In fact, it is even worse! The available process information is much
more exhaustive than the driver module information, because along with process
data it also includes details about every thread in the system. While I am writing this
text, my system runs 37 processes, and calling NtQuerySystemInformation() yields
a data block of no less than 24,488 bytes! All that is left after EnumProcesses() has
finished processing the data are 148 bytes, required for the 37 process IDs.
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BOOL WINAPI EnumProcesses (PDWORD lpidProcess,

DWORD  cb,

PDWORD lpcbNeeded)

{

PSYSTEM_PROCESS_INFORMATION pspi, pspiNext;

DWORD                       dSize, i;

NTSTATUS                    ns;

BOOL                        fOk = FALSE;

for (dSize  = 0x8000;

((pspi = LocalAlloc (LMEM_FIXED, dSize)) != NULL);

dSize += 0x8000)

{

ns = NtQuerySystemInformation (SystemProcessInformation,

pspi, dSize, NULL);

if (ns == STATUS_SUCCESS)

{

pspiNext = pspi;

for (i = 0; i < cb / sizeof (DWORD); i++)

{



lpidProcess [i] = pspiNext->dUniqueProcessId;

pspiNext = (PSYSTEM_PROCESS_INFORMATION)

((PBYTE) pspiNext + pspiNext->dNext);

}

*lpcbNeeded = i * sizeof (DWORD);

fOk         = TRUE;

}

LocalFree (pspi);

if (fOk || (ns != STATUS_INFO_LENGTH_MISMATCH))

{

if (!fOk) SetLastError (RtlNtStatusToDosError (ns));

break;

}

}

return fOk;

}
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LISTING 1-6. Sample Implementation of EnumProcesses()

Although EnumDeviceDrivers() makes me somewhat sad, EnumProcesses()
really breaks my heart. If you need justification for using undocumented API functions,
these two functions are the best arguments. Why use less efficient functions such as these
if the real thing is just one step away? Why not call NtQuerySystemInformation() your-
self and get all that interesting system information for free? Many system administration
utilities supplied by Microsoft rely on NtQuerySystemInformation() rather than
psapi.dll functions, so why settle for less?

ENUMERATING PROCESS MODULES

Once you have found a process ID of interest in the process list returned by
EnumProcesses(), you might want to know which modules are currently loaded
into its virtual address space. psapi.dll provides yet another API function for this
purpose, called EnumProcessModules(). Unlike EnumDeviceDrivers() and
EnumProcesses(), this function requires four arguments (see top of Listing 1-7).
Whereas these two functions return global system lists, EnumProcessModules()
retrieves a process-specific list, so the process must be uniquely identified by an
additional argument. However, instead of a process ID, this function requires a
process HANDLE. To obtain a process handle given an ID, the OpenProcess() func-
tion must be called.
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BOOL WINAPI EnumProcessModules (HANDLE   hProcess,

HMODULE *lphModule,

DWORD    cb,

DWORD   *lpcbNeeded);

PHMODULE WINAPI dbgProcessModules (HANDLE hProcess,

PDWORD pdCount)

{

DWORD    dSize;

DWORD    dCount = 0;

PHMODULE phList = NULL;

if (hProcess != NULL)

{

dSize = SIZE_MINIMUM * sizeof (HMODULE);

while ((phList = dbgMemoryCreate (dSize)) != NULL)

{

if (EnumProcessModules (hProcess, phList, dSize,

&dCount))

{

if (dCount <= dSize)

{

dCount /= sizeof (HMODULE);

break;

}

}

else

{

dCount = 0;

}

phList = dbgMemoryDestroy (phList);

if (!(dSize = dCount)) break;

}

}

if (pdCount != NULL) *pdCount = dCount;

return phList;

}

LISTING 1-7. Enumerating Process Modules

EnumProcessModules() returns references to the modules of a process by speci-
fying their module handles. On Windows 2000, an HMODULE is simply the image base
address of a module. In the Platform SDK header file windef.h, it is defined as an
alias for HINSTANCE, which in turn is a HANDLE type. Microsoft has probably chosen
this type assignment to point out that a module handle is an opaque quantity, and no
assumptions should be made about its value. However, an HMODULE is not a handle
in the strict sense. Usually, handles are indexes into a table managed by the system,
where properties of objects are looked up. Each handle returned by the system
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increments an object-specific handle count, and an object instance cannot be removed
from memory until all handles have been returned to the system. The Win32 API pro-
vides the CloseHandle() function for the latter purpose. Its equivalent in the context
of the Native API is called NtClose(). The important thing about HMODULEs is that
these “handles” need not be closed.

Another confusing thing is the fact that module handles are not generally guar-
anteed to remain valid. The remarks on the GetModuleHandle() function in the
Platform SDK documentation state clearly that special care must be taken in multi-
threaded applications, because one thread might invalidate an HMODULE used by
another thread by unloading the module to which this handle refers. The same is
true in a multitasking environment in which an application (e.g., a debugger) wants
to use a module handle of another application. This makes HMODULEs appear fairly
useless, doesn’t it? However, there are two situations in which an HMODULE remains
valid long enough:

1. A HMODULE returned by LoadLibrary() or LoadLibraryEx() remains valid
until the process calls FreeLibrary(), because these functions involve a
module reference count. This prevents the module from being unloaded
unexpectedly even in a multithreaded application design.

2. An HMODULE from a different process remains valid if it refers to a module that
is permanently loaded. For example, all Windows 2000 kernel components
(not including kernel-mode device drivers) are mapped to the same fixed
addresses in each process and remain there for the lifetime of the process.

Unfortunately, neither of these situations applies to the module handles
returned by the psapi.dll function EnumProcessModules(), at least not generally.
The HMODULE values copied to the caller’s buffer reflect the image base addresses that
were in effect at the time the process snapshot was taken. A second later, the process
might have called FreeLibrary() for one of the modules, removing it from memory
and invalidating its handle. It is even possible that the process calls LoadLibrary()
for a different DLL immediately afterward, and the new module is mapped to the
address that has just been freed. If this looks familiar, you are right. This is the same
problem encountered with the EnumDeviceDrivers() pointer array and the
EnumProcesses() ID array. However, this problem is not inevitable. The undocu-
mented API functions called by psapi.dll to collect the data work around these data
integrity issues by returning a complete snapshot of the requested objects, including
all properties of interest. It is not necessary to call other functions at a later time to
obtain additional information. In my opinion, the design of psapi.dll is poor
because of its ignorance of data integrity, which is why I would not use this DLL as a
basis for a professional debugging application.



The EnumProcessModules() function is a better citizen than EnumDeviceDrivers()
and EnumProcesses(), because it indicates exactly how many bytes are missing
if the output data doesn’t fit into the caller’s array. Note that Listing 1-7 doesn’t
contain a loop where the buffer size is increased until it is large enough. However,
a trial-and error loop is still required because the required size reported by
EnumProcessModules() might be invalid at the next call if the process in question
has loaded another module in the meantime. Therefore, the code in Listing 1-7
keeps on enumerating modules until EnumProcessModules() reports that the
required buffer size is less than or equal to the available size or an error occurs.

I won’t describe an equivalent implementation of EnumProcessModules(),
because this function is slightly more complex than EnumDeviceDrivers() and
EnumProcesses() and involves several undocumented data structures. Basically,
it calls NtQueryInformationProcess() (it is undocumented, of course) to get the
address of the target Process Environment Block (PEB), where it retrieves a pointer
to a module information list. Because neither the PEB nor this list are “visible”
in the caller’s address space, EnumProcessModules() calls the Win32 API function
ReadProcessMemory() (this one is documented) to take a peek at the target address
space. By the way, the layout of the PEB structure is discussed later in Chapter 7, and
also appears in the structure definition section of Appendix C.

ADJUSTING PROCESS PRIVILEGES

Recall the earlier discussion about the process handle required by EnumProcess
Modules(). Usually, you will begin with a process ID—probably one of those
returned by EnumProcesses(). The Win32 API provides the OpenProcess() func-
tion to get a handle to a process if its ID is known. This function expects an access
flag mask as its first argument. Assuming that the process ID is stored in the DWORD
variable dId, and you are calling OpenProcess (PROCESS_ALL_ACCESS, FALSE,
dId) to obtain a handle with maximum access rights, you will get an error code for
several processes with low ID numbers. This is not a bug—it is a security feature!
These processes are system services that keep the system alive. A normal user
process is not allowed to execute all possible operations on system services. For
example, it is not a good idea to allow all processes to kill any other process in the
system. If an application accidentally terminates a system service, the entire system
crashes. Therefore, certain access rights can only be used by a process that has the
appropriate privileges.

You can always bump up the privilege level of an application by claiming that it
is a debugger. For obvious reasons, a debugger must have a large number of access
rights to do its job. Changing the privileges of a process is essentially a straightfor-
ward sequence of three steps:
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1. First, the so-called access token of the process must be opened, using the
Win32 advapi32.dll function OpenProcessToken().

2. If this call succeeds, the next step is to prepare a TOKEN_PRIVILEGES
structure that contains information about the requested privilege.
This task is facilitated by another advapi32.dll function named
LookupPrivilegeValue(). The privilege is specified by name. The
Platform SDK file winnt.h defines 27 privilege names and assigns symbols
to them. For example, the debugging privilege has the symbol
SE_DEBUG_NAME, which evaluates to the string “SeDebugPrivilege”.

3. If this call succeeds as well, AdjustTokenPrivileges() can be called with
the token handle of the process and the initialized TOKEN_PRIVILEGES
structure. Again, this function is exported by advapi32.dll.

Remember to close the token handle afterward if OpenProcessToken() succeeds.
w2k_dbg.dll contains the API function dbgPrivilegeSet() that combines these steps,
as shown in Listing 1-8. At the bottom of this listing, another w2k_dbg.dll function is
included. dbgPrivilegeDebug() is a simple but convenient dbgPrivilegeSet() wrap-
per that specifically requests the debugging privilege. By the way, this trick is also
employed by the wonderful kill.exe utility contained in Microsoft’s Windows NT
Server Resource Kit. kill.exe needs the debugging privilege to be able to kick starved
services from memory. This is an indispensable tool for NT server administrators who
want to restart a dead system service that doesn’t respond to service control calls any-
more, circumventing a full reboot. Anyone who runs Microsoft Internet Information
Server (IIS) on the Web or in an intranet or extranet probably has this nifty tool in the
emergency toolbox and issues a kill inetinfo.exe command every now and then.
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BOOL WINAPI dbgPrivilegeSet (PWORD pwName)

{

HANDLE           hToken;

TOKEN_PRIVILEGES tp;

BOOL             fOk = FALSE;

if ((pwName != NULL)

&&

OpenProcessToken (GetCurrentProcess (),

TOKEN_ADJUST_PRIVILEGES,

&hToken))

{

if (LookupPrivilegeValue (NULL, pwName,

&tp.Privileges->Luid))

{

tp.Privileges->Attributes = SE_PRIVILEGE_ENABLED;

tp.PrivilegeCount         = 1;

(continued)



fOk = AdjustTokenPrivileges (hToken, FALSE, &tp,

0, NULL, NULL)

&&

(GetLastError () == ERROR_SUCCESS);

}

CloseHandle (hToken);

}

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI dbgPrivilegeDebug (void)

{

return dbgPrivilegeSet (SE_DEBUG_NAME);

}
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LISTING 1-8. Requesting a Privilege for a Process

ENUMERATING SYMBOLS

After having bashed psapi.dll without mercy, it’s time for a few more positive
words. psapi.dll might be a flop, but on the other hand, imagehlp.dll is a true
pearl! I came across this fine piece of software while searching for more information
about the internal structure of Windows 2000 symbol files. Finally, a 3-year-old
article of the world’s best Windows surgeon Matt Pietrek (Pietrek 1997b) convinced
me—at least for now—that it is absolutely unnecessary to know the layout of sym-
bol files, because imagehlp.dll readily dissects them for me. This magic is done by
its API function SymEnumerateSymbols(), whose prototype is shown in the upper
half of Listing 1-9. Meanwhile, I have learned a lot about the most essential inter-
nals of the Windows NT 4.0 and Windows 2000 symbol files, so I no longer depend
on imagehlp.dll. I will cover this information in the next section of this chapter.

The hProcess argument is usually a handle to the calling process, so it can be
set to the result of GetCurrentProcess(). Note that GetCurrentProcess() doesn’t
return a real process handle. Instead, it returns a constant value of 0xFFFFFFFF called
a pseudo handle, which is accepted by all API functions that expect a process handle.
0xFFFFFFFE is another pseudo handle that is interpreted as a handle to the current
thread and is analogously returned by the API function GetCurrentThread().

BaseOfDll is defined as a DWORD, although it is actually sort of a HMODULE or
HINSTANCE. I guess Microsoft has chosen this data type to express that this value
need not be a valid HMODULE, although it frequently is. SymEnumerateSymbols() cal-
culates the base addresses of all enumerated symbols relative to this value. It is
absolutely OK to query the symbols of a DLL that isn’t currently loaded into any
process address space, so BaseOfDll can be chosen arbitrarily.
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BOOL IMAGEAPISymEnumerateSymbols

(HANDLE      hProcess,

DWORD        BaseOfDll,

PSYM_ENUMSYMBOLS_CALLBACK Callback,

PVOID        UserContext);

typedef BOOL (CALLBACK *PSYM_ENUMSYMBOLS_CALLBACK)

(PTSTR       SymbolName,

DWORD        SymbolAddress,

DWORD        SymbolSize,

PVOID        UserContext);

LISTING 1-9. SymEnumerateSymbols() and its Callback Function

The Callback argument is a pointer to a user-defined callback function that
is invoked for every symbol. The lower half of Listing 1-9 provides information
about its arguments. The callback function receives a zero-terminated symbol name
string, the base address of the symbol with respect to the BaseOfDll argument of
SymEnumerateSymbols() and the estimated size of the item tagged by the symbol.
SymbolName is defined as a PTSTR, which means that its actual type depends on
whether the ANSI or Unicode version of SymEnumerateSymbols() has been called.
The Platform SDK documentation explicitly states that SymbolSize is a “best-guess
value,” and can be zero. I have found that SymbolAddress might be zero as well,
and that SymbolSize can assume the two’s complement of SymbolAddress, that is,
adding both values yields zero. It is a good idea to filter out these special cases if you
are only interested in symbols that refer to real code or data.

UserContext is an arbitrary pointer that can be used by the caller to keep
track of the enumeration sequence. For example, it might point to a memory block
where the symbol information has accumulated. This pointer is identical to the
UserContext argument passed to the Callback function. The callback function
can cancel the enumeration any time by returning the value FALSE. This action is
typically taken when an unrecoverable error occurs or the caller has received the
information for which it was waiting.

Listing 1-10 demonstrates a typical application of SymEnumerateSymbols(),
again taken from the source code of w2k_dbg.dll. To enumerate the symbols of a
specified module, the following steps have to be taken:

1. Before anything else, SymInitialize() must be called to initialize the
symbol handler. Listing 1-11 shows the prototypes of this and other
functions discussed here. The hProcess argument can be a handle to any
active process in the system. Debuggers that maintain symbolic
information for several processes use this parameter to identify the target
process. Applications that simply wish to enumerate symbols offline may 



pass in the value of GetCurrentProcess(). The resources allocated by
SymInitialize() must be freed later by calling SymCleanup().

2. To obtain accurate information about the module for which symbols will
be enumerated, it is advisable to call ImageLoad() now. Note that this
function is specific to imagehlp.dll—it is not exported by the
redistributable component dbghelp.dll. ImageLoad() returns a pointer
to a LOADED_IMAGE structure containing very detailed information about
the loaded module (see Listing 1-11). This structure must be deallocated
later using ImageUnload().

3. The last step before SymEnumerateSymbols() can be called is to load
the symbol table of the target module by invoking SymLoadModule().
If ImageLoad() has been called before, the hFile and SizeOfImage
members of the returned LOADED_IMAGE structure can be passed in as the
respective arguments. Otherwise, you have to set hFile to NULL and
SizeOfImage to zero. In this case, SymLoadModule() attempts to obtain the
image size from the symbol file, which is not guaranteed to be accurate.
The symbol table must be unloaded later by calling SymUnloadModule().
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PDBG_LIST WINAPI dbgSymbolList (PWORD pwPath,

PVOID pBase)

{

PLOADED_IMAGE pli;

HANDLE        hProcess = GetCurrentProcess ();

PDBG_LIST     pdl      = NULL;

if ((pwPath != NULL) &&

SymInitialize (hProcess, NULL, FALSE))

{

if ((pli = dbgSymbolLoad (pwPath, pBase, hProcess)) != NULL)

{

if ((pdl = dbgListCreate ()) != NULL)

{

SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,

dbgSymbolCallback, &pdl);

}

dbgSymbolUnload (pli, pBase, hProcess);

}

SymCleanup (hProcess);

}

return dbgListFinish (pdl);

}

LISTING 1-10. Creating a Symbol List
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BOOL IMAGEAPI SymInitialize (HANDLE hProcess,

PSTR   UserSearchPath,

BOOL   fInvadeProcess);

BOOL IMAGEAPI SymCleanup (HANDLE hProcess);

DWORD IMAGEAPI SymLoadModule (HANDLE hProcess,

HANDLE hFile,

PSTR   ImageName,

PSTR   ModuleName,

DWORD  BaseOfDll,

DWORD  SizeOfDll);

BOOL IMAGEAPI SymUnloadModule (HANDLE hProcess,

DWORD  BaseOfDll);

PLOADED_IMAGE IMAGEAPI ImageLoad (PSTR DllName,

PSTR DllPath);

BOOL IMAGEAPI ImageUnload (PLOADED_IMAGE LoadedImage);

typedef struct _LOADED_IMAGE

{

PSTR                  ModuleName;

HANDLE                hFile;

PUCHAR                MappedAddress;

PIMAGE_NT_HEADERS     FileHeader;

PIMAGE_SECTION_HEADER LastRvaSection;

ULONG                 NumberOfSections;

PIMAGE_SECTION_HEADER Sections;

ULONG                 Characteristics;

BOOLEAN               fSystemImage;

BOOLEAN               fDOSImage;

LIST_ENTRY            Links;

ULONG                 SizeOfImage;

}

LOADED_IMAGE, *PLOADED_IMAGE;

LISTING 1-11. Various imagehlp.dll API Prototypes

In Listing 1-10, the SymInitialize(), SymEnumerateSymbols(), and 
SymCleanup() calls are clearly discernible. Please ignore the dbgListCreate()
and dbgListFinish() calls—they refer to w2k_dbg.dll API functions that help 
build object lists in memory. The other imagehlp.dll function references mentioned 
above are hidden inside the w2k_dbg.dll API functions dbgSymbolLoad() and
dbgSymbolUnload(), shown in Listing 1-12. Note that dbgSymbolLoad() uses
dbgStringAnsi() to convert the module path string from Unicode to ANSI, 
because imagehlp.dll doesn’t export a Unicode variant of ImageLoad().
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PLOADED_IMAGE WINAPI dbgSymbolLoad (PWORD  pwPath,

PVOID  pBase,

HANDLE hProcess)

{

WORD          awPath [MAX_PATH];

PBYTE         pbPath;

DWORD         dPath;

PLOADED_IMAGE pli = NULL;

if ((pbPath = dbgStringAnsi (pwPath, NULL)) != NULL)

{

if (((pli = ImageLoad (pbPath, NULL)) == NULL)         &&

(dPath = dbgPathDriver (pwPath, awPath, MAX_PATH)) &&

(dPath < MAX_PATH))

{

dbgMemoryDestroy (pbPath);

if ((pbPath = dbgStringAnsi (awPath, NULL)) != NULL)

{

pli = ImageLoad (pbPath, NULL);

}

}

if ((pli != NULL)

&&

(!SymLoadModule (hProcess, pli->hFile, pbPath, NULL,

(DWORD_PTR) pBase, pli->SizeOfImage)))

{

ImageUnload (pli);

pli = NULL;

}

dbgMemoryDestroy (pbPath);

}

return pli;

}

// -----------------------------------------------------------------

PLOADED_IMAGE WINAPI dbgSymbolUnload (PLOADED_IMAGE pli,

PVOID         pBase,

HANDLE        hProcess)

{

if (pli != NULL)

{

SymUnloadModule (hProcess, (DWORD_PTR) pBase);

ImageUnload     (pli);

}

return NULL;

}

// -----------------------------------------------------------------
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PDBG_LIST WINAPI dbgSymbolList (PWORD pwPath,

PVOID pBase)

{

PLOADED_IMAGE pli;

HANDLE        hProcess = GetCurrentProcess ();

PDBG_LIST     pdl      = NULL;

if ((pwPath != NULL) &&

SymInitialize (hProcess, NULL, FALSE))

{

if ((pli = dbgSymbolLoad (pwPath, pBase, hProcess)) != NULL)

{

if ((pdl = dbgListCreate ()) != NULL)

{

SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,

dbgSymbolCallback, &pdl);

}

dbgSymbolUnload (pli, pBase, hProcess);

}

SymCleanup (hProcess);

}

return dbgListFinish (pdl);

}

LISTING 1-12. Loading and Unloading Symbol Information

ImageLoad() does a very good job locating the specified module, even if only its
name is given, without any path information. However, it fails on kernel-mode drivers
residing in the \winnt\system32\drivers directory, because it is usually not part of
the system’s search path list. In this case, dbgSymbolLoad() asks the dbgPathDriver()
function for help and retries the LoadImage() call. dbgPathDriver() simply prefixes
the specified path with the string “driver\” if the path consists of a bare file name 
only. If either of the ImageLoad() calls returns a valid LOADED_IMAGE pointer, 
dbgSymbolLoad() fulfills its mission by loading the module’s symbol table via 
SymLoadModule() and returns the LOADED_IMAGE structure if successful. Its counter-
part dbgSymbolUnload() is almost trivial—it unloads the symbol table and then
destroys the LOADED_IMAGE structure.

In Listing 1-10, SymEnumerateSymbols() is instructed to use the w2k_dbg.dll
function dbgSymbolCallback() for the callbacks. I am not including its source code
here because it isn’t relevant to imagehlp.dll. It just uses the symbol information it
receives (see the definition of PSYM_ENUMSYMBOLS_CALLBACK in Listing 1-9) and adds
it to a memory block passed in as its UserContext pointer. Although the list, index,
and sorting functions featured by w2k_dbg.dll are interesting in their own right,
they are beyond the scope of this book. Please consult the source files of
w2k_dbg.dll and w2k_sym.exe on the CD if you need more information.
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A WINDOWS 2000 SYMBOL BROWSER

w2k_sym.exe is a sample client application of w2k_dbg.dll running in Win32 console
mode. If you invoke it without arguments, it identifies itself as the Windows 2000
Symbol Browser and displays the help screen shown in Example 1-5. The program
recognizes several command line switches that determine the actions it should take. 
The four basic options are /p (list processes), /m (list process modules), /d (list drivers
and system modules), or the path of a module for which symbol information is
requested. The default behavior can be altered by adding various display mode, sort-
ing, and filtering switches. For example, if you want to see a list of all ntoskrnl.exe

// w2k_sym.exe

// SBS Windows 2000 Symbol Browser V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Usage: w2k_sym { <mode> [ /f | /F <filter> ] <operation> }

<mode> is a series of options for the next <operation>:

/a : sort by address

/s : sort by size

/i : sort by ID (process/module lists only)

/n : sort by name

/c : sort by name (case-sensitive)

/r : reverse order

/l : load  checkpoint file (see below)

/w : write checkpoint file (see below)

/e : display end address instead of size

/v : verbose mode

/f <filter> applies a case-insensitive search pattern.

/F <filter> works analogous, but case-sensitive.

In <filter>, the wildcards * and ? are allowed.

<operation> is one of the following:

/p : display processes      - checkpoint: processes.dbgl

/m : display modules        - checkpoint: modules.dbgl

/d : display drivers        - checkpoint: drivers.dbgl

<file> : display <file> symbols - checkpoint: symbols.dbgl

<file> is a file name, a relative path, or a fully qualified path.

Checkpoint files are loaded from and written to the current directory.

A checkpoint is an on-disk image of a DBG_LIST structure (see w2k_dbg.h).

EXAMPLE 1-5. The Command Help of w2k_sym.exe
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symbols sorted by name, issue the command w2k_sym /n/v ntoskrnl.exe. The /n
switch selects sort-by-name mode, and /v tells the program to be verbose, displaying
the complete symbol list—otherwise, only summary information would be visible.

As an additional option, w2k_sym.exe allows reading and writing checkpoint
files. A checkpoint is simply a one-to-one copy of an object list written to a disk file.
You can use checkpoints to save the state of your system for later comparison. A
checkpoint file contains a CRC32 field that is used to validate the contents of the file
when it is loaded. w2k_sym.exe maintains four checkpoints in the current directory,
corresponding to the four basic program options mentioned earlier, that is, process,
module, driver, and symbol lists.

MICROSOFT SYMBOL FILE INTERNALS

It is great that Microsoft provides a standard interface to access the Windows 2000
symbol files, no matter what internal format they are using. Sometimes, however, you
may wish to have direct access to their internals, just to gain more control of the
data. This section shows you how the data in symbol files of type .dbg and .pdb are
structured, and presents a DLL with a sample client application that allows you to
look up and browse symbolic information buried inside them. Yes, this is going to be
another symbol browser application, but don’t worry—I won’t bore you with a sim-
ple rehash of familiar code. The alternative symbol browser is quite different from
the one discussed in the previous section.

SYMBOL DECORATION

Microsoft symbol files store the names of symbols in their so-called decorated form,
which means that the symbol name might be prefixed and postfixed by additional
character sequences that carry information about the type and usage of the symbol.
Table 1-4 lists the most common forms of decorations. Symbols generated by C code
usually have a leading underscore or @ character, depending on the calling conven-
tion. An @ character indicates a __fastcall function, and an underscore indicates
__stdcall and __cdecl functions. Because the __fastcall and __stdcall conven-
tions leave the task of cleaning up the argument stack to the called function, the sym-
bols assigned to functions of this type also include the number of argument bytes put
on the stack by the caller. This information is appended to the symbol name in deci-
mal notation, separated by an @ character. In this scenario, global variables are
treated like __cdecl functions—that is, their symbols start with an underscore and
have no trailing argument stack information.
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TABLE 1-4. Symbol Decoration Categories

EXAMPLE DESCRIPTION

symbol Undecorated symbol (might have been declared in an
ASM module)

_symbol __cdecl function or global variable

_symbol@N __stdcall function with N argument bytes

@symbol@N __fastcall function with N argument bytes

__imp__symbol import thunk of a __cdecl function or variable

__imp__symbol@N import thunk of a __stdcall function with N argument bytes

__imp_@symbol@N import thunk of a __fastcall function with N argument bytes

?symbol C++ symbol with embedded argument type information

___@@_PchSym_symbol PCH symbol

Some symbol names have a prefix of __imp__ or __imp_@. These symbols are
assigned to import thunks, which are pointers to functions or variables in other mod-
ules. Import thunks facilitate dynamic linking to symbols exported by other compo-
nents at runtime, regardless of the actual load address of the target module. When a
module is loaded, the loader mechanism fixes up the thunk pointers to refer to the
actual entry point addresses. The benefit of import thunks is that the fixup for each
imported function or variable has to be done only once per symbol—all references to
this external symbol are routed through its thunk. It should be noted that import
thunks are not a requirement. It is up to the compiler to decide whether it wants to
minimize fixups by adding thunks or minimize memory usage by saving the space
required for the thunks. As Table 1-4 shows, the same prefix/postfix rules apply to
local and imported symbols, except that import thunks have an additional __imp_
prefix (with two leading underscores!).

The undecoration problems of imagehlp.dll can easily be demonstrated
with the help of the w2k_sym.exe sample application from the previous section,
because it ultimately relies on the imagehlp.dll API via the w2k_dbg.dll library. If
you issue the command w2k_sym /v/n/f __* ntoskrnl.exe, instructing w2k_sym.exe
to display a sorted list of names starting with two underscore characters, you will see
something that should look like the list in Example 1-6. What’s strange is the pile of __
symbols at the top of the table. Entering a command such as ln 8047F798 in the Ker-
nel Debugger yields the result ntoskrnl!__, which isn’t any better. The original deco-
rated name of the symbol at address 0x8047F798 is actually___@@_PchSym_@00@
UmgUkirezgvUmglhUlyUfkUlyqUrDIGUlykOlyq@ob, so it seems that imagehlp.dll
simply has stripped all characters except for two of the three leading underscores.



#  ADDRESS      SIZE NAME

-----------------------------------------------------------------

6870: 8047F798        4 __

6871: 80480B8C       14 __

6872: 8047E724        4 __

6873: 80471FE0        4 __

6874: 804733B8       28 __

6875: 804721D0       20 __

6876: 804759A4        4 __

6877: 80480004       1C __

6878: 8047DA8C       14 __

6879: 8047238C        4 __

6880: 8047E6D4        4 __

6881: 804755D4        4 __

6882: 80471700        4 __decimal_point

6883: 80471704        4 __decimal_point_length

6884: 80471FC0        8 __fastflag

...
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EXAMPLE 1-6. Results of the Command w2k_sym /v/n/f __* ntoskrnl.exe

An even better example is the command w2k_sym /v/n/f _imp_*

ntoskrnl.exe that displays all symbols starting with the character sequence
_imp_. The resulting list, excerpted in Example 1-7, comprises the import thunks
of ntoskrnl.exe. Again, the list starts with a long sequence of ambiguous names,
and again the Kernel Debugger isn’t helpful, because it reports the same names for
these addresses. If I tell you now that the original name of the symbol at address
0x804005A4 is __imp_@ExReleaseFastMutex@4, what do you think? Obviously,
one leading underscore has gotten lost, and the entire tail string starting at the first
@ character is missing. It seems that the undecoration algorithm inside
imagehlp.dll has a problem with @ characters. The reason for this strange behav-
ior is that @ is not only the prefix of __fastcall function names but also the sepa-
rator for the argument stack size trailer of __fastcall and __stdcall functions.
Obviously, the applied undecoration algorithm is satisfied to find a leading under-
score and an @ character, erroneously assuming that the remaining trailer specifies
the number of bytes on the caller’s argument stack. Therefore, the lengthy PCH
symbols are stripped down to two underscores, and the __fastcall import thunks
are reduced to _imp_. In both cases, the first leading underscore is removed and
the first @ plus all characters following it are discarded as well.
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#  ADDRESS      SIZE NAME

-----------------------------------------------------------------

6761: 804005A4        4 _imp_

6762: 80400584        4 _imp_

6763: 80400594        4 _imp_

6764: 80400524        4 _imp_

6765: 8040059C        4 _imp_

6766: 80400534        4 _imp_

6767: 80400590        4 _imp_

6768: 804004EC        4 _imp_

6769: 80400554        4 _imp_

6770: 80400598        4 _imp_

6771: 80400520        4 _imp__HalAllocateAdapterChannel

6772: 804004C0        4 _imp__HalAllocateCommonBuffer

6773: 804004E8        4 _imp__HalAllProcessorsStarted

...

EXAMPLE 1-7. Results of the Command w2k_sym /v/n/f _imp_* ntoskrnl.exe

The above examples are two potential reasons why you might lose patience and
say: “Hey, I’m going to do it my own way!” The problem is that the internals of the
Microsoft symbol file format are only scarcely documented, and some parts of the
symbolic information—most notably the structure of Program Database (PDB)
files—are completely undocumented. The Microsoft Knowledge Base even contains
an article that clearly states:

“The Program Database File Format also known as PDB file format is not
documented. This information is Microsoft proprietary.” (Microsoft 2000d.)

This sounds as if any attempts to roll your own symbol information parser
must fail. However, you can bet that I’d never dare to add a section to this book that
would end with the words “... but unfortunately, I can’t tell you more because the
internals of PDB files are unknown to me.” Of course, I will tell you how PDB files
are structured. But first, we will have to examine to the internals of .dbg files,
because this is where the entire story starts.

THE INTERNAL STRUCTURE OF .dbg FILES

The symbolic information of the Windows NT 4.0 components is packed into files
whose names end with a .dbg extension. The file names and the subdirectories hosting
these files can be immediately derived from the component file name. Assuming that the
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symbol root directory of a system is d:\winnt\symbols, the full path of the symbol file
of the component filename.ext is d:\winnt\symbols\ext\filename.dbg. For exam-
ple, the kernel symbols can be found in the file d:\winnt\symbols\exe\ntoskrnl.dbg.
Windows 2000 comes with .dbg files, too. However, the symbolic information has been
moved to separate .pdb files. Therefore, each Windows 2000 component has an associ-
ated ext\filename.dbg and an additional ext\filename.pdb file in the symbol root
directory. Aside from this difference, the contents of the Windows NT 4.0 and 2000
.dbg files are quite similar.

Fortunately, the internals of .dbg files are at least partially documented. The
Win32 Platform SDK header file winnt.h provides important constant and type
definitions of the core parts, and the Microsoft Developer Network (MSDN)
Library contains some very helpful articles about this file format. Certainly the
most enlightening article is Matt Pietrek’s March 1999 edition of his “Under the
Hood” column in Microsoft Systems Journal (MSJ), renamed MSDN Magazine
(Pietrek 1999). Basically, a .dbg file consists of a header and a data section. Both
sections have variable size and are further subdivided. The header part comprises
four major subsections:

1. An IMAGE_SEPARATE_DEBUG_HEADER structure, starting with the two-letter
signature “DI” (top section of Listing 1-13).

2. An array of IMAGE_SECTION_HEADER structures, one for each section in the
component’s PE file (middle section of Listing 1-13). The number of
entries is specified by the NumberOfSections member of the
IMAGE_SEPARATE_DEBUG_HEADER.

3. A sequence of zero-terminated 8-bit ANSI strings, comprising all exported
symbols in undecorated form. The size of this subsection is specified by the
ExportedNamesSize member of the IMAGE_SEPARATE_DEBUG_HEADER. If the
module doesn’t export any symbols, the ExportedNamesSize is zero, and
the subsection is not present.

4. An array of IMAGE_DEBUG_DIRECTORY structures, describing the locations
and formats of the subsequent data in the file (bottom
section of Listing 1-13). The size of this subsection is specified by the
DebugDirectorySize member of the IMAGE_SEPARATE_DEBUG_HEADER.
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#define IMAGE_SEPARATE_DEBUG_SIGNATURE 0x4944 // “DI”

typedef struct _IMAGE_SEPARATE_DEBUG_HEADER

{

WORD  Signature;

WORD  Flags;

WORD  Machine;

WORD  Characteristics;

DWORD TimeDateStamp;

DWORD CheckSum;

DWORD ImageBase;

DWORD SizeOfImage;

DWORD NumberOfSections;

DWORD ExportedNamesSize;

DWORD DebugDirectorySize;

DWORD SectionAlignment;

DWORD Reserved[2];

}

IMAGE_SEPARATE_DEBUG_HEADER, *PIMAGE_SEPARATE_DEBUG_HEADER;

// -----------------------------------------------------------------

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER

{

BYTE  Name[IMAGE_SIZEOF_SHORT_NAME];

union

{

DWORD PhysicalAddress;

DWORD VirtualSize;

} Misc;

DWORD VirtualAddress;

DWORD SizeOfRawData;

DWORD PointerToRawData;

DWORD PointerToRelocations;

DWORD PointerToLinenumbers;

WORD  NumberOfRelocations;

WORD  NumberOfLinenumbers;

DWORD Characteristics;

}

IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

// -----------------------------------------------------------------

#define IMAGE_DEBUG_TYPE_UNKNOWN        0

#define IMAGE_DEBUG_TYPE_COFF           1

#define IMAGE_DEBUG_TYPE_CODEVIEW       2

#define IMAGE_DEBUG_TYPE_FPO            3

#define IMAGE_DEBUG_TYPE_MISC           4

#define IMAGE_DEBUG_TYPE_EXCEPTION      5

#define IMAGE_DEBUG_TYPE_FIXUP          6



#define IMAGE_DEBUG_TYPE_OMAP_TO_SRC    7

#define IMAGE_DEBUG_TYPE_OMAP_FROM_SRC  8

#define IMAGE_DEBUG_TYPE_BORLAND        9

#define IMAGE_DEBUG_TYPE_RESERVED10    10

#define IMAGE_DEBUG_TYPE_CLSID         11

typedef struct _IMAGE_DEBUG_DIRECTORY

{

DWORD Characteristics;

DWORD TimeDateStamp;

WORD  MajorVersion;

WORD  MinorVersion;

DWORD Type;

DWORD SizeOfData;

DWORD AddressOfRawData;

DWORD PointerToRawData;

}

IMAGE_DEBUG_DIRECTORY, *PIMAGE_DEBUG_DIRECTORY;
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LISTING 1-13. Header Structures of a .dbg File

Because of the variable size of the header subsections, their absolute positions
within the .dbg file must be computed from the size of the preceding subsections,
respectively. A .dbg file parser usually applies the following algorithm:

• The IMAGE_SEPARATE_DEBUG_HEADER is always located at the beginning of
the file.

• The first IMAGE_SECTION_HEADER immediately follows the
IMAGE_SEPARATE_DEBUG_HEADER, so it is always found at file offset 0x30.

• The offset of the first exported name is determined by multiplying the size
of the IMAGE_SECTION_HEADER structure by the number of sections and
adding it to the offset of the first section header. Thus, the first string is
located at offset 0x30 + (NumberOfSections * 0x28).

• The location of the first IMAGE_DEBUG_DIRECTORY entry is determined by
adding the ExportedNamesSize to the offset of the exported-names
subsection.

• The offsets of the remaining data items in the .dbg file are determined by
the IMAGE_DEBUG_DIRECTORY entries. The offsets and sizes of the
associated data blocks are specified by the PointerToRawData and
SizeOfData members, respectively.
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The IMAGE_DEBUG_TYPE_* definitions in Listing 1-13 reflect the various data
formats a .dbg file can comprise. However, the Windows NT 4.0 symbol files typically
contain only four of them: IMAGE_DEBUG_TYPE_COFF, IMAGE_DEBUG_TYPE_CODEVIEW,
IMAGE_DEBUG_TYPE_FPO, and IMAGE_DEBUG_TYPE_MISC. The Windows 2000 .dbg
files usually add IMAGE_DEBUG_TYPE_OMAP_TO_SRC, IMAGE_DEBUG_TYPE_OMAP_FROM
_SRC, and an undocumented type with ID 0x1000 to this list. If you are interested 
only in resolving or browsing symbols, the only required directory entries are IMAGE_
DEBUG_TYPE_CODEVIEW, IMAGE_DEBUG_TYPE_OMAP_TO_SRC, and IMAGE_DEBUG_
TYPE_OMAP_FROM_SRC.

The companion CD of this book contains a sample DLL named w2k_img.dll
that parses .dbg and .pdb files and exports several interesting functions for developers
of debugging tools. The source code of this DLL is found in the \src\w2k_img tree of
the CD. One important property of w2k_img.dll is that it is designed to run on all
Win32 platforms. This not only includes Windows 2000 and Windows NT 4.0 but
also Windows 95 and 98. Like all good citizens in the Win32 world, this DLL comes
with separate entry points for ANSI and Unicode strings. By default, a client applica-
tion uses the ANSI functions. If the application includes the line #define UNICODE in
its source code, the Unicode entry points are selected transparently. Client applications
that run on Win32 platforms should use ANSI exclusively. Applications specific to
Windows 2000/NT can switch to Unicode for better performance.

The sample CD also contains an example application called SBS Windows 2000
CodeView Decompiler, whose Microsoft Visual C/C++ project files are found in the
\src\w2k_cv tree. It is a very simple application that dissects .dbg and .pdb files and
dumps the contents of their sections to a console window. You can use it while read-
ing this section to see live examples of the data structures discussed here. w2k_cv.exe
makes heavy use of several w2k_img.dll API functions.

Listing 1-14 shows one of the basic data structures defined in w2k_img.h. The
IMG_DBG structure is essentially a concatenation of the first two .dbg file header sec-
tions, that is, the fixed-size basic header and the array of PE section headers. The
actual size of the structure, given the number of sections, is computed by the macro
IMG_DBG__(). Its result specifies the file offset of the exported-names subsection.

Several w2k_img.dll API functions expect a pointer to an initialized IMG_DBG
structure. The imgDbgLoad() function (not reprinted here) allocates and returns a
properly initialized IMG_DBG structure containing the data of the specified .dbg file.
imgDbgLoad() performs very strict sanity checks on the data to verify that the file is
valid and complete. The returned IMG_DBG structure can be passed to several parsing
functions that return the linear addresses of the most frequently used .dbg file compo-
nents. For example, the imgDbgExports() function in Listing 1-15 computes the linear
address of the sequence of exported names following the IMAGE_SECTION_HEADER
array. It also counts the number of available names by scanning the string sequence up
to the end of the subsection and optionally writes this value to the variable pointed to
by the pdCount argument.
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typedef struct _IMG_DBG

{

IMAGE_SEPARATE_DEBUG_HEADER Header;

IMAGE_SECTION_HEADER        aSections [];

}

IMG_DBG, *PIMG_DBG, **PPIMG_DBG;

#define IMG_DBG_ sizeof (IMG_DBG)

#define IMG_DBG__(_n) (IMG_DBG_ + ((_n) * IMAGE_SECTION_HEADER_))

#define IMG_DBG_DATA(_p,_d) \

((PVOID) ((PBYTE) (_p) + (_d)->PointerToRawData))

LISTING 1-14. The IMG_DBG Structure and Related Macros

PBYTE WINAPI imgDbgExports (PIMG_DBG pid,

PDWORD   pdCount)

{

DWORD i, j;

DWORD dCount    = 0;

PBYTE pbExports = NULL;

if (pid != NULL)

{

pbExports = (PBYTE) pid->aSections

+ (pid->Header.NumberOfSections

* IMAGE_SECTION_HEADER_);

for (i = 0; i < pid->Header.ExportedNamesSize; i = j)

{

if (!pbExports [j = i]) break;

while ((j < pid->Header.ExportedNamesSize) &&

pbExports [j++]);

if ((j > i) && (!pbExports [j-1])) dCount++;

}

}

if (pdCount != NULL) *pdCount = dCount;

return pbExports;

}

LISTING 1-15. The imgDbgExports() API Function



Listing 1-16 defines two more API functions that locate debug directory
entries by their IMAGE_DEBUG_TYPE_* IDs. imgDbgDirectories() returns the base
address of the IMAGE_DEBUG_DIRECTORY array, whereas imgDbgDirectory() returns
a pointer to the first directory entry with the specified type ID or returns NULL if no
such entry exists.
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PIMAGE_DEBUG_DIRECTORY WINAPI imgDbgDirectories (PIMG_DBG pid,

PDWORD   pdCount)

{

DWORD                  dCount = 0;

PIMAGE_DEBUG_DIRECTORY pidd   = NULL;

if (pid != NULL)

{

pidd   = (PIMAGE_DEBUG_DIRECTORY)

((PBYTE) pid

+ IMG_DBG__ (pid->Header.NumberOfSections)

+ pid->Header.ExportedNamesSize);

dCount = pid->Header.DebugDirectorySize

/ IMAGE_DEBUG_DIRECTORY_;

}

if (pdCount != NULL) *pdCount = dCount;

return pidd;

}

// -----------------------------------------------------------------

PIMAGE_DEBUG_DIRECTORY WINAPI imgDbgDirectory (PIMG_DBG pid,

DWORD    dType)

{

DWORD                  dCount, i;

PIMAGE_DEBUG_DIRECTORY pidd = NULL;

if ((pidd = imgDbgDirectories (pid, &dCount)) != NULL)

{

for (i = 0; i < dCount; i++, pidd++)

{

if (pidd->Type == dType) break;

}

if (i == dCount) pidd = NULL;

}

return pidd;

}

LISTING 1-16. The imgDbgDirectories() and imgDbgDirectory() API Functions
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PCV_DATA WINAPI imgDbgCv (PIMG_DBG pid,

PDWORD   pdSize)

{

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD                  dSize = 0;

PCV_DATA               pcd   = NULL;

if ((pidd = imgDbgDirectory (pid, IMAGE_DEBUG_TYPE_CODEVIEW))

!= NULL)

{

pcd   = IMG_DBG_DATA (pid, pidd);

dSize = pidd->SizeOfData;

}

if (pdSize != NULL) *pdSize = dSize;

return pcd;

}

LISTING 1-17. The imgDbgCv() API Function

The imgDbgDirectory() function can be used to look up the CodeView data in
the .dbg file. This is done by the imgDbgCv() function in Listing 1-17. It calls
imgDbgDirectory() with the IMAGE_DEBUG_TYPE_CODEVIEW type ID, and invokes the
IMG_DBG_DATA() macro shown in Listing 1-14 to convert the data offset supplied by
the IMAGE_DEBUG_DIRECTORY entry to an absolute linear address. This macro simply
adds the offset to the base address of the IMG_DBG structure and typecasts it to a PVOID
pointer. imgDbgCv() copies the size of the CodeView subsection to *pdSize if the
pdSize argument is not NULL. The internals of the CodeView data are discussed below.

The API functions for the other data subsections look quite similar. Listing 1-18
shows the imgDbgOmapToSrc() and imgDbgOmapFromSrc() functions along with the
OMAP_TO_SRC and OMAP_FROM_SRC structures on which they operate. Later, we will
need these structures to compute the linear addresses of a symbol from its CodeView
data. Because the OMAP data are an array of fixed-length structures, both API func-
tions don’t return the plain subsection size, but compute the number of entries in the
array by simply dividing the overall size by the size of an entry. The result is copied to
*pdCount if the pdCount argument is not NULL.

typedef struct _OMAP_TO_SRC

{

DWORD dTarget;

DWORD dSource;

}

OMAP_TO_SRC, *POMAP_TO_SRC, **PPOMAP_TO_SRC;

#define OMAP_TO_SRC_ sizeof (OMAP_TO_SRC)

// -----------------------------------------------------------------

(continued)
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// -----------------------------------------------------------------

typedef struct _OMAP_FROM_SRC

{

DWORD dSource;

DWORD dTarget;

}

OMAP_FROM_SRC, *POMAP_FROM_SRC, **PPOMAP_FROM_SRC;

#define OMAP_FROM_SRC_ sizeof (OMAP_FROM_SRC)

// -----------------------------------------------------------------

POMAP_TO_SRC WINAPI imgDbgOmapToSrc (PIMG_DBG pid,

PDWORD   pdCount)

{

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD                  dCount = 0;

POMAP_TO_SRC           pots   = NULL;

if ((pidd = imgDbgDirectory (pid,

IMAGE_DEBUG_TYPE_OMAP_TO_SRC))

!= NULL)

{

pots   = IMG_DBG_DATA (pid, pidd);

dCount = pidd->SizeOfData / OMAP_TO_SRC_;

}

if (pdCount != NULL) *pdCount = dCount;

return pots;

}

// -----------------------------------------------------------------

POMAP_FROM_SRC WINAPI imgDbgOmapFromSrc (PIMG_DBG pid,

PDWORD   pdCount)

{

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD                  dCount = 0;

POMAP_FROM_SRC         pofs   = NULL;

if ((pidd = imgDbgDirectory (pid,

IMAGE_DEBUG_TYPE_OMAP_FROM_SRC))

!= NULL)

{

pofs   = IMG_DBG_DATA (pid, pidd);

dCount = pidd->SizeOfData / OMAP_FROM_SRC_;

}

if (pdCount != NULL) *pdCount = dCount;

return pofs;

}

LISTING 1-18. The imgDbgOmapToSrc() and imgDbgOmapFromSrc() API Function



CODEVIEW SUBSECTIONS

CodeView is Microsoft’s own debugging information format. It has undergone vari-
ous metamorphoses through the years of the evolution of the Microsoft C/C++ com-
piler and linker. The internals of some CodeView versions differ radically from each
other. However, all CodeView versions share a 32-bit signature at the beginning of
the data that uniquely identifies the data format. The Windows NT 4.0 symbol files
use the NB09 format, which has been introduced by CodeView 4.10. The Windows
2000 files contain NB10 CodeView data, which is merely a referral to a separate .pdb
file, as I will demonstrate later.

NB09 CodeView data is subdivided into a directory and subordinate entries. As
Matt Pietrek points out in his MSJ article about .dbg files, most of the basic Code-
View structures are defined in a set of sample header files coming with the Platform
SDK. If you have installed the SDK samples, you will find a group of highly interest-
ing files in the directory \Program Files\Microsoft Platform SDK\Samples\
SdkTools\Image\Include. The files you need for CodeView parsing are named
cvexefmt.h and cvinfo.h. Unfortunately, these files haven’t been updated for a long
time, as their file date 09-07-1994 indicates. It is striking that all structure names
defined in cvexefmt.h start with the letters OMF, which is the acronym for Object
Module Format. OMF is the standard file format used by 16-bit DOS and Windows
.obj and .lib files. Starting with the Win32 versions of Microsoft’s development
tools, this format has been superseded by the Common Object File Format (COFF,
see Gircys 1988 for details).

Although the original OMF format is obsolete today, it must be acknowledged
that it was a clever file format. One of its objectives is to waste as little memory and
disk space as possible. Another important property is that this format can be success-
fully parsed by applications even if they do not fully understand all parts of the file.
The basic OMF data structure is the tagged record, starting with a tag byte identifying
the type of data contained in the record, and a 16-bit length word specifying the num-
ber of subsequent bytes. This design makes it possible for an OMF reader to skip from
record to record, picking out the record types in which it is interested. Microsoft has
adopted this paradigm for its CodeView format, which explains the OMF prefix of
the CodeView structure names in cvexefmt.h. Although the CodeView records have
very few things in common with the original OMF records, the basic property that the
format can be read without understanding all contents still remains.

Listing 1-19 comprises the definitions of various basic CodeView structures,
taken from w2k_img.h. Some of them loosely correspond to structures found in
cvexefmt.h and cvinfo.h, but are tweaked to the requirements of the w2k_img.dll
API functions. The CV_HEADER structure is present in all CodeView data, regardless of
the format version. The Signature is a 32-bit format version ID, like CV_SIGNA-
TURE_NB09 or CV_SIGNATURE_NB10. The lOffset member specifies the offset of the
CodeView directory relative to the header address. In NB09-formatted Windows NT
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4.0 symbol files, its value seems to be always equal to eight, indicating that the direc-
tory follows immediately after the header. The Windows 2000 symbol files contain
NB10 data with lOffset set to zero. This data format will be discussed in detail later
in this chapter.

#define CV_SIGNATURE_NB   ‘BN’

#define CV_SIGNATURE_NB09 ‘90BN’

#define CV_SIGNATURE_NB10 ‘01BN’

// -----------------------------------------------------------------

typedef union _CV_SIGNATURE

{

WORD  wMagic;     // ‘BN’

DWORD dVersion;   // ‘xxBN’

BYTE  abText [4]; // “NBxx”

}

CV_SIGNATURE, *PCV_SIGNATURE, **PPCV_SIGNATURE;

#define CV_SIGNATURE_ sizeof (CV_SIGNATURE)

// -----------------------------------------------------------------

typedef struct _CV_HEADER

{

CV_SIGNATURE Signature;

LONG         lOffset;

}

CV_HEADER, *PCV_HEADER, **PPCV_HEADER;

#define CV_HEADER_ sizeof (CV_HEADER)

// -----------------------------------------------------------------

typedef struct _CV_DIRECTORY

{

WORD  wSize;      // in bytes, including this member

WORD  wEntrySize; // in bytes

DWORD dEntries;

LONG  lOffset;

DWORD dFlags;

}

CV_DIRECTORY, *PCV_DIRECTORY, **PPCV_DIRECTORY;

#define CV_DIRECTORY_ sizeof (CV_DIRECTORY)

// -----------------------------------------------------------------



#define sstModule     0x0120 // CV_MODULE

#define sstGlobalPub  0x012A // CV_PUBSYM

#define sstSegMap     0x012D // SV_SEGMAP

// -----------------------------------------------------------------

typedef struct _CV_ENTRY

{

WORD  wSubSectionType;   // sst*

WORD  wModuleIndex;      // -1 if not applicable

LONG  lSubSectionOffset; // relative to CV_HEADER

DWORD dSubSectionSize;   // in bytes, not including padding

}

CV_ENTRY, *PCV_ENTRY, **PPCV_ENTRY;

#define CV_ENTRY_ sizeof (CV_ENTRY)

// -----------------------------------------------------------------

typedef struct _CV_NB09 // CodeView 4.10

{

CV_HEADER    Header;

CV_DIRECTORY Directory;

CV_ENTRY     Entries [];

}

CV_NB09, *PCV_NB09, **PPCV_NB09;

#define CV_NB09_ sizeof (CV_NB09)
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LISTING 1-19. CodeView Data Structures

The CodeView NB09 directory consists of a single CV_DIRECTORY structure
followed by an array of CV_ENTRY items. This is reflected by the CV_NB09 structure
defined at the end of Listing 1-19. It comprises the CodeView header, directory,
and entry array. The size of the Entries[] array is determined by the dEntries
member of the CV_DIRECTORY. Each CV_ENTRY refers to a CodeView subsection of
the type specified by the wSubSectionType member. cvexefmt.h defines no fewer
than 21 subsection types. However, the Windows NT 4.0 symbol files make use of
only 3 of them: sstModule (0x0120), sstGlobalPub (0x012A), and sstSegMap
(0x012D). You will usually see several sstModule subsections in a symbol file, but
the sstGlobalPub and sstSegMap subsections are unique. As the name suggests,
sstGlobalPub is where we will find the global public symbol information of the
corresponding module.



The w2k_img.dll API function imgCvEntry() shown in Listing 1-20 allows
easy look up of CodeView directory entries by type. Its pc09 argument points to a
CV_NB09 structure, that is, to the NB09 signature of the CodeView data block inside a
.dbg file. The dType argument specifies one of the CodeView subsection type IDs
sst*, and the dIndex value selects a specific subsection instance in cases of multiple
subsections of the same type. Therefore, setting dIndex to a value other than zero
makes sense only if dType indicates sstModule.
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PCV_ENTRY WINAPI imgCvEntry (PCV_NB09 pc09,

DWORD    dType,

DWORD    dIndex)

{

DWORD     i, j;

PCV_ENTRY pce = NULL;

if ((pc09 != NULL) &&

(pc09->Header.Signature.dVersion == CV_SIGNATURE_NB09))

{

for (i = j = 0; i < pc09->Directory.dEntries; i++)

{

if ((pc09->Entries [i].wSubSectionType == dType) &&

(j++ == dIndex))

{

pce = pc09->Entries + i;

break;

}

}

}

return pce;

}

// -----------------------------------------------------------------

PCV_PUBSYM WINAPI imgCvSymbols (PCV_NB09 pc09,

PDWORD   pdCount,

PDWORD   pdSize)

{

PCV_ENTRY  pce;

PCV_PUBSYM pcp1;

DWORD      i;

DWORD      dCount = 0;

DWORD      dSize  = 0;

PCV_PUBSYM pcp    = NULL;

if ((pce = imgCvEntry (pc09, sstGlobalPub, 0)) != NULL)

{

pcp = CV_PUBSYM_DATA ((PBYTE) pc09

+ pce->lSubSectionOffset);

dSize = pce->dSubSectionSize;
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for (i  = 0; dSize - i >= CV_PUBSYM_;

i += CV_PUBSYM_SIZE (pcp1))

{

pcp1 = (PCV_PUBSYM) ((PBYTE) pcp + i);

if (dSize - i < CV_PUBSYM_SIZE (pcp1)) break;

if (pcp1->Header.wRecordType == CV_PUB32) dCount++;

}

}

if (pdCount != NULL) *pdCount = dCount;

if (pdSize  != NULL) *pdSize  = dSize;

return pcp;

}

LISTING 1-20. The imgCvEntry() and imgCvSymbols() API Functions

CODEVIEW SYMBOLS

The lower half of Listing 1-20 shows the imgCvSymbols() function that returns
a pointer to the first CodeView symbol record. The sstGlobalPub subsection
consists of a fixed-length CV_SYMHASH header, followed by a sequence of variable-
length CV_PUBSYM records. The definitions of both types are included in Listing 1-21.
First, imgCvSymbols() calls imgCvEntry() to find the CV_ENTRY that has its
wSubSectionType member set to sstGlobalPub. If available, it uses the
CV_PUBSYM_DATA() macro included at the bottom of Listing 1-4 to skip over
the leading CV_SYMHASH structure. Finally, imgCvSymbols() counts the number of
symbols by walking through the list of CV_PUBSYM records, using the CV_PUBSYM_SIZE()
macro in Listing 1-21 to compute the size of each record.

The CV_PUBSYM sequence bears some resemblance to the contents of an OMF
object file. As already noted, an OMF data stream consists of variable-length records,
each starting with a tag byte and a length word. CV_PUBSYM records are similar. They
start with an OMF_HEADER that comprises wRecordSize and wRecordType members.
This is just a variant of the OMF principle, different only in that the length word
comes first and the tag byte has been extended to 16 bits. The last part of the
CV_PUBSYM structure is the symbol name, specified in PASCAL format, as is usual in
an OMF record. A PASCAL string consists of a leading length byte, followed by 0 to
255 8-bit characters. Contrary to C strings, no terminating zero byte is appended.
The CV_PUBSYM record ends after the last Name character. However, the record is
stuffed with filler bytes up to the next 32-bit boundary. This padding is accounted for
by the wRecordSize value in the OMF_HEADER. Note that the wRecordSize specifies
the size of the CV_PUBSYM record, excluding the wRecordSize member itself. That’s
why the CV_PUBSYM_SIZE() macro in Listing 1-21 adds sizeof (WORD) to the
wRecordSize value to yield the total record size.
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typedef struct _CV_SYMHASH

{

WORD  wSymbolHashIndex;

WORD  wAddressHashIndex;

DWORD dSymbolInfoSize;

DWORD dSymbolHashSize;

DWORD dAddressHashSize;

}

CV_SYMHASH, *PCV_SYMHASH, **PPCV_SYMHASH;

#define CV_SYMHASH_ sizeof (CV_SYMHASH)

// -----------------------------------------------------------------

typedef struct _OMF_HEADER

{

WORD wRecordSize; // in bytes, not including this member

WORD wRecordType;

}

OMF_HEADER, *POMF_HEADER, **PPOMF_HEADER;

#define OMF_HEADER_ sizeof (OMF_HEADER)

// -----------------------------------------------------------------

typedef struct _OMF_NAME

{

BYTE bLength;     // in bytes, not including this member

BYTE abName [];

}

OMF_NAME, *POMF_NAME, **PPOMF_NAME;

#define OMF_NAME_ sizeof (OMF_NAME)

// -----------------------------------------------------------------

#define S_PUB32  0x0203

#define S_ALIGN  0x0402

#define CV_PUB32 S_PUB32

// -----------------------------------------------------------------

typedef struct _CV_PUBSYM

{

OMF_HEADER Header;

DWORD      dOffset;
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WORD       wSegment;    // 1-based section index     WORD       wTypeIndex;  // 0

OMF_NAME   Name;        // zero-padded to next DWORD

}

CV_PUBSYM, *PCV_PUBSYM, **PPCV_PUBSYM;

#define CV_PUBSYM_ sizeof (CV_PUBSYM)

#define CV_PUBSYM_DATA(_p) \

((PCV_PUBSYM) ((PBYTE) (_p) + CV_SYMHASH_))

#define CV_PUBSYM_SIZE(_p) \

((DWORD) (_p)->Header.wRecordSize + sizeof (WORD))

#define CV_PUBSYM_NEXT(_p) \

((PCV_PUBSYM) ((PBYTE) (_p) + CV_PUBSYM_SIZE (_p)))

LISTING 1-21. The CV_SYMHASH and CV_PUBSYM Structures

If you are scanning the CV_PUBSYM stream, you typically will encounter two
record types: S_PUB32 (0x0203) or S_ALIGN (0x0402). The latter can be safely
ignored because it is only padding. The S_PUB32 records carry the real symbol
information. Besides the symbol Name, the wSegment and dOffset members
are of interest. wSegment specifies a one-based index that identifies the PE file
section that contains the symbol. This value minus one can be used as an index into
the IMAGE_SECTION_HEADER array at the beginning of the .dbg file. dOffset
is the symbol’s address relative to the beginning of its PE section. In this context,
a symbol address is the entry point of the function or the base address of the
global variable associated with the symbol. Normally, the dOffset value can
simply be added to the VirtualAddress of the corresponding IMAGE_SECTION_
HEADER to yield the address of the symbol relative to the module’s base address.
However, if the .dbg file includes IMAGE_DEBUG_TYPE_OMAP_TO_SRC and
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the dOffset must pass
through an additional conversion layer. The usage of OMAP tables will be
discussed later, after introduction of the PDB file format.

The order of the symbols in a CodeView sstGlobalPub subsection appears
somewhat random. I don’t know what principle underlies it. However, I can say for
sure that the symbols are not sorted by section number, offset, or name. Don’t rely
on assumptions about the order—if your applications need a specific sorting
sequence, you have to sort the symbol records yourself. The w2k_img.dll sample
library found on the companion CD provides three default symbol orders: by
address, by name with case sensitivity, and by name ignoring the character case.
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THE INTERNAL STRUCTURE OF .pdb FILES

After installing the Windows 2000 symbol files, the first striking observation is usu-
ally that each module now has two associated files: one with the .dbg extension, as
usual, and an additional one with an extension of .pdb. Peeking into one of the
.pdb files reveals the string “Microsoft C/C++ program database 2.00” at its very
beginning. So PDB is obviously the acronym of Program Database. Searching for
details about the internal PDB structure in the MSDN Library or on the Internet
doesn’t reveal anything useful, except for a Microsoft Knowledge Base article that
classifies this format as Microsoft proprietary (Microsoft Corporation, 2000d).
Even Windows guru Matt Pietrek admits:

“The format of PDB symbol tables isn’t publicly documented. (Even I don’t
know the exact format, especially as it continues to evolve with
each new release of Visual C++.)” (Pietrek 1997a)

Well, it might evolve with each Visual C/C++ release, but for the current version
of Windows 2000, I can tell you exactly how its PDB symbol files are structured.
This is probably the first time the PDB format has been publicly documented. But
first, let’s examine how the .dbg and .pdb files are linked together.

One remarkable property of the Windows 2000 .dbg files is that they contain
just a very tiny, almost negligible CodeView subsection. Example 1-8 shows the
entire CodeView data included in the ntoskrnl.dbg file, generated by the w2k_dump.
exe utility in the \src\w2k_dump directory tree of the sample CD. That’s all—just
those 32 bytes. As usual, the subsection starts with a CV_HEADER structure containing
the CodeView version signature. This time, it is NB10. The MSDN Library
(Microsoft 2000a) really doesn’t tell us much about this special version:

“NB10 The signature for an executable with the debug information stored in a
separate PDB file. Corresponds with the formats set forth in NB09 or NB11.”
(MSDN Library—April 2000 \ Specifications \ Technologies and Languages \
Visual C++ 5.0 Symbolic Debug Information Specification \ Debug Information
Format).

I don’t know the internals of the NB11 format, but the PDB format has almost
nothing in common with the NB09 format discussed above! The first sentence clearly
states why the NB10 data block is that small. All relevant information is moved to a
separate file, so the main purpose of this CodeView section is to provide a link to the
real data. As Example 1-8 suggests, the symbol information must be sought in the
ntoskrnl.pdb file in the Windows 2000 symbol setup.
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Address  | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

————-|————————————-:————————————-|————————-

00006590 | 4E 42 31 30-00 00 00 00 : 20 7D 23 38-54 00 00 00 | NB10.... }#8T...

000065A0 | 6E 74 6F 73-6B 72 6E 6C : 2E 70 64 62-00 00 00 00 | ntoskrnl.pdb....

EXAMPLE 1-8. Hex Dump of a PDB CodeView Subsection

If you are wondering what purpose the remaining data in Example 1-8 serves,
Listing 1-22 should satisfy your curiosity. The CV_HEADER is self-explanatory. The
next two members at offset 0x8 and 0xC are named dSignature and dAge and play
an important role in the linkage of .dbg and .pdb files. dSignature is a 32-bit
UNIX-style time stamp, specifying the build date and time of the debug information
in seconds since 01-01-1970. The w2k_img.dll sample library provides the API func-
tions imgTimeUnpack() and imgTimePack() to convert this Windows-untypical
date/time format back and forth. The purpose of the dAge member isn’t entirely clear
to me. However, it appears that its value is initially set to one and incremented each
time the PDB data is rewritten. The dSignature and dAge values together constitute
a 64-bit ID that can be used by debuggers to verify that a given PDB file matches the
.dbg file referring to it. The PDB file contains duplicates of both values in one of its
data streams, so a debugger can refuse processing a .dbg/.pdb pair of files with
unmatched dSignature and dAge information.

Whenever you are faced with an unknown data format, the first thing to do is
to run some examples of it through a hex dump viewer. The w2k_dump.exe utility on
this book’s companion CD does a good job in this respect. Examining the hex dump
of a Windows 2000 PDB file such as ntoskrnl.pdb or ntfs.pdb reveals some
interesting properties:

• The file seems to be divided into blocks of fixed size—typically
0x400 bytes.

• Some blocks consist of long runs of 1-bits, occasionally interrupted by
shorter sequences of 0-bits.

• The information in the file is not necessarily contiguous. Sometimes, the
data end abruptly at a block boundary, but continue somewhere else in
the file.

• Some data blocks appear repeatedly within the file.



typedef struct _CV_NB10 // PDB reference

{

CV_HEADER    Header;

DWORD        dSignature;   // seconds since 01-01-1970

DWORD        dAge;         // 1++

BYTE         abPdbName []; // zero-terminated

}

CV_NB10, *PCV_NB10, **PPCV_NB10;

#define CV_NB10_ sizeof (CV_NB10)
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LISTING 1-22. The CodeView NB10 Subsection

It took some time for me to finally realize that these are typical properties of a
compound file. A compound file is a small file system packaged into a single file. The
“file system” metaphor readily explains some of the above observations:

• A file system subdivides a disk into sectors of fixed size and groups the
sectors into files of variable size. The sectors representing a file can be
located anywhere on the disk and don’t need to be contiguous—the
file/sector assignments are defined in a file directory.

• A compound file subdivides a raw disk file into pages of fixed size and
groups the pages into streams of variable size. The pages representing a
file can be located anywhere in the raw disk file and don’t need to be
contiguous—the stream/page assignments are defined in a stream
directory.

Obviously, almost any assertions about file systems can be mapped to com-
pound files by simply replacing “sector” by “page,” and “file” by “stream.” The file
system metaphor explains why a PDB file is organized in fixed-size blocks. It also
explains why the blocks are not necessarily contiguous. What about the pages with
the masses of 1-bits? Actually, this type of data is something very common in file sys-
tems. To keep track of used and unused sectors on the disk, many file systems main-
tain an allocation bit array that provides one bit for each sector (or sector cluster). If
a sector is unused, its bit is set. Whenever the file system allocates space for a file, it
searches for unused sectors by scanning the allocation bits. After adding a sector to a
file, its allocation bit is set to zero. The same procedure is applied to the pages and
streams of a compound file. The long runs of 1-bits represent unused pages, and the
0-bits are assigned to existing streams.

The only thing that remains is the observation that some data blocks reoccur
within a PDB file. The same thing happens with sectors on a disk. When a file in a file
system is rewritten a couple of times, each write operation may use different sectors to
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store the data. Thus, it can happen that the disk contains free sectors with older dupli-
cates of the file information. This doesn’t constitute a problem for the file system. If
the sector is marked free in the allocation bit array, it is unimportant what data it con-
tains. As soon as the sector is reclaimed for another file, the data will be overwritten
anyway. Applying the file system metaphor once more to compound files, this means
that the observed duplicate pages are usually left over from earlier versions of a stream
that has been rewritten to different pages in the compound file. They can be safely
ignored; all we have to care for are the pages that are referred to by the stream
directory. The remaining unassigned pages should be regarded as garbage.

With the basic paradigm of PDB files being introduced now, we can step to the
more interesting task of examining their basic building blocks. Listing 1-23 shows
the layout of the PDB header. The PDB_HEADER starts with a lengthy signature that
specifies the PDB version as a text string. The text is terminated with an end-of-file
(EOF) character (ASCII code 0x1A) and supplemented with the magic number
0x0000474A, or “JG\0\0” if interpreted as a string. Maybe these are the initials of
the designer of the PDB format. The embedded EOF character has the nice effect
that an unknowledgeable user can issue a command such as type ntoskrnl.pdb in a
console window without getting garbage on the screen. The only thing that will be
displayed is the message Microsoft C/C++ program database 2.00\r\n. All
Windows 2000 symbol files are shipped as PDB 2.00 files. Apparently, a PDB 1.00
format exists as well, but it seems to be structured quite differently.

#define PDB_SIGNATURE_200 \

“Microsoft C/C++ program database 2.00\r\n\x1AJG\0”

#define PDB_SIGNATURE_TEXT 40

// -----------------------------------------------------------------

typedef struct _PDB_SIGNATURE

{

BYTE abSignature [PDB_SIGNATURE_TEXT+4]; // PDB_SIGNATURE_nnn

}

PDB_SIGNATURE, *PPDB_SIGNATURE, **PPPDB_SIGNATURE;

#define PDB_SIGNATURE_ sizeof (PDB_SIGNATURE)

// -----------------------------------------------------------------

#define PDB_STREAM_FREE -1

// -----------------------------------------------------------------

(continued)
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typedef struct _PDB_STREAM

{

DWORD dStreamSize;   // in bytes, -1 = free stream

PWORD pwStreamPages; // array of page numbers

}

PDB_STREAM, *PPDB_STREAM, **PPPDB_STREAM;

#define PDB_STREAM_ sizeof (PDB_STREAM)

// -----------------------------------------------------------------

#define PDB_PAGE_SIZE_1K   0x0400 // bytes per page

#define PDB_PAGE_SIZE_2K   0x0800

#define PDB_PAGE_SIZE_4K   0x1000

#define PDB_PAGE_SHIFT_1K  10     // log2 (PDB_PAGE_SIZE_*)

#define PDB_PAGE_SHIFT_2K  11

#define PDB_PAGE_SHIFT_4K  12

#define PDB_PAGE_COUNT_1K  0xFFFF // page number < PDB_PAGE_COUNT_*

#define PDB_PAGE_COUNT_2K  0xFFFF

#define PDB_PAGE_COUNT_4K  0x7FFF

// -----------------------------------------------------------------

typedef struct _PDB_HEADER

{

PDB_SIGNATURE Signature;      // PDB_SIGNATURE_200

DWORD         dPageSize;      // 0x0400, 0x0800, 0x1000

WORD          wStartPage;     // 0x0009, 0x0005, 0x0002

WORD          wFilePages;     // file size / dPageSize

PDB_STREAM    RootStream;     // stream directory

WORD          awRootPages []; // pages containing PDB_ROOT

}

PDB_HEADER, *PPDB_HEADER, **PPPDB_HEADER;

#define PDB_HEADER_ sizeof (PDB_HEADER)

LISTING 1-23. The PDB File Header

Following the signature at offset 0x2C is a DWORD named dPageSize that specifies
the size of the compound file pages in bytes. Legal values are 0x0400 (1 KB), 0x0800
(2 KB), and 0x1000 (4 KB). The wFilePages member reflects the total number of pages
used by the PDB file image. The result of multiplying this value by the page size should
always exactly match the file size in bytes. wStartPage is a zero-based page number
that points to the first data page. The byte offset of this page can be computed by multi-
plying the page number by the page size. Typical values are 9 for 1-KB pages (byte
offset 0x2400), 5 for 2-KB pages (byte offset 0x2800), or 2 for 4-KB pages (byte offset



0x2000). The pages between the PDB_HEADER and the first data page are reserved for the
allocation bit array of the compound file, always starting at the beginning of the second
page. This means that the PDB file maintains 0x2000 bytes with 0x10000 allocation bits
if the page size is 1 or 2 KB, and 0x1000 bytes with 0x8000 allocation bits if the page
size is 4 KB. In turn, this implies that the maximum amount of data a PDB file can
manage is 64 MB in 1-KB page mode, and 128 MB in 2-KB or 4-KB page mode.

The RootStream and awRootPages[] members concluding the PDB_HEADER
describe the location of the stream directory within the PDB file. As already noted,
the PDB file is conceptually a collection of variable-length streams that carry the
actual data. The locations and compositions of the streams are managed in a single
stream directory. Odd as it may seem, the stream directory itself is stored in a stream.
I have called this special stream the “root stream.” The root stream holding the
stream directory can be located anywhere in the PDB file. Its location and size are
supplied by the RootStream and awRootPages[] members of the PDB_HEADER. The
dStreamSize member of the PDB_STREAM substructure specifies the number of pages
occupied by the stream directory, and the entries in the awRootPages[] array point to
the pages containing the data.

Let’s illustrate this with a simple example. The hex dump excerpt in Example 1-9
shows the PDB_HEADER of the ntoskrnl.pdb file. The values referenced are underlined.
Obviously, this PDB file uses a page size of 0x0400 bytes and comprises 0x02D1 pages,
resulting in a file size of 0xB4400 (738,304 in decimal notation). A quick check with
the dir command shows that this value is correct. The root stream size is 0x5B0 bytes.
With a page size of 0x400 bytes, this means that the awRootPages[] array contains
two entries, found at the file offsets 0x3C and 0x3E. The values in these slots are page
numbers that need to be multiplied by the page size to yield the corresponding byte
offsets. In this case, the results are 0xB2000 and 0xB2800.

The bottom line of this computation is that the stream directory of the
ntoskrnl.exe PDB file is located in two file pages, extending from 0xB2000 to
0xB23FF and 0xB2800 to 0xB29AF, respectively. Parts of these ranges are shown in
Example 1-10.
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Address  | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

————————-|————————————-:—————————-:|————————————————————————|

00000000 | 4D 69 63 72-6F 73 6F 66 : 74 20 43 2F-43 2B 2B 20 | Microsoft C/C++

00000010 | 70 72 6F 67-72 61 6D 20 : 64 61 74 61-62 61 73 65 | program database

00000020 | 20 32 2E 30-30 0D 0A 1A : 4A 47 00 00-00 04 00 00 |  2.00...JG......

00000030 | 09 00 D1 02-B0 05 00 00 : 5C 00 78 00-C8 02 CA 02 | ..Ñ.°...\.x.È.Ê.

EXAMPLE 1-9. A Sample PDB Header
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Address  | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

————————-|————————————-:—————————-:|————————————————————————|

000B2000 | 08 00 00 00-B0 05 00 00 : 98 22 28 00-3A 00 00 00 | ....°...?”(.:...

000B2010 | 88 57 26 00-38 00 00 00 : 78 57 26 00-A9 02 04 00 | ?W&.8...xW&.©...

000B2020 | F8 BA E9 00-00 00 00 00 : 68 57 26 00-04 40 00 00 | øºé.....hW&..@..

000B2030 | C8 29 28 00-B4 9E 01 00 : 08 90 ED 00-3C DF 04 00 | È)(.´?...•í.<ß..

000B2040 | 08 BD E9 00-12 00 C9 02 : C7 02 13 00-C6 02 C6 01 | .1/2é...É.Ç...Æ.Æ.

000B2050 | C7 01 C8 01-C9 01 CA 01 : CB 01 CC 01-CD 01 CE 01 | Ç.È.É.Ê.Ë.Ì.Í.Î.

...

000B23A0 | BD 00 BE 00-BF 00 C0 00 : C1 00 C2 00-C3 00 C4 00 | 1/2.3/4.¿.À.Á.Â.Ã.Ä.

000B23B0 | C5 00 C6 00-C7 00 C8 00 : C9 00 CA 00-CB 00 CC 00 | Å.Æ.Ç.È.É.Ê.Ë.Ì.

000B23C0 | CD 00 CE 00-CF 00 D0 00 : D1 00 D2 00-D3 00 D4 00 | Í.Î.Ï.-D.Ñ.Ò.Ó.Ô.

000B23D0 | D5 00 D6 00-D7 00 D8 00 : D9 00 DA 00-DB 00 DC 00 | Õ.Ö.×.Ø.Ù.Ú.Û.Ü.

000B23E0 | DD 00 DE 00-DF 00 E0 00 : E1 00 E2 00-E3 00 E4 00 | _.-p.ß.à.á.â.ã.ä.

000B23F0 | E5 00 E6 00-E7 00 E8 00 : E9 00 EA 00-EB 00 EC 00 | å.æ.ç.è.é.ê.ë.ì.

————————-|————————————-:—————————-:|————————————————————————|

000B2800 | ED 00 EE 00-EF 00 F0 00 : F1 00 F2 00-F3 00 F4 00 | í.î.ï.õ.ñ.õ.ó.ô.

000B2810 | F5 00 F6 00-F7 00 F8 00 : F9 00 FA 00-FB 00 FC 00 | õ.ö.÷.ø.ù.ú.û.ü.

000B2820 | FD 00 FE 00-FF 00 00 01 : 01 01 02 01-03 01 04 01 | ý.1p.ÿ...........
000B2830 | 05 01 06 01-07 01 08 01 : 09 01 0A 01-0B 01 0C 01 | ................

000B2840 | 0D 01 0E 01-0F 01 10 01 : 11 01 12 01-13 01 14 01 | ................

000B2850 | 15 01 16 01-17 01 18 01 : 19 01 1A 01-1B 01 1C 01 | ................

...

000B2950 | 95 01 96 01-97 01 98 01 : 99 01 9A 01-9B 01 9C 01 | ?.?.?.?.?.?.?.?.

000B2960 | 9D 01 9E 01-9F 01 A0 01 : A1 01 A2 01-A3 01 A4 01 | •.?.?. .¡.¢.£. .

000B2970 | A5 01 A6 01-A7 01 A8 01 : A9 01 AA 01-AB 01 AC 01 | ¥.|
|.§.¨.©.ª.«.¬.

000B2980 | AD 01 AE 01-AF 01 B0 01 : B1 01 B2 01-B3 01 B4 01 | =.®.-.°.±.2.3.´.

000B2990 | B5 01 B6 01-B7 01 B8 01 : B9 01 BA 01-BB 01 BC 01 | µ.¶.·.¸.1.º.».1/4.

000B29A0 | BD 01 BE 01-BF 01 C0 01 : C1 01 C2 01-C3 01 C4 01 | 1/2.3/4.¿.À.Á.Â.Ã.Ä.

¤

EXAMPLE 1-10. Excerpts from a Sample PDB Stream Directory

The stream directory is composed of two sections: a header part in the form of a
PDB_ROOT structure, as defined in Listing 1-24, and a data part consisting of an array
of 16-bit page numbers. The wCount member of the PDB_ROOT section specifies the
number of streams stored in the PDB compound file. The aStreams[] array contains
a PDB_STREAM entry (see Listing 1-23) for each stream, and the page number slots fol-
low immediately after the last aStreams[] entry. In Example 1-10, the number of
streams is eight, as the underlined value at offset 0xB2000 indicates. The subsequent
eight PDB_STREAM structures define streams of size 0x5B0, 0x3A, 0x38, 0x402A9,
0x0, 0x4004, 0x19EB4, and 0x4DF3C, respectively. These values are underlined in
Example 1-10, too. Expressed in 1-KB pages, the stream sizes are 0x2, 0x1, 0x1,
0x101, 0x0, 0x11, 0x68, and 0x138, yielding a total of 0x2B6 pages used by the
streams. The first underlined value after the PDB_STREAM array is the first slot of the
page number list. Counting two bytes per page number, and taking into account that
the page directory is interrupted by one page that belongs somewhere else, the next
offset after the page numbers should be 0xB2044 + 0x400 + (0x2B6 * 2) =
0xB29B0, which fits perfectly into the picture.
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#define PDB_STREAM_DIRECTORY 0

#define PDB_STREAM_PDB       1

#define PDB_STREAM_PUBSYM    7

// -----------------------------------------------------------------

typedef struct _PDB_ROOT

{

WORD       wCount;      // < PDB_STREAM_MAX

WORD       wReserved;   // 0

PDB_STREAM aStreams []; // stream #0 reserved for stream table

}

PDB_ROOT, *PPDB_ROOT, **PPPDB_ROOT;

#define PDB_ROOT_ sizeof (PDB_ROOT)

LISTING 1-24. The PDB Stream Directory

Finding the page number block associated with a given stream is somewhat
tricky, because the page directory does not provide any cues except the stream size. If
you are interested in stream 3, you have to compute the number of pages occupied by
streams 1 and 2 to get the desired start index within the page number array. Once the
stream’s page number list is located, reading the stream data is simple. Just walk
through the list and multiply each page number by the page size to yield the file off-
set, and read pages from the computed offsets until the end of the stream is reached.
On first look, parsing a PDB file seemed rather tough. But it turns out that it is actu-
ally quite simple—probably much simpler than parsing a .dbg file. The compound-
file nature of the PDB format with its clear-cut random access to stream pages
reduces the task of reading a stream to a mere concatenation of fixed-sized pages.
I’m amazed at this elegant data access mechanism!

An even greater benefit of the PDB format becomes apparent when updating an
existing PDB file. Inserting data into a file with a sequential structure usually means
reshuffling large portions of the contents. The PDB file’s random-access structure
borrowed from file systems allows addition and deletion of data with minimal effort,
just as files can be modified with ease on a file system media. Only the stream direc-
tory has to be reshuffled when a stream grows or shrinks across a page boundary.
This important property facilitates incremental updating of PDB files. Microsoft
states the following in a Knowledge Base article titled “INFO: PDB and DBG Files—
What They Are and How They Work”:

“The .PDB extension stands for ‘program database.’ It holds the new format
for storing debugging information that was introduced in Visual C++ version
1.0. In the future, the .PDB file will also hold other project state information.



One of the most important motivations for the change in format was to allow
incremental linking of debug versions of programs, a change first introduced in
Visual C++ version 2.0” (Microsoft Corporation 2000e).

Now that the internal format of PDB files is clear, the next problem is to iden-
tify the contents of their streams. After examining various PDB files, I have come to
the conclusion that each stream number serves a predefined purpose. The first stream
seems to always contain a stream directory, and the second one contains information
about the PDB file that can be used to verify that the file matches an associated .dbg
file. For example, the latter stream contains dSignature and dAge members that
should have the same values as the corresponding members of an NB10 CodeView
section, as outlined in Listing 1-22. The eighth stream is most interesting in the con-
text of this chapter because it hosts the CodeView symbol information we have been
seeking. The meaning of the other streams is still unclear to me and is another area
for future research.

I am not going to include PDB reader sample code here because this would
exceed the scope of this chapter. Instead, I encourage you to peek into the
w2k_img.c and w2k_img.h source files on the sample CD. Look for functions
named imgPdb*() and data items called PDB_* for extensive code and data. By the
way, the CD contains a ready-to-run PDB stream reader with full source code.
You already know this program—it is the w2k_dump.exe utility that I have used to
create some of the hex dump examples above. This simple console-mode utility
provides a +p command line option that enables PDB stream decomposition. If
the specified file is not a valid PDB file, the program falls back to sequential hex
dump mode. The Visual C/C++ project files of w2k_dump.exe are found on the
CD in the \src\w2k_dump directory tree.

PDB SYMBOLS

After this long but hopefully interesting detour through the PDB format, it is time to
return to our initial mission: the extraction of CodeView symbol information. Fortu-
nately, this task is quite similar to the enumeration of public symbols in an NB09
CodeView subsection. Once the stream containing the symbols is located, we are
again faced with a sequence of OMF-like records of variable size. Unfortunately, the
NB09 and NB10 record formats differ somewhat, but the deviations are only marginal.
Listing 1-25 shows the layout of the PDB_PUBSYM structure. Compared with the corre-
sponding CV_PUBSYM structure of the NB09 format, included in Listing 1-21, the
dOffset and wSegment members have moved a bit toward the end. This and the fact
that the tag value of PDB symbols is 0x1009 instead of 0x0203 are the most remark-
able differences.
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#define PDB_PUB32 0x1009

// -----------------------------------------------------------------

typedef struct _PDB_PUBSYM

{

OMF_HEADER Header;

DWORD      dReserved;

DWORD      dOffset;

WORD       wSegment;    // 1-based section index

OMF_NAME   Name;        // zero-padded to next DWORD

}

PDB_PUBSYM, *PPDB_PUBSYM, **PPPDB_PUBSYM;

#define PDB_PUBSYM_ sizeof (PDB_PUBSYM)

#define PDB_PUBSYM_SIZE(_p) \

((DWORD) (_p)->Header.wRecordSize + sizeof (WORD))

#define PDB_PUBSYM_NEXT(_p) \

((PPDB_PUBSYM) ((PBYTE) (_p) + PDB_PUBSYM_SIZE (_p)))

LISTING 1-25. The PDB_PUBSYM Structure

The IMG_PUBSYM union in Listing 1-26 is a convenient means to reference sym-
bol records regardless of their type. This union can be interpreted in three ways:

1. OMF_HEADER: This point of view should be assumed unless the symbol type
is known. The header provides just enough information to identify the
symbol type or to skip to the next record.

2. CV_PUBSYM: This interpretation is valid only if the wRecordType of the
OMF_HEADER is set to CV_PUB32 (0x0203).

3. PDB_PUBSYM: This interpretation is valid only if the wRecordType of the
OMF_HEADER is set to PDB_PUB32 (0x1009).

The IMG_PUBSYM_SIZE() and IMG_PUBSYM_NEXT() macros found at the end of
Listing 1-26 allow type-independent determination of the size of the current record
and the address of the subsequent one, respectively.

SYMBOL ADDRESS COMPUTATION

The wSegment and dOffset members of the CV_PUBSYM and PDB_PUBSYM symbol
records, together with the IMAGE_SECTION_HEADER array at the beginning of the
.dbg file, supply necessary information for the computation of the address of a
symbol relative to the beginning of the module’s base address. If the .dbg file
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typedef union _IMG_PUBSYM

{

OMF_HEADER Header;    // CV_PUB32 or PDB_PUB32

CV_PUBSYM  CvPubSym;

PDB_PUBSYM PdbPubSym;

}

IMG_PUBSYM, *PIMG_PUBSYM, **PPIMG_PUBSYM;

#define IMG_PUBSYM_ sizeof (IMG_PUBSYM)

#define IMG_PUBSYM_SIZE(_p) \

((DWORD) (_p)->Header.wRecordSize + sizeof (WORD))

#define IMG_PUBSYM_NEXT(_p) \

((PIMG_PUBSYM) ((PBYTE) (_p) + IMG_PUBSYM_SIZE (_p)))

LISTING 1-26. The IMG_PUBSYUM Union

doesn’t contain any OMAP data in the form of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the address computation
algorithm is straightforward:

• Read the wSegment value of the symbol record and decrement it by one.

• Use the resulting index to look up the IMAGE_SECTION_HEADER of the
target section where the symbol resides.

• Retrieve the VirtualAddress of this IMAGE_SECTION_HEADER.

• Add the dOffset value of the symbol record.

In case the load address of the module is known, the absolute linear address
of the symbol can be determined by simply adding the computed relative address to
the base address. The ImageBase member of the IMAGE_SEPARATE_DEBUG_HEADER at
the very beginning of the .dbg file specifies the module’s preferred load address.
Unfortunately, this address isn’t very helpful because many kernel modules are actu-
ally loaded to completely different addresses. For example, ntoskrnl.dbg reports a
preferred load address of 0x00400000, which is certainly wrong because this address
is far outside the kernel memory range. Therefore, the w2k_img.dll provides the
imgModuleBase() API function that attempts to locate kernel modules in memory.
It uses the undocumented NtQuerySystemInformation() function exported by
ntdll.dll to retrieve a list of modules currently found in memory. However,
this function works on Windows 2000/NT only. For Windows 9x compatibility,
imgModuleBase() loads ntdll.dll dynamically, so w2k_img.dll won’t blow up imme-
diately with a dynalink error while it is being loaded. Therefore, it always returns a
NULL pointer on Windows 9x. This is the same value that you will get on Windows
2000 and Windows NT 4.0 if the specified module is not present in memory.



OMAP ADDRESS CONVERSION

Several Windows 2000 symbol files contain OMAP subsections, identified by
IMAGE_DEBUG_DIRECTORY entries with Type IDs of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC. OMAP is yet another undocumented fea-
ture of the Microsoft development tools, so the reasons for its existence are still
somewhat speculative. The OMAP data inside a .dbg file consist of two arrays of
OMAP_TO_SRC and OMAP_FROM_SRC structures, as outlined in Listing 1-27, and this
information is used in the computation of symbol addresses from the offset values
stored in CV_PUBSYM or PDB_PUBSYM records.

In one of his fine MSJ “Under the Hood” articles about Microsoft debug
information, Matt Pietrek writes his thoughts about OMAP:

Yet another form of debug information is relatively new and undocumented,
except for a few obscure references in WINNT.H and the Win32 SDK help. This
type of information is known as OMAP. Apparently, as part of Microsoft’s
internal build procedure, small fragments of code in EXEs and DLLs are moved
around to put the most commonly used code at the beginning of the code section.
This presumably keeps the process memory working set as small as possible.
However, when shifting around the blocks of code, the corresponding debug
information isn’t updated. Instead, OMAP information is created. It lets symbol
table code translate between the original address in a symbol table and the
modified address where the variable or line of code really exists in memory.
(Pietrek 1997a)
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typedef struct _OMAP_TO_SRC

{

DWORD dTarget;

DWORD dSource;

}

OMAP_TO_SRC, *POMAP_TO_SRC, **PPOMAP_TO_SRC;

#define OMAP_TO_SRC_ sizeof (OMAP_TO_SRC)

// -----------------------------------------------------------------

typedef struct _OMAP_FROM_SRC

{

DWORD dSource;

DWORD dTarget;

}

OMAP_FROM_SRC, *POMAP_FROM_SRC, **PPOMAP_FROM_SRC;

#define OMAP_FROM_SRC_ sizeof (OMAP_FROM_SRC)

LISTING 1-27. The OMAP_TO_SRC and OMAP_FROM_SRC Table Entries
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And more than 2 years later, MSJ columnist John Robbins elaborates on this
assumption in the October 1997 “Bugslayer”:

The undocumented OMAP information is interesting because it appears to have
something to do with basic block relocations. (Fellow MSJ colleague Matt
Pietrek briefly discussed this in the May 1997 “Under the Hood” column.) My
guess is that Microsoft has some sort of internal tool that packs the binary so
that the most common code is pushed up to the front and the rest is put in the
rear so that the working set is much smaller. Consequently, this binary
rearrangement makes the program faster because it will not have to page in as
much of the program. (Robbins 1999)

Although the working set argument is striking, the fact that the ntoskrnl.exe
module makes heavy use of OMAP seems to be at odds with it. As I will show in
Chapter 4, the entire ntoskrnl.exe module is mapped to a single 4-MB memory
page that is always present in memory, so splitting the code into more frequently
and more rarely used fractions shouldn’t be of benefit with respect to paging. My
assumption is that this split is supposed to aid the processor’s instruction prefetch.
Examination of the OMAP tables reveals that the addresses they contain typically
point to the beginning of a function, to an instruction that immediately follows a
jump or call, or to unused filler code. This suggests that the OMAP data is used to
reshuffle the branches of if/else instructions. Obviously, the Windows 2000 kernel
developers at Microsoft can somehow tell the compiler whether the if or else
branch is executed more frequently, so the code fraction that is run less frequently
can be moved out of the way. Normally, a compiler tends to keep the code of a func-
tion in a monolithic block, and doesn’t split up if/else branches. In the Windows
2000 kernel modules, however, it can be easily observed that large functions with
numerous if/else clauses are heavily fragmented. The fact that the OMAP code
atoms correspond to conditional branches leads me to the assumption that OMAP
has something to do with branch prediction. If less frequently executed branches are
separated from the more frequently used ones, the CPU can perform more effective
instruction prefetch.

The OMAP_TO_SRC table converts a real instruction offset to a source offset, for
example, the real offset of the ExInterlockedAddLargeInteger() API function
relative to the base address of ntoskrnl.exe is 0x0000231E. To verify this, enter the
command u ExInterlockedAddLargeInteger at the Kernel Debugger prompt—it
will unassemble a couple of lines, starting at the linear address 0x8040231E.
Subtracting the ntoskrnl.exe load address 0x80400000 yields 0x0000231E, as
expected. If you scan the OMAP_TO_SRC table inside ntoskrnl.dbg, you will find an
entry whose dTarget member is set to this offset, and the corresponding dSource
offset is 0x0005E7E4. The ExInterlockedAddLargeInteger() function is located in
the .text section, and the offset of this section relative to the image base address is



MICROSOFT SYMBOL FILE INTERNALS 83

0x000004C0 according to its IMAGE_SECTION_HEADER. Subtracting the section offset
from the source offset yields a raw symbol offset of 0x0005E324, and this is exactly
the dOffset value of the PDB_PUBSYM record that defines the ExInterlockedAdd-
LargeInteger symbol. That’s easy, isn’t it? Well, not really.

The OMAP_TO_SRC entries are always sorted in ascending order with respect
to the target address. This is a good idea, because it facilitates the lookup of
addresses by binary searching. The OMAP_FROM_SRC table is essentially a replica
of the OMAP_TO_SRC table, but with all source and target addresses swapped and
resorted by source address. This dual-table approach allows easy address transla-
tion in both directions.

An OMAP problem that puzzled me for several days is that you cannot make
immediate use of the VirtualAddress values stored in the IMAGE_SECTION_HEADER
array of the .dbg file while converting from source to target addresses via the
OMAP_FROM_SRC table. In all PE sections except for the first one, this will result in
target addresses that are too high. The reason for this strange effect is that the
VirtualAddress values are valid in the target address world only. On the source
address side, different section addresses apply. The main problem is now to find
out the source addresses of the PE sections. After scanning the .dbg and .pdb files
repeatedly—but without success—for any tables that might perform this transla-
tion, I eventually ended up with a trick that works fine, although I’m not sure
whether it is legal. To determine the source address of a section, I simply enumer-
ate all OMAP_TO_SRC entries that belong to this section and compute the minimum
of their source addresses. This procedure is based on the assumption that OMAP
is just a permutation of code fractions, so minimizing the source addresses of a
section means finding the snippet that has been bumped to the top of the section.
This address should correspond to the source address of the section. I have
applied this technique to numerous Windows 2000 symbol files, and thus far, it
has not failed.

If it sounds appealing to implement a symbol file parser based on the
above information, just do it! Or, you can use the w2k_img.dll on the sample
CD as is or rip out code from it. This DLL contains everything you need to take
.dbg and .pdb files apart and much more. The most powerful API function
set it exports is the imgTable*() group. It comprises the three functions listed
in Table 1-5, whose prototypes are shown in Listing 1-28. They are intended for
use by debugger or disassembler writers. With the imgTableLookup() API func-
tion, an application can display symbols instead of raw addresses, and the
imgTableResolve() function can be used as a basis for a symbol search option.
Both functions are carefully optimized for speed, which is of great benefit to
applications that browse large amounts of symbol information. The sample
symbol browser presented below is based on w2k_img.dll and is able to dump
a sorted list of all ntoskrnl.exe symbols with lots of additional information to a
file in less than 2 seconds.



TABLE 1-5. Symbol Table Management Functions Exported by w2k_img.dll

NAME DESCRIPTION

imgTableLoad() Builds an IMG_TABLE symbol table from a .dbg or .pdb file

imgTableLookup() Finds an IMG_ENTRY symbol table entry matching a symbol address

imgTableResolve() Finds an IMG_ENTRY symbol table entry matching a symbol name
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PIMG_TABLE WINAPI imgTableLoad (PTBYTE ptPath,

PVOID  pBase);

PIMG_ENTRY WINAPI imgTableLookup (PIMG_TABLE pit,

PVOID      pAddress,

PDWORD     dOffset);

PIMG_ENTRY WINAPI imgTableResolve (PIMG_TABLE pit,

PBYTE      pbSymbol);

LISTING 1-28. Prototypes of the Symbol Table Management Functions

Listing 1-29 is a compilation of the structures on which the imgTable*() func-
tions operate. Apparently, they don’t resemble the CodeView and PDB structures dis-
cussed above. In fact, the symbol table management functions inside w2k_img.dll
completely rearrange the information found in the symbol files, allowing easier and
faster processing. The most fundamental structure is the IMG_TABLE, which comprises
the entire symbol information. It is composed of a fixed-size header, an array of
IMG_ENTRY structures, and three IMG_INDEX arrays. Because the arrays are of variable
size depending on the number of symbols, the IMG_TABLE also contains three pointers
to the IMG_INDEX base addresses. As indicated by the comments in Listing 1-29, the
indexes are sorted by address, by name considering character case, and by name ignor-
ing character case. These indexes are not only convenient for applications that output
symbol lists, but also for the imgTableLookup() and imgTableResolve() functions
because they allow them to perform fast binary searches for addresses and names.

One particularly nice feature of the IMG_ENTRY structure is that it specifies the
calling convention assigned to a symbol. This information is derived directly from the
symbol decoration, based on the rules in Table 1-4. This nontrivial task is done by
the imgSymbolUndecorate() function shown in Listing 1-30. First, it tries to identify
one of the common prefixes, listed in the apbPrefixes[] array. In the next step, the
code looks for a stack size trailer consisting of an @ character and a decimal number.
The calling convention is detected along the way by testing for special prefix/trailer
combinations. w2k_img.dll undecorates symbols with high reliability. Actually, it
correctly handles all __fastcall import thunks that imagehlp.dll is unable to man-
age. imgSymbolUndecorate(), however, does not attempt to undecorate C++ and
PCH symbols. Maybe I will add this feature in a future version of w2k_img.dll.



#define IMG_CONVENTION_UNDEFINED    0

#define IMG_CONVENTION_STDCALL      1

#define IMG_CONVENTION_CDECL        2

#define IMG_CONVENTION_FASTCALL     3

// -----------------------------------------------------------------

typedef struct _IMG_ENTRY

{

DWORD dSection;          // 1-based section number

PVOID pAddress;          // symbol address

DWORD dConvention;       // calling convention IMG_CONVENTION_*

DWORD dStack;            // number of argument stack bytes

BOOL  fExported;         // TRUE if exported symbol

BOOL  fSpecial;          // TRUE if special symbol

BYTE  abSection   [IMAGE_SIZEOF_SHORT_NAME+4]; // section name

BYTE  abSymbol    [256]; // undecorated symbol name

BYTE  abDecorated [256]; // decorated symbol name

}

IMG_ENTRY, *PIMG_ENTRY, **PPIMG_ENTRY;

#define IMG_ENTRY_ sizeof (IMG_ENTRY)

// -----------------------------------------------------------------

typedef struct _IMG_INDEX

{

PIMG_ENTRY apEntries [1];

}

IMG_INDEX, *PIMG_INDEX, **PPIMG_INDEX;

#define IMG_INDEX_ sizeof (IMG_INDEX)

#define IMG_INDEX__(_n) ((_n) * IMG_INDEX_)

// -----------------------------------------------------------------

typedef struct _IMG_TABLE

{

DWORD      dSize;      // table size in bytes

DWORD      dSections;  // number of sections

DWORD      dSymbols;   // number of symbols

DWORD      dTimeStamp; // module time stamp (sec since 1-1-1970)

DWORD      dCheckSum;  // module checksum

PVOID      pBase;      // module base address

PIMG_INDEX piiAddress; // entries sorted by address

PIMG_INDEX piiName;    // entries sorted by name

PIMG_INDEX piiNameIC;  // entries sorted by name (ignore case)

BOOL       fUnicode;   // character format

union

{
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(continued)



TBYTE atPath [MAX_PATH]; // .dbg file path

BYTE  abPath [MAX_PATH]; // .dbg file path (ANSI)

WORD  awPath [MAX_PATH]; // .dbg file path (Unicode)

};

IMG_ENTRY  aEntries []; // symbol info array

}

IMG_TABLE, *PIMG_TABLE, **PPIMG_TABLE;

#define IMG_TABLE_ sizeof (IMG_TABLE)

#define IMG_TABLE__(_n) \

(IMG_TABLE_ + ((_n) * IMG_ENTRY_) + (3 * IMG_INDEX__ (_n)))
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LISTING 1-29. Symbol Table Management Structures

DWORD WINAPI imgSymbolUndecorate (PBYTE  pbSymbol,

PBYTE  pbBuffer,

PDWORD pdConvention)

{

PBYTE apbPrefixes [] = {“__imp__”, “__imp_@”, “__imp_”,

“_”, “@”, “\x7F”,

NULL};

BYTE  abBuffer [256] = “”;

DWORD i, j, k, l;

DWORD dConvention = IMG_CONVENTION_UNDEFINED;

DWORD dStack      = -1;

if (pbSymbol != NULL)

{

// skip common prefixes

for (i = j = 0; apbPrefixes [i] != NULL; i++)

{

for (j = 0; apbPrefixes [i] [j]; j++)

{

if (apbPrefixes [i] [j] != pbSymbol [j]) break;

}

if (!apbPrefixes [i] [j]) break;

j = 0;

}

// test for multiple ‘@’

for (k = j, l = 0; (l < 2) && pbSymbol [k]; k++)

{

if (pbSymbol [k] == ‘@’) l++;

}
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// don’t undecorate if multiple ‘@’, or C++ symbol

if ((l == 2) || (pbSymbol [0] == ‘?’))

{

j = 0;        // keep prefix

k = MAXDWORD; // keep length

}

else

{

// search for next ‘@’

for (k = j; pbSymbol [k] && (pbSymbol [k] != ‘@’); k++);

// read number of argument stack bytes if ‘@’ found

if (pbSymbol [k] == ‘@’)

{

dStack = 0;

for (l = k + 1; (pbSymbol [l] >= ‘0’) &&

(pbSymbol [l] <= ‘9’); l++)

{

dStack *= 10;

dStack += pbSymbol [l] - ‘0’;

}

// don’t undecorate if non-numeric or empty trailer

if (pbSymbol [l] || (l == k + 1))

{

dStack = -1;  // no stack size info

j = 0;        // keep prefix

k = MAXDWORD; // keep length

}

}

}

// determine calling convention if single-char prefix

if (j == 1)

{

switch (pbSymbol [0])

{

case ‘@’:

{

dConvention = IMG_CONVENTION_FASTCALL;

break;

}

case ‘_’:

{
(continued)
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dConvention = (dStack != -1

? IMG_CONVENTION_STDCALL

: IMG_CONVENTION_CDECL);

break;

}

}

}

// copy selected name portion

k = min (k - j, sizeof (abBuffer) - 1);

lstrcpynA (abBuffer, pbSymbol + j, k + 1);

}

if (pbBuffer != NULL)

{

lstrcpyA (pbBuffer, abBuffer);

}

if (pdConvention != NULL) *pdConvention = dConvention;

return dStack;

}

LISTING 1-30. The imgSymbolUndecorate() API Function

Note that the imgTableResolve() function ignores all symbols with undefined
calling convention. This restriction safely excludes all import thunk, C++, and PCH
symbols. Unfortunately, it also excludes some of the “good” symbols that don’t have
standard decorations. I don’t think, however, that this is a big problem, because these
symbols are not among those most frequently used.

The basic framework of a w2k_img.dll client application is outlined in
Listing 1-31. The application first loads the symbol table from the .dbg file
specified by the ptPath argument, using the imgTableLoad() API function. If the
file contains an NB10 CodeView subsection, the associated PDB file is loaded
seamlessly. If the returned pointer is valid, the symbol entries can be enumerated in
four ways, described by the comments inside the for() loop. Basically, the client
can use the original order of the symbols as they appear in the .dbg or .pdb file, or
it can choose one of the predefined sort indexes. When the symbol processing is
finished, the application has to destroy the symbol table by calling imgMemory
Destroy(). That’s all! The application doesn’t need any intimate knowledge about
the internals of symbol files. All information it needs is stored in the IMG_TABLE
and IMG_ENTRY structures set up by imgTableLoad().
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VOID WINAPI SymbolProcessor (PTBYTE ptPath)
{

PIMG_TABLE pit;

PIMG_ENTRY pie;

PVOID      pBase;

DWORD      i;

pBase = imgModuleBase (ptPath); // get current module load address

if ((pit = imgTableLoad (ptPath, pBase)) != NULL)

{

for (i = j = 0; i < pit->dSymbols; i++)

{

// Option #1: default symbol order

// pie = pit->aEntries + i;

// Option #2: symbols sorted by address

// pie = pit->piiAddress->apEntries [i];

// Option #3: symbols sorted by name (case sensitive)

// pie = pit->piiName->apEntries [i];

// Option #4: symbols sorted by name (ignore case)

// pie = pit->piiNameIC->apEntries [i];

// Now, pie points to the IMG_ENTRY of the next symbol!

// Do something useful with it ...

}

imgMemoryDestroy (pit);

}

return;

}

LISTING 1-31. Using the Symbol Table Management Functions

A typical client application of w2k_img.dll will be presented in the next sub-
section. Note that I will return to this powerful utility DLL in Chapter 6, where it
serves a rather unusual purpose: It looks up addresses of internal ntoskrnl.exe
symbols that are neither documented nor exported, and a companion DLL uses
this information to call into or read from these addresses. This trick sounds odd,
but it works fine and can solve some tough programming and debugging problems.
Stay tuned!
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// w2k_sym2.exe

// SBS Windows 2000 Symbol Browser V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Usage: w2k_sym2 { [+-anNiprdxusz] [:<sections>] [/<symbols>] <path> }

+   enable subsequent options

-   disable subsequent option

a   sort by address

n   sort by name

N   sort by name (case sensitive)

i   ignore case in filter strings

p   force preferred load address

r   display relative addresses

d   display decorated symbols

x   display exported symbols only

u   include symbols with unknown calling convention

s   include special symbols

z   include zero-address symbols

<sections> and <symbols> are filter expressions,

optionally containing the wildcards * and ?.

ANOTHER WINDOWS 2000 SYMBOL BROWSER

The sample application that shall demonstrate the usage of w2k_img.dll is an alterna-
tive version of the symbol browser presented in the previous section. It is named
w2k_sym2.exe, but despite the name similarity, it is not just a rehash of w2k_sym.exe.
The sample applications have quite different features and command options—just com-
pare their command help screens, shown in Examples 1-5 and 1-11. The source code
of w2k_sym2.exe is found on the CD accompanying this book in the \src\w2k_sym2
directory tree.

Example 1-12 shows some sample output, generated by the command
w2k_sym2 +nu beep.sys. The +n option selects sorting by name without considera-
tion of the character case, and the +u option forces inclusion of symbols with
unknown calling convention. The symbols with CDECL or STDCALL in the ARGUMENTS
column refer to addresses of functions or global variables. The remaining rows in
Example 1-12 are mostly import thunks into ntoskrnl.exe or hal.dll.

EXAMPLE 1-11. The Command Help of w2k_sym2.exe
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// w2k_sym2.exe

// SBS Windows 2000 Symbol Browser V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Module name:    beep.sys

Time stamp:     Wednesday, 10-20-1999, 22:18:59

Base address:   0xF09CF000

Check sum:      0x0000C54F

Symbol file:    E:\WINNT\Symbols\sys\beep.dbg

Symbol table:   23520 bytes

Symbol filter:  *

Sections:       *

# INDEX ADDRESS  SECTION     ARGUMENTS   X NAME

——————————————————————————————————————————————————————————————————

1     0 F09CF70C  2 .rdata                 _allmul

2     1 F09CF6B2  1 .text       CDECL      _allmul

3     2 F09CF7B4  3 INIT        CDECL      _IMPORT_DESCRIPTOR_HAL

4     3 F09CF7A0  3 INIT        CDECL      _IMPORT_DESCRIPTOR_ntoskrnl

5     4 F09CF7C8  3 INIT        CDECL      _NULL_IMPORT_DESCRIPTOR

6     5 F09CF34C  1 .text     8 STDCALL    BeepCancel

7     6 F09CF39E  1 .text     8 STDCALL    BeepCleanup

8     7 F09CF50E  1 .text     8 STDCALL    BeepClose

9     8 F09CF456  1 .text     8 STDCALL    BeepDeviceControl

10     9 F09CF4C0  1 .text     8 STDCALL    BeepOpen

11    10 F09CF572  1 .text     8 STDCALL    BeepStartIo

12    11 F09CF660  1 .text    10 STDCALL    BeepTimeOut

13    12 F09CF67E  1 .text     4 STDCALL    BeepUnload

14    13 F09CF29A  1 .text     8 STDCALL    DriverEntry

15    14 F09CF6C0  2 .rdata    4            ExAcquireFastMutex

16    15 F09CF6C4  2 .rdata    4            ExReleaseFastMutex

17    16 F09CF6D4  2 .rdata                 HAL_NULL_THUNK_DATA

18    17 F09CF6D0  2 .rdata    4            HalMakeBeep

19    18 F09CF724  2 .rdata    4            InterlockedDecrement

20    19 F09CF6E0  2 .rdata    8            InterlockedExchange

21    20 F09CF708  2 .rdata    4            InterlockedIncrement

22    21 F09CF6E8  2 .rdata    4            IoAcquireCancelSpinLock

23    22 F09CF714  2 .rdata   1C            IoCreateDevice

24    23 F09CF710  2 .rdata    4            IoDeleteDevice

25    24 F09CF6F4  2 .rdata    8            IofCompleteRequest

26    25 F09CF6F8  2 .rdata    4            IoReleaseCancelSpinLock

27    26 F09CF700  2 .rdata    8            IoStartNextPacket

28    27 F09CF6EC  2 .rdata   10            IoStartPacket

29    28 F09CF728  2 .rdata    4            KeCancelTimer

30    29 F09CF718  2 .rdata    C            KeInitializeDpc

(continued)
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31    30 F09CF720  2 .rdata    C            KeInitializeEvent

32    31 F09CF71C  2 .rdata    4            KeInitializeTimer

33    32 F09CF6E4  2 .rdata    4            KeRemoveDeviceQueue

34    33 F09CF6DC  2 .rdata    8            KeRemoveEntryDeviceQueue

35    34 F09CF704  2 .rdata   10            KeSetTimer

36    35 F09CF6CC  2 .rdata    4            KfLowerIrql

37    36 F09CF6C8  2 .rdata    4            KfRaiseIrql

38    37 F09CF6F0  2 .rdata    4            MmLockPagableDataSection

39    38 F09CF6FC  2 .rdata    4            MmUnlockPagableImageSection

40    39 F09CF72C  2 .rdata                 ntoskrnl_NULL_THUNK_DATA

41    40 F09CF6D8  2 .rdata    8            RtlInitUnicodeString

—————————————————————————————————————

13 non-NULL symbols

0 exported symbols

EXAMPLE 1-12. Sample Output of w2k_sym2.exe

Note that the _allmul symbol appears twice in the list. The first one is an
import thunk for the _allmul() function exported by ntoskrnl.exe; the other one
is a simple function call forwarder that jumps through this thunk. If you add the +d
switch to the command to view the symbols with full decoration, you can see that the
_allmul import thunk is really called __imp___allmul, whereas the original name of
the forwarder is __allmul. Obviously, those decorations do serve some useful pur-
pose, even though they are sometimes quite distracting.

This chapter has presented extensive information. Maybe you didn’t expect that
there is so much to say about Windows 2000 debuggers, debugging APIs, and symbol
files. Most Windows programming books don’t dedicate much space to this kind of
information. However, I believe that this essential background knowledge will help
you in writing your own debugging utilities.


