
This introductory chapter about the Windows 2000 Native API focuses on the rela-
tionships among the operating system modules that form the environment of this

basic programming interface. Emphasis is on the central interrupt gate mechanism
employed by Windows 2000 to route kernel service requests from user-mode to
kernel-mode and back. Additionally, the Win32K interface and some of the major
runtime libraries associated with the Native API will be presented, along with some
of the most frequently used data types. The chapter closes with hints for those who
want to write applications that interface to the Native API via the ntdll.dll library.

The architecture of Windows 2000 has been described in detail elsewhere. Many
things written about Windows NT also apply to Windows 2000, so both editions of
Inside Windows NT (Custer 1993, Solomon 1998) are good introductory books, as is
the follow-up volume Inside Windows 2000 (Solomon and Russinovich 2000).

THE NT*() AND ZW*() FUNCTION SETS

One of the most interesting facts about the architecture of Windows 2000 is that it
can emulate various operating systems. Windows 2000 comes with three built-in sub-
systems for Win32, POSIX, and OS/2 applications. The Win32 subsystem is clearly
the most popular, and therefore it is frequently regarded by application developers as
the operating system itself. They cannot really be blamed for this misconception—this
point of view is correct for legacy operating systems such as Windows 95 or 98, with
which the Win32 interface implementation is actually a fundamental part of the
system. However, Windows 2000 is designed quite differently. Although the Win32
subsystem contains a system module named kernel32.dll, this is actually not the
real operating system kernel. Instead, it is just one of the basic components of the
Win32 subsystem. In many programming books, software development for Windows

93

C H A P T E R 2

The Windows
2000 Native API

NT and 2000 is reduced to the task of interfacing to the Win32 Application Program-
ming Interface (API), concealing the fact that the NT platform exposes yet another
more basic interface called the Native API. Developers writing kernel-mode device or
file system drivers are already familiar with the Native API, because kernel-mode
modules are located on a low system level where the subsystems are invisible. How-
ever, you don’t have to go down to the driver level to access this interface—even ordi-
nary Win32 applications can call down to the Native API at any time. There’s no
technical restriction—it’s just that Microsoft doesn’t support this kind of application
development. Thus, little information has been available on this topic, and neither the
Windows Platform Software Development Kit (SDK) nor the Windows 2000 Device
Drive Kit (DDK) make the Native API available to Win32 applications. So this work
has been left to others, and this book is another piece of the puzzle.

LEVELS OF “UNDOCUMENTEDNESS”

Much of the material presented in this book refers to so-called undocumented infor-
mation. In its global sense, this means that this information isn’t published by
Microsoft. However, there are several grades of “undocumentedness” because of the
large amount of information that could possibly be published about a huge operating
system such as Windows 2000. My personal category system looks as follows:

• Officially documented: The information is available in one of Microsoft’s
books, papers, or development kits. The most prominent information
sources are the SDK, DDK, and the Microsoft Developer Network
(MSDN) Library.

• Semidocumented: Although not officially documented, the information
can be extracted from files officially distributed by Microsoft. For
example, many Windows 2000 functions and structures aren’t mentioned
in the SDK or DDK documentation, but appear in some header files or
sample programs. For Windows 2000, the most important sources of
semidocumentation are the header files ntddk.h and ntdef.h, which are
part of the DDK.

• Undocumented, but not hidden: The information in question is neither
found in the official documentation nor included in any form in the
developer products, but parts of it are available for debugging tools. All
symbolic information contained in executable or symbol files belongs to
this category. The best examples are the !processfields and
!threadfields commands of the Kernel Debugger, which dump the
names and offsets of the undocumented EPROCESS and ETHREAD structures
(see Chapter 1).

94 THE WINDOWS 2000 NATIVE API

• Completely undocumented: Some information bits are so well hidden by
Microsoft, that they can be unveiled only by reverse engineering and
inference. This class contains many implementation-specific details that
nobody except the Windows 2000 developers should care about, but it also
includes information that might be invaluable for system programmers,
particularly developers of debugging software. Unveiling system internals
such as this is extremely difficult, but also incredibly interesting, for
someone who loves puzzles of a million pieces.

The Windows 2000 internals discussed in this book are equally distributed on
levels two, three, and four of this category system, so there should be something
for everyone.

THE SYSTEM SERVICE DISPATCHER

The relationship between the Win32 subsystem API and the Native API is best
explained by showing the dependencies between the Win32 core modules and the Win-
dows 2000 kernel. Figure 2-1 illustrates the module relationships, using boxes for mod-
ules and arrows for dependencies. If an arrow points from module A to module B, this
means that A depends on B, that is, module A calls functions inside module B. Modules
connected by double arrows are mutually dependent on each other. In Figure 2-1, the
modules user32.dll, advapi32.dll, gdi32.dll, rpcrt4.dll, and kernel32.dll
represent the basic Win32 API providers. Of course, there are other DLLs that con-
tribute to this API, such as version.dll, shell32.dll, and comctl32.dll, but for
clarity, I have omitted them. An interesting property illustrated in Figure 2-1 is that all
Win32 API calls are ultimately routed through ntdll.dll, which forwards them to
ntoskrnl.exe.

The ntdll.dll module is the operating system component that hosts the Native
API. To be more exact, ntdll.dll is the user-mode front end of the Native API. The
“real” interface is implemented in ntoskrnl.exe. The file name already suggests
that this is the NT Operating System Kernel. In fact, kernel mode drivers call into
this module most of the time if they require operating system services. The main role
of ntdll.dll is to make a certain subset of kernel functions available to applications
running in user mode, including the Win32 subsystem DLLs. In Figure 2-1, the arrow
pointing from ntdll.dll to ntoskrnl.exe is labeled INT 2Eh to indicate that Win-
dows 2000 uses an interrupt gate to switch the CPU’s privilege level from user mode
to kernel mode. Kernel-mode programmers view user-mode code as offensive, buggy,
and dangerous. Therefore, this kind of code must be kept away from kernel func-
tions. Switching the privilege level from user mode to kernel mode and back in the
course of an API call is one way to handle this problem in a controlled manner. The
calling application never really touches any kernel bytes—it can only look at them.

THE NT*() AND ZW*() FUNCTION SETS 95

For example, the Win32 API function DeviceIoControl() exported by
kernel32.dll eventually calls the ntdll.dll export NtDeviceIoControlFile().
Disassembling this function reveals a surprisingly simple implementation, shown in
Example 2-1. First, CPU register EAX is loaded with the magic number 0x38, which is
a dispatch ID. Next, register EDX is set up to point into the stack. The target address
is the current value of the stack pointer ESP plus four, so EDX will point right behind
the stack slot of the return address that has been saved on the stack immediately
before entering NtDeviceIoControlFile(). Of course, this is the place where the
arguments passed to the function are temporarily stored. The next instruction is a
simple INT 2Eh, which branches to the interrupt handler stored in slot 0x2E of the
Interrupt Descriptor Table (IDT). Doesn’t that look familiar? In fact, this code looks
quite a bit like an old DOS INT 21h API call. However, the INT 2Eh interface of
Windows 2000 is much more than a simple API call dispatcher—it serves as the main
gate from user mode to kernel mode. Please note that this implementation of the
mode switch is Intel i386 CPU specific. On the Alpha platform, different tricks are
employed to achieve this transition.

96 THE WINDOWS 2000 NATIVE API

user32.dll advapi32.dll

gdi32.dll rpcrt4.dll

kernel32.dll

ntdll.dll

ntoskrnl.exe

hal.dll bootvid.dll

User Mode

 Kernel Mode
INT 2Eh

FIGURE 2-1. System Module Dependencies

THE NT*() AND ZW*() FUNCTION SETS 97

NtDevi ceIoControlFile:

mov eax, 38h

lea edx, [esp+4]

int 2Eh

ret 28h

EXAMPLE 2-1. Implementation of ntdll.NtDeviceIoControlFile()

The Windows 2000 Native API comprises 248 functions that are handled this
way. That’s 37 more than in Windows NT 4.0. You can easily recognize them by the
function name prefix Nt in the ntdll.dll export list. There are 249 symbols of this
kind exported by ntdll.dll. The reason for this mismatch is that one of the func-
tions, NtCurrentTeb(), is a pure user-mode function and therefore isn’t passed to
the kernel. Table B-1 in Appendix B lists all available Native API functions, along
with their INT 2Eh dispatch IDs, if any. The table also indicates which functions are
exported by ntoskrnl.exe. Surprisingly, only a subset of the Native API can be
called from kernel-mode modules. On the other hand, ntoskrnl.exe exports two Nt*
symbols not provided by ntdll.dll, namely NtBuildNumber and NtGlobalFlag.
Neither symbol refers to a function. Instead, they are pointers to ntoskrnl.exe vari-
ables that can be imported by a driver module using the C compiler’s extern key-
word. The Windows 2000 kernel exports many more variables in this manner, and
the sample code following later will make use of some of them.

You may wonder why Table B-1 provides two columns for ntdll.dll and
ntoskrnl.exe, respectively, labeled ntdll.Nt*, ntdll.Zw*, ntoskrnl.Nt*, and
ntoskrnl.Zw*. The reason is that both modules export two sets of related Native
API symbols. One of them comprises all names involving the Nt prefix, as listed in
the leftmost column of Table B-1. The other set contains similar names, but with Nt
replaced by Zw. Disassembly of ntdll.dll shows that each pair of symbols refers to
exactly the same code. This may appear to be a waste of memory. However, if you
disassemble ntoskrnl.exe, you will find that the Nt* symbols point to real code and
the Zw* variants refer to INT 2Eh stubs such as the one shown in Example 2-1. This
means that the Zw* function set is routed through the user-to-kernel-mode gate, and
the Nt* symbols point directly to the code that is executed after the mode transition.

Two more things in Table B-1 should be noted. First, the function NtCurrentTeb()
doesn’t have a Zw* counterpart. This is not a big problem because the Nt* and Zw*
functions exported by ntdll.dll are the same anyway. Second, ntoskrnl.exe does-
n’t consistently export Nt/Zw function pairs. Some of them come in either Nt* or Zw*
versions only. I do not know the reason for this—I suppose that ntoskrnl.exe
exports only the functions documented in the Windows 2000 DDK plus those

required by other operating system modules. Note that the remaining Native API
functions are nevertheless implemented inside ntoskrnl.exe. They don’t feature a
public entry point, but of course they may be reached from outside through the
INT 2Eh gate.

THE SERVICE DESCRIPTOR TABLES

The disassembled code in Example 2-1 has shown that INT 2Eh is invoked with
two parameters passed in the CPU registers EAX and EDX. I have already mentioned
that the magic number in EAX is a dispatch ID. Because all Native API calls except
NtCurrentTeb() are squeezed through the same hole, the code handling the INT
2Eh must determine which call should be dispatched to which function. That’s why
the dispatch ID is provided. The interrupt handler inside ntoskrnl.exe uses the
value in EAX as an index into a lookup table, where it finds the information required
to route the call to its ultimate destination. This table is called a System Service
Table (SST), and the corresponding C structure SYSTEM_SERVICE_TABLE is defined
in Listing 2-1. This listing also comprises the definition of a structure named
SERVICE_DESCRIPTOR_TABLE, which is a four-member array of SSTs, the first two
of which serve special purposes.

Although both tables are fundamental data types, they are not documented in
the Windows 2000 DDK, which leads to the following important statement: Many
code snippets reprinted in this book contain undocumented data types and functions.
Therefore, there’s no guarantee that this information is authentic. This is true for all
symbolic information, such as structure names, structure members, and arguments.
When creating symbols, I attempt to use appropriate names, based on the naming
scheme apparent through the small subset of known symbols (including those avail-
able from the symbol files). However, this heuristic approach is likely to fail on many
occasions. Only the original source code contains the full information, but I don’t
have access to it. Actually, I don’t want to see the source code, because this would
require a Non-Disclosure Agreement (NDA) with Microsoft, and the ties of an NDA
would make it quite difficult to write a book about undocumented information.

So let’s return to the secrets of the Service Descriptor Table (SDT). Its definition
in Listing 2-1 shows that the first pair of slots is reserved for ntoskrnl.exe
and the kernel-mode part of the Win32 subsystem buried inside the win32k.sys
module. The calls dispatched through the win32k SST originate from gdi32.dll
and user32.dll. ntoskrnl.exe exports a pointer to its main SDT via the symbol
KeServiceDescriptorTable. The kernel maintains an alternative SDT named
KeServiceDescriptorTableShadow, but this one is not exported. It is very simple to
access the main SDT from a kernel-mode module—you need only two C instructions,
as shown in Listing 2-2. The first is a simple variable declaration preceded by the
extern keyword, which tells the linker that this variable is not part of the module

98 THE WINDOWS 2000 NATIVE API

and the corresponding symbol cannot be resolved at link time. All references to this
symbol are linked dynamically as soon as the module is loaded into the address space
of a process. The second C instruction in Listing 2-2 is such a reference. Assigning
KeServiceDescriptorTable to a variable of type PSERVICE_DESCRIPTOR_TABLE
causes the creation of a dynamic link to ntoskrnl.exe, similar to an API call into a
DLL module.

THE NT*() AND ZW*() FUNCTION SETS 99

typedef NTSTATUS (NTAPI *NTPROC) ();

typedef NTPROC *PNTPROC;

#define NTPROC_ sizeof (NTPROC)

// ---

typedef struct _SYSTEM_SERVICE_TABLE

{

PNTPROC ServiceTable; // array of entry points

PDWORD CounterTable; // array of usage counters

DWORD ServiceLimit; // number of table entries

PBYTE ArgumentTable; // array of byte counts

}

SYSTEM_SERVICE_TABLE,

* PSYSTEM_SERVICE_TABLE,

**PPSYSTEM_SERVICE_TABLE;

// ---

typedef struct _SERVICE_DESCRIPTOR_TABLE

{

SYSTEM_SERVICE_TABLE ntoskrnl; // ntoskrnl.exe (native api)

SYSTEM_SERVICE_TABLE win32k; // win32k.sys (gdi/user support)

SYSTEM_SERVICE_TABLE Table3; // not used

SYSTEM_SERVICE_TABLE Table4; // not used

}

SERVICE_DESCRIPTOR_TABLE,

* PSERVICE_DESCRIPTOR_TABLE,

**PPSERVICE_DESCRIPTOR_TABLE;

LISTING 2-1. Structure of the Service Descriptor Table

// Import SDT pointer

extern PSERVICE_DESCRIPTOR_TABLE KeServiceDescriptorTable;

// Create SDT reference

PSERVICE_DESCRIPTOR_TABLE psdt = KeServiceDescriptorTable;

LISTING 2-2. Accessing the Service Descriptor Table

The ServiceTable member of each SST contained in an SDT points to an array
of function pointers of type NTPROC, which is a convenient placeholder for the Native
API functions, similar to the PROC type used in Win32 programming. NTPROC is
defined at the top of Listing 2-1. Native API functions typically return an NTSTATUS
code and use the NTAPI calling convention, which is synonymous to __stdcall. The
ServiceLimit member holds the number of entries found in the ServiceTable array.
On Windows 2000, its default value is 248. The ArgumentTable is an array of
BYTEs, each one corresponding to a ServiceTable slot and indicating the number of
argument bytes (!) available on the caller’s stack. This information, along with the
pointer supplied in register EDX, is required by the kernel when it copies the argu-
ments from the caller’s stack to its own, as described below. The CounterTable mem-
ber is not used in the free build of Windows 2000. In the debug build, this member
points to an array of DWORDs that represent usage counters for each function. This
information can be used for profiling purposes.

It is easy to display the contents of the SDT using the Windows 2000 Kernel
Debugger. Please refer to Chapter 1 if you haven’t yet set up this very useful applica-
tion. In Example 2-2, I have first issued the command dd KeServiceDescrip-
torTable. The debugger resolves this public symbol to 0x8046AB80 and displays a
hex dump of the next 32 DWORDs at this address. Only the first four rows are signifi-
cant, corresponding to the four SDT members in Listing 2-1. For better readability,
they are printed in boldface. If you take a closer look, you will see that the fifth row
looks exactly like the first—could this be another SDT? This is a great occasion for a
test of the Kernel Debugger’s ln command (List Nearest Symbols). In Example 2-2.
right after the hex dump of KeServiceDescriptorTable, I have entered the com-
mand ln 8046abc0. Obviously, the debugger knows the address 0x8046abc0 well and
converts it to the symbol KeServiceDescriptorTableShadow, proving that this is
indeed the second SDT maintained by the kernel. The obvious difference between the
SDTs is that the latter contains entries for win32k.sys, whereas the former doesn’t. In
both tables, the members Table3 and Table4 are empty. ntoskrnl.exe provides a
convenient API function named KeAddSystemServiceTable() to fill these slots.

100 THE WINDOWS 2000 NATIVE API

kd> dd KeServiceDescriptorTable

dd KeServiceDescriptorTable

8046ab80 804704d8 00000000 000000f8 804708bc

8046ab90 00000000 00000000 00000000 00000000

8046aba0 00000000 00000000 00000000 00000000

8046abb0 00000000 00000000 00000000 00000000

8046abc0 804704d8 00000000 000000f8 804708bc

8046abd0 a01859f0 00000000 0000027f a0186670

THE NT*() AND ZW*() FUNCTION SETS 101

8046abe0 00000000 00000000 00000000 00000000

8046abf0 00000000 00000000 00000000 00000000

kd> ln 8046abc0

ln 8046abc0

(8047b3a0) ntoskrnl!KeServiceDescriptorTableShadow

kd> ln 804704d8

ln 804704d8

(8046cd00) ntoskrnl!KiServiceTable

kd> ln 804708bc

ln 804708bc

(8046d0e4) ntoskrnl!KiArgumentTable

kd> ln a01859f0

ln a01859f0

(a016d8c0) win32k!W32pServiceTable

kd> ln a0186670

ln a0186670

(a016e544) win32k!W32pArgumentTable

kd> dd KiServiceTable

dd KiServiceTable

804704d8 804ab3bf 804ae86b 804bdef3 8050b034

804704e8 804c11f4 80459214 8050c2ff 8050c33f

804704f8 804b581c 80508874 8049860a 804fc7e2

80470508 804955f7 8049c8a6 80448472 804a8d50

80470518 804b6bfb 804f0cef 804fcb95 8040189a

80470528 804d06cb 80418f66 804f69d4 8049e0cc

80470538 8044c422 80496f58 804ab849 804aa9da

80470548 80465250 804f4bd5 8049bc80 804ca7a5

kd> db KiArgumentTable

db KiArgumentTable

804708bc 18 20 2c 2c 40 2c 40 44-0c 18 18 08 04 04 0c 10 . ,,@,@D........

804708cc 18 08 08 0c 08 08 04 04-04 0c 04 20 08 0c 14 0c

804708dc 2c 10 0c 1c 20 10 38 10-14 20 24 1c 14 10 20 10 ,... .8.. $... .

804708ec 34 14 08 04 04 04 0c 08-28 04 1c 18 18 18 08 18 4.......(.......

804708fc 0c 08 0c 04 10 00 0c 10-28 08 08 10 00 1c 04 08 (.......

8047090c 0c 04 10 00 08 04 08 0c-28 10 04 0c 0c 28 24 28 (....($(

8047091c 30 0c 0c 0c 18 0c 0c 0c-0c 30 10 0c 0c 0c 0c 10 0........0......

8047092c 10 0c 0c 14 0c 14 18 14-08 14 08 08 04 2c 1c 24 ,.$

kd> ln 8044c422

ln 8044c422

(80449c90) ntoskrnl!NtClose

EXAMPLE 2-2. Examination of the Service Descriptor Tables

102 THE WINDOWS 2000 NATIVE API

Note that I have truncated the output lines of the ln command, to demonstrate
only the essential information.

At address 0x8046AB88 of the KeServiceDescriptorTable hex dump, where
the ServiceLimit member should be located, the value 0xF8—248 in decimal
notation—shows up, as expected. The values of ServiceTable and ArgumentTable
are pointers to the addresses 0x804704d8 and 0x804708bc, respectively. This is
another case for the ln command, revealing the names KiServiceTable and
KiArgumentTable, respectively. None of these symbols is exported by
ntoskrnl.exe, but the debugger recognizes them by looking into the Windows
2000 symbol files. The ln command can also be applied to the pointers in the
win32k SST. For the ServiceTable and ArgumentTable members, the debugger
reports W32pServiceTable and W32pArgumentTable, respectively. Both symbols
are taken from the symbol file of win32k.sys. If the debugger refuses to resolve
these addresses, issue the .reload command to force a reload of all available
symbol files and try again.

The remaining parts of Example 2-2 are hex dumps of the first 128 bytes of
KiServiceTable and KiArgumentTable. If the things I said about the Native API
so far are correct, then the NtClose() function should be addressed by slot 24 of
KiServiceTable, located at address 0x80470538. The value found there is
0x8044c422, marked boldface in the results of the dd KiServiceTable command.
Applying the ln command to this address yields NtClose(). As a final test, let’s
examine slot 24 of KiArgumentTable at address 0x804708d4. In the Windows
2000 DDK, ZwClose() is documented as receiving a single argument of type
HANDLE, so the number of argument bytes on the caller’s stack should amount to
four. It doesn’t come as a big surprise that this is exactly the value found in the argu-
ment table, marked boldface in the results of the db KiArgumentTable command.

THE INT 2Eh SYSTEM SERVICE HANDLER

The interrupt handler lurking at the kernel-mode side of the INT 2Eh gate is
labeled KiSystemService(). Again, this is an internal symbol not exported by
ntoskrnl.exe, but contained in the Windows 2000 symbol files. Therefore, the
Kernel Debugger can resolve it without problem. Essentially, KiSystemService()
performs the following steps:

1. Retrieve the SDT pointer from the current thread’s control block.

2. Determine which one of the four SSTs in the SDT should be used. This is
done by testing bits 12 and 13 of the dispatch ID in register EAX and
selecting the corresponding SDT member. IDs in the range 0x0000-0x0FFF
are mapped to the ntoskrnl table; the range 0x1000-0x1FFF is assigned to

the win32k table. The remaining ranges 0x2000-0x2FFF and 0x3000-0x3FFF
are reserved for the additional SDT members Table3 and Table4. If an ID
exceeds 0x3FFF, the unwanted bits are masked off before dispatching.

3. Check bits 0 to 11 of the dispatch ID in register EAX against the
ServiceLimit member of the selected SST. If the ID is out of range, an error
code of STATUS_INVALID_SYSTEM_SERVICE is returned. In an unused SST,
this member is zero, yielding an error code for all possible dispatch IDs.

4. Check the argument stack pointer in register EDX against the value of
MmUserProbeAddress. This is a public variable exported from
ntoskrnl.exe and usually evaluates to 0x7FFF0000. If the argument
pointer is not below this address, STATUS_ACCESS_VIOLATION is returned.

5. Look up the number of argument stack bytes in the ArgumentTable
referenced by the SST, and copy all function arguments from the caller’s
stack to the current kernel-mode stack.

6. Look up the service function pointer in the ServiceTable referenced by
the SST, and call this function.

7. Transfer control to the internal function KiServiceExit() after returning
from the service call.

It is interesting to see that the INT 2Eh handler doesn’t use the global SDT
addressed by KeServiceDescriptorTable, but uses a thread-specific pointer
instead. Obviously, threads can have different SDTs associated to them. On thread
initialization, KeInitializeThread() writes the KeServiceDescriptorTable
pointer to the thread control block. However, this default setting may be changed
later to a different value, such as KeServiceDescriptorTableShadow, for example.

THE WIN32 KERNEL-MODE INTERFACE

The discussion of the SDT in the previous section has shown that a second main kernel-
mode interface exists along with the Native API. This interface connects the Graphics
Device Interface (GDI) and the Window Manager (USER) of the Win32 subsystem to a
kernel-mode component called Win32K, introduced with Windows NT 4.0, and resid-
ing in the file win32k.sys. This component has been added to overcome an inherent
performance limit of the Win32 display engine, caused by the original Windows NT
subsystem design. On Windows NT 3.x, the client-server model imposed on the Win32
subsystem and the kernel involved frequent switches from user-mode to kernel-mode
and back. By moving considerable parts of the display engine to the kernel-mode mod-
ule win32k.sys, much of this overhead could be eliminated.

THE WIN32 KERNEL-MODE INTERFACE 103

WIN32K DISPATCH IDS

Now that win32k.sys has entered the scene, it’s time for an update of Figure 2-1.
Figure 2-2 is based on the original drawing, but with a win32k.sys box added to the
left of ntoskrnl.exe. I have also added arrows pointing from gdi32.dll and
user32.dll to win32k.sys. Of course, this is not 100 percent correct, because the
INT 2Eh calls inside these modules are actually directed to ntoskrnl.exe, which
owns the interrupt handler. However, the calls are ultimately handled by
win32k.sys, and this is what the arrows should indicate.

As pointed out earlier, the Win32K interface is also based on the INT 2Eh dis-
patcher, much like the Native API. The only difference is that Win32K uses a differ-
ent range of dispatch IDs. Although all Native API calls involve dispatch IDs that
range from 0x0000 to 0x0FFF, Win32K dispatch IDs are numbers between 0x1000
and 0x1FFF. As Figure 2-2 demonstrates, the primary Win32K clients are gdi32.dll
and user32.dll. Therefore, it should be possible to find out the symbolic names
associated to the Win32K dispatch IDs by disassembling these modules. As it turns
out, only a small subset of INT 2Eh calls has public names in their export sections, so
it is again time for a Kernel Debugger session. In Example 2-3, I have issued the com-
mand dd W32pServiceTable. To be sure that the win32k.sys symbols are available,
it is preceded by a .reload command.

104 THE WINDOWS 2000 NATIVE API

user32.dll advapi32.dll

kernel32.dll

ntdll.dll

ntoskrnl.exe

hal.dll bootvid.dll

User Mode

 Kernel Mode

INT 2EhINT 2EhINT 2Eh

gdi32.dll rpcrt4.dll

win32k.sys

FIGURE 2-2. System Module Dependencies, including win32k.sys

THE WIN32 KERNEL-MODE INTERFACE 105

kd> .reload

.reload

Loading Kernel Symbols...

Unable to read image header for fdc.sys at f0798000 - status c0000001

Unable to read image header for ATMFD.DLL at beaaf000 - status c0000001

Loading User Symbols...

Unable to read selector for PCR for Processor 0

PPEB is NULL (Addr= 0000018c)

kd> dd W32pServiceTable

dd W32pServiceTable

a01859f0 a01077f0 a011f59e a000788a a01141e1

a0185a00 a0121264 a0107e05 a01084df a010520b

a0185a10 a0120a6f a008c9eb a00befa2 a007cb5c

a0185a20 a0085c9b a001e4e7 a0120fd1 a0122d19

a0185a30 a0085d0c a0122e73 a0027671 a006d1f0

a0185a40 a0043fe0 a009baeb a007eb9b a009eb05

a0185a50 a0043392 a007c14f a01229cc a0027470

a0185a60 a001ad09 a00af751 a004e9f5 a004ef53

kd> ln a01077f0

ln a01077f0

(a00b316e) win32k!NtGdiAbortDoc | (a00ba173) win32k!IsRectEmpty

EXAMPLE 2-3. Examination of the Win32K System Services

In the last three lines of Example 2-3, I have applied the ln command to the
first entry in the W32pServiceTable hex dump. So the Win32K function with dispatch
ID zero is obviously called NtGdiAbortDoc(). You can repeat this procedure for all
639 dispatch IDs, but it is better to automate the symbol lookup. I have done this
for you, and the results are collected in Appendix B, Table B-2. The symbol mapping
from gdi32.dll and user32.dll to win32k.sys is simple: A GDI symbol is converted
to a Win32K symbol by adding the prefix NtGdi, and a USER symbol is converted by
adding NtUser. However, there are some minor exceptions. For example, if a GDI
symbol starts out with Gdi, the prefix is reduced to Nt, probably to avoid the character
sequence NtGdiGdi. In some other instances, the character case is different (e.g.,
EnableEUDC() and NtGdiEnableEudc()), or a trailing W marking a Unicode function is
missing (e.g., CopyAcceleratorTableW() and NtUserCopyAcceleratorTable()).

Documenting the complete Win32K API in detail would be a tremendous effort.
The function set is almost three times larger than the Native API. Maybe someday
someone will pick up the pieces and write a great reference handbook, like Gary
Nebbett did for the Native API (Nebbett 2000). For the scope of this book, the above
information should suffice, however.

THE WINDOWS 2000 RUNTIME LIBRARY

The Nt*() and Zw*() functions making up the Native API are an essential, but never-
theless minor, part of the code found inside ntdll.dll. This DLL exports no fewer
than 1179 symbols. 249/248 of them belong to the Nt*()/Zw*() sets, so there are
still 682 functions left that are not routed through the INT 2Eh gate. Obviously, this
large group of functions doesn’t rely on the Windows 2000 kernel. So what purpose
do they serve?

THE C RUNTIME LIBRARY

If you study the symbols in the export section of ntdll.dll, you will find many
lowercase function names that look quite familiar to a C programmer. These well-
known names, such as memcpy(), sprintf(), and qsort(), are members of the
C Runtime Library incorporated into ntdll.dll. The same is true for ntoskrnl.exe,
which features a similar set of C Runtime functions, although these sets are not iden-
tical. Table B-3 in Appendix B lists the union of both sets and points out which ones
are available from which module.

You can link to these functions by simply adding the file ntdll.lib from the
Windows 2000 DDK to the list of import libraries that should be scanned by the linker
during symbol resolution. If you prefer using dialogs, you can choose the Settings...
entry from the Project menu of Visual C/C++, click the Link tab, select the category
General, and append ntdll.dll to the Object/library modules list. Alternatively, you
can add the line #pragma comment (linker, “/defaultlib:ntdll.lib”) somewhere
to your source code. This has the same effect, but has the advantage that other develop-
ers can rebuild your project with default Visual C/C++ settings.

Disassembling the code of some of the C Runtime functions available from
both ntdll.dll and ntoskrnl.exe shows that ntdll.dll does not rely on
ntoskrnl.exe here, like it did with respect to the Native API functions. Instead,
both modules implement the functions separately. The same applies to all other
functions presented in this section. Note that some of these functions in Table B-3
aren’t intended for import by name. For example, if you are using the shift opera-
tors >> and << on 64-bit LARGE_INTEGER numbers in a kernel-mode driver, the com-
piler and linker will automatically import the _allshr() and _allshl() functions
from ntoskrnl.exe, respectively.

THE EXTENDED RUNTIME LIBRARY

Along with the standard C Runtime, Windows 2000 provides an extended set of run-
time functions. Again, both ntdll.dll and ntoskrnl.exe implement them separately,
and, again, the implemented sets overlap, but don’t match exactly. The functions

106 THE WINDOWS 2000 NATIVE API

belonging to this group share the common name prefix Rtl (for Runtime Library).
Table B-4 in Appendix B lists them all, using the same layout as Table B-3. The Win-
dows 2000 Runtime Library contains helper functions for common tasks that go
beyond the capabilities of C Runtime. For example, some of them handle security
issues, others manipulate Windows 2000–specific data structures, and still others
support memory management. It is hard to understand why Microsoft documents just
115 out of these 406 extremely useful functions in the Windows 2000 DDK.

THE FLOATING-POINT EMULATOR

I’ll conclude this gallery of API functions with another function set provided by
ntdll.dll, just to show how many interesting functions are buried inside this
goldmine. Table 2-1 lists a set of names that should look somewhat familiar to
assembly language programmers. Take one of the names starting with __e and
strip this prefix—you get an assembly language mnemonic of the floating-point
unit (FPU) built into the i386-compatible CPUs. In fact, ntdll.dll contains a full-
fledged floating-point emulator, represented by the functions in Table 2-1. This
proves again that this DLL is an immense repository of code and almost invites
a system spelunker to disassembly.

TABLE 2-1. The Floating Point Emulator Interface of ntdll.dll

FUNCTION NAMES

__eCommonExceptions __eFIST32 __eFLD64 __eFSTP32

__eEmulatorInit __eFISTP16 __eFLD80 __eFSTP64

__eF2XM1 __eFISTP32 __eFLDCW __eFSTP80

__eFABS __eFISTP64 __eFLDENV __eFSTSW

__eFADD32 __eFISUB16 __eFLDL2E __eFSUB32

__eFADD64 __eFISUB32 __eFLDLN2 __eFSUB64

__eFADDPreg __eFISUBR16 __eFLDPI __eFSUBPreg

__eFADDreg __eFISUBR32 __eFLDZ __eFSUBR32

__eFADDtop __eFLD1 __eFMUL32 __eFSUBR64

__eFCHS __eFIDIVR16 __eFMUL64 __eFSUBreg

__eFCOM __eFIDIVR32 __eFMULPreg __eFSUBRPreg

__eFCOM32 __eFILD16 __eFMULreg __eFSUBRreg

__eFCOM64 __eFILD32 __eFMULtop __eFSUBRtop

__eFCOMP __eFILD64 __eFPATAN __eFSUBtop

__eFCOMP32 __eFIMUL16 __eFPREM __eFTST

THE WINDOWS 2000 RUNTIME LIBRARY 107

(continued)

TABLE 2-1. (continued)

FUNCTION NAMES

__eFCOMP64 __eFIMUL32 __eFPREM1 __eFUCOM

__eFCOMPP __eFINCSTP __eFPTAN __eFUCOMP

__eFCOS __eFINIT __eFRNDINT __eFUCOMPP

__eFDECSTP __eFIST16 __eFRSTOR __eFXAM

__eFIDIVR16 __eFIST32 __eFSAVE __eFXCH

__eFIDIVR32 __eFISTP16 __eFSCALE __eFXTRACT

__eFILD16 __eFISTP32 __eFSIN __eFYL2X

__eFILD32 __eFISTP64 __eFSQRT __eFYL2XP1

__eFILD64 __eFISUB16 __eFST __eGetStatusWord

__eFIMUL16 __eFISUB32 __eFST32 NPXEMULATORTABLE

__eFIMUL32 __eFISUBR16 __eFST64 RestoreEm87Context

__eFINCSTP __eFISUBR32 __eFSTCW SaveEm87Context

__eFINIT __eFLD1 __eFSTENV

__eFIST16 __eFLD32 __eFSTP

For more information about the floating-point instruction set, please
consult the original documentation of the Intel CPUs 80386 and up. For example,
the Pentium manuals can be downloaded in PDF format from Intel’s Web site at
http://developer.intel.com/design/pentium/manuals/. The manual explaining the machine
code instruction set is called Intel Architecture Software Developer’s Manual.
Volume 2: Instruction Set Reference (Intel 1999b). Another great reference book with
detailed FPU information is Robert L. Hummel’s aged but still applicable i486 hand-
book (Hummel 1992).

OTHER API FUNCTION CATEGORIES

Along with the functions listed explicitly in Appendix B and Table 2-1, ntdll.dll
and ntoskrnl.exe export numerous other functions specific to various components
of the kernel. Rather than add more lengthy tables to this book, I’m including a short
one that lists the available function name prefixes with their associated categories
(Table 2-2). The ntdll.dll and ntoskrnl.exe columns contain the entry N/A (not
applicable) for modules that do not export functions of this category.

108 THE WINDOWS 2000 NATIVE API

TABLE 2-2. Function Prefix to Function Category Mapping

PREFIX ntdll.dll ntoskrnl.exe CATEGORY

__e N/A Floating-point emulator

Cc N/A Cache manager

Csr N/A Client-server runtime library

Dbg Debugging support

Ex N/A Executive support

FsRtl N/A File system runtime library

Hal N/A Hardware Abstraction Layer (HAL)
dispatcher

Inbv N/A System initialization/VGA boot
driver (bootvid.dll)

Init N/A System initialization

Interlocked N/A Thread-safe variable manipulation

Io N/A I/O manager

Kd N/A Kernel Debugger support

Ke N/A Kernel routines

Ki Kernel interrupt handling

Ldr Image loader

Lpc N/A Local Procedure Call (LPC) facility

Lsa N/A Local Security Authority (LSA)

Mm N/A Memory manager

Nls National Language Support (NLS)

Nt NT Native API

Ob N/A Object manager

Pfx Prefix handling

Po N/A Power manager

Ps N/A Process support

READ_REGISTER_ N/A Read from register address

Rtl Windows 2000 runtime library

Se N/A Security handling

WRITE_REGISTER_ N/A Write to register address

Zw Alternative Native API

<other> Helper functions and C runtime
library

NA, Not applicable.

THE WINDOWS 2000 RUNTIME LIBRARY 109

Many kernel functions use a uniform naming scheme of type Prefix
OperationObject(). For example, the function NtQueryInformationFile()
belongs to the Native API because of its Nt prefix, and obviously it executes a
QueryInformation operation on a File object. Not all functions obey this
rule, but many do, so it is usually easy to guess what a function does by simply
parsing its name.

FREQUENTLY USED DATA TYPES

When writing software that interacts with the Windows 2000 kernel—whether in
user-mode via ntdll.dll or in kernel-mode via ntoskrnl.exe—you will have to
deal with a couple of basic data types that are rarely seen in the Win32 world.
Many of them appear repeatedly in this book. The following section outlines the
most frequently used types.

INTEGRAL TYPES

Traditionally, integral data types come in several different variations. Neither the
Win32 Platform SDK header files nor the SDK documentation commit themselves
to a special nomenclature—they mix fundamental C/C++ types with several
derived types. Table 2-3 lists the commonly used integral types, showing their
equivalence relationships. In the “MASM” column, the assembly language type
names expected by the Microsoft Macro Assembler (MASM) are shown. The
Win32 Platform SDK defines BYTE, WORD, and DWORD as aliases for the correspond-
ing fundamental C/C++ data types. The columns “Alias #1” and “Alias #2” con-
tain other frequently used aliases. For example, WCHAR represents the basic Unicode
character type. The last column, “Signed,” lists the usual aliases of the correspond-
ing signed data types. It is important to keep in mind that ANSI characters of type
CHAR are signed quantities, whereas the Unicode WCHAR is unsigned. This inconsis-
tency can lead to unexpected side effects when the compiler converts these types to
other integral values in arithmetic or logical expressions.

The MASM TBYTE type (read “10-byte”) in the last row of Table 2-3 is an
80-bit floating-point number used in high-precision floating-point unit (FPU) oper-
ations. Microsoft Visual C/C++ doesn’t offer an appropriate fundamental data type
to Win32 programs—the 80-bit long double type featured by Microsoft’s 16-bit
compilers is now treated like a double, that is, i.e. a signed 64-bit number with an
11-bit exponent and a 52-bit mantissa, according to the IEEE real*8 specification.
Please note that the MASM TBYTE type has nothing to do with the Win32 TBYTE
(read “text byte”), which is a convenient macro that can define a CHAR or WCHAR
type, depending on the absence or presence of a #define UNICODE line in the
source code.

110 THE WINDOWS 2000 NATIVE API

TABLE 2-3. Equivalent Integral Data Types

BITS MASM FUNDAMENTAL ALIAS #1 ALIAS #2 SIGNED

8 BYTE unsigned char UCHAR CHAR

16 WORD unsigned short USHORT WCHAR SHORT

32 DWORD unsigned long ULONG LONG

32 DWORD unsigned int UINT INT

64 QWORD unsigned __int64 ULONGLONG DWORDLONG LONGLONG

80 TBYTE N/A

The Windows 2000 Device Driver Kit (DDK) is more consistent in its use of
aliases. You will usually come across the type names in the “Alias #1” and “Signed”
columns throughout the header files and documentation. As a long-term assembly
language programmer, I’ve grown accustomed to using the MASM types. Therefore,
you will frequently find the names listed in the “MASM” column in the header files
on the companion CD of this book.

Because 64-bit integer handling is somewhat awkward in a 32-bit programming
environment, Windows 2000 usually does not employ the fundamental __int64 type
and its derivatives. Instead, the DDK header file ntdef.h defines a neat union/struc-
ture combination that allows different interpretations of a 64-bit quantity as either a
pair of 32-bit chunks or a 64-bit monolith. Listing 2-3 shows the definition of the
LARGE_INTEGER and ULARGE_INTEGER types, representing signed and unsigned inte-
gers, respectively. The sign is controlled by using LONGLONG/ULONGLONG for the 64-bit
QuadPart member or LONG/ULONG for the 32-bit HighPart member.

STRINGS

In Win32 programming, the basic types PSTR and PWSTR are commonly used for
ANSI and Unicode strings. PSTR is defined as CHAR*, and PWSTR is a WCHAR* (see
Table 2-3). Depending on the absence or presence of the #define UNICODE directive
in the source code, the additional PTSTR pseudo-type evaluates to PSTR or PWSTR,
respectively, allowing maintenance of ANSI and Unicode versions of an application
with a single set of source files. Basically, these strings are simply pointers to zero-
terminated CHAR or WCHAR arrays. If you are working with the Windows 2000 kernel,
you have to deal with quite different string representations. The most common type
is the UNICODE_STRING, which is a three-part structure defined in Listing 2-4.

FREQUENTLY USED DATA TYPES 111

112 THE WINDOWS 2000 NATIVE API

typedef struct _UNICODE_STRING

{

USHORT Length;

USHORT MaximumLength;

PWSTR Buffer;

}

UNICODE_STRING, *PUNICODE_STRING;

typedef struct _STRING

{

USHORT Length;

USHORT MaximumLength;

PCHAR Buffer;

}

STRING, *PSTRING;

typedef STRING ANSI_STRING, *PANSI_STRING;

typedef STRING OEM_STRING, *POEM_STRING;

LISTING 2-4. Structured String Types

typedef union _LARGE_INTEGER

{

struct

{

ULONG LowPart;

LONG HighPart;

};

LONGLONG QuadPart;

}

LARGE_INTEGER, *PULARGE_INTEGER;

typedef union _ULARGE_INTEGER

{

struct

{

ULONG LowPart;

ULONG HighPart;

};

ULONGLONG QuadPart;

}

U LARGE_INTEGER, *PULARGE_INTEGER;

LISTING 2-3. LARGE_INTEGER and ULARGE_INTEGER

FREQUENTLY USED DATA TYPES 113

The Length member specifies the current length of the string in bytes—not charac-
ters! The MaximumLength member indicates the size of the memory block addressed by
the Buffer member where the string data resides, again in bytes, not characters. Because
Unicode characters are 16 bits wide, the Length is always twice the number of string
characters. Usually, the string pointed to by the Buffer member is zero-terminated.
However, some kernel-mode modules might rely entirely on the Length value and won’t
take care of adding the terminating zero character, so be careful in case of doubt.

The ANSI version of the Windows 2000 string structure is simply called
STRING, as shown in Listing 2-4. For convenience, ntdef.h also defines the
ANSI_STRING and OEM_STRING aliases to distinguish 8-byte strings containing charac-
ters of different code pages (default ANSI code page: 1252; default OEM code page:
437). However, the predominant string type of the Windows 2000 kernel is the UNI-
CODE_STRING. You will come across 8-bit strings only occasionally.

In Figure 2-3, I have drawn two typical UNICODE_STRING examples. The sample
on the left-hand side consists of two independent memory blocks: a UNICODE_STRING
structure and an array of 16-bit PWCHAR Unicode characters. This is probably the
most common string type found inside the Windows 2000 data areas. On the right-
hand side, I have added a frequently occurring special case, in which both the
UNICODE_STRING and the PWCHAR are part of the same memory block. Several kernel
functions, including some inside the Native API, return structured system informa-
tion in contiguous memory blocks. If the data includes strings, they are often stored
as embedded UNICODE_STRINGs, as shown in the right half of Figure 2-3. For exam-
ple, the NtQuerySystemInformation() function used in the sample code of Chapter 1
makes heavy use of this special string representation.

These string structures don’t need to be manipulated manually. ntdll.dll
and ntoskrnl.exe export a rich set of runtime API functions such as RtlCreat
UnicodeString(), RtlInitUnicodeString(), RtlCopyUnicodeString(),

and the like. Usually, an equivalent function is available for the STRING and
ANSI_STRING types as well. Many of these functions are officially documented in
the DDK, but some are not. However, it is usually easy to guess what the undocu-
mented string functions do and what arguments they take. The main advantage of
UNICODE_STRING and its siblings is the implicit specification of the size of the
buffer containing the string. If you are passing a UNICODE_STRING to a function
that converts its value in place, possibly increasing its length, this function simply
has to examine the MaximumLength member to find out whether enough space is
left for the result.

STRUCTURES

Several kernel API functions that work with objects expect them to be specified by
an appropriately filled OBJECT_ATTRIBUTES structure, outlined in Listing 2-5. For
example, the NtOpenFile() function doesn’t have a PWSTR or PUNICODE_STRING
argument for the path of the file to be opened. Instead, the ObjectName member of
an OBJECT_ATTRIBUTES structure indicates the path. Usually, the setup of this structure
is trivial. Along with the ObjectName, the Length and Attributes members are
required. The Length must be set to sizeof (OBJECT_ATTRIBUTES), and the
Attributes are a combination of OBJ_* values from ntdef.h, for example,
OBJ_CASE_INSENSITIVE if the object name should be matched without regard to
character case. Of course, the ObjectName is a UNICODE_STRING pointer, not a plain
PWSTR. The remaining members can be set to NULL as long as they aren’t needed.

114 THE WINDOWS 2000 NATIVE API

n Characters

m Characters

\0

WCHAR []

USHORT Length
2 * n

USHORT MaximumLength
2 * (n + 1 + m)

PWSTR Buffer

n Characters

\0

Buffer

MaximumLength
2 * (n + 1)

Length
2 * n

WCHAR []

UNICODE_STRING

UNICODE_STRING

FIGURE 2-3. Examples of UNICODE_STRINGs

FREQUENTLY USED DATA TYPES 115

typedef struct _OBJECT_ATTRIBUTES

{

ULONG Length;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor;

PVOID SecurityQualityOfService;

}

OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;

LISTING 2-5. The OBJECT_ATTRIBUTES structure

typedef struct _IO_STATUS_BLOCK

{

NTSTATUS Status;

ULONG Information;

}

IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

LISTING 2-6. The IO_STATUS_BLOCK structure

Whereas the OBJECT_ATTRIBUTES structure specifies details about the input data
of an API function, the IO_STATUS_BLOCK structure in Listing 2-6 provides information
about the outcome of the requested operation. This structure is quite simple—the
Status member contains an NTSTATUS code, which can assume the value STATUS_
SUCCESS or any of the error codes defined in the DDK header file ntstatus.h. The
Information member provides additional request-specific data in case of success. For
example, if the function has returned a data block, this member is typically set to the
size of this block.

Another ubiquitous Windows 2000 data type is the LIST_ENTRY structure,
shown in Listing 2-7. The kernel uses this simple structure to arrange objects in
doubly linked lists. It is quite common that one object is part of several lists,
resulting in multiple LIST_ENTRY structures used in the object’s definition. The
Flink member is the forward link, pointing to the next item, and the Blink mem-
ber is the backward link, addressing the previous one. The links always point to
another LIST_ENTRY, not to the owner object itself. Usually, the linked lists are
circular, that is, the last Flink points to the first LIST_ENTRY in the chain, and the
first Blink points to the end of the list. This makes it easy to traverse a linked list
in both directions from either end or even from a list item somewhere in the mid-
dle. If a program walks down a list of objects, it has to save the address of the
starting point to find out when it is time to stop. If a list contains just a single
entry, its LIST_ENTRY must reference itself—that is, both the Flink and Blink
members point to their own LIST_ENTRY.

Figure 2-4 illustrates the relationships between the members of object lists.
Objects A1, A2, and A3 are part of a three-item list. Note how A3.Flink points
back to A1 and A1.Blink points to A3. Object B1 on the right-hand side is the only
member of an orphaned list. Hence, its Flink and Blink members point to the
same address inside Object B1. Typical examples of doubly linked lists are process
and thread lists. The internal variable PsActiveProcessHead is a LIST_ENTRY
structure inside the .data section of ntoskrnl.exe that addresses the first (and—
by virtue of its Blink pointer—also the last) member of the system’s process list.
You can walk down this list in a Kernel Debugger console window by first issuing
the command dd PsActiveProcessHead, and then using copy and paste to set up
subsequent dd commands for the Flink or Blink values. Of course, this is an
annoying way of exploring Windows 2000 processes, but it might help gaining
insight into the basic system architecture. The Windows 2000 Native API
features much more convenient ways of enumerating processes, such as
NTQuerySystemInformation() function.

116 THE WINDOWS 2000 NATIVE API

typedef struct _LIST_ENTRY

{

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;

}

LIST_ENTRY, *PLIST_ENTRY;

LISTING 2-7. The LIST_ENTRY Structure

Object A1 Object A2 Object A3 Object B1

LIST_ENTRY

Flink
Blink

LIST_ENTRYLIST_ENTRYLIST_ENTRY

Flink
Blink

Flink
Blink

Flink
Blink

FIGURE 2-4. Examples of Doubly Linked Lists

INTERFACING TO THE NATIVE API 117

typedef struct _CLIENT_ID

{

HANDLE UniqueProcess;

HANDLE UniqueThread;

}

CLIENT_ID, *PCLIENT_ID;

LISTING 2-8. The CLIENT_ID Structure

API functions operating on processes and threads, such as NtOpenProcess()
and NtOpenThread(), use the CLIENT_ID structure shown in Listing 2-8 to jointly spec-
ify process and thread IDs. Although defined as HANDLE types, the UniqueProcess and
UniqueThread members aren’t handles in the strict sense. Instead, they are integral
process and thread IDs, as returned by the standard Win32 API functions GetCurrent-
ProcessId() and GetCurrentThreadId(), which have DWORD return values.

The CLIENT_ID structure is also used by the Windows 2000 Executive to
globally identify a thread in the system. For example, if you are issuing the Kernel
Debugger’s !thread command to display the parameters of the current thread, it
will list its CLIENT_ID in the first output line as "Cid ppp.ttt," where "ppp" is the
value of the UniqueProcess member, and "ttt" is the UniqueThread ID.

INTERFACING TO THE NATIVE API

For kernel-mode drivers, interfacing to the Native API is normal, just as calling
Win32 API functions is in a user-mode application. The header and library files
provided by the Windows 2000 DDK contain everything needed to call into the
Native API exposed by ntoskrnl.exe. On the other hand, the Win32 Platform
SDK contains almost no support for applications that want to use Native API func-
tions exported by ntdll.dll. I say “almost” because one important item is actu-
ally included: It is the import library ntdll.lib, supplied in the \Program Files\
Microsoft Platform SDK\Lib directory. Without the library, it would be difficult
to call functions exported by ntdll.dll.

ADDING THE NTDLL.DLL IMPORT LIBRARY TO A PROJECT

Before you can successfully compile and link user-mode code that uses ntdll.dll
API functions, you must consider the following four important points:

1. The Platform SDK header files don’t contain prototypes for these functions.

2. Several basic data structures used by these functions are missing from the
SDK files.

3. The SDK and DDK header files are incompatible—you cannot add
#include <ntddk.h> to your Win32 C source files.

4. ntdll.lib is not included in the default list of import libraries offered by
Visual C/C++.

The last problem is easily solved. Just edit the project settings of your applica-
tion, or add the line #pragma comment (linker, “/defaultlib:ntdll.lib”) to
your source code, as explained in the section The Windows 200 Runtime Library ear-
lier in this chapter. This linker pragma adds ntdll.lib to the /defaultlib settings
of the linker command at compile time. The problem with the missing definitions is
much more difficult. Because it is not possible to merge the SDK and DDK header
files in programs written in plain C, the least expensive solution is to write a custom
header file that contains just as many definitions as needed to call the required
ntdll.dll API functions. Fortunately, you don’t have to start from scratch. The
w2k_def.h file in the \src\common\include directory of the sample CD contains
much of the basic information you may need. This header file will play an important
role in Chapters 6 and 7. Because it is designed to be compatible to both user-mode
and kernel-mode projects, you must insert the line #define _USER_MODE_ somewhere
before the #include <w2k_def.h> line in user-mode code to enable the definitions
that are present in the DDK but missing from the SDK.

Considerable information about Native API programming has already been
published elsewhere. Three good sources of detailed information on this topic are
listed below in chronological order of publication:

• Mark Russinovich has published an article titled “Inside the Native API”
on the sysinternals.com Web site, available for download at
http://www.sysinternals.com/ntdll.htm (Russinovich 1998).

• The November 1999 issue of Dr. Dobb’s Journal (DDJ) contains my article
“Inside Windows NT System Data,” which details, among other things,
how to interface to ntdll.dll and provides lots of sample code that
facilitates this task (Schreiber 1999). The sample code can be downloaded
from the DDJ Web site at http://www.ddj.com/ftp/1999/1999_11/ntinfo.zip.
Please note that this article targets Windows NT 4.0 only.

• Gary Nebbett’s recently published Native API bible, Windows NT/2000
Native API Reference (Nebbett 2000), doesn’t contain much sample code,
but it does feature complete coverage of all Native API functions available in
Windows NT 4.0 and Windows 2000, including the data structures and
other definitions they require. It is an ideal complement to the above articles.

118 THE WINDOWS 2000 NATIVE API

The w2k_call.dll sample library, introduced in Chapter 6, demonstrates the
typical usage of w2k_def.h. Chapter 6 also discusses an alternative method to call
into the Windows 2000 kernel from user-mode that isn’t restricted to the Native API
function set. Actually, this trick is not restricted to ntoskrnl.exe—it is applicable to
any module loaded into kernel memory that either exports API functions or comes
with matching .dbg or .pdb symbol files. As you see, there is plenty of interesting
material waiting for you in the remaining chapters of this book. But, before we get
there, we’ll discuss some fundamental concepts and techniques.

INTERFACING TO THE NATIVE API 119

