
In the next chapters, we will frequently have to access system resources that are avail-
able in kernel-mode only. Large portions of the sample code are designed as kernel-

mode driver routines. Therefore, some basic knowledge about the development of this
type of software is required. Because I cannot assume that all readers already have this
expertise, I will insert here a short introduction to kernel-mode programming that
focuses on the usage of a driver wizard found on the accompanying CD.

This chapter also discusses the basics of the Windows 2000 Service Control
Manager that allow loading, controlling, and unloading drivers at runtime, resulting
in wonderfully short change-build-test turnaround cycles. The title of this chapter
might be a bit misleading—the word driver is usually associated with low-level soft-
ware that controls some piece of hardware. In fact, many kernel-mode programmers
do just that all day long. However, the layered driver model of Windows 2000 allows
much more than this. Kernel-mode drivers can do arbitrary complex tasks and might
even act like high-level user-mode DLLs, except that they are running on a higher
CPU privilege level and use a different programming interface. In this book, the dri-
ver paradigm will not be applied to any hardware. Instead, we will use this powerful
programming technique to spy on Windows 2000 internals, using kernel-mode dri-
vers as a shuttle to fly from the small world of user-mode to the outer space of the
Windows 2000 kernel.

CREATING A DRIVER SKELETON

Even developers who have been writing Win32 applications or libraries for a long
time tend to feel like absolute beginners as soon as they have to write their first ker-
nel-mode driver. The reason for this is that kernel-mode code runs in a completely

121

C H A P T E R 3

Writing
Kernel-Mode
Drivers

different operating system environment. A Win32 programmer works exclusively
with a set of system components that belong to a subsystem of Windows 2000,
named Win32. Other programmers might prefer to write POSIX or OS/2 applica-
tions, which are also supported by Windows 2000 by means of additional subsys-
tems. Thanks to its subsystem concept, Windows 2000 acts like a chameleon—it can
emulate various operating systems by exposing their application interfaces in the
form of subsystems. Contrary to this, kernel-mode modules are located somewhere
below this layer, using a more basic operating system interface. Because there are no
more subsystems on this system level, kernel-mode code can “see” the real Windows
2000 operating system. The interface they are talking to is the “final frontier.” Of
course, it is not absolutely correct that the kernel-mode zone is free of subsystems. In
Chapter 2, we saw that the win32k.sys module is a kernel-mode branch of the
Win32 GUI and Window Manager, installed there for performance reasons. How-
ever, only a small part of the API functions exposed by win32k.sys reappear in
gdi32.dll and user32.dll as Win32 API functions, so Win32K is more than just a
Win32 foot on kernel-mode soil. It could be regarded as a high-performance display
engine kernel as well.

THE WINDOWS 2000 DEVICE DRIVER KIT

Because kernel-mode programming works on a different system interface, the usual
header and import library files used in Win32 programming aren’t of use here. For
Win32 development, Microsoft provides the Platform Software Development Kit
(SDK). For kernel-mode drivers, the Windows 2000 Device Driver Kit (DDK) is
required. Along with documentation, the DDK provides special header files and
import libraries needed to interface the Windows 2000 kernel modules. After
installing the DDK, your next step should be to open Microsoft Visual C to add the
DDK file paths to the directory lists of the compiler and linker. From the main menu,
select Tools and Options..., then click on the Directories tab. From the Show directo-
ries for: drop-down list, select Include files and add the appropriate DDK path to the
list, as shown in Figure 3-1. By default, the DDK is installed into a base directory
named \NTDDK, and the included files are located in the \NTDDK\inc subdirectory.
After entering the path, use the up arrow to move it to the position of your
choice—preferably on Top Two right after the Platform SDK. Always keep the origi-
nal Microsoft Visual Studio files at the end of the list, because many of them are
superseded by more recent SDK and DDK files.

After adding the base directory of the DDK header files, do the same for the
import libraries. The DDK comes with two sets of files, one for free (release)
builds, and another one for checked (debug) builds. The corresponding subdirecto-
ries are \NTDDK\libfre\i386 and \NTDDK\libchk\i386, respectively. Figure 3-2

122 WRITING KERNEL-MODE DRIVERS

CREATING A DRIVER SKELETON 123

FIGURE 3-1. Adding the DDK Header File Path

FIGURE 3-2. Adding the DDK Import Library Path

shows an example. To enter the path, select Library files from the Show directories
for: list first. After you are done, move this entry to an appropriate position using
the up arrow.

The programming environment of the DDK differs somewhat from the Win32
model. The following list points out some of the most obvious differences:

• For Win32 programs, the main header file that has to be included is
windows.h. In kernel-mode driver code, this file is not applicable. It is
replaced by ntddk.h.

• The main entry point function is called DriverEntry(), not WinMain() or
main(). Its prototype is shown in Listing 3-1.

• Be aware that some of the common Win32 data types, such as BYTE,
WORD, and DWORD, are not available. The DDK prefers UCHAR, USHORT,
ULONG, and the like. However, it is easy to define your favorite types, as
done exemplary in Listing 3-2.

Three important differences between the Windows NT 4.0 and Windows 2000
versions of the DDK should be noted as well:

• Although the base directory of the Windows NT 4.0 DDK is called \DDK
by default, the Windows 2000 DDK now uses the default name \NTDDK.

• In the Windows NT 4.0 DDK, the main header file ntddk.h resides in the
base directory. In the Windows 2000 DDK, this file has moved to the
subdirectory ddk of the base directory.

• The paths of the import library files have changed as well: lib\i386\free
has become libfre\i386, and lib\i386\checked has been replaced by
libchk\i386.

I am not sure whether this reshuffling and renaming was really necessary, but
we do have to live with it now.

124 WRITING KERNEL-MODE DRIVERS

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath);

LISTING 3-1. Prototype of the DriverEntry() Function

CREATING A DRIVER SKELETON 125

typedef UCHAR BYTE, *PBYTE;

typedef USHORT WORD, *PWORD;

typedef ULONG DWORD, *PDWORD;

LISTING 3-2. Defining Common Win32 Data Types

A CUSTOMIZABLE DRIVER WIZARD

The main problem with kernel-mode drivers is that Visual C/C++ doesn’t provide a
wizard for projects of this kind. None of the various project types offered by the
File/New dialog is suited for drivers. Fortunately, the Microsoft Developer Network
(MSDN) Library contains a series of great articles about Windows NT kernel-mode
driver development, written between 1994 and 1995 by Ruediger R. Asche. Two of
them give detailed instructions on how to add a custom driver wizard to Visual
C/C++, with sample code and application notes (Asche 1995a, 1995b). These articles
have been of immense help to me, and although the output of the original wizard did-
n’t fit all my needs, it was an ideal starting point. The kernel-mode driver wizard I will
present now is based on output files generated by Ruediger Asche’s original wizard.

My driver wizard is included with full source code on the companion CD of this
book in the directory tree \src\w2k_wiz. By reading the source files, you will find
that its real title is “SBS Windows 2000 Code Wizard.” In fact, this is a general-
purpose Windows 2000 program skeleton generator that can produce several pro-
gram types, including Win32 DLLs and applications. However, the configuration
files on the CD are tailored to kernel-mode driver development. Essentially, my wiz-
ard is a file converter that reads in a set of files, converts them by applying some sim-
ple rules, and writes the results back to another set of files. The input files are
templates, and the output files are C project files. By modifying the templates, the
driver wizard can be turned into a DLL wizard, and so on. Up to seven templates can
be supplied (if one is missing, a noncritical error is reported):

• Files with the extension .tw are workspace templates and will be saved as
Microsoft Developer Studio Workspace Files with extension .dsw. You
probably know this file type from the File/Open Workspace... menu
command of Visual C/C++, which requests a .dsw file to be specified.

• Files with the extension .tp are project templates and will be saved as
Microsoft Developer Studio Project Files with extension .dsp. Project files
are referenced by the associated workspace files and contain all build
settings of the project for all configurations (e.g., Release and Debug).

• Files with the extensions .tc, .th, .tr, and .td are C source files and
will become files of type .c, .h, .rc, and .def. I am sure that everyone
knows the purpose of these files.

• Files with the extension .ti are icon files and are saved unchanged with
extension .ico. This template is just a dummy icon included with the
wizard to prevent the resource compiler from reporting an error. You
should edit or replace it by your own creation after running the wizard.

This seven-piece set of files is the minimum requirement of a new project. The
.def file is a somewhat old-fashioned way of exporting API functions from a DLL,
but I like it more than the __declspec(dllexport) method. Because drivers usually
don’t export functions, I have omitted the .td template, which results in a benign
error reported by the wizard. I also could have omitted the resource script and the
icon, but experience shows that both are nice to have. Moreover, the default .rc file
output by the wizard contains a full-featured personalized version resource, con-
structed from your individual configuration settings. The applied conversion rules
are simple, consisting of a short list of string substitutions. While scanning a template
file, the converter looks for escape sequences consisting of character pairs in which
the first one is a percent sign. If it detects one, it decides which action to take by eval-
uating the second character. Table 3-1 lists the recognized escape sequences.

TABLE 3-1. The Wizard’s String Substitution Rules

INPUT OUTPUT

%n Project name (original notation)

%N Project name (uppercase notation)

%s Fully qualified path of the w2k_wiz.ini file

%d Current day (always two digits)

%m Current month (always two digits)

%y Current year (always four digits)

%t Default project description, as defined in w2k_wiz.ini

%c Author’s company name, as defined in w2k_wiz.ini

%a Author’s name, as defined in w2k_wiz.ini

%e Author’s email address, as defined in w2k_wiz.ini

%p Default ProgID prefix, as defined in w2k_wiz.ini

%i DDK header file path, as defined in w2k_wiz.ini

%l DDK import library path (release configuration), as defined in w2k_wiz.ini

%L DDK import library path (debug configuration), as defined in w2k_wiz.ini

%% % (escapement for a single percent character)

%<other> Copied unchanged to the output file

126 WRITING KERNEL-MODE DRIVERS

Table 3-1 contains several references to the configuration file w2k_wiz.ini. Its
default contents are shown in Example 3-1. Before using the wizard, you should copy
w2k_wiz.exe, w2k_wiz.ini, and all w2k_wiz.t* template files from the CD’s
\src\w2k_wiz\release directory to your hard disk and edit the configuration file,
replacing the values in angular brackets with your personal settings. You should also
set the Include, Free, and Checked values to match your DDK setup configuration.
If you are using Visual C/C++ Version 6.0, the Root entry can remain unchanged. If
not, set its value to the registry key where the base directory of your projects is stored.
If this value ends with a backslash, it is interpreted as the default value of the specified
registry key. Otherwise, the token following the last backslash should denote a named
value of the key specified by the remaining character sequence. In Example 3-1, the
key is HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Directories, and
its value WorkspaceDir stores the basic workspace directory.

Invocation of the wizard is: Just type w2k_wiz MyDriver, and it will generate a
project folder named MyDriver in the current directory, containing the files
MyDriver.dsw, MyDriver.dsp, MyDriver.c, MyDriver.h, MyDriver.rc, and
MyDriver.ico. If you specify the project name with a preceding path, the project
folder will be created at the specified location. Another legal command option is the
asterisk, such as in w2k_wiz *MyDriver. In this case, the wizard will not create the
project folder in the current directory, but queries the registry for the default base
directory maintained by Visual C/C++, using the Root entry in w2k_wiz.ini. This is
probably the most convenient command variant and is the one I usually use.

CREATING A DRIVER SKELETON 127

; w2k_wiz.ini

; 08-27-2000 Sven B. Schreiber

; sbs@orgon.com

[Settings]

Text = <SBS Windows 2000 Code Wizard Project>

Company = <MyCompany>

Author = <MyName>

Email = <my@email>

Prefix = <MyPrefix>

Include = E:\NTDDK\inc

Free = E:\NTDDK\libfre\i386

Checked = E:\NTDDK\libchk\i386

Root = HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Directories\WorkspaceDir

EXAMPLE 3-1. Personal Settings Supported by the Wizard

The wizard always looks for its configuration and template files in the direc-
tory of the executable. Therefore, you can keep several copies of the wizard with
different settings on your disk, provided that they reside in individual directories or
have different base names. The files on the CD are preset for simple kernel-mode
driver projects. You can customize all files to fit your needs, keeping separate copies
for drivers, Win32 applications, DLLs, or whatever type of Windows 2000 code
you write.

RUNNING THE DRIVER WIZARD

Now it is time to try the driver wizard. The example below resulted from the com-
mand w2k_wiz *TestDrv entered at a Windows 2000 console prompt. This should
create a project named TestDrv in the default workspace folder of Visual C/C++.
Example 3-2 shows the status messages displayed by the program on the screen while
it is converting files.

128 WRITING KERNEL-MODE DRIVERS

D:\>w2k_wiz *TestDrv

// w2k_wiz.exe

// SBS Windows 2000 Code Wizard V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Project D:\Program Files\DevStudio\MyProjects\TestDrv\

Loading D:\etc32\w2k_wiz.tc ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.c ... OK

Loading D:\etc32\w2k_wiz.td ... ERROR

Loading D:\etc32\w2k_wiz.th ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.h ... OK

Loading D:\etc32\w2k_wiz.ti ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.ico ... OK

Loading D:\etc32\w2k_wiz.tp ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsp ... OK

Loading D:\etc32\w2k_wiz.tr ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.rc ... OK

Loading D:\etc32\w2k_wiz.tw ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsw ... OK

EXAMPLE 3-2. Running the Windows 2000 Code Wizard

Obviously, all operations were completed without error except for the .td to
.def conversion, which is a benign error condition. The driver skeleton produced by
the wizard doesn’t require a .def file, so there is no need for a .td template. Now it
should be possible to open the new workspace in Visual C/C++, using the File/Open
Workspace... menu command. Indeed, there is a new folder named TestDrv, and it
contains a workspace file named TestDrv.dsw that can be opened without problem.
Next, you should select the active configuration for your builds. The .dsp file gener-
ated by the driver wizard defines the following two configurations:

1. Win2K kernel-mode driver (debug)

2. Win2K kernel-mode driver (release)

By default, the debug configuration is selected, but you can switch configurations
at any time by choosing Build/Set Active Configuration... from the Visual C/C++ menu.
Next, you should copy the file \src\common\include\DrvInfo.h from the CD to one
of your header file directories, and open the TestDrv.c, TestDrv.h, and TestDrv.rc
files for editing. When opening TestDrv.rc, be sure to open it as a text file (Figure 3-3),
because it uses complex macros from DrvInfo.h that cause the resource editor to die
with an exception. This nasty problem was introduced with Visual C/C++ 5.0, as far as
I remember, and has not yet been fixed. Contrary to the editor, the resource compiler
doesn’t have problems with complex resource macros.

CREATING A DRIVER SKELETON 129

FIGURE 3-3. Opening the Driver Source Files in Text Mode

130 WRITING KERNEL-MODE DRIVERS

Deleting intermediate files and output files for project ‘TestDrv - Win2K ...

-------- Configuration: TestDrv - Win2K kernel-mode driver (release) ...

Compiling resources...

Compiling...

TestDrv.c

Linking...

TestDrv.sys - 0 error(s), 0 warning(s)

EXAMPLE 3-3. Building the Release Version of the Test Driver

INSIDE THE DRIVER SKELETON

Listing 3-3 shows the TestDrv.c file emitted by the wizard. The associated header
file TestDrv.h is shown in Listing 3-4. In Listing 3-3, please note the <MyName> and
<MyCompany> tags in the heading and in the fourth line of the disclaimer. If the
Author and Company entries in w2k_wiz.ini are set appropriately, your own name
and company strings will go here. Also note that the current date appears in the
heading, as well as in the revision history. (Listing 3-3 was generated on August 27,
2000, so the date is correct.) More values from the wizard’s configuration file are
found in the PROGRAM IDENTIFICATION section of Listing 3-4.

Now everything should be set up for the first build. In Example 3-3, I have
attempted to build a release version of the new driver by selecting Build/Rebuild All
from the Visual C/C++ menu, and it seems that everything works fine. By the way,
the ellipses ending the first two lines of the build command output indicate that I
have truncated them.

The linker creates an executable file named TestDrv.sys in the Debug or
Release subdirectory of the project folder, depending on the chosen build configura-
tion. The release version of the test driver is 5.5 KB in size, and the debug version is
8 KB. You can use the Multi-Format Visual Disassembler (MFVDasm) or the PE
and COFF File Viewer (PEview) on the companion CD to verify that the resulting
TestDrv.sys file contains valid code and data.

CREATING A DRIVER SKELETON 131

// TestDrv.c

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

#define _TESTDRV_SYS_

#include <ddk\ntddk.h>

#include “TestDrv.h”

// ===

// DISCLAIMER

// ===

/*

This software is provided “as is” and any express or implied

warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed.

In no event shall the author <MyName> be liable for any direct,

indirect, incidental, special, exemplary, or consequential

damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether

in contract, strict liability, or tort (including negligence

or otherwise) arising in any way out of the use of this software,

even if advised of the possibility of such damage.

*/

// ===

// REVISION HISTORY

// ===

/*

// 08-27-2000 V1.00 Original version.

*/

// ===

// GLOBAL DATA

// ===

PRESET_UNICODE_STRING (usDeviceName, CSTRING (DRV_DEVICE));

PRESET_UNICODE_STRING (usSymbolicLinkName, CSTRING (DRV_LINK));

PDEVICE_OBJECT gpDeviceObject = NULL;

PDEVICE_CONTEXT gpDeviceContext = NULL;

// ===

// DISCARDABLE FUNCTIONS

// ===

(continued)

132 WRITING KERNEL-MODE DRIVERS

NTSTATUS DriverInitialize (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath);

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath);

// ---

#ifdef ALLOC_PRAGMA

#pragma alloc_text (INIT, DriverInitialize)

#pragma alloc_text (INIT, DriverEntry)

#endif

// ===

// DEVICE REQUEST HANDLER

// ===

NTSTATUS DeviceDispatcher (PDEVICE_CONTEXT pDeviceContext,

PIRP pIrp)

{

PIO_STACK_LOCATION pisl;

DWORD dInfo = 0;

NTSTATUS ns = STATUS_NOT_IMPLEMENTED;

pisl = IoGetCurrentIrpStackLocation (pIrp);

switch (pisl->MajorFunction)

{

case IRP_MJ_CREATE:

case IRP_MJ_CLEANUP:

case IRP_MJ_CLOSE:

{

ns = STATUS_SUCCESS;

break;

}

}

pIrp->IoStatus.Status = ns;

pIrp->IoStatus.Information = dInfo;

IoCompleteRequest (pIrp, IO_NO_INCREMENT);

return ns;

}

// ===

// DRIVER REQUEST HANDLER

// ===

NTSTATUS DriverDispatcher (PDEVICE_OBJECT pDeviceObject,

PIRP pIrp)

{

CREATING A DRIVER SKELETON 133

return (pDeviceObject == gpDeviceObject

? DeviceDispatcher (gpDeviceContext, pIrp)

: STATUS_INVALID_PARAMETER_1);

}

// ---

void DriverUnload (PDRIVER_OBJECT pDriverObject)

{

IoDeleteSymbolicLink (&usSymbolicLinkName);

IoDeleteDevice (gpDeviceObject);

return;

}

// ===

// DRIVER INITIALIZATION

// ===

NTSTATUS DriverInitialize (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath)

{

PDEVICE_OBJECT pDeviceObject = NULL;

NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;

if ((ns = IoCreateDevice (pDriverObject, DEVICE_CONTEXT_,

&usDeviceName, FILE_DEVICE_CUSTOM,

0, FALSE, &pDeviceObject))

== STATUS_SUCCESS)

{

if ((ns = IoCreateSymbolicLink (&usSymbolicLinkName,

&usDeviceName))

== STATUS_SUCCESS)

{

gpDeviceObject = pDeviceObject;

gpDeviceContext = pDeviceObject->DeviceExtension;

gpDeviceContext->pDriverObject = pDriverObject;

gpDeviceContext->pDeviceObject = pDeviceObject;

}

else

{

IoDeleteDevice (pDeviceObject);

}

}

return ns;

}

// ---

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath)

{

(continued)

134 WRITING KERNEL-MODE DRIVERS

PDRIVER_DISPATCH *ppdd;

NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;

if ((ns = DriverInitialize (pDriverObject, pusRegistryPath))

== STATUS_SUCCESS)

{

ppdd = pDriverObject->MajorFunction;

ppdd [IRP_MJ_CREATE] =

ppdd [IRP_MJ_CREATE_NAMED_PIPE] =

ppdd [IRP_MJ_CLOSE] =

ppdd [IRP_MJ_READ] =

ppdd [IRP_MJ_WRITE] =

ppdd [IRP_MJ_QUERY_INFORMATION] =

ppdd [IRP_MJ_SET_INFORMATION] =

ppdd [IRP_MJ_QUERY_EA] =

ppdd [IRP_MJ_SET_EA] =

ppdd [IRP_MJ_FLUSH_BUFFERS] =

ppdd [IRP_MJ_QUERY_VOLUME_INFORMATION] =

ppdd [IRP_MJ_SET_VOLUME_INFORMATION] =

ppdd [IRP_MJ_DIRECTORY_CONTROL] =

ppdd [IRP_MJ_FILE_SYSTEM_CONTROL] =

ppdd [IRP_MJ_DEVICE_CONTROL] =

ppdd [IRP_MJ_INTERNAL_DEVICE_CONTROL] =

ppdd [IRP_MJ_SHUTDOWN] =

ppdd [IRP_MJ_LOCK_CONTROL] =

ppdd [IRP_MJ_CLEANUP] =

ppdd [IRP_MJ_CREATE_MAILSLOT] =

ppdd [IRP_MJ_QUERY_SECURITY] =

ppdd [IRP_MJ_SET_SECURITY] =

ppdd [IRP_MJ_POWER] =

ppdd [IRP_MJ_SYSTEM_CONTROL] =

ppdd [IRP_MJ_DEVICE_CHANGE] =

ppdd [IRP_MJ_QUERY_QUOTA] =

ppdd [IRP_MJ_SET_QUOTA] =

ppdd [IRP_MJ_PNP] = DriverDispatcher;

pDriverObject->DriverUnload = DriverUnload;

}

return ns;

}

// ===

// END OF PROGRAM

// ===

LISTING 3-3. The Source Code of the Driver Skeleton

The C code of the driver skeleton in Listings 3-3 and 3-4 contains some com-
mon boilerplate code that is shared by all kernel-mode drivers I have written so far. I
have designed the wizard to be as customizable as possible. Feel free to change the

CREATING A DRIVER SKELETON 135

// TestDrv.h

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

// ===

// PROGRAM IDENTIFICATION

// ===

#define DRV_BUILD 1

#define DRV_VERSION_HIGH 1

#define DRV_VERSION_LOW 0

// ---

#define DRV_DAY 27

#define DRV_MONTH 08

#define DRV_YEAR 2000

// ---

// Customize these settings by editing the configuration file

// D:\etc32\w2k_wiz.ini

#define DRV_MODULE TestDrv

#define DRV_NAME <SBS Windows 2000 Code Wizard Project>

#define DRV_COMPANY <MyCompany>

#define DRV_AUTHOR <MyName>

#define DRV_EMAIL <my@email>

#define DRV_PREFIX <MyPrefix>

// ===

// HEADER FILES

// ===

#include <drvinfo.h> // defines more DRV_* items

//

#ifndef _RC_PASS_

//

// ===

// CONSTANTS

// ===

#define FILE_DEVICE_CUSTOM 0x8000

// ===

// STRUCTURES

// ===

typedef struct _DEVICE_CONTEXT

{

(continued)

136 WRITING KERNEL-MODE DRIVERS

PDRIVER_OBJECT pDriverObject;

PDEVICE_OBJECT pDeviceObject;

}

DEVICE_CONTEXT, *PDEVICE_CONTEXT, **PPDEVICE_CONTEXT;

#define DEVICE_CONTEXT_ sizeof (DEVICE_CONTEXT)

//

#endif // #ifndef _RC_PASS_

//

// ===

// END OF FILE

// ===

LISTING 3-4. The Header File of the Driver Skeleton

wizard’s templates. For those who want to keep the code for now, the following sec-
tion is a short description of its internals.

The main entry point of the driver module is DriverEntry(). Like all Windows
2000 module entry points, this name is not a requirement. You can choose any
symbol you like, but you must tell the linker the name of the entry point by adding
the /entry switch to its command line. For this test driver, the wizard has already
taken care of this task. Inside the w2k_wiz.tp template or the resulting TestDrv.dsp
file, you will find two occurrences of the string /entry:”DriverEntry@8” in the
linker command line, one for each build configuration. The @8 suffix indicates that
DriverEntry() receives eight argument bytes on the stack, which is in perfect con-
gruence with its prototype definition in Listing 3-1: two pointer arguments, each of
them 32 bits wide, yield 64 bits, or 8 bytes.

The first thing DriverEntry() does is call DriverInitialize(), which
will create a device object and a symbolic link that you will probably need later to
communicate with the device from user-mode applications. It is a bit difficult to find
out which names are used in the IoCreateDevice() and IoCreateSymbolicLink()
calls, because they are constructed by macros defined in the common header file
DrvInfo.h, found in the \src\common\include directory of the CD. This file is a
header file that compiles various sorts of program information from a couple of basic
customizable strings. If you want to know more about this trick, go to the PROGRAM
IDENTIFICATION section in TestDrv.h (see top of Listing 3-4) and trace the DRV_*
definitions as they are grouped in various ways inside DrvInfo.h. For example, a
full-fledged VERSIONINFO resource is constructed from several pieces. Among other
things, the constants DRV_DEVICE and DRV_LINK are defined, which evaluate to

CREATING A DRIVER SKELETON 137

\Device\TestDrv and \DosDevices\TestDrv here, respectively. Note that many
kernel API functions, such as IoCreateDevice() and IoCreateSymbolicLink(),
don’t accept strings as plain zero-terminated character sequences, but rather expect
them to be packed into a special UNICODE_STRING structure, introduced in Chapter 2
and repeated in Listing 3-5. The macro PRESET_UNICODE_STRING, defined in
DrvInfo.h and applied in the GLOBAL DATA section of TestDrv.c in Listing 3-3,
creates a static UNICODE_STRING structure from a simple Unicode string literal. This is
a convenient shorthand notation for the definition of UNICODE_STRINGs that remain
unchanged throughout the lifetime of a program instance.

After successfully creating the device object and its symbolic link, Driver
Initialize() stores pointers to the device object and the device context in static
global variables. The device context is a private structure of the device that can have
arbitrary size and shape. The driver skeleton attaches a simple DEVICE_CONTEXT struc-
ture, defined in TestDrv.h, to its device. This structure contains nothing but pointers
to the device and driver objects. You can extend this structure if you need persistent
device-specific storage for any private data of your driver. The device context will be
supplied by the system with every I/O Request Packet (IRP) the driver receives.

After DriverInitialize() returns and reports success, DriverEntry() sets up
an important array, passed in by the system as part of the driver object structure
pDriverObject. This array contains slots for all IRPs the driver can expect, and
DriverEntry() has to write callback function pointers to the slots of all request
types it wishes to handle. The driver skeleton defers this decision and saves a single
DriverDispatcher() pointer to all 28 available slots, listed in Table 3-2. Later on,
DriverDispatcher() will decide which IRP types are of interest, returning
STATUS_NOT_IMPLEMENTED for all unhandled IRPs. Note that there are subtle differ-
ences between the Windows NT 4.0 and Windows 2000 layouts of the IRP handler
array. In Table 3-2, the differing slots are marked boldface.

typedef struct _UNICODE_STRING

{

WORD Length;

WORD MaximumLength;

PWORD Buffer;

}

UNICODE_STRING, *PUNICODE_STRING;

LISTING 3-5. An Ubiquitous Windows 2000 Structure: UNICODE_STRING

TABLE 3-2. I/O Request Packet Slots Compared

SLOT WINDOWS NT 4.0 WINDOWS 2000

0x00 IRP_MJ_CREATE IRP_MJ_CREATE

0x01 IRP_MJ_CREATE_NAMED_PIPE IRP_MJ_CREATE_NAMED_PIPE

0x02 IRP_MJ_CLOSE IRP_MJ_CLOSE

0x03 IRP_MJ_READ IRP_MJ_READ

0x04 IRP_MJ_WRITE IRP_MJ_WRITE

0x05 IRP_MJ_QUERY_INFORMATION IRP_MJ_QUERY_INFORMATION

0x06 IRP_MJ_SET_INFORMATION IRP_MJ_SET_INFORMATION

0x07 IRP_MJ_QUERY_EA IRP_MJ_QUERY_EA

0x08 IRP_MJ_SET_EA IRP_MJ_SET_EA

0x09 IRP_MJ_FLUSH_BUFFERS IRP_MJ_FLUSH_BUFFERS

0x0A IRP_MJ_QUERY_VOLUME_INFORMATION IRP_MJ_QUERY_VOLUME_INFORMATION

0x0B IRP_MJ_SET_VOLUME_INFORMATION IRP_MJ_SET_VOLUME_INFORMATION

0x0C IRP_MJ_DIRECTORY_CONTROL IRP_MJ_DIRECTORY_CONTROL

0x0D IRP_MJ_FILE_SYSTEM_CONTROL IRP_MJ_FILE_SYSTEM_CONTROL

0x0E IRP_MJ_DEVICE_CONTROL IRP_MJ_DEVICE_CONTROL

0x0F IRP_MJ_INTERNAL_DEVICE_CONTROL IRP_MJ_INTERNAL_DEVICE_CONTROL

0x10 IRP_MJ_SHUTDOWN IRP_MJ_SHUTDOWN

0x11 IRP_MJ_LOCK_CONTROL IRP_MJ_LOCK_CONTROL

0x12 IRP_MJ_CLEANUP IRP_MJ_CLEANUP

0x13 IRP_MJ_CREATE_MAILSLOT IRP_MJ_CREATE_MAILSLOT

0x14 IRP_MJ_QUERY_SECURITY IRP_MJ_QUERY_SECURITY

0x15 IRP_MJ_SET_SECURITY IRP_MJ_SET_SECURITY

0x16 IRP_MJ_QUERY_POWER IRP_MJ_POWER

0x17 IRP_MJ_SET_POWER IRP_MJ_SYSTEM_CONTROL

0x18 IRP_MJ_DEVICE_CHANGE IRP_MJ_DEVICE_CHANGE

0x19 IRP_MJ_QUERY_QUOTA IRP_MJ_QUERY_QUOTA

0x1A IRP_MJ_SET_QUOTA IRP_MJ_SET_QUOTA

0x1B IRP_MJ_PNP_POWER IRP_MJ_PNP

As soon as the IRP array is complete, DriverEntry() writes a pointer to its
DriverUnload() callback function to the driver object structure. This allows the dri-
ver to be unloaded at runtime. DriverUnload() simply destroys all objects created by
DriverInitialize(), that is, the symbolic link and the device. After that, the driver
can be safely removed from the system.

138 WRITING KERNEL-MODE DRIVERS

The DriverDispatcher() function is invoked whenever a module requests a
response from the driver. Because a driver can host several devices, the dispatcher
first checks which device should handle the request. The driver skeleton maintains
just a single device, so the only thing needed is a sanity check to verify that the device
object pointer is identical to the one received from IoCreateDevice() during initial-
ization. If it is, DriverDispatcher() forwards the received IRP to the Device
Dispatcher() function, along with the device context prepared by Driver
Initialize(). When you extend the skeleton to a multidevice driver, you may have
to write distinct IRP dispatchers for each device. The DeviceDispatcher() in Listing
3-3 is a trivial implementation that recognizes only three very common requests:
IRP_MJ_CREATE, IRP_MJ_CLEANUP, and IRP_MJ_CLOSE. These requests are handled
by returning a STATUS_SUCCESS code. This is the minimum requirement to allow the
device to be opened and closed without error. Other requests cause a
STATUS_NOT_IMPLEMENTED to be reported.

You may wonder about the purpose of the #pragma alloc_text lines in the
DISCARDABLE FUNCTIONS section of Listing 3-3. #pragma directives are a powerful
means to send commands to the compiler and linker while they are building a
module. The alloc_text command instructs them to write the code of the
specified function to a nondefault section inside the executable file. By default, all
code goes into the .text section. However, the directive #pragma alloc_text
(INIT, DriverEntry) causes the DriverEntry() code to be saved to a new file sec-
tion called INIT. The driver loader recognizes this special section and discards it
after initialization. DriverEntry() and its helper function DriverInitialize() are
called only once while the driver starts up; therefore, they can be safely removed
from memory after having done their work.

The remaining ingredient of the driver skeleton is the resource script
TestDrv.rc, shown in Listing 3-6. This file is trivial because it consists of references
to macros from DrvInfo.h only. DRV_RC_VERSION creates a VERSIONINFO resource
with various items compiled from data contributed by the wizard, and DRV_RC_ICON
evaluates to a simple ICON resource statement that adds TestDrv.ico to the resource
section of TestDrv.sys.

DEVICE I/O CONTROL

As mentioned in the introductory remarks of this chapter, we won’t build hardware
drivers in this book. Instead, we will use the powerful capabilities of kernel-mode
drivers to investigate Windows 2000 secrets. The power of the drivers results from
the fact that these modules run at the highest possible CPU privilege level. This
means that a kernel-mode driver has access to all system resources, can read all mem-
ory, and is allowed to execute privileged CPU instructions, such as reading the

CREATING A DRIVER SKELETON 139

LISTING 3-6. The Resource Script of the Driver Skeleton

current values of the CPU’s control registers. User-mode applications will be aborted
immediately if they try to read a single byte from kernel memory or try to execute an
assembly language instruction such as MOV EAX, CR3. However, the downside of this
power is that a driver can trash the entire system with a snap. Even the smallest error
is answered by the system with a Blue Screen, so a kernel-mode programmer must be
far more concerned about bugs than is a Win32 application or DLL developer.
Remember the Windows 2000 killer device we used in Chapter 1 to get a crash dump
of the system? All it did was touch the virtual memory address 0x00000000—and
boom! Be aware that you will boot your machine much more frequently when devel-
oping kernel-mode drivers.

The driver code I will present in the following chapters will employ a technique
called Device I/O Control (IOCTL) to allow user-mode code some degree of “remote
control.” If an application needs access to some system resources that are unreach-
able from user-mode, a kernel-mode driver will do the job, and IOCTL will be the
bridge between the two. Actually, IOCTL is neither new nor specific to Windows
2000. Even ancient operating systems such as DOS 2.11 had this capability—
Function 0x44 with its various subfunctions has been the IOCTL workhorse of
DOS. Basically, IOCTL is a means to communicate with a device on a control chan-
nel, which is logically separated from its data channel. Imagine a hard disk device
that transfers disk sector contents through its main data channel. If a client wants
information about the media currently used by the device, it has to use a different

140 WRITING KERNEL-MODE DRIVERS

// TestDrv.rc

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

#define _RC_PASS_

#define _TESTDRV_SYS_

#include “TestDrv.h”

// ===

// STANDARD RESOURCES

// ===

DRV_RC_VERSION

DRV_RC_ICON

// ===

// END OF FILE

// ===

channel. For example, DOS function 0x44, subfunction 0x0D, sub-subfunction 0x66
is the DOS IOCTL call that reads the 32-bit serial number of a disk drive (see Brown
and Kyle 1991, 1993).

Device I/O Control can be implemented in various ways, depending on the
device to be controlled. In its general form, IOCTL has the following characteristics:

• A client controls a device through a special entry point. On DOS, this has
been INT 21h, function 0x44. On Windows 2000, it is the Win32
DeviceIoControl() function exported by kernel32.dll.

• The client provides a device identifier, a control code, an input data buffer,
and an output data buffer upon calling the IOCTL entry point. On
Windows 2000, the device identifier is a HANDLE to a successfully opened
device.

• The control code tells the target device’s IOCTL dispatcher which control
function is requested by the client.

• The input buffer contains any additional data that the device might need
to fulfill the request.

• If the request generates any data, it is returned in the client’s output buffer.

• The overall result of the IOCTL operation is reported to the client by
means of a status code.

It is obvious that this is a powerful general-purpose mechanism that can cover
a wide range of control requests. For example, an application might want to have
access to forbidden kernel memory. Because the application would throw an excep-
tion as soon as it touched the first byte, it could work around this problem by load-
ing a kernel-mode driver to delegate this task. Both modules would have to agree on
an IOCTL protocol to manage the data transfer. For example, the application might
send the control code 0x80002000 to the driver if it wanted to read memory or
0x80002001 if it wanted to write to it. In a read request, the IOCTL input buffer
would probably specify the base address and the number of bytes to read. The ker-
nel-mode driver could pick up requests and distinguish read and write operations by
evaluating the control code. In a read request, it would copy the requested memory
range to the caller’s output buffer and report success if the output buffer is large
enough to hold the data. In a write request, the driver would copy data from the
input buffer to a memory location that has been specified in the input buffer as well.
In Chapter 4, I will provide sample code for such a memory spy.

CREATING A DRIVER SKELETON 141

142 WRITING KERNEL-MODE DRIVERS

By now, it should be obvious that IOCTL is a sort of backdoor that Win32 appli-
cations can use to perform almost any action that is usually allowed to privileged
modules only. Of course, this involves writing such a privileged module in the first
place, but once you have such a spy module running in the system, everything else is
easy. Two aims of this book are to demonstrate in detail how to write such code and
to provide a sample driver that is capable of doing lots of amazing things.

THE WINDOWS 2000 KILLER DEVICE

Before stepping to more advanced driver projects, let’s take a look at a very simple
driver. In Chapter 1, I introduced the Windows 2000 killer device w2k_kill.sys,
which is designed to cause a benign system crash. This driver doesn’t require most of
the code in Listing 3-3 because it will tear down the system before it had an opportu-
nity to receive the first I/O request packet. Listing 3-7 shows its apparently trivial
implementation. The file w2k_kill.h is not reprinted here because it doesn’t contain
any code of interest.

The code in Listing 3-7 does not attempt to perform initialization inside its
DriverEntry() function. The system will stop before DriverEntry() returns, so
extra work is unnecessary.

LOADING AND UNLOADING DRIVERS

After writing a kernel-mode driver, you probably want to run it immediately. How
is this done? Typically, drivers are loaded and started at system boot time, so do you
have to reboot the system every time you have updated your driver? Fortunately,
this is not necessary. Windows 2000 features a Win32 interface that allows loading
and unloading drivers at runtime. This is done by the Service Control (SC) Manager,
and the following section details its use.

THE SERVICE CONTROL MANAGER

The name “Service Control Manager” is a bit misleading because it suggests that this
component manages services only. Services are a class of powerful Windows 2000
modules well suited to run applications in the background, independent of the user
interface shell. That is, a service is a Win32 process that can keep running in the sys-
tem even if no user is logged in. Although service development is an exciting topic, it
is beyond the scope of this book. For further reading on service development, refer to
Paula Tomlinson’s excellent tutorial in Windows Developer’s Journal (WDJ) (Tom-
linson 1996a), as well as her follow-up treatises on services in her WDJ column
“Understanding NT” (Tomlinson 1996b and follow-up articles).

LISTING 3-7. A Tiny System Crasher

The SC Manager can handle both services and drivers. For reasons of simplicity,
I will use the term “service” here to refer to all objects controlled by the SC Manager,
including services in the strict sense of the word and kernel-mode drivers. The SC
interface is made available to Win32 applications by the Win32 subsystem compo-
nent advapi32.dll, which hosts an interesting collection of API functions. The
names of the main API functions required to load, control, and unload services are
listed in Table 3-3, along with short descriptions. Before you can load or access any
services, you must obtain a handle to the SC Manager by calling OpenSCManager().
In the following discussion, this will be called a manager handle. This handle is
required in all CreateService() and OpenService() calls. In turn, these functions
return handles that will be called service handles here. This type of handle can be
specified in all calls that refer to a specific service, such as ControlService(),
DeleteService(), and StartService(). Both types of SC handles are released
by the CloseServiceHandle() function.

LOADING AND UNLOADING DRIVERS 143

#define _W2K_KILL_SYS_

#include <ddk\ntddk.h>

#include “w2k_kill.h”

// ===

// DISCARDABLE FUNCTIONS

// ===

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath);

#ifdef ALLOC_PRAGMA

#pragma alloc_text (INIT, DriverEntry)

#endif

// ===

// DRIVER INITIALIZATION

// ===

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath)

{

return *((NTSTATUS *) 0);

}

// ===

// END OF PROGRAM

// ===

TABLE 3-3. Essential Service Control API Functions

NAME DESCRIPTION

CloseServiceHandle Close handle obtained from OpenSCManager(), CreateService(), or
OpenService()

ControlService Stop, pause, continue, interrogate, or notify a loaded service/driver

CreateService Load a service/driver

DeleteService Unload a service/driver

OpenSCManager Obtain a handle to the SC Manager

OpenService Obtain a handle to a loaded service/driver

QueryServiceStatus Query the properties and the current state of a service/driver

StartService Start a loaded service/driver

Loading and running a service involves the following typical sequence of steps:

1. Call OpenSCManager() to obtain a manager handle.

2. Call CreateService() to add the service to the system.

3. Call StartService() to set the service to the running state.

4. Call CloseServiceHandle() to release the manager and service handles.

Be sure to rewind all previous successful actions if an error occurs somewhere
in this sequence. For example, you should call DeleteService() if the SC Manager
reports an error on StartService(). Otherwise, the service will remain loaded in
an undesired state. Another stumbling stone of the SC Manager API is that the
CreateService() function insists on receiving a fully qualified path to the executable
file. If you specify a relative path, the function will fail—it will not be looking for
the file in the current directory. Therefore, you should normalize all file specifications
passed to CreateService() using the Win32 function GetFullPathName() unless
they are guaranteed to be fully qualified.

HIGH-LEVEL DRIVER MANAGEMENT FUNCTIONS

To make interaction with the SC Manager easier, the CD accompanying this book
contains high-level wrapper functions that hide most of its peculiarities. These func-
tions are part of the large Windows 2000 Utility Library found on the CD in the
directory tree \src\w2k_lib. All functions exported by w2k_lib.dll have a global
name prefix of w2k, and the service and driver management functions are discernible
by the group name prefix w2kService. Listing 3-8 shows the implementation of the
library functions that load, control, and unload services and drivers.

144 WRITING KERNEL-MODE DRIVERS

LOADING AND UNLOADING DRIVERS 145

SC_HANDLE WINAPI w2kServiceConnect (void)

{

return OpenSCManager (NULL, NULL, SC_MANAGER_ALL_ACCESS);

}

// ---

SC_HANDLE WINAPI w2kServiceDisconnect (SC_HANDLE hManager)

{

if (hManager != NULL) CloseServiceHandle (hManager);

return NULL;

}

// ---

SC_HANDLE WINAPI w2kServiceManager (SC_HANDLE hManager,

PSC_HANDLE phManager,

BOOL fOpen)

{

SC_HANDLE hManager1 = NULL;

if (phManager != NULL)

{

if (fOpen)

{

if (hManager == NULL)

{

*phManager = w2kServiceConnect ();

}

else

{

*phManager = hManager;

}

}

else

{

if (hManager == NULL)

{

*phManager = w2kServiceDisconnect (*phManager);

}

}

hManager1 = *phManager;

}

return hManager1;

}

// ---

SC_HANDLE WINAPI w2kServiceOpen (SC_HANDLE hManager,

PWORD pwName)

{

SC_HANDLE hManager1;

(continued)

146 WRITING KERNEL-MODE DRIVERS

SC_HANDLE hService = NULL;

w2kServiceManager (hManager, &hManager1, TRUE);

if ((hManager1 != NULL) && (pwName != NULL))

{

hService = OpenService (hManager1, pwName,

SERVICE_ALL_ACCESS);

}

w2kServiceManager (hManager, &hManager1, FALSE);

return hService;

}

// ---

BOOL WINAPI w2kServiceClose (SC_HANDLE hService)

{

return (hService != NULL) && CloseServiceHandle (hService);

}

// ---

BOOL WINAPI w2kServiceAdd (SC_HANDLE hManager,

PWORD pwName,

PWORD pwInfo,

PWORD pwPath)

{

SC_HANDLE hManager1, hService;

PWORD pwFile;

WORD awPath [MAX_PATH];

DWORD n;

BOOL fOk = FALSE;

w2kServiceManager (hManager, &hManager1, TRUE);

if ((hManager1 != NULL) && (pwName != NULL) &&

(pwInfo != NULL) && (pwPath != NULL) &&

(n = GetFullPathName (pwPath, MAX_PATH, awPath, &pwFile)) &&

(n < MAX_PATH))

{

if ((hService = CreateService (hManager1, pwName, pwInfo,

SERVICE_ALL_ACCESS,

SERVICE_KERNEL_DRIVER,

SERVICE_DEMAND_START,

SERVICE_ERROR_NORMAL,

awPath, NULL, NULL,

NULL, NULL, NULL))

!= NULL)

{

w2kServiceClose (hService);

fOk = TRUE;

LOADING AND UNLOADING DRIVERS 147

}

else

{

fOk = (GetLastError () ==

ERROR_SERVICE_EXISTS);

}

}

w2kServiceManager (hManager, &hManager1, FALSE);

return fOk;

}

// ---

BOOL WINAPI w2kServiceRemove (SC_HANDLE hManager,

PWORD pwName)

{

SC_HANDLE hService;

BOOL fOk = FALSE;

if ((hService = w2kServiceOpen (hManager, pwName)) != NULL)

{

if (DeleteService (hService))

{

fOk = TRUE;

}

else

{

fOk = (GetLastError () ==

ERROR_SERVICE_MARKED_FOR_DELETE);

}

w2kServiceClose (hService);

}

return fOk;

}

// ---

BOOL WINAPI w2kServiceStart (SC_HANDLE hManager,

PWORD pwName)

{

SC_HANDLE hService;

BOOL fOk = FALSE;

if ((hService = w2kServiceOpen (hManager, pwName)) != NULL)

{

if (StartService (hService, 1, &pwName))

{

fOk = TRUE;

}

else

{

(continued)

148 WRITING KERNEL-MODE DRIVERS

fOk = (GetLastError () ==

ERROR_SERVICE_ALREADY_RUNNING);

}

w2kServiceClose (hService);

}

return fOk;

}

// ---

BOOL WINAPI w2kServiceControl (SC_HANDLE hManager,

PWORD pwName,

DWORD dControl)

{

SC_HANDLE hService;

SERVICE_STATUS ServiceStatus;

BOOL fOk = FALSE;

if ((hService = w2kServiceOpen (hManager, pwName)) != NULL)

{

if (QueryServiceStatus (hService, &ServiceStatus))

{

switch (ServiceStatus.dwCurrentState)

{

case SERVICE_STOP_PENDING:

case SERVICE_STOPPED:

{

fOk = (dControl == SERVICE_CONTROL_STOP);

break;

}

case SERVICE_PAUSE_PENDING:

case SERVICE_PAUSED:

{

fOk = (dControl == SERVICE_CONTROL_PAUSE);

break;

}

case SERVICE_START_PENDING:

case SERVICE_CONTINUE_PENDING:

case SERVICE_RUNNING:

{

fOk = (dControl == SERVICE_CONTROL_CONTINUE);

break;

}

}

}

fOk = fOk ||

ControlService (hService, dControl, &ServiceStatus);

w2kServiceClose (hService);

}

LOADING AND UNLOADING DRIVERS 149

return fOk;

}

// ---

BOOL WINAPI w2kServiceStop (SC_HANDLE hManager,

PWORD pwName)

{

return w2kServiceControl (hManager, pwName,

SERVICE_CONTROL_STOP);

}

// ---

BOOL WINAPI w2kServicePause (SC_HANDLE hManager,

PWORD pwName)

{

return w2kServiceControl (hManager, pwName,

SERVICE_CONTROL_PAUSE);

}

// ---

BOOL WINAPI w2kServiceContinue (SC_HANDLE hManager,

PWORD pwName)

{

return w2kServiceControl (hManager, pwName,

SERVICE_CONTROL_CONTINUE);

}

// ---

SC_HANDLE WINAPI w2kServiceLoad (PWORD pwName,

PWORD pwInfo,

PWORD pwPath,

BOOL fStart)

{

BOOL fOk;

SC_HANDLE hManager = NULL;

if ((hManager = w2kServiceConnect ()) != NULL)

{

fOk = w2kServiceAdd (hManager, pwName, pwInfo, pwPath);

if (fOk && fStart)

{

if (!(fOk = w2kServiceStart (hManager, pwName)))

{

w2kServiceRemove (hManager, pwName);

}

}

(continued)

150 WRITING KERNEL-MODE DRIVERS

if (!fOk)

{

hManager = w2kServiceDisconnect (hManager);

}

}

return hManager;

}

// ---

SC_HANDLE WINAPI w2kServiceLoadEx (PWORD pwPath,

BOOL fStart)

{

PVS_VERSIONDATA pvvd;

PWORD pwPath1, pwInfo;

WORD awName [MAX_PATH];

DWORD dName, dExtension;

SC_HANDLE hManager = NULL;

if (pwPath != NULL)

{

dName = w2kPathName (pwPath, &dExtension);

lstrcpyn (awName, pwPath + dName,

min (MAX_PATH, dExtension - dName + 1));

pwPath1 = w2kPathEvaluate (pwPath, NULL);

pvvd = w2kVersionData (pwPath1, -1);

pwInfo = ((pvvd != NULL) && pvvd->awFileDescription [0]

? pvvd->awFileDescription

: awName);

hManager = w2kServiceLoad (awName, pwInfo, pwPath1, fStart);

w2kMemoryDestroy (pvvd);

w2kMemoryDestroy (pwPath1);

}

return hManager;

}

// ---

BOOL WINAPI w2kServiceUnload (PWORD pwName,

SC_HANDLE hManager)

{

SC_HANDLE hManager1 = hManager;

BOOL fOk = FALSE;

if (pwName != NULL)

{

LOADING AND UNLOADING DRIVERS 151

if (hManager1 == NULL)

{

hManager1 = w2kServiceConnect ();

}

if (hManager1 != NULL)

{

w2kServiceStop (hManager1, pwName);

fOk = w2kServiceRemove (hManager1, pwName);

}

}

w2kServiceDisconnect (hManager1);

return fOk;

}

// ---

BOOL WINAPI w2kServiceUnloadEx (PWORD pwPath,

SC_HANDLE hManager)

{

DWORD dName, dExtension;

WORD awName [MAX_PATH];

PWORD pwName = NULL;

if (pwPath != NULL)

{

dName = w2kPathName (pwPath, &dExtension);

lstrcpyn (pwName = awName, pwPath + dName,

min (MAX_PATH, dExtension - dName + 1));

}

return w2kServiceUnload (pwName, hManager);

}

LISTING 3-8. Service and Driver Management Library Functions

In Table 3-4, the functions defined in Listing 3-8 are listed, along with
short descriptions. Some function names, such as w2kServiceStart() and
w2kServiceControl(), are similar to certain SC Manager API functions—
StartService() and ControlService(), in this case. This isn’t coincidence—the
respective functions are in fact found at the heart of these wrappers. The main
difference is that StartService() and ControlService() operate on service
handles, whereas w2kServiceStart() and w2kServiceControl() accept service
names. The names are seamlessly converted to handles by internally calling
w2kServiceOpen() and w2kServiceClose(), which in turn call OpenService()
and CloseServiceHandle().

TABLE 3-4. SC Manager Wrappers Provided by w2k_lib.dll

NAME DESCRIPTION

w2kServiceAdd Add a service/driver to the system

w2kServiceClose Close a service handle

w2kServiceConnect Connect to the Service Control Manager

w2kServiceContinue Resume a paused service/driver

w2kServiceControl Stop, pause, continue, interrogate, or notify a loaded service/driver

w2kServiceDisconnect Disconnect from the Service Control Manager

w2kServiceLoad Load and optionally start a service/driver

w2kServiceLoadEx Load and optionally start a service/driver (automatic name generation)

w2kServiceManager Open/close a temporary Service Control Manager handle

w2kServiceOpen Obtain a handle to a loaded service/driver

w2kServicePause Pause a running service/driver

w2kServiceRemove Remove a service/driver from the system

w2kServiceStart Start a loaded service/driver

w2kServiceStop Stop a running service/driver

w2kServiceUnload Stop and unload a service/driver

w2kServiceUnloadEx Stop and unload a service/driver (automatic name generation)

The typical usage of the library functions in Table 3-4 is along the
following guidelines:

• To load a service, call w2kServiceLoad() or w2kServiceLoadEx(). The
latter generates the service and display names automatically from the file’s
path and version resource. The Boolean fStart argument decides whether
the service should be started automatically after a successful load. On
success, the function returns a manager handle for further requests. No
error is reported if the service is already loaded or if fStart is TRUE and
the service is already running. If an error occurs, the service is
automatically unloaded, if necessary.

• To unload a service, call w2kServiceUnload() or w2kServiceUnloadEx(),
using the manager handle returned by w2kServiceLoad() or
w2kServiceLoadEx(). w2kServiceUnloadEx() generates the service name
automatically from the file’s path. If you have already closed this handle,

152 WRITING KERNEL-MODE DRIVERS

obtain a new one from w2kServiceConnect() or simply pass in NULL to
work with a temporary handle. The manager handle will be closed
automatically by w2kServiceUnload(). No error is reported if the service is
already marked for deletion but cannot be deleted because open device
handles are still existing.

• To control a service, call w2kServiceStart(), w2kServiceStop(),
w2kServicePause(), or w2kServiceContinue(), using a manager handle
returned by w2kServiceLoad() or w2kServiceConnect(). If you supply
NULL for the manager handle, a temporary handle is used. No error is
reported if the service is already in the requested state.

• To close a manager handle, call w2kServiceDisconnect(). You can
request another manager handle at any time by calling
w2kServiceConnect().

w2kServiceLoadEx() is a very powerful function. It builds all parameters
needed to load the service automatically, expecting nothing but the path of the
executable file. The service name requested by the SC Manager’s CreateService()
function is derived from the file name by stripping the extension. To build an
appropriate display name for a newly created service, w2kServiceLoadEx() attempts
to read the value of the FileDescription string from the file version information.
If no version resource is included in the executable, or the FileDescription string
is not available, the service name is used by default. Unlike w2kServiceLoad(),
w2kServiceLoadEx() evaluates environment variables embedded in the path. That
is, if the path string contains substrings such as %SystemRoot% or %TEMP%, they are
replaced by the current values of the corresponding environment variables. w2k
ServiceUnloadEx() is the counterpart of w2kServiceLoadEx()—it extracts the
service name from the supplied path, as explained above, and passes it to w2k
ServiceUnload(). Both functions are ideally suited for applications that have to
load and unload third-party device drivers on behalf of the user, knowing nothing
about them but their executable paths. A sample application of this kind is included
on the CD accompanying this book. The console-mode utility w2k_load.exe is a
general-purpose kernel-mode device driver (un)loader that provides a simple com-
mand line interface for w2kServiceLoadEx() and w2kServiceUnloadEx(). The
source files can be found on the CD in the directory tree \src\w2k_load. The
relevant code is shown in Listing 3-9, proving that this utility is almost trivial because
all the hard work is done inside w2k_lib.dll by the w2kServiceLoadEx() and
w2kServiceUnloadEx() functions.

LOADING AND UNLOADING DRIVERS 153

154 WRITING KERNEL-MODE DRIVERS

// ===

// GLOBAL STRINGS

// ===

WORD awUsage [] =

L”\r\n”

L”Usage: “ SW(MAIN_MODULE) L” <driver path>\r\n”

L” “ SW(MAIN_MODULE) L” <driver path> %s\r\n”

L” “ SW(MAIN_MODULE) L” <driver name> %s\r\n”;

WORD awUnload [] = L”/unload”;

WORD awOk [] = L”OK\r\n”;

WORD awError [] = L”ERROR\r\n”;

// ===

// COMMAND HANDLERS

// ===

BOOL WINAPI DriverLoad (PWORD pwPath)

{

SC_HANDLE hManager;

BOOL fOk = FALSE;

_printf (L”\r\nLoading \”%s\” ... “, pwPath);

if ((hManager = w2kServiceLoadEx (pwPath, TRUE)) != NULL)

{

w2kServiceDisconnect (hManager);

fOk = TRUE;

}

_printf (fOk ? awOk : awError);

return fOk;

}

// ---

BOOL WINAPI DriverUnload (PWORD pwPath)

{

BOOL fOk = FALSE;

_printf (L”\r\nUnloading \”%s\” ... “, pwPath);

fOk = w2kServiceUnloadEx (pwPath, NULL);

_printf (fOk ? awOk : awError);

return fOk;

}

// ===

// MAIN PROGRAM

// ===

LOADING AND UNLOADING DRIVERS 155

DWORD Main (DWORD argc, PTBYTE *argv, PTBYTE *argp)

{

if (argc == 2)

{

DriverLoad (argv [1]);

}

else

{

if ((argc == 3) && (!lstrcmpi (argv [2], awUnload)))

{

DriverUnload (argv [1]);

}

else

{

_printf (awUsage, awUnload, awUnload);

}

}

return 0;

}

// ===

// END OF PROGRAM

// ===

LISTING 3-9. Loading and Unloading Device Drivers

The remaining library functions listed in Table 3-4 are working on a lower level and
are used internally by w2k_lib.dll. Of course, you can call them from your applica-
tions, if you like. Their usage should be obvious from the source code in Listing 3-8.

ENUMERATING SERVICES AND DRIVERS

From time to time it might be necessary to know which services and drivers are
currently loaded inside the system and what state they are in. For this purpose, the
SC Manager provides another powerful function named EnumServicesStatus().
This function requires a manager handle, as usual, and fills an array of ENUM_
SERVICE_STATUS structures with information about each currently loaded service or
driver. The list can be filtered by service/driver type and state. If the buffer supplied
by the caller isn’t large enough to hold all entries at once, the function can be called
repeatedly until all items have been retrieved. It is difficult to compute the required
buffer size in advance because the buffer has to provide extra space of unknown size
for the strings that are referenced by the members of the ENUM_SERVICE_STATUS
structures. Fortunately, EnumServicesStatus() returns the number of bytes needed
to return the remaining entries, so the correct buffer size can be determined by trial
and error. Listing 3-10 shows the definitions of the SERVICE_STATUS and ENUM_
SERVICE_STATUS structures, which are declared in the Win32 header file WinSvc.h.

156 WRITING KERNEL-MODE DRIVERS

typedef struct _SERVICE_STATUS

{

DWORD dwServiceType;

DWORD dwCurrentState;

DWORD dwControlsAccepted;

DWORD dwWin32ExitCode;

DWORD dwServiceSpecificExitCode;

DWORD dwCheckPoint;

DWORD dwWaitHint;

}

SERVICE_STATUS, *LPSERVICE_STATUS;

typedef struct _ENUM_SERVICE_STATUS

{

LPTSTR lpServiceName;

LPTSTR lpDisplayName;

SERVICE_STATUS ServiceStatus;

}

ENUM_SERVICE_STATUS;

LISTING 3-10. Definition of ENUM_SERVICE_STATUS and SERVICE_STATUS

The w2kServiceList() function in Listing 3-11 is another goodie from the
w2k_lib.dll utility library on the companion CD. It hides the required actions
mentioned above and returns a ready-to-use structure with all requested data
plus a couple of extras. It returns a pointer to a W2K_SERVICES structure, defined in
w2k_lib.h and included at the top of Listing 3-11. Along with the ENUM_
SERVICE_STATUS array aess[], this structure contains four additional members.
dEntries indicates how many entries have been copied to the status array, and
dBytes specifies the total size of the returned W2K_SERVICES structure. dDisplay-
Name and dServiceName are set to the maximum lengths of the lpDisplayName
and lpServiceName strings in aess[], respectively. These values are very conve-
nient if you are writing a console-mode application that outputs a service/driver
list to the screen with proper alignment of the name columns.

To report an accurate snapshot of the system, w2kServiceList() attempts to
retrieve all entries in a single call to EnumServicesStatus(). To this end, it starts out
with a zero-length buffer, which will usually yield an ERROR_MORE_DATA status. In this
case, EnumServicesStatus() returns the required buffer size. After allocating an
appropriately sized buffer, w2kServiceList() tries again. This time, EnumServices
Status() should succeed. However, a small probability exists that another entry has
been added to the list in the meantime, so this procedure is repeated in a loop until
everything is correct or an error other than ERROR_MORE_DATA is returned.

LOADING AND UNLOADING DRIVERS 157

typedef struct _W2K_SERVICES

{

DWORD dEntries; // number of entries in aess[]

DWORD dBytes; // overall number of bytes

DWORD dDisplayName; // maximum display name length

DWORD dServiceName; // maximum service name length

ENUM_SERVICE_STATUS aess []; // service/driver status array

}

W2K_SERVICES, *PW2K_SERVICES, **PPW2K_SERVICES;

#define W2K_SERVICES_ sizeof (W2K_SERVICES)

PW2K_SERVICES WINAPI w2kServiceList (BOOL fDriver,

BOOL fWin32,

BOOL fActive,

BOOL fInactive)

{

SC_HANDLE hManager;

DWORD dType, dState, dBytes, dResume, dName, i;

PW2K_SERVICES pws = NULL;

if ((pws = w2kMemoryCreate (W2K_SERVICES_)) != NULL)

{

pws->dEntries = 0;

pws->dBytes = 0;

pws->dDisplayName = 0;

pws->dServiceName = 0;

if ((fDriver || fWin32) && (fActive || fInactive))

{

if ((hManager = w2kServiceConnect ()) != NULL)

{

dType = (fDriver ? SERVICE_DRIVER : 0) |

(fWin32 ? SERVICE_WIN32 : 0);

dState = (fActive && fInactive

? SERVICE_STATE_ALL

: (fActive

? SERVICE_ACTIVE

: SERVICE_INACTIVE));

dBytes = pws->dBytes;

while (pws != NULL)

{

pws->dEntries = 0;

pws->dBytes = dBytes;

pws->dDisplayName = 0;

pws->dServiceName = 0;

dResume = 0;

(continued)

158 WRITING KERNEL-MODE DRIVERS

if (EnumServicesStatus (hManager, dType, dState,

pws->aess, pws->dBytes,

&dBytes, &pws->dEntries,

&dResume))

break;

dBytes += pws->dBytes;

pws = w2kMemoryDestroy (pws);

if (GetLastError () != ERROR_MORE_DATA) break;

pws = w2kMemoryCreate (W2K_SERVICES_ + dBytes);

}

w2kServiceDisconnect (hManager);

}

else

{

pws = w2kMemoryDestroy (pws);

}

}

if (pws != NULL)

{

for (i = 0; i < pws->dEntries; i++)

{

dName = lstrlen (pws->aess [i].lpDisplayName);

pws->dDisplayName = max (pws->dDisplayName, dName);

dName = lstrlen (pws->aess [i].lpServiceName);

pws->dServiceName = max (pws->dServiceName, dName);

}

}

}

return pws;

}

LISTING 3-11. Enumerating Services and Drivers

w2kServiceList() expects four Boolean arguments determining the contents of
the returned list. With the fDriver and fWin32 arguments, you can choose the inclu-
sion of drivers and services, respectively. If both flags are set, the list will contain
both drivers and services. The fActive and fInactive flags impose a state filter onto
the list. If fActive is set, the list contains all modules that currently are in the run-
ning or paused state. The fInactive parameter selects the remaining modules, that
is, those that are currently loaded but stopped. If all four arguments are FALSE, the
function returns a W2K_SERVICES structure with an empty status array. The sample
code CD contains a simple service and driver browser, designed as a Win32 console-
mode application and based on the w2kServiceList() function of w2k_lib.dll. It
uses the dDisplayName and dServiceName members of the returned W2K_SERVICES

LOADING AND UNLOADING DRIVERS 159

D:\> w2k_svc /drivers /active

// w2k_svc.exe

// SBS Windows 2000 Service List V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Found 29 active drivers:

1. Alerter . Alerter

2. Computer Browser Browser

3. Creative Service for CDROM Access Creative Service

4. DHCP Client . Dhcp

5. Logical Disk Manager dmserver

6. DNS Client . Dnscache

7. Event Log . Eventlog

8. COM+ Event System EventSystem

9. Server . lanmanserver

10. Workstation . lanmanworkstation

11. TCP/IP NetBIOS Helper Service LmHosts

12. Messenger . Messenger

13. Network Connections Netman

14. Removable Storage NtmsSvc

15. Plug and Play . PlugPlay

16. IPSEC Policy Agent PolicyAgent

17. Protected Storage ProtectedStorage

18. Remote Access Connection Manager RasMan

19. Remote Registry Service RemoteRegistry

20. Remote Procedure Call (RPC) RpcSs

21. Security Accounts Manager SamSs

22. Task Scheduler . Schedule

23. RunAs Service . seclogon

24. System Event Notification SENS

25. Print Spooler . Spooler

26. Telephony . TapiSrv

27. Distributed Link Tracking Client TrkWks

28. Windows Management Instrumentation WinMgmt

29. Windows Management Instrumentation Driver Extensions . Wmi

EXAMPLE 3-4. Running the Service List Utility w2k_svc.exe

structure (see Listing 3-11) for proper horizontal alignment of all names. You can
find the source code of this utility in the CD’s directory tree \src\w2k_svc. The pro-
gram can be run from the CD by executing \bin\w2k_svc.exe. Example 3-4
resulted from running it on my machine, requesting a list of all active kernel-mode
drivers by specifying the command switches /drivers /active.

In the next chapter, we will start developing a real-world kernel-mode driver
that spies on kernel memory and cracks essential memory management data struc-
tures. This project accompanies you while reading Chapters 4, 5, and 6, and the
driver is enhanced incrementally in each chapter. The final result is a versatile
Windows 2000 kernel spy, complemented by several nice client applications.

160 WRITING KERNEL-MODE DRIVERS

