
Memory management is one of the most important and most difficult duties of an
operating system. This chapter presents a comprehensive overview of Windows

2000 memory management and the structure of the 4-GB linear address space. In this
context, the virtual memory addressing and paging capabilities of the Intel i386 CPU
family are explained, focusing on how the Windows 2000 kernel exploits them. To
aid the exploration of memory, this chapter features a pair of sample programs: a
kernel-mode device driver that collects information about the system, and a user-
mode client application that queries this data from the driver via device I/O control
and displays it in a console window. The “spy driver” module will be reused in the
remaining chapters for several other interesting tasks that require execution of ker-
nel-mode code. This chapter—especially the first section—is tough reading because
it puts your hands directly on the CPU hardware. Nevertheless I hope you won’t skip it,
because virtual memory management is an exciting topic, and understanding how
it works provides insight into the mechanics of a complex operating system such as
Windows 2000.

INTEL i386 MEMORY MANAGEMENT

The Windows 2000 kernel makes heavy use of the protected-mode virtual memory
management mechanisms of the Intel i386 CPU class. To get a better understanding
of how Windows 2000 manages its main memory, it is important to be at least mini-
mally familiar with some architectural issues of the i386 CPU. The term i386 might
look somewhat anachronistic because the 80386 CPU dates back to the early days of
Windows computing. Windows 2000 is designed for Pentium CPUs and above.
However, even these newer processors rely on the memory management model origi-
nally designed for the 80386 CPU, with some important enhancements, of course.
Therefore, Microsoft usually labels the Windows NT and 2000 versions built for

161

C H A P T E R 4

Exploring
Windows 2000
Memory

Intel processors “i386” or even “x86.” Don’t be confused about that—whenever you
read the numbers 86 or 386 in this book, keep in mind that the corresponding infor-
mation refers to a specific CPU architecture, not a specific processor release.

BASIC MEMORY LAYOUT

Windows 2000 uses a very straightforward memory layout for application and sys-
tem code. The 4-GB virtual memory space offered by the 32-bit Intel CPUs is divided
into two equal parts. Memory addresses below 0x80000000 are assigned to user-
mode modules, including the Win32 subsystem, and the remaining 2 GB are reserved
for the kernel. Windows 2000 Advanced Server also supports an alternative memory
model commonly called 4GT RAM Tuning, which has been introduced with Win-
dows NT 4.0 Server Enterprise Edition. This model features 3-GB address space for
user processes, and 1-GB space for the kernel. It is enabled by adding the /3GB switch
to the bootstrap command line in the boot manager configuration file boot.ini.

The Advanced Server and Datacenter variants of Windows 2000 support yet
another memory option named Physical Address Extension (PAE) enabled by the
boot.ini switch /PAE. This option exploits a feature of some Intel CPUs
(e.g., the Pentium Pro processor) that allows physical memory larger than 4 GB to
be mapped into the 32-bit address space. In this Chapter, I will ignore these special
configurations. You can read more about them in Microsoft’s Knowledge Base
article Q171793 (Microsoft 2000¢), Intel’s Pentium manuals (Intel 1999a, 1999b,
1999c), and the Windows 2000 Device Driver Kit (DDK) documentation
(Microsoft 2000f).

MEMORY SEGMENTATION AND DEMAND PAGING

Before delving into the technical details of the i386 architecture, let’s travel back in
time to the year 1978, when Intel released the mother of all PC processors: the 8086.
I want to restrict this discussion to the most significant milestones. If you want to
know more, Robert L. Hummel’s 80486 programmer’s reference is an excellent start-
ing point (Hummel 1992). It is a bit outdated now because it doesn’t cover the new
features of the Pentium family; however, this leaves more space for important infor-
mation about the basic i386 architecture. Although the 8086 was able to address 1
MB of Random Access Memory (RAM), an application could never “see” the entire
physical address space because of the restriction of the CPU’s address registers to 16
bits. This means that applications were able to access a contiguous linear address
space of only 64 KB, but this memory window could be shifted up and down in the
physical space with the help of a set of 16-bit segment registers. Each segment regis-
ter defined a base address in 16-byte increments, and the linear addresses in the
64-KB logical space were added as offsets to this base, effectively resulting in 20-bit

162 EXPLORING WINDOWS 2000 MEMORY

addresses. This archaic memory model is still supported even by the latest Pentium
CPUs, and it is called Real-Address Mode, commonly referred to as Real Mode.

An alternative mode was introduced with the 80286 CPU, referred to as
Protected Virtual Address Mode, or simply Protected Mode. It featured a memory
model where physical addresses were not generated by simply adding a linear address
to a segment base. To retain backward compatibility with the 8086 and 80186, the
80286 still used segment registers, but they did not contain physical segment addresses
after the CPU had been switched to Protected Mode. Instead, they provided a selector,
comprising an index into a descriptor table. The target entry defined a 24-bit physical
base address, allowing access to 16 MB of RAM, which seemed like an incredible
amount then. However, the 80286 was still a 16-bit CPU, so the limitation of the
linear address space to 64 KB tiles still applied.

The breakthrough came in 1985 with the 80386 CPU. This chip finally cut the
ties of 16-bit addressing, pushing up the linear address space to 4 GB by introducing
32-bit linear addresses while retaining the basic selector/descriptor architecture of its
predecessor. Fortunately, the 80286 descriptor structure contained some spare bits that
could be reclaimed. While moving from 16- to 32-bit addresses, the size of the CPU’s
data registers was doubled as well, and new powerful addressing modes were added.
This radical shift to 32-bit data and addresses was a real benefit for programmers—
at least theoretically. Practically, it took several years longer before the Microsoft
Windows platform was ready to fully support the 32-bit model. The first version of
Windows NT was released on July 26th, 1993, constituting the very first incarnation
of the Win32 API. Whereas Windows 3.x programmers still had to deal with mem-
ory tiles of 64 KB with separate code and data segments, Windows NT provided a
flat linear address space of 4 GB, where all code and data could be addressed by
simple 32-bit pointers, without segmentation. Internally, of course, segmentation
was still active, as I will show later in this chapter, but the entire responsibility for
managing segments finally had been moved to the operating system.

Another essential new 80386 feature was the hardware support for paging, or,
more precisely, demand-paged virtual memory. This is a technique that allows mem-
ory to be backed up by a storage medium other than RAM—a hard disk, for exam-
ple. With paging enabled, the CPU can access more memory than physically available
by swapping out the least recently accessed memory contents to backup storage,
making space for new data. Theoretically, up to 4 GB of contiguous linear memory
can be accessed this way, provided that the backup media is large enough—even if
the installed physical RAM amounts to just a small fraction of the memory. Of
course, paging is not the fastest way to access memory. It is always good to have as
much physical RAM as possible. But it is an excellent way to work with large
amounts of data that would otherwise exceed the available memory. For example,
graphics and database applications require a large amount of working memory, and
some wouldn’t be able to run on a low-end PC system if paging weren’t available.

INTEL i386 MEMORY MANAGEMENT 163

In the paging scheme of the 80386, memory is subdivided into pages of 4-KB
or 4-MB size. The operating system designer is free to choose between these two
options, and it is even possible to mix pages of both sizes. Later I will show that
Windows 2000 uses such a mixed page design, keeping the operating system in
4-MB pages and using 4-KB pages for the remaining code and data. The pages are
managed by means of a hierarchically structured page-table tree that indicates for
each page where it is currently located in physical memory. This management
structure also contains information on whether the page is actually in physical
memory in the first place. If a page has been swapped out to the hard disk, and
some module touches an address within this page, the CPU generates a page fault,
similar to an interrupt generated by a peripheral hardware device. Next, the page
fault handler inside the operating system kernel will attempt to swap back this
page to physical memory, possibly writing other memory contents to disk to make
space. Usually, the system will apply a least-recently-used (LRU) schedule to decide
which pages qualify to be swapped out. By now it should be clear why this proce-
dure is sometimes referred to as demand paging: Physical memory contents are
moved to the backup storage and back on software demand, based on statistics of
the memory usage of the operating system and its applications.

The address indirection layer represented by the page-tables has two interest-
ing implications. First, there is no predetermined relationship between the addresses
used by a program and the addresses found on the physical address bus of the CPU
chip. If you know that a data structure of your application is located at the address,
say, 0x00140000, you still don’t know anything about the physical address of your
data unless you examine the page-table tree. It is up to the operating system to
decide what this address mapping looks like. Even more, the address translation
currently in effect is unpredictable, in part because of the probabilistic nature of the
paging mechanism. Fortunately, knowledge of physical addresses isn’t required in
most application cases. This is something left for developers of hardware drivers.
The second implication of paging is that the address space is not necessarily contigu-
ous. Depending on the page-table contents, the 4-GB space can comprise large
“holes” where neither physical nor backup memory is mapped. If an application
tries to read to or write from such an address, it will be aborted immediately by the
system. Later in this chapter, I will show in detail how Windows 2000 spreads its
available memory over the 4-GB address space.

The 80486 and Pentium CPUs use the very same i386 segmentation and paging
mechanisms introduced with the 80386, except for some exotic addressing features
such as the Physical Address Extension (PAE) of the Pentium Pro. Along with higher
clock frequencies, these newer models contain optimizations in other areas. For
example, the Pentium features a dual instruction pipeline that enables it to execute

164 EXPLORING WINDOWS 2000 MEMORY

two operations at the same time, as long as these instructions don’t depend on each
other. For example, if instruction A modifies a register value, and the consecutive
instruction B uses the modified value for a computation, B cannot be executed
before A has finished. But if instruction B involves a different register, the CPU can
execute A and B simultaneously without adverse effects. This and other Pentium
optimizations have opened a wide field for compiler optimization. If this topic looks
interesting, see Rick Booth’s Inner Loops (Booth 1997).

In the context of i386 memory management, three sorts of addresses must be
distinguished, termed logical, linear, and physical addresses in Intel’s system pro-
gramming manual for the Pentium (Intel 1999c).

1. Logical addresses: This is the most precise specification of a memory
location, usually written in hexadecimal form as XXXX:YYYYYYYY, where
XXXX is a selector, and YYYYYYYY is a linear offset into the segment addressed
by the selector. Instead of a numeric XXXX value, it is also possible to
specify the name of a segment register holding the selector, such as CS
(code segment), DS (data segment), ES (extra segment), FS (additional data
segment #1), GS (additional data segment #2), and SS (stack segment). This
notation is borrowed from the old “segment:offset” style of specifying “far
pointers” in 8086 Real-Mode.

2. Linear addresses: Most applications and many kernel-mode drivers
disregard virtual addresses. More precisely, they are just interested in the
offset part of a virtual address, which is referred to as a linear address. An
address of this type assumes a default segmentation model, determined by
the current values of the CPU’s segment registers. Windows 2000 uses flat
segmentation, with the CS, DS, ES, and SS registers pointing to the same
linear address space; therefore, programs can safely assume that all code,
data, and stack pointers can be cast among one another. For example, a
stack location can be cast to a data pointer at any time without concern
about the values of the corresponding segment registers.

3. Physical addresses: This address type is of interest only if the CPU
works in paging mode. Basically, a physical address is the voltage pattern
measurable at the address bus pins of the CPU chip. The operating system
maps linear addresses to physical addresses by setting up page-tables. The
layout of the Windows 2000 page-tables, which has some very interesting
properties for debugging software developers, will be discussed later in
this chapter.

INTEL i386 MEMORY MANAGEMENT 165

The distinction between virtual and linear addresses is somewhat artificial, and
some documentation uses both terms interchangeably. I will do my best to use this
nomenclature consistently. It is important to note that Windows 2000 assumes physi-
cal addresses to be 64 bits wide. This might seem odd on Intel i386 systems, which
usually have a 32-bit address bus. However, some Pentium systems can address more
than 4 GB of physical memory. For example, the Physical Address Extension (PAE)
mode of the Pentium Pro CPU extends the physical address space to 36 bits, allowing
access to 64 GB of RAM (Intel 1999c). Therefore, the Windows 2000 API functions
involving physical addresses usually rely on the data type PHYSICAL_ADDRESS, which
is just an alias name for the LARGE_INTEGER structure, as shown in Listing 4-1. Both
types are defined in the DDK header file ntdef.h. The LARGE_INTEGER is a structural
representation of a 64-bit signed integer, allowing interpretation as a concatenation of
two 32-bit quantities (LowPart and HighPart) or a single 64-bit number (QuadPart).
The LONGLONG type is equivalent to the native Visual C/C++ type __int64. Its
unsigned sibling is called ULONGLONG or DWORDLONG and is based on the native
unsigned __int64 type.

Figure 4-1 outlines the i386 memory segmentation model, showing the relation-
ship between logical and linear addresses. For clarity, I have drawn the descriptor
table and the segment as small, nonoverlapping boxes. However, this isn’t a require-
ment. Actually, a 32-bit operating system usually applies a segmentation layout as
shown in Figure 4-2. This so-called flat memory model is based on segments that
span the entire 4-GB address space. As a side effect, the descriptor table becomes part
of the segment and can be accessed by all code that has sufficient access rights.

166 EXPLORING WINDOWS 2000 MEMORY

typedef LARGE_INTEGER PHYSICAL_ADDRESS, *PPHYSICAL_ADDRESS;

typedef union _LARGE_INTEGER

{

struct

{

ULONG LowPart;

LONG HighPart;

};

LONGLONG QuadPart;

}

LARGE_INTEGER, *PLARGE_INTEGER;

LISTING 4-1. Definition of PHYSICAL_ADDRESS and LARGE_INTEGER

FIGURE 4-1. i386 Memory Segmentation

The memory model in Figure 4-2 is adopted by Windows 2000 for the standard
code, data, and stack segments, that is, all logical addresses that involve the CS, DS,
ES, and SS segment registers. The FS and GS segments are treated differently. GS is
not used by Windows 2000, and FS addresses special system data areas inside the
linear address space. Therefore, its base address is greater than zero and its size is less
than 4 GB. Interestingly, Windows 2000 maintains different FS segments in user-
mode and kernel-mode. More on this topic follows later in this chapter.

INTEL i386 MEMORY MANAGEMENT 167

0x00000000
Linear Address

Space

GDTR
Descriptor

Table

Descriptor

OffsetSelector

Logical Address
Segment

Data

0xFFFFFFFF

:

FIGURE 4-2. Flat 4-GB Memory Segmentation

In Figures 4-1 and 4-2, the selector portion of the logical address is shown to
point into a descriptor table determined by a register termed GDTR. This is the CPU’s
Global Descriptor Table Register, which can be set by the operating system to any
suitable linear address. The first entry of the Global Descriptor Table (GDT) is
reserved, and the corresponding selector called “null segment selector” is intended
as an initial value for unused segment registers. Windows 2000 keeps its GDT at
address 0x80036000. The GDT can hold up to 8,192 64-bit entries, resulting in a
maximum size of 64 KB. Windows 2000 uses only the first 128 entries, restricting
the GDT size to 1,024 bytes. Along with the GDT, the i386 CPU provides a Local
Descriptor Table (LDT) and an Interrupt Descriptor Table (IDT), addressed by the
LDTR and IDTR registers, respectively. Whereas the GDTR and IDTR values are unique
and apply to all tasks executed by the CPU, the LDTR value is task-specific, and, if
used, contains a 16-bit GDT selector.

168 EXPLORING WINDOWS 2000 MEMORY

0x00000000

Linear Address
Space

GDTR
Descriptor

Table

Descriptor

OffsetSelector

Logical Address

Data

0xFFFFFFFF

Segment
=

:

Figure 4-3 demonstrates the complex mechanism of linear-to-physical address
translation applied by the i386 memory management unit if demand paging is
enabled in 4-KB page mode. The Page-Directory Base Register (PDBR) in the upper
left corner contains the physical base address of the page-directory. The PDBR is
identical to the i386 CR3 register. Only the upper 20 bits are used for addressing.
Therefore, the page-directory is always located on a page boundary. The remaining
PDBR bits are either flags or reserved for future extensions. The page-directory occu-
pies exactly one 4-KB page, structured as an array of 1,024 32-bit page-directory
entries (PDEs). Similar to the PDBR, each PDE can be divided into a 20-bit page-frame
number (PFN) addressing a page-table, and an array of bit flags. Each page-table is
page-aligned and spans 4 KB, comprising 1,024 page-table entries (PTEs). Again, the

INTEL i386 MEMORY MANAGEMENT 169

0x00000000

Page-
Directory

(4 KB)

Physical
Address
Space

Page-
Table
(4 KB)

Data
Page
(4 KB)

20 Bits

12 1131

Page-Directory Base Register (PDBR) / CR3

10 Bits

Page-Frame Number Flags
0

10 Bits

12 Bits

012 1122 2131

Linear Address

Data
OffsetTableDirectory

PFN Flags

PFN Flags
Page-Directory Entry (PDE)

31 12 11 0

Page-Table Entry (PTE)

31 12 11 0

20 Bits

20 Bits

FIGURE 4-3. Double-Layered Paging with 4-KB Pages

upper 20 bits are extracted from a PTE to form a pointer to a 4-KB data page.
Address translation takes place by breaking a linear address into three parts: The
upper 10 bits select a PDE out of the page-directory, the next lower 10 bits select a
PTE out of the page-table addressed by the PDE, and, finally, the lower 12 bits spec-
ify an offset into the data page addressed by the PTE.

In the 4-KB paging scheme, the 4-GB linear address space is addressable by
means of a double-layered indirection mechanism. In the worst case, 1,048,576 PTEs
are required to cover the entire range. Because each page-table holds 1,024 PTEs, this
amounts to 1,024 page-tables, which is the number of PDEs the page-directory con-
tains. With the page-directory and each page-table consuming 4 KB, the maximum
memory management overhead in this paging model is 4 KB plus 4 MB, or 4,100 KB.
That’s a reasonable price for a subdivision of the entire 4-GB space into 4-KB tiles
that can be mapped to any linear address.

In 4-MB paging mode, things are much simpler because one indirection layer is
eliminated, as shown in Figure 4-4. Again, the PDBR points to the page-directory,
but now only the upper 10 bits of the PDE are used, resulting in 4-MB alignment of
the target address. Because no page-tables are used, this address is already the base
address of a 4-MB data page. Consequently, the linear address now consists of two
parts only: 10 bits for PDE selection and 22 offset bits. The 4-MB memory scheme
requires no more than 4 KB overhead, because only the page-directory consumes
additional memory. Each of its 1,024 PDEs can address one 4-MB page. This is just
enough to cover the entire 4-GB address space. Thus, 4-MB pages have the advan-
tage of keeping the memory management overhead low, but for the price of a more
coarse addressing granularity.

Both the 4-KB and 4-MB paging modes have advantages and disadvantages.
Fortunately, operating system designers don’t have to decide for one of them, but can
run the CPU in mixed mode. For example, Windows 2000 works with 4-MB pages in
the memory range 0x80000000 to 0x9FFFFFFF, where the kernel modules hal.dll
and ntoskrnl.exe are loaded. The remaining linear address blocks are managed in
4-KB tiles. This mixed design is recommended by Intel for improved system perfor-
mance, because 4-KB and 4-MB page entries are cached in different Translation
Lookaside Buffers (TLBs) inside the i386 CPU (Intel 1999c, pp. 3-22f). The operating
system kernel is usually large and is always resident in memory, so storing it in sev-
eral 4-KB pages would permanently use up valuable TLB space.

Note that all address translation steps are carried out in physical memory. The
PDBR and all PDEs and PTEs contain physical address pointers. The only linear address
found in Figures 4-3 and 4-4 is the box in the lower left corner specifying the address to
be converted to an offset inside a physical page. On the other hand, applications must
work with linear addresses and are ignorant of physical addresses. However, it is
possible to fill this gap by mapping the page-directory and all of its subordinate page-
tables into the linear address space. On Windows 2000 and Windows NT 4.0, all

170 EXPLORING WINDOWS 2000 MEMORY

FIGURE 4-4. Single-Layered Paging with 4-MB Pages

PDEs and PTEs are accessible in the address range 0xC0000000 to 0xC03FFFFF. This is
a linear memory area of 4-MB size. This is obviously the maximum amount of memory
consumed by the page-table layer in 4-KB paging mode. The PTE associated to a linear
address can be looked up by simply using its most significant 20 bits as an index into
the array of 32-bit PTEs starting at 0xC0000000. For example, the PTE of address
0x00000000 is located at 0xC0000000. The PTE index of address 0x80000000 is
computed by shifting it right by 12 bits to get at the upper 20 bits, yielding 0x80000.
Because each PTE takes four bytes, the target PTE is found at 0xC0000000 +
(4 * 0x80000) = 0xC0200000. This result looks interesting—obviously, the
address that divides the 4-GB address space in two equal halves is mapped to a
PTE address that divides the PTE array in two equal halves.

INTEL i386 MEMORY MANAGEMENT 171

Flags

0x00000000

Page-
Directory

(4 KB)

Physical
Address
Space

20 Bits

12 1131

Page-Directory Base Register (PDBR) / CR3

10 Bits

Page-Frame Number Flags
0

22 Bits

022 2131

Linear Address
OffsetDirectory

PFN Flags
Page-Directory Entry (PDE)

31 22 21 0

10 Bits

Data
Page

(4 MB)

Data

Now let’s go one more step ahead and compute the entry address of the PTE
array itself. The general mapping formula is ((LinearAddress >> 12) * 4) +
0xC0000000. Setting LinearAddress to 0xC0000000 yields 0xC0300000. Let’s pause
for a moment: The entry at linear address 0xC0300000 points to the beginning of the
PTE array in physical memory. Now look back to Figure 4-3. The 1,024 entries start-
ing at address 0xC0300000 must be the page-directory! This special PDE and PTE
arrangement is exploited by various memory management functions implemented in
ntoskrnl.exe. For example, the (documented) API functions MmIsAddressValid()
and MmGetPhysicalAddress() take a 32-bit linear address, look up its PDE and, if
applicable, its PTE, and examine their contents. MmIsAddressValid() simply checks
out whether the target page is currently present in physical memory. If the test fails,
the linear address is either invalid or it refers to a page that has been flushed to
backup storage, represented by the set of system pagefiles. MmGetPhysicalAddress()
first extracts the page-frame number (PFN) corresponding to a linear address, which
is the base address of its associated physical page divided by the page size. Next, it
computes the offset into this page by extracting the least significant 12 bits of the lin-
ear address, and adds the offset to the physical base address determined by the PFN.

More thorough examination of the implementation of MmGetPhysicalAddress()
reveals another interesting property of the Windows 2000 memory layout. Before any-
thing else, the code tests whether the linear address is within the range 0x80000000 to
0x9FFFFFFF. As already mentioned, this is the home of hal.dll and ntoskrnl.exe,
and it is also the address block where Windows 2000 uses 4-MB pages. The interesting
thing is that MmGetPhysicalAddress() doesn’t care at all for PDEs or PTEs if the
address is within this range. Instead, it simply sets the top three bits to zero, adds the
byte offset, as usual, and returns the result as the physical address. This means that
the physical address range 0x00000000 to 0x1FFFFFFF is mapped 1:1 to the linear
addresses 0x80000000 to 9FFFFFFF! Knowing that ntoskrnl.exe is always loaded to
the linear address 0x80400000, this means that the Windows 2000 kernel is always
found at physical address 0x00400000, which happens to be the base address of the
second 4-MB page in physical memory. In fact, examination of these memory regions
proves that the above assumptions are correct. You will have the opportunity to see
this with the memory spy presented in this chapter.

DATA STRUCTURES

Some portions of the sample code following in this chapter are concerned with low-
level memory management and peek inside the mechanisms outlined above. For con-
venience, I have defined several C data structures that make this task easier. Because
many data items inside the i386 CPU are concatenations of single bits or bit groups,
C bit-fields come in handy. Bit-fields are an efficient way to access individual bits of
or extract contiguous bit groups from larger data words. Microsoft Visual C/C++

172 EXPLORING WINDOWS 2000 MEMORY

generates quite clever code for bit-field operations. Listing 4-2 is part one of a series
of CPU data type definitions, containing the following items:

• X86_REGISTER is a basic unsigned 32-bit integral type that can represent
various CPU registers. This comprises all general-purpose, index, pointer,
control, debug, and test registers.

• X86_SELECTOR represents a 16-bit segment selector, as stored in the
segment registers CS, DS, ES, FS, GS, and SS. In Figures 4-1 and 4-2,
selectors are depicted as the upper third of a logical 48-bit address, serving
as an index into a descriptor table. For computational convenience, the
16-bit selector value is extended to 32 bits, with the upper half marked
“reserved.” Note that the X86_SELECTOR structure is a union of two
structures. The first one specifies the selector value as a packed 16-bit WORD
named wValue, and the second breaks it up into bit-fields. The RPL field
specifies the Requested Privilege Level, which is either 0 (kernel-mode) or
3 (user-mode) on Windows 2000. The TI bit switches between the Global
and Local Descriptor Tables (GDT/LDT).

• X86_DESCRIPTOR defines the format of a table entry pointed to by a
selector. It is a 64-bit quantity with a very convoluted structure resulting
from its historic evolution. The linear base address defining the start
location of the associated segment is scattered among three bit-fields
named Base1, Base2, and Base3, with Base1 being the least significant
part. The segment limit specifying the segment size minus one is divided
into the pair Limit1 and Limit2, with the former representing the least
significant half. The remaining bit-fields store various segment
properties (cf. Intel 1999c, pp. 3-11). For example, the G bit defines
the segment granularity. If zero, the segment limit is specified in bytes;
otherwise, the limit value has to be multiplied by 4 KB. Like X86_SELECTOR,
the X86_DESCRIPTOR structure is composed of a union to allow different
interpretations of its value. The dValueLow and dValueHigh members
are helpful if you have to copy descriptors without regard to their
internal structure.

• X86_GATE looks somewhat similar to X86_DESCRIPTOR. In fact, the
structures are related: X86_DESCRIPTOR is a GDT entry and describes the
memory properties of a segment, and X86_GATE is an entry inside the
Interrupt Descriptor Table (IDT) and describes the memory properties of
an interrupt handler. The IDT can contain task, interrupt, and trap gates.
(No, Bill Gates is not stored in the IDT!) The X86_GATE structure matches
all three types, with the Type bit-field determining the identity. Type 5

INTEL i386 MEMORY MANAGEMENT 173

identifies a task gate; types 6 and 14, interrupt gates; and types 7 and 15,
trap gates. The most significant type bit specifies the size of the gate:
16-bit gates have this bit set to zero; otherwise it is a 32-bit gate.

• X86_TABLE is a tricky structure that is used to read the values of the
GDTR or IDTR by means of the assembly language instructions SGDT
(store GDT register) and SIDT (store IDT register) respectively (cf. Intel
1999b, pp. 3-636). Both instructions require a 48-bit memory operand,
where the limit and base address values will be stored. To maintain
DWORD alignment for the 32-bit base address, X86_TABLE starts out
with the 16-bit dummy member wReserved. Depending on whether
the SGDT or SIDT instruction is applied, the base address must be
interpreted as a descriptor or gate pointer, as suggested by the union
of PX86_DESCRIPTOR and PX86_GATE types. The wLimit member is the
same for both table types.

174 EXPLORING WINDOWS 2000 MEMORY

// ===

// INTEL X86 STRUCTURES, PART 1 OF 3

// ===

typedef DWORD X86_REGISTER, *PX86_REGISTER, **PPX86_REGISTER;

// ---

typedef struct _X86_SELECTOR

{

union

{

struct

{

WORD wValue; // packed value

WORD wReserved;

};

struct

{

unsigned RPL : 2; // requested privilege level

unsigned TI : 1; // table indicator: 0=gdt, 1=ldt

unsigned Index : 13; // index into descriptor table

unsigned Reserved : 16;

};

};

}

X86_SELECTOR, *PX86_SELECTOR, **PPX86_SELECTOR;

INTEL i386 MEMORY MANAGEMENT 175

#define X86_SELECTOR_ sizeof (X86_SELECTOR)

// ---

typedef struct _X86_DESCRIPTOR

{

union

{

struct

{

DWORD dValueLow; // packed value

DWORD dValueHigh;

};

struct

{

unsigned Limit1 : 16; // bits 15..00

unsigned Base1 : 16; // bits 15..00

unsigned Base2 : 8; // bits 23..16

unsigned Type : 4; // segment type

unsigned S : 1; // type (0=system, 1=code/data)

unsigned DPL : 2; // descriptor privilege level

unsigned P : 1; // segment present

unsigned Limit2 : 4; // bits 19..16

unsigned AVL : 1; // available to programmer

unsigned Reserved : 1;

unsigned DB : 1; // 0=16-bit, 1=32-bit

unsigned G : 1; // granularity (1=4KB)

unsigned Base3 : 8; // bits 31..24

};

};

}

X86_DESCRIPTOR, *PX86_DESCRIPTOR, **PPX86_DESCRIPTOR;

#define X86_DESCRIPTOR_ sizeof (X86_DESCRIPTOR)

// ---

typedef struct _X86_GATE

{

union

{

struct

{

DWORD dValueLow; // packed value

DWORD dValueHigh;

};

struct

{

unsigned Offset1 : 16; // bits 15..00

unsigned Selector : 16; // segment selector

unsigned Parameters : 5; // parameters

unsigned Reserved : 3;

(continued)

176 EXPLORING WINDOWS 2000 MEMORY

unsigned Type : 4; // gate type and size

unsigned S : 1; // always 0

unsigned DPL : 2; // descriptor privilege level

unsigned P : 1; // segment present

unsigned Offset2 : 16; // bits 31..16

};

};

}

X86_GATE, *PX86_GATE, **PPX86_GATE;

#define X86_GATE_ sizeof (X86_GATE)

// ---

typedef struct _X86_TABLE

{

WORD wReserved; // force 32-bit alignment

WORD wLimit; // table limit

union

{

PX86_DESCRIPTOR pDescriptors; // used by sgdt instruction

PX86_GATE pGates; // used by sidt instruction

};

}

X86_TABLE, *PX86_TABLE, **PPX86_TABLE;

#define X86_TABLE_ sizeof (X86_TABLE)

// ===

LISTING 4-2. i386 Registers, Selectors, Descriptors, Gates, and Tables

The next set of i386 memory management structures, collected in Listing 4-3,
relates to demand paging and contains several items illustrated in Figures 4-3 and 4-4:

• X86_PDBR is, of course, a structural representation of the CPU’s CR3
register, also known as the page-directory base register (PDBR). The upper
20 bits contain the PFN, which is an index into the array of physical 4-KB
pages. PFN=0 corresponds to physical address 0x00000000, PFN=1 to
0x00001000, and so forth. Twenty bits are just enough to cover the entire
4-GB address space. The PFN in the PDBR is the index of the physical
page that holds the page-directory. Most of the remaining bits are
reserved, except for bit #3, controlling page-level write-through (PWT),
and bit #4, disabling page-level caching if set.

• X86_PDE_4M and X86_PDE_4K are alternative incarnations of page-directory
entries (PDEs) for 4-MB and 4-KB pages, respectively. A page-directory
contains a maximum of 1,024 PDEs. Again, PFN is the page-frame number,
pointing to the subordinate page. For a 4-MB PDE, the PFN bit-field is
only 10 bits wide, addressing a 4-MB data page. The 20-bit PFN of 4-KB
PDE points to a page-table that ultimately selects the physical data pages.
The remaining bits define various properties. The most interesting ones are
the “Page Size” bit PS, controlling the page size (0 = 4-KB, 1 = 4-MB), and
the “Present” bit P, indicating whether the subordinate data page (4-MB
mode) or page-table (4-KB mode) is present in physical memory.

• X86_PTE_4K defines the internal structure of a page-table entry
(PTE) contained in a page-table. Like a page-directory, a page-table
can contain up to 1,024 entries. The only difference between
X86_PTE_4K and X86_PDE_4K is that the former lacks the PS bit, which
is not required because the page size must be 4-KB, as determined by
the PDE’s PS bit. Note that there is no such thing as a 4-MB PTE,
because the 4-MB memory model doesn’t require an intermediate
page-table layer.

• X86_PNPE represents a “page-not-present entry” (PNPE), that is, a PDE
or PTE in which the P bit is zero. According to the Intel manuals, the
remaining 31 bits are “available to operating system or executive” (Intel
1999c, pp. 3-28). If a linear address maps to a PNPE, this means either
that this address is unused or that it points to a page that is currently
swapped out to one of the pagefiles. Windows 2000 uses the 31
unassigned bits of the PNPE to store status information of the page.
The structure of this information is undocumented, but it seems that
bit #10, named PageFile in Listing 4-3, is set if the page is swapped
out. In this case, the Reserved1 and Reserved2 bit-fields contain values
that enable the system to locate the page in the pagefiles, so it can be
swapped in as soon as one of its linear addresses is touched by a memory
read/write instruction.

• X86_PE is included for convenience. It is merely a union of all possible
forms a page entry can take, comprising the PDBR contents, 4-MB and
4-KB PDEs, PTEs, and PNPEs.

INTEL i386 MEMORY MANAGEMENT 177

178 EXPLORING WINDOWS 2000 MEMORY

// ===

// INTEL X86 STRUCTURES, PART 2 OF 3

// ===

typedef struct _X86_PDBR // page-directory base register (cr3)

{

union

{

struct

{

DWORD dValue; // packed value

};

struct

{

unsigned Reserved1 : 3;

unsigned PWT : 1; // page-level write-through

unsigned PCD : 1; // page-level cache disabled

unsigned Reserved2 : 7;

unsigned PFN : 20; // page-frame number

};

};

}

X86_PDBR, *PX86_PDBR, **PPX86_PDBR;

#define X86_PDBR_ sizeof (X86_PDBR)

// ---

typedef struct _X86_PDE_4M // page-directory entry (4-MB page)

{

union

{

struct

{

DWORD dValue; // packed value

};

struct

{

unsigned P : 1; // present (1 = present)

unsigned RW : 1; // read/write

unsigned US : 1; // user/supervisor

unsigned PWT : 1; // page-level write-through

unsigned PCD : 1; // page-level cache disabled

unsigned A : 1; // accessed

unsigned D : 1; // dirty

unsigned PS : 1; // page size (1 = 4-MB page)

unsigned G : 1; // global page

unsigned Available : 3; // available to programmer

unsigned Reserved : 10;

unsigned PFN : 10; // page-frame number

};

INTEL i386 MEMORY MANAGEMENT 179

};

}

X86_PDE_4M, *PX86_PDE_4M, **PPX86_PDE_4M;

#define X86_PDE_4M_ sizeof (X86_PDE_4M)

// ---

typedef struct _X86_PDE_4K // page-directory entry (4-KB page)

{

union

{

struct

{

DWORD dValue; // packed value

};

struct

{

unsigned P : 1; // present (1 = present)

unsigned RW : 1; // read/write

unsigned US : 1; // user/supervisor

unsigned PWT : 1; // page-level write-through

unsigned PCD : 1; // page-level cache disabled

unsigned A : 1; // accessed

unsigned Reserved : 1; // dirty

unsigned PS : 1; // page size (0 = 4-KB page)

unsigned G : 1; // global page

unsigned Available : 3; // available to programmer

unsigned PFN : 20; // page-frame number

};

};

}

X86_PDE_4K, *PX86_PDE_4K, **PPX86_PDE_4K;

#define X86_PDE_4K_ sizeof (X86_PDE_4K)

// ---

typedef struct _X86_PTE_4K // page-table entry (4-KB page)

{

union

{

struct

{

DWORD dValue; // packed value

};

struct

{

unsigned P : 1; // present (1 = present)

unsigned RW : 1; // read/write

unsigned US : 1; // user/supervisor

(continued)

180 EXPLORING WINDOWS 2000 MEMORY

unsigned PWT : 1; // page-level write-through

unsigned PCD : 1; // page-level cache disabled

unsigned A : 1; // accessed

unsigned D : 1; // dirty

unsigned Reserved : 1;

unsigned G : 1; // global page

unsigned Available : 3; // available to programmer

unsigned PFN : 20; // page-frame number

};

};

}

X86_PTE_4K, *PX86_PTE_4K, **PPX86_PTE_4K;

#define X86_PTE_4K_ sizeof (X86_PTE_4K)

// ---

typedef struct _X86_PNPE // page not present entry

{

union

{

struct

{

DWORD dValue; // packed value

};

struct

{

unsigned P : 1; // present (0 = not present)

unsigned Reserved1 : 9;

unsigned PageFile : 1; // page swapped to pagefile

unsigned Reserved2 : 21;

};

};

}

X86_PNPE, *PX86_PNPE, **PPX86_PNPE;

#define X86_PNPE_ sizeof (X86_PNPE)

// ---

typedef struct _X86_PE // general page entry

{

union

{

DWORD dValue; // packed value

X86_PDBR pdbr; // page-directory Base Register

X86_PDE_4M pde4M; // page-directory entry (4-MB page)

X86_PDE_4K pde4K; // page-directory entry (4-KB page)

X86_PTE_4K pte4K; // page-table entry (4-KB page)

X86_PNPE pnpe; // page not present entry

};

INTEL i386 MEMORY MANAGEMENT 181

}

X86_PE, *PX86_PE, **PPX86_PE;

#define X86_PE_ sizeof (X86_PE)

// ===

LISTING 4-3. i386 PDBR, PDE, PTE, and PNPE Values

In Listing 4-4, I have added structural representations of linear addresses.
These structures are formal definitions of the “Linear Address” boxes in Figures 4-3
and 4-4:

• X86_LINEAR_4M is the format of linear addresses that point into a 4-MB
data page, as shown in Figure 4-4. The page-directory index PDI is an
index into the page-directory currently addressed by the PDBR, selecting
one of its PDEs. The 22-bit Offset member points to the target address
within the corresponding 4-MB physical page.

• X86_LINEAR_4K is the 4-KB variant of a linear address. As outlined in
Figure 4-3, it is composed of three bit-fields: Like in a 4-MB address, the
upper 10 PDI bits select a PDE. The page-table index PTI has a similar
duty, pointing to a PTE inside the page-table addressed by this PDE. The
remaining 12 bits are the offset into the resulting 4-KB physical page.

• X86_LINEAR is another convenience structure that simply unites
X86_LINEAR_4M and X86_LINEAR_4K in a single data type.

MACROS AND CONSTANTS

The definitions in Listing 4-5 are supplements to the structures in Listings 4-2 to 4-4
and make the work with i386 memory management easier. They can be subdivided
into three main groups. The first group handles linear addresses:

1. X86_PAGE_MASK, X86_PDI_MASK, and X86_PTI_MASK are bit masks that
isolate the constituent parts of linear addresses. They are based on the
constants PAGE_SHIFT (12), PDI-SHIFT (22), and PTI-SHIFT (12),
defined in the Windows 2000 DDK header file ntddk.h. X86_PAGE_MASK
evaluates to 0xFFFFF000, effectively masking off the 4-KB offset part of a
linear address (cf. X86_LINEAR_4K). X86_PDI_MASK is equal to 0xFFC00000
and obviously extracts the 10 topmost PDI bits of a linear address (cf.
X86_LINEAR_4M and X86_LINEAR_4K). X86_PTI_MASK evaluates to
0x003FF0000 and masks off all bits except for the page-table index (PTI)
bits of a linear address (cf. X86_LINEAR_4K).

182 EXPLORING WINDOWS 2000 MEMORY

// ===

// INTEL X86 STRUCTURES, PART 3 OF 3

// ===

typedef struct _X86_LINEAR_4M // linear address (4-MB page)

{

union

{

struct

{

PVOID pAddress; // packed address

};

struct

{

unsigned Offset : 22; // offset into page

unsigned PDI : 10; // page-directory index

};

};

}

X86_LINEAR_4M, *PX86_LINEAR_4M, **PPX86_LINEAR_4M;

#define X86_LINEAR_4M_ sizeof (X86_LINEAR_4M)

// ---

typedef struct _X86_LINEAR_4K // linear address (4-KB page)

{

union

{

struct

{

PVOID pAddress; // packed address

};

struct

{

unsigned Offset : 12; // offset into page

unsigned PTI : 10; // page-table index

unsigned PDI : 10; // page-directory index

};

};

}

X86_LINEAR_4K, *PX86_LINEAR_4K, **PPX86_LINEAR_4K;

#define X86_LINEAR_4K_ sizeof (X86_LINEAR_4K)

// ---

typedef struct _X86_LINEAR // general linear address

{

union

{

INTEL i386 MEMORY MANAGEMENT 183

PVOID pAddress; // packed address

X86_LINEAR_4M linear4M; // linear address (4-MB page)

X86_LINEAR_4K linear4K; // linear address (4-KB page)

};

}

X86_LINEAR, *PX86_LINEAR, **PPX86_LINEAR;

#define X86_LINEAR_ sizeof (X86_LINEAR)

// ===

LISTING 4-4. i386 Linear Addresses

2. X86_PAGE(), X86_PDI(), and X86_PTI() use the above constants
to compute the page index, PDI, or PTI of a given linear address.
X86_PAGE() is typically used to read a PTE from the Windows 2000 PTE
array starting at address 0xC0000000. X86_PDI() and X86_PTI() simply
apply X86_PDI_MASK or X86_PTI_ MASK to the supplied pointer and shift
the resulting index to the rightmost bit position.

3. X86_OFFSET_4M() and X86_OFFSET_4K() extract the offset portion of a
4-MB or 4-KB linear address, respectively.

4. X86_PAGE_4M and X86_PAGE_4K compute the sizes of 4-MB and 4-KB
pages from the DDK constants PDI_SHIFT and PTI_SHIFT, resulting
in X86_PAGE_4M = 4,194,304 and X86_PAGE_4K = 4,096. Note that
X86_PAGE_4K is equivalent to the DDK constant PAGE_SIZE, also
defined in ntddk.h.

5. X86_PAGES_4M and X86_PAGES_4K state the number of 4-MB or 4-KB
pages fitting into the 4-GB linear address space. X86_PAGES_4M evaluates
to 1,024, and X86_PAGES_4K to 1,048,576.

The second group of macros and constants relates to the Windows 2000 PDE
and PTE arrays. Unlike several other system addresses, the base addresses of these
arrays are not available as global variables set up at boot time, but are defined as
constants. This can be proved easily by disassembling the memory manager API
functions MmGetPhysicalAddress() or MmIsAddressValid(), where these addresses
appear as “magic numbers.” These constants are not included in the DDK header
files, but Listing 4-5 shows how they might have been defined.

• X86_PAGES is a hard-coded address and points, of course, to 0xC0000000,
where the Windows 2000 PTE array starts.

• X86_PTE_ARRAY is equal to X86_PAGES, but typecasts the value to PX86_PE,
that is, a pointer to an array of X86_PE page entry structures, as defined in
Listing 4-2.

• X86_PDE_ARRAY is a tricky definition that computes the base address of the
PDE array from the PTE array location, using the PTI_SHIFT constant. As
explained earlier, the general formula for mapping a linear address to a PTE
address is ((LinearAddress >> 12) * 4) + 0xC0000000, and the page-
directory is located by setting LinearAddress to 0xC0000000. Nothing else is
done by the definition of X86_PDE_ARRAY.

184 EXPLORING WINDOWS 2000 MEMORY

// ===

// INTEL X86 MACROS & CONSTANTS

// ===

#define X86_PAGE_MASK (0 - (1 << PAGE_SHIFT))

#define X86_PAGE(_p) (((DWORD) (_p) & X86_PAGE_MASK) >> PAGE_SHIFT)

#define X86_PDI_MASK (0 - (1 << PDI_SHIFT))

#define X86_PDI(_p) (((DWORD) (_p) & X86_PDI_MASK) >> PDI_SHIFT)

#define X86_PTI_MASK ((0 - (1 << PTI_SHIFT)) & ~X86_PDI_MASK)

#define X86_PTI(_p) (((DWORD) (_p) & X86_PTI_MASK) >> PTI_SHIFT)

#define X86_OFFSET_4M(_p) ((_p) & ~(X86_PDI_MASK))

#define X86_OFFSET_4K(_p) ((_p) & ~(X86_PDI_MASK | X86_PTI_MASK))

#define X86_PAGE_4M (1 << PDI_SHIFT)

#define X86_PAGE_4K (1 << PTI_SHIFT)

#define X86_PAGES_4M (1 << (32 - PDI_SHIFT))

#define X86_PAGES_4K (1 << (32 - PTI_SHIFT))

// ---

#define X86_PAGES 0xC0000000

#define X86_PTE_ARRAY ((PX86_PE) X86_PAGES)

#define X86_PDE_ARRAY (X86_PTE_ARRAY + (X86_PAGES >> PTI_SHIFT))

// ---

#define X86_SELECTOR_RPL 0x0003

#define X86_SELECTOR_TI 0x0004

#define X86_SELECTOR_INDEX 0xFFF8

#define X86_SELECTOR_SHIFT 3

INTEL i386 MEMORY MANAGEMENT 185

#define X86_SELECTOR_LIMIT (X86_SELECTOR_INDEX >> \

X86_SELECTOR_SHIFT)

// ---

#define X86_DESCRIPTOR_SYS_TSS16A 0x1

#define X86_DESCRIPTOR_SYS_LDT 0x2

#define X86_DESCRIPTOR_SYS_TSS16B 0x3

#define X86_DESCRIPTOR_SYS_CALL16 0x4

#define X86_DESCRIPTOR_SYS_TASK 0x5

#define X86_DESCRIPTOR_SYS_INT16 0x6

#define X86_DESCRIPTOR_SYS_TRAP16 0x7

#define X86_DESCRIPTOR_SYS_TSS32A 0x9

#define X86_DESCRIPTOR_SYS_TSS32B 0xB

#define X86_DESCRIPTOR_SYS_CALL32 0xC

#define X86_DESCRIPTOR_SYS_INT32 0xE

#define X86_DESCRIPTOR_SYS_TRAP32 0xF

// ---

#define X86_DESCRIPTOR_APP_ACCESSED 0x1

#define X86_DESCRIPTOR_APP_READ_WRITE 0x2

#define X86_DESCRIPTOR_APP_EXECUTE_READ 0x2

#define X86_DESCRIPTOR_APP_EXPAND_DOWN 0x4

#define X86_DESCRIPTOR_APP_CONFORMING 0x4

#define X86_DESCRIPTOR_APP_CODE 0x8

// ===

LISTING 4-5. Additional i386 Memory Management Definitions

The last two sections of Listing 4-5 handle selectors and special types of
descriptors, and are complementary to Listing 4-2:

• X86_SELECTOR_RPL, X86_SELECTOR_TI, and X86_SELECTOR_INDEX
are bit masks corresponding to the RPL, TI, and Index members of the
X86_SELECTOR structures defined in Listing 4-2.

• X86_SELECTOR_SHIFT is a right-shift factor that right-aligns the value of
the selector’s Index member.

• X86_SELECTOR_LIMIT defines the maximum index value a selector can
hold and is equal to 8,191. This value determines the maximum size of a
descriptor table. Each selector index points to a descriptor, and each
descriptor consists of 64 bits or 8 bytes (cf. X86_DESCRIPTOR in Listing 4-2),
so the maximum descriptor table size amounts to 8,192 * 8 = 64 KB.

• The list of X86_DESCRIPTOR_SYS_* constants define values of a
descriptor’s Type member if its S-bit is zero, identifying it as a system
descriptor. Please refer to Listing 4-2 for the bit-field layout of a descriptor,
determined by the structure X86_DESCRIPTOR. The system descriptor types
are described in detail in the Intel manuals (Intel 1999c, pp. 3-15f) and
summarized in Table 4-1.

The X86_DESCRIPTOR_APP_* constants concluding Listing 4-5 apply to a
descriptor’s Type member if it is an application descriptor referring to a code or
data segment, identified by a nonzero S-bit. Because application descriptor types
can be characterized by independent properties reflected by the four type bits, the
X86_DESCRIPTOR_APP_* constants are defined as single-bit masks, in which some
bits are interpreted differently for data and code segments:

• X86_DESCRIPTOR_APP_ACCESSED is set if the segment has been accessed.

• X86_DESCRIPTOR_APP_READ_WRITE decides whether a data segment allows
read-only or read/write access.

• X86_DESCRIPTOR_APP_EXECUTE_READ decides whether a code segment
allows execute-only or execute/read access.

• X86_DESCRIPTOR_APP_DOWN is set for expand-down data segments, which
is a property commonly exposed by stack segments.

• X86_DESCRIPTOR_APP_CONFORMING indicates whether a code segment is
conforming, that is, whether it can be called by less privileged code
(cf. Intel 1999c, pp. 4-13ff).

• X86_DESCRIPTOR_APP_CODE distinguishes code and data segments. Note
that stack segments belong to the data segment category and must always
be writable.

We will revisit system descriptors later when the memory spy application pre-
sented in the next sections is up and running. Table 4-1 also concludes a short intro-
duction to i386 memory management. For more information on this topic, please
refer to the original Intel Pentium manuals (Intel 1999a, 1999b, 1999c) or one of the
secondary readings, such as Robert L. Hummel’s great 80486 reference handbook
(Hummel 1992).

186 EXPLORING WINDOWS 2000 MEMORY

TABLE 4-1. System Descriptor Types

NAME VALUE DESCRIPTION

X86_DESCRIPTOR_SYS_TSS16A 0x1 16-bit Task State Segment (Available)

X86_DESCRIPTOR_SYS_LDT 0x2 Local Descriptor Table

X86_DESCRIPTOR_SYS_TSS16B 0x3 16-bit Task State Segment (Busy)

X86_DESCRIPTOR_SYS_CALL16 0x4 16-bit Call Gate

X86_DESCRIPTOR_SYS_TASK 0x5 Task Gate

X86_DESCRIPTOR_SYS_INT16 0x6 16-bit Interrupt Gate

X86_DESCRIPTOR_SYS_TRAP16 0x7 16-bit Trap Gate

X86_DESCRIPTOR_SYS_TSS32A 0x9 32-bit Task State Segment (Available)

X86_DESCRIPTOR_SYS_TSS32B 0xB 32-bit Task State Segment (Busy)

X86_DESCRIPTOR_SYS_CALL32 0xC 32-bit Call Gate

X86_DESCRIPTOR_SYS_INT32 0xE 32-bit Interrupt Gate

X86_DESCRIPTOR_SYS_TRAP32 0xF 32-bit Trap Gate

A SAMPLE MEMORY SPY DEVICE

One of the frequently recurring Microsoft statements about Windows NT and 2000 is
that it is a secure operating system. Along with user authentication issues in network-
ing environments, this also includes robustness against bad applications that might
compromise the system’s integrity by misusing pointers or writing outside the bounds
of a memory data structure. This has always been a nasty problem on Windows 3.x,
in which the system and all applications shared a single memory space. Windows NT
has introduced a clear separation between system and application memory and
between concurrent processes. Each process gets its own 4-GB address space, as
depicted in Figure 4-2. Whenever a task switch occurs, the current address space is
switched out and another one is mapped in by selecting different values for the seg-
ment registers, page tables, and other memory management data specific to a
process. This design prevents applications from inadvertently tampering with
memory of other applications. Each process also requires access to system
resources, so the 4-GB space always contains some system code and data. To
protect these memory regions from being overwritten by hostile application code, a
different trick is employed.

A SAMPLE MEMORY SPY DEVICE 187

WINDOWS 2000 MEMORY SEGMENTATION

Windows 2000 has inherited the basic memory segmentation scheme of Windows
NT 4.0, which divides the 4-GB process address space in two equal parts by default.
The lower half, comprising the range 0x00000000 to 0x7FFFFFFF, contains applica-
tion data and code running in user-mode, which is equivalent to Privilege Level 3 or
“Ring 3” in Intel’s terminology (Intel 1999a, pp. 4-8ff; Intel 1999c, pp. 4-8ff). The
upper half, ranging from 0x80000000 to 0xFFFFFFFF, is reserved for the system,
which is running in kernel-mode, also known as Intel’s Privilege Level 0 or “Ring 0.”
The privilege level determines what operations may be executed and which memory
locations can be accessed by the code. Especially, this means that certain CPU
instructions are forbidden and certain memory regions are inaccessible, for low-
privileged code. For example, if a user-mode application touches any address in
the upper half of the 4-GB address space, the system will throw an exception and
terminate the application process without giving it another chance.

Figure 4-5 demonstrates what happens if an application attempts to read from
address 0x80000000. This strict access limitation is good for the integrity of the sys-
tem but bad for debugging tools that should be able to show the contents
of all valid memory regions. Fortunately, an easy workaround exists: Like the sys-
tem itself, kernel-mode drivers run on the highest privilege level and therefore are
allowed to execute all CPU instructions and to see all memory locations. The trick is
to inject a spy driver into the system that reads the requested memory and sends the
contents to a companion application waiting in user-mode. Of course, even a kernel-
mode driver cannot read from virtual memory addresses that aren’t backed up by
physical or page file memory. Therefore, such a driver must check all addresses care-
fully before accessing them in order to avoid the dreaded Blue Screen Of Death
(BSOD). Contrary to an application exception, which terminates the problem appli-
cation only, a driver exception stops the entire system and forces a full reboot.

188 EXPLORING WINDOWS 2000 MEMORY

FIGURE 4-5. Addresses Starting at 0x80000000 Are Not Accessible in User-mode

THE DEVICE I/O CONTROL DISPATCHER

The companion CD of this book contains the source code of a versatile spy device
implemented as a kernel-mode driver, which can be found in the \src\w2k_spy
directory tree. This device is based on a driver skeleton generated by the driver

wizard introduced in Chapter 3. The user-mode interface of w2k_spy.sys is based on
Win32 Device I/O Control (IOCTL), briefly described in the same chapter. The spy
driver defines a device named \Device\w2k_spy and a symbolic link, \DosDevices\
w2k_spy, required to make the device reachable from user-mode. It is funny that the
namespace of symbolic links is called \DosDevices. We are certainly not working
with DOS device drivers here. This name has historic roots and is now set in stone.
With the symbolic link installed, the driver can be opened by any user-mode module
via the standard Win32 API function CreateFile(), using the path \\.\w2k_spy.
The character sequence \\.\ is a general escape for local devices. For example,
\\.\C: refers to hard disk C: of the local system. See the CreateFile() documen-
tation in the Microsoft Platform SDK for more details.

Parts of the driver’s header file w2k_spy.h are included above as Listings 4-2
to 4-5. This file is somewhat similar to a DLL header file: It contains definitions
required by the module itself during compilation, but it also provides enough infor-
mation for a client application that needs to interface to it. Both the DLL/driver
and the client application include the same header file, and each module picks out
the definitions it needs for proper operation. However, this Janus-headed nature
of the header file creates many more problems for a kernel-mode driver than for
a DLL because of the special development environment Microsoft provides for dri-
vers. Unfortunately, the header files contained in the DDK are not compatible with
the Win32 files in the Platform SDK. The header files cannot be mixed, at least not
in C language projects, resulting in a deadlocked situation in which the kernel-
mode driver has access to constants, macros, and data types not available to the
client application, and vice versa. Therefore, w2k_spy.c defines a flag constant
named _W2K_SPY_SYS_, and w2k_spy.h checks the presence or absence of this con-
stant to define items that are missing in one or the other environment, using
#ifdef...#else...#endif clauses. This means that all definitions found in the
#ifdef _W2K_SPY_SYS_ branch are “seen” by the driver code only, whereas the defini-
tions in the #else branch are evaluated exclusively by the client application. All parts
of w2k_spy.h outside these conditional clauses apply to both modules.

In Chapter 3, in the discussion of my driver wizard, I presented the driver skeleton
code provided by the wizard in Listing 3-3. The starting point of any new driver project
created by this wizard is usually the DeviceDispatcher() function. It receives a device
context pointer and a pointer to the I/O Request Packet (IRP) that is to be dispatched.
The wizard’s boilerplate code already handles the basic I/O requests IRP_MJ_CREATE,
IRP_MJ_CLEANUP, and IRP_MJ_CLOSE, sent to the device when it is opened or closed by
a client. The DeviceDispatcher() simply returns STATUS_SUCCESS for these requests,
so the device can be opened and closed without error. For some devices, this behavior is
sufficient, but others require more or less complex initialization and cleanup code here.
All remaining requests return STATUS_NOT_IMPLEMENTED. The first step in the extension
of the code is to change this default behavior by handling more requests. As already

A SAMPLE MEMORY SPY DEVICE 189

noted, one of the main tasks of w2k_spy.sys is to send data unavailable in user-mode
to a Win32 application by means of IOCTL calls, so the work starts with the addition
of an IRP_MJ_DEVICE_CONTROL case to the DeviceDispatcher() function. Listing 4-6
shows the updated code, as it appears in w2k_spy.c.

190 EXPLORING WINDOWS 2000 MEMORY

NTSTATUS DeviceDispatcher (PDEVICE_CONTEXT pDeviceContext,

PIRP pIrp)

{

PIO_STACK_LOCATION pisl;

DWORD dInfo = 0;

NTSTATUS ns = STATUS_NOT_IMPLEMENTED;

pisl = IoGetCurrentIrpStackLocation (pIrp);

switch (pisl->MajorFunction)

{

case IRP_MJ_CREATE:

case IRP_MJ_CLEANUP:

case IRP_MJ_CLOSE:

{

ns = STATUS_SUCCESS;

break;

}

case IRP_MJ_DEVICE_CONTROL:

{

ns = SpyDispatcher (pDeviceContext,

pisl->Parameters.DeviceIoControl

.IoControlCode,

pIrp->AssociatedIrp.SystemBuffer,

pisl->Parameters.DeviceIoControl

.InputBufferLength,

pIrp->AssociatedIrp.SystemBuffer,

pisl->Parameters.DeviceIoControl

.OutputBufferLength,

&dInfo);

break;

}

}

pIrp->IoStatus.Status = ns;

pIrp->IoStatus.Information = dInfo;

IoCompleteRequest (pIrp, IO_NO_INCREMENT);

return ns;

}

LISTING 4-6. Adding an IRP_MJ_DEVICE_CONTROL Case to the Dispatcher

A SAMPLE MEMORY SPY DEVICE 191

The IOCTL handler in Listing 4-6 is fairly simple—it just calls SpyDispatcher()
with parameters it extracts from the IRP structure and the current I/O stack location
embedded in it. The SpyDispatcher(), shown in Listing 4-7, requires the following
arguments:

• pDeviceContext is the driver’s device context. The basic Device_Context
structure provided by the driver wizard contains the driver and device object
pointers only (see Listing 3-4). The spy driver adds a couple of members to it
for private use.

• dCode specifies the IOCTL code that determines the command to be
executed by the spy device. An IOCTL code is a 32-bit integer consisting
of 4 bit-fields, as illustrated by Figure 4-6.

• pInput points to the buffer providing the IOCTL input data.

• dInput is the size of the input buffer.

• pOutput points to the buffer receiving the IOCTL output data.

• dOutput is the size of the output buffer.

• pdInfo points to a DWORD variable that should receive the number of bytes
written to the output buffer.

Depending on the IOCTL method used, the input and output buffers are
passed differently from the system to the driver. The spy device uses buffered I/O,
directing the system to copy the input data to a safe buffer allocated automatically
by the system, and to copy a specified amount of data from the same system buffer
to the caller’s output buffer on return. It is important to keep in mind that the input
and output buffers overlap in this case, so the IOCTL handler must save any input
data it might need later before it writes any output data to the buffer. The pointer to
this I/O buffer is stored in the SystemBuffer member of the AssociatedIrp union
inside the IRP structure (cf. ntddk.h). The input and output buffer sizes are stored
in a completely different location of the IRP—they are part of the DeviceIoControl
member of the Parameters union inside the IRP’s current stack location, named
InputBufferLength and OutputBufferLength, respectively. The DeviceIoControl
substructure also provides the IOCTL code via its IoControlCode member. More
information about the Windows NT/2000 IOCTL methods and how they pass data
in and out can be found in my article “A Spy Filter Driver for Windows NT” in
Windows Developer’s Journal (Schreiber 1997).

192 EXPLORING WINDOWS 2000 MEMORY

NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,

DWORD dCode,

PVOID pInput,

DWORD dInput,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_MEMORY_BLOCK smb;

SPY_PAGE_ENTRY spe;

SPY_CALL_INPUT sci;

PHYSICAL_ADDRESS pa;

DWORD dValue, dCount;

BOOL fReset, fPause, fFilter, fLine;

PVOID pAddress;

PBYTE pbName;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);

*pdInfo = 0;

switch (dCode)

{

case SPY_IO_VERSION_INFO:

{

ns = SpyOutputVersionInfo (pOutput, dOutput, pdInfo);

break;

}

case SPY_IO_OS_INFO:

{

ns = SpyOutputOsInfo (pOutput, dOutput, pdInfo);

break;

}

case SPY_IO_SEGMENT:

{

if ((ns = SpyInputDword (&dValue,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputSegment (dValue,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_INTERRUPT:

{

if ((ns = SpyInputDword (&dValue,

pInput, dInput))

== STATUS_SUCCESS)

{

A SAMPLE MEMORY SPY DEVICE 193

ns = SpyOutputInterrupt (dValue,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PHYSICAL:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

pa = MmGetPhysicalAddress (pAddress);

ns = SpyOutputBinary (&pa, PHYSICAL_ADDRESS_,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_CPU_INFO:

{

ns = SpyOutputCpuInfo (pOutput, dOutput, pdInfo);

break;

}

case SPY_IO_PDE_ARRAY:

{

ns = SpyOutputBinary (X86_PDE_ARRAY, SPY_PDE_ARRAY_,

pOutput, dOutput, pdInfo);

break;

}

case SPY_IO_PAGE_ENTRY:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

SpyMemoryPageEntry (pAddress, &spe);

ns = SpyOutputBinary (&spe, SPY_PAGE_ENTRY_,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_MEMORY_DATA:

{

if ((ns = SpyInputMemory (&smb,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputMemory (&smb,

pOutput, dOutput, pdInfo);

}

(continued)

194 EXPLORING WINDOWS 2000 MEMORY

break;

}

case SPY_IO_MEMORY_BLOCK:

{

if ((ns = SpyInputMemory (&smb,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputBlock (&smb,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HANDLE_INFO:

{

if ((ns = SpyInputHandle (&hObject,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputHandleInfo (hObject,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_INFO:

{

ns = SpyOutputHookInfo (pOutput, dOutput, pdInfo);

break;

}

case SPY_IO_HOOK_INSTALL:

{

if (((ns = SpyInputBool (&fReset,

pInput, dInput))

== STATUS_SUCCESS)

&&

((ns = SpyHookInstall (fReset, &dCount))

== STATUS_SUCCESS))

{

ns = SpyOutputDword (dCount,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_REMOVE:

{

if (((ns = SpyInputBool (&fReset,

pInput, dInput))

== STATUS_SUCCESS)

&&

((ns = SpyHookRemove (fReset, &dCount))

== STATUS_SUCCESS))

{

A SAMPLE MEMORY SPY DEVICE 195

ns = SpyOutputDword (dCount,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_PAUSE:

{

if ((ns = SpyInputBool (&fPause,

pInput, dInput))

== STATUS_SUCCESS)

{

fPause = SpyHookPause (fPause);

ns = SpyOutputBool (fPause,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_FILTER:

{

if ((ns = SpyInputBool (&fFilter,

pInput, dInput))

== STATUS_SUCCESS)

{

fFilter = SpyHookFilter (fFilter);

ns = SpyOutputBool (fFilter,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_RESET:

{

SpyHookReset ();

ns = STATUS_SUCCESS;

break;

}

case SPY_IO_HOOK_READ:

{

if ((ns = SpyInputBool (&fLine,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputHookRead (fLine,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_WRITE:

{

SpyHookWrite (pInput, dInput);

(continued)

196 EXPLORING WINDOWS 2000 MEMORY

ns = STATUS_SUCCESS;

break;

}

case SPY_IO_MODULE_INFO:

{

if ((ns = SpyInputPointer (&pbName,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputModuleInfo (pbName,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_HEADER:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeHeader (pAddress,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_EXPORT:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeExport (pAddress,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_SYMBOL:

{

if ((ns = SpyInputPointer (&pbName,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeSymbol (pbName,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_CALL:

{

if ((ns = SpyInputBinary (&sci, SPY_CALL_INPUT_,

pInput, dInput))

== STATUS_SUCCESS)

A SAMPLE MEMORY SPY DEVICE 197

{

ns = SpyOutputCall (&sci,

pOutput, dOutput, pdInfo);

}

break;

}

}

MUTEX_RELEASE (pDeviceContext->kmDispatch);

return ns;

}

LISTING 4-7. The Spy Driver’s Internal Command Dispatcher

The main DDK header file ntddk.h, as well as the Win32 file winioctl.h in
the Platform SDK, define the simple but highly convenient CTL_CODE() macro shown
in Listing 4-8 to build IOCTL codes according to the diagram in Figure 4-6. The four
parts serve the following purposes:

1. DeviceType is a 16-bit device type ID. ntddk.h lists a couple of predefined
types, symbolized by the constants FILE_DEVICE_*. Microsoft reserves the
range 0x0000 to 0x7FFF for internal use, while the range 0x8000 to 0xFFFF
is available to developers. The spy driver defines its own device ID
FILE_DEVICE_SPY and sets it to 0x8000.

2. Access specifies the 2-bit access check value determining the required
access rights for the IOCTL operation. Possible values are FILE_ANY_
ACCESS (0), FILE_READ_ACCESS (1), FILE_WRITE_ACCESS (2), and the
combination of the latter two, FILE_READ_ACCESS | FILE_WRITE_
ACCESS (3). See ntddk.h for more details.

3. Function is a 12-bit ID that selects the operation to be performed by the
device. Microsoft reserves the values 0x000 to 0x7FF for internal use, and
leaves range 0x800 to 0xFFF for developers. The IOCTL function IDs
recognized by the spy device are drawn from the latter number pool.

4. Method consists of 2 bits, selecting one of four available I/O transfer
methods named METHOD_BUFFERED (0), METHOD_IN_DIRECT (1), METHOD_
OUT_DIRECT (2), and METHOD_NEITHER (3), found in ntddk.h. The spy
device uses METHOD_BUFFERED for all requests, which is a highly secure but
also somewhat sluggish method because of the data copying between the
client and system buffers. Because the I/O of the memory spy is not time-
critical, it is a good idea to opt for security. If you want to know more
about the other methods, please refer to my spy filter article mentioned on
p.191. (Schreiber 1997).

LISTING 4-8. The CTL_CODE() Macro Builds I/O Control Codes

198 EXPLORING WINDOWS 2000 MEMORY

16 15 14 13 2 1 0

Device Type Access Function Method

31

#define CTL_CODE (DeviceType, Function, Method, Access) \

(((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) (Method))

FIGURE 4-6. Structure of a Device I/O Control Code

Table 4-2 summarizes all IOCTL functions supported by w2k_spy.sys. The
functions with IDs in the range 0 to 10 are memory exploration primitives that are
sufficient to cover a wide range of tasks; they are discussed later in this chapter. The
remaining functions with IDs of 11 and up belong to different IOCTL groups that
will be described in detail in the next chapters, where Native API hooks and kernel
calls from user-mode are discussed. Note that some IOCTL codes require the write
access right, indicated by bit #15 being set (see Figure 4-6). That is, all IOCTL com-
mands with a code of 0x80006nnn can be issued via a read-only device handle, and a
code of 0x8000Ennn requires a read/write handle. The access rights are typically
requested in the CreateFile() call that opens the device by specifying a combination
of the GENERIC_READ and GENERIC_WRITE flags for the dwDesiredAccess argument.

The function names in the leftmost column of Table 4-2 also appear as cases of the
large switch/case statement of the SpyDispatcher() function in Listing 4-7. This func-
tion first obtains the device’s dispatcher mutex to guarantee that only a single request is
executed at a time if more than one client or a multithreaded application communicates
with the device. MUTEX_WAIT() is a wrapper macro for KeWaitForMutexObject(),
which takes no less than five arguments. KeWaitForMutexObject() is a macro itself,
forwarding its arguments to KeWaitForSingleObject(). MUTEX_WAIT(), along with
its friends MUTEX_RELEASE() and MUTEX_INITIALIZE(), is shown in Listing 4-9. After
the mutex object becomes signaled, SpyDispatcher() branches to various short code
sequences, depending on the received IOCTL code. At the end, it releases the mutex and
returns a status code to the caller.

The SpyDispatcher() uses a couple of helper functions to read input parame-
ters, obtain the requested data, and write the data to the caller’s output buffer. As
already mentioned, a kernel-mode driver must be overly fussy with any user-mode

A SAMPLE MEMORY SPY DEVICE 199

TABLE 4-2. IOCTL Functions Supported by the Spy Device

FUNCTION NAME ID IOCTL CODE DESCRIPTION

SPY_IO_VERSION_INFO 0 0x80006000 Returns spy version information

SPY_IO_OS_INFO 1 0x80006004 Returns operating system information

SPY_IO_SEGMENT 2 0x80006008 Returns the properties of a segment

SPY_IO_INTERRUPT 3 0x8000600C Returns the properties of an interrupt gate

SPY_IO_PHYSICAL 4 0x80006010 Linear-to-physical address translation

SPY_IO_CPU_INFO 5 0x80006014 Returns the values of special CPU registers

SPY_IO_PDE_ARRAY 6 0x80006018 Returns the PDE array at 0xC0300000

SPY_IO_PAGE_ENTRY 7 0x8000601C Returns the PDE or PTE of a linear address

SPY_IO_MEMORY_DATA 8 0x80006020 Returns the contents of a memory block

SPY_IO_MEMORY_BLOCK 9 0x80006024 Returns the contents of a memory block

SPY_IO_HANDLE_INFO 10 0x80006028 Looks up object properties from a handle

SPY_IO_HOOK_INFO 11 0x8000602C Returns info about Native API hooks

SPY_IO_HOOK_INSTALL 12 0x8000E030 Installs Native API hooks

SPY_IO_HOOK_REMOVE 13 0x8000E034 Removes Native API hooks

SPY_IO_HOOK_PAUSE 14 0x8000E038 Pauses/resumes the hook protocol

SPY_IO_HOOK_FILTER 15 0x8000E03C Enables/disables the hook protocol filter

SPY_IO_HOOK_RESET 16 0x8000E040 Clears the hook protocol

SPY_IO_HOOK_READ 17 0x80006044 Reads data from the hook protocol

SPY_IO_HOOK_WRITE 18 0x8000E048 Writes data to the hook protocol

SPY_IO_MODULE_INFO 19 0x8000604C Returns information about loaded
system modules

SPY_IO_PE_HEADER 20 0x80006050 Returns IMAGE_NT_HEADERS data

SPY_IO_PE_EXPORT 21 0x80006054 Returns IMAGE_EXPORT_DIRECTORY data

SPY_IO_PE_SYMBOL 22 0x80006058 Returns the address of an exported
system symbol

SPY_IO_CALL 23 0x8000E05C Calls a function inside a loaded module

parameters it receives. From a driver’s perspective, all user-mode code is evil and has
no other thing on its mind but to trash the system. This somewhat paranoid view is
not absurd—just the slightest slip brings the whole system to an immediate stop, with
the appearance of a BlueScreen. So, if a client application says: “Here’s my buffer—it
can take up to 4,096 bytes,” the driver does not accept it—neither that the buffer

200 EXPLORING WINDOWS 2000 MEMORY

#define MUTEX_INITIALIZE(_mutex) \

KeInitializeMutex \

(&(_mutex), 0)

#define MUTEX_WAIT(_mutex) \

KeWaitForMutexObject \

(&(_mutex), Executive, KernelMode, FALSE, NULL)

#define MUTEX_RELEASE(_mutex) \

KeReleaseMutex \

(&(_mutex), FALSE)

LISTING 4-9. Kernel-Mutex Management Macros

points to valid memory, nor that the buffer size is correct. In an IOCTL situation
with buffered I/O (i.e., if the Method portion of the IOCTL code indicates METHOD_
BUFFERED), the system takes care of the sanity checks and allocates a buffer that
is large enough to hold both the input and output data. However, the other I/O
transfer methods, most notably METHOD_NEITHER, where the driver receives original
user-mode buffer pointers, require more foresight.

Although the spy device uses buffered I/O, it has to check the input and output
parameters for validity. It might be that the client application passes in less data than is
required or provides an output buffer that is not large enough for the output data. The
system cannot catch these semantic problems, because it doesn’t know what kind of
data is transferred in an IOCTL transaction. Therefore, SpyDispatcher() calls the
SpyInput*() and SpyOutput*() helper functions to copy data from or to the I/O
buffers. These functions execute the requested operation only if the buffer size
matches the requirements of the operation. Listing 4-10 shows the basic input
functions, and Listing 4-11 shows the basic output functions. SpyInputBinary() and
SpyOutputBinary() are the workhorses. They test the buffer size, and, if it is OK, they
copy the requested amount of data using the Windows 2000 Runtime Library function
RtlCopyMemory(). The remaining functions are simple wrappers for the common data
types DWORD, BOOL, PVOID, and HANDLE. Additionally, SpyOutputBlock() copies the
data block specified by the caller in a SPY_MEMORY_BLOCK structure after verifying that
all bytes in the indicated range are readable. The SpyInput*() functions return STATUS_
INVALID_BUFFER_SIZE if incomplete input data is passed in, and the SpyOutput*()
functions return STATUS_ BUFFER_TOO_SMALL if the output buffer is smaller
than required.

A SAMPLE MEMORY SPY DEVICE 201

NTSTATUS SpyInputBinary (PVOID pData,

DWORD dData,

PVOID pInput,

DWORD dInput)

{

NTSTATUS ns = STATUS_OBJECT_TYPE_MISMATCH;

if (dData <= dInput)

{

RtlCopyMemory (pData, pInput, dData);

ns = STATUS_SUCCESS;

}

return ns;

}

// ---

NTSTATUS SpyInputDword (PDWORD pdValue,

PVOID pInput,

DWORD dInput)

{

return SpyInputBinary (pdValue, DWORD_, pInput, dInput);

}

// ---

NTSTATUS SpyInputBool (PBOOL pfValue,

PVOID pInput,

DWORD dInput)

{

return SpyInputBinary (pfValue, BOOL_, pInput, dInput);

}

// ---

NTSTATUS SpyInputPointer (PPVOID ppAddress,

PVOID pInput,

DWORD dInput)

{

return SpyInputBinary (ppAddress, PVOID_, pInput, dInput);

}

// ---

NTSTATUS SpyInputHandle (PHANDLE phObject,

PVOID pInput,

DWORD dInput)

{

return SpyInputBinary (phObject, HANDLE_, pInput, dInput);

}

LISTING 4-10. Reading Input Data from an IOCTL Buffer

202 EXPLORING WINDOWS 2000 MEMORY

NTSTATUS SpyOutputBinary (PVOID pData,

DWORD dData,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

NTSTATUS ns = STATUS_BUFFER_TOO_SMALL;

*pdInfo = 0;

if (dData <= dOutput)

{

RtlCopyMemory (pOutput, pData, *pdInfo = dData);

ns = STATUS_SUCCESS;

}

return ns;

}

// ---

NTSTATUS SpyOutputBlock (PSPY_MEMORY_BLOCK psmb,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if (SpyMemoryTestBlock (psmb->pAddress, psmb->dBytes))

{

ns = SpyOutputBinary (psmb->pAddress, psmb->dBytes,

pOutput, dOutput, pdInfo);

}

return ns;

}

// ---

NTSTATUS SpyOutputDword (DWORD dValue,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

return SpyOutputBinary (&dValue, DWORD_,

pOutput, dOutput, pdInfo);

}

// ---

NTSTATUS SpyOutputBool (BOOL fValue,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

A SAMPLE MEMORY SPY DEVICE 203

return SpyOutputBinary (&fValue, BOOL_,

pOutput, dOutput, pdInfo);

}

// ---

NTSTATUS SpyOutputPointer (PVOID pValue,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

return SpyOutputBinary (&pValue, PVOID_,

pOutput, dOutput, pdInfo);

}

LISTING 4-11. Writing Output Data to an IOCTL Buffer

You might have noticed that the SpyDispatcher() in Listing 4-7 contains
references to a few more SpyInput*() and SpyOutput*() functions. Although
ultimately based on SpyInputBinary() and SpyOutputBinary(), they are slightly
more complex than the basic functions in Listings 4-10 and 4-11 and, therefore,
are discussed separately a little later in this chapter. So let’s start at the beginning
of SpyDispatcher() and work through the switch/case statement step by step.

THE IOCTL FUNCTION SPY_IO_VERSION_INFO

The IOCTL SPY_IO_VERSION_INFO function fills a caller-supplied SPY_
VERSION_INFO structure with data about the spy driver itself. It doesn’t require
input parameters and uses the SpyOutputVersionInfo() helper function. This
function, included in Listing 4-12 together with the SPY_VERSION_INFO structure,
is trivial. It sets the dVersion member to the constant SPY_VERSION (currently
100, indicating V1.00) defined in w2k_spy.h, and copies the driver’s name
symbolized by the string constant DRV_NAME (“SBS Windows 2000 Spy Device”)
to the awName member. The major version number is obtained by dividing
dVersion by 100. The remainder yields the minor version number.

typedef struct _SPY_VERSION_INFO

{

DWORD dVersion;

WORD awName [SPY_NAME_];

}

SPY_VERSION_INFO, *PSPY_VERSION_INFO, **PPSPY_VERSION_INFO;

(continued)

204 EXPLORING WINDOWS 2000 MEMORY

#define SPY_VERSION_INFO_ sizeof (SPY_VERSION_INFO)

// ---

NTSTATUS SpyOutputVersionInfo (PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_VERSION_INFO svi;

svi.dVersion = SPY_VERSION;

wcscpyn (svi.awName, USTRING (CSTRING (DRV_NAME)), SPY_NAME_);

return SpyOutputBinary (&svi, SPY_VERSION_INFO_,

pOutput, dOutput, pdInfo);

}

LISTING 4-12. Obtaining Version Information About the Spy Driver

THE IOCTL FUNCTION SPY_IO_OS_INFO

The IOCTL SPY_IO_OS_INFO function is much more interesting than the preceding
one. It is another output-only function, expecting no input arguments and filling a
caller-supplied SPY_OS_INFO structure with the values of several internal operating
system parameters. Listing 4-13 shows the definition of this structure and the helper
function SpyOutputOsInfo() called by the dispatcher. Some of the structure mem-
bers are simply set to constants drawn from the DDK header files and w2k_spy.h;
others receive “live” values read out from several internal kernel variables and struc-
tures. In Chapter 2, you became acquainted with the variables NtBuildNumber and
NtGlobalFlag, exported by ntoskrnl.exe (see Table B-1 in Appendix B). Other
than the other exported Nt* symbols, these don’t point to API functions, but to vari-
ables in the kernel’s .data section. In the Win32 world, it is quite uncommon to
export variables. However, several Windows 2000 kernel modules make use of this
technique. ntoskrnl.exe exports no fewer than 55 variables, ntdll.dll provides 4,
and hal.dll provides 1. Of the set of ntoskrnl.exe variables, SpyOutputOsInfo()
copies MmHighestUserAddress, MmUserProbeAddress, MmSystemRangeStart,
NtGlobalFlag, KeI386MachineType, KeNumberProcessors, and NtBuildNumber
to the output buffer.

A SAMPLE MEMORY SPY DEVICE 205

typedef struct _SPY_OS_INFO

{

DWORD dPageSize;

DWORD dPageShift;

DWORD dPtiShift;

DWORD dPdiShift;

DWORD dPageMask;

DWORD dPtiMask;

DWORD dPdiMask;

PX86_PE PteArray;

PX86_PE PdeArray;

PVOID pLowestUserAddress;

PVOID pThreadEnvironmentBlock;

PVOID pHighestUserAddress;

PVOID pUserProbeAddress;

PVOID pSystemRangeStart;

PVOID pLowestSystemAddress;

PVOID pSharedUserData;

PVOID pProcessorControlRegion;

PVOID pProcessorControlBlock;

DWORD dGlobalFlag;

DWORD dI386MachineType;

DWORD dNumberProcessors;

DWORD dProductType;

DWORD dBuildNumber;

DWORD dNtMajorVersion;

DWORD dNtMinorVersion;

WORD awNtSystemRoot [MAX_PATH];

}

SPY_OS_INFO, *PSPY_OS_INFO, **PPSPY_OS_INFO;

#define SPY_OS_INFO_ sizeof (SPY_OS_INFO)

// ---

(continued)

When a module imports data from another module, it has to instruct the com-
piler and linker accordingly by using the extern keyword. This will cause the linker
to generate an entry in the module’s import section instead of trying to resolve the
symbol to a fixed address. Some extern declarations are already included in
ntddk.h. Those that are missing are included in Listing 4-13.

206 EXPLORING WINDOWS 2000 MEMORY

extern PWORD NlsAnsiCodePage;

extern PWORD NlsOemCodePage;

extern PWORD NtBuildNumber;

extern PDWORD NtGlobalFlag;

extern PDWORD KeI386MachineType;

// ---

NTSTATUS SpyOutputOsInfo (PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_SEGMENT ss;

SPY_OS_INFO soi;

NT_PRODUCT_TYPE NtProductType;

PKPCR pkpcr;

NtProductType = (SharedUserData->ProductTypeIsValid

? SharedUserData->NtProductType

: 0);

SpySegment (X86_SEGMENT_FS, 0, &ss);

pkpcr = ss.pBase;

soi.dPageSize = PAGE_SIZE;

soi.dPageShift = PAGE_SHIFT;

soi.dPtiShift = PTI_SHIFT;

soi.dPdiShift = PDI_SHIFT;

soi.dPageMask = X86_PAGE_MASK;

soi.dPtiMask = X86_PTI_MASK;

soi.dPdiMask = X86_PDI_MASK;

soi.PteArray = X86_PTE_ARRAY;

soi.PdeArray = X86_PDE_ARRAY;

soi.pLowestUserAddress = MM_LOWEST_USER_ADDRESS;

soi.pThreadEnvironmentBlock = pkpcr->NtTib.Self;

soi.pHighestUserAddress = *MmHighestUserAddress;

soi.pUserProbeAddress = (PVOID) *MmUserProbeAddress;

soi.pSystemRangeStart = *MmSystemRangeStart;

soi.pLowestSystemAddress = MM_LOWEST_SYSTEM_ADDRESS;

soi.pSharedUserData = SharedUserData;

soi.pProcessorControlRegion = pkpcr;

soi.pProcessorControlBlock = pkpcr->Prcb;

soi.dGlobalFlag = *NtGlobalFlag;

soi.dI386MachineType = *KeI386MachineType;

soi.dNumberProcessors = *KeNumberProcessors;

soi.dProductType = NtProductType;

soi.dBuildNumber = *NtBuildNumber;

soi.dNtMajorVersion = SharedUserData->NtMajorVersion;

soi.dNtMinorVersion = SharedUserData->NtMinorVersion;

A SAMPLE MEMORY SPY DEVICE 207

LISTING 4-13. Obtaining Information About the Operating System

The remaining members of the SPY_OS_INFO structure are filled with
values from system data structures lying around in memory. For example,
SpyOutputOsInfo() assigns the base address of the Kernel’s Processor Control
Region (KPCR) to the pProcessorControlRegion member. This is a very important
data structure that contains lots of frequently used thread-specific data items, and
therefore is placed in its own memory segment addressed by the CPU’s FS register.
Both Windows NT 4.0 and Windows 2000 set up FS to point to the linear address
0xFFDFF000 in kernel-mode. SpyOutputOsInfo() calls the SpySegment() function
discussed later to query the base address of the FS segment in the linear address
space. This segment also comprises the Kernel’s Processor Control Block (KPRCB),
pointed to by the Prcb member of the KPCR, immediately followed by a CONTEXT
structure containing low-level CPU status information of the current thread. The
definitions of the KPCR, KPRCB, and CONTEXT structures can be looked up in the
ntddk.h header file. More on this topic follows later in this chapter.

Another internal data structure referenced in Listing 4-13 is SharedUserData.
It is actually nothing but a “well-known address,” typecast to a structure
pointer. Listing 4-14 shows the definition as it appears in ntddk.h. Well-known
addresses are locations within the linear address space that are set at compile
time, and hence do not vary over time or with the configuration. Obviously,
SharedUserData is a pointer to a KUSER_SHARED_DATA structure found at the
fixed linear address 0xFFDF0000. This memory area is shared by the user-mode
application and the system, and it contains such interesting things as the
operating system’s version number, which SpyOutputOsInfo() copies to the
dNtMajorVersion and dNtMinorVersion members of the caller’s SPY_OS_INFO
structure. As I will show later, the KUSER_SHARED_DATA structure is mirrored to
address 0x7FFE0000, where user-mode code can access it.

Following the explanation of the spy device’s IOCTL functions is a demo
application that displays the returned data on the screen.

#define KI_USER_SHARED_DATA 0xffdf0000

#define SharedUserData ((KUSER_SHARED_DATA * const) KI_USER_SHARED_DATA)

LISTING 4-14. Definition of SharedUserData

wcscpyn (soi.awNtSystemRoot, SharedUserData->NtSystemRoot,

MAX_PATH);

return SpyOutputBinary (&soi, SPY_OS_INFO_,

pOutput, dOutput, pdInfo);

}

THE IOCTL FUNCTION SPY_IO_SEGMENT

Now this discussion becomes really interesting. The SPY_IO_SEGMENT function does
some very-low-level operations to query the properties of a segment, given a selector.
SpyDispatcher() first calls SpyInputDword() to get the selector value passed in by
the calling application. You might recall that selectors are 16-bit quantities. However,
I try to avoid 16-bit data types whenever possible because the native word size of the
i386 CPUs in 32-bit mode is the 32-bit DWORD. Therefore, I have extended the selector
argument to a DWORD where the upper 16 bits are always zero. If SpyInputDword()
reports success, the SpyOutputSegment() function shown in Listing 4-15 is called.
This function simply returns to the caller whatever the SpySegment() helper function,
included in Listing 4-15, returns. Basically, SpySegment() fills a SPY_SEGMENT struc-
ture, defined at the top of Listing 4-15. It comprises the selector’s value in the form
of a X86_SELECTOR structure (see Listing 4-2), along with its 64-bit X86_DESCRIPTOR
(Listing 4-2, again), the corresponding segment’s linear base address, the segment limit
(i.e., the segment size minus one), and a flag named fOk indicating whether the data
in the SPY_SEGMENT structure is valid. The latter is required in the context of other
functions (e.g., SPY_IO_CPU_INFO) that return the properties of several segments at
once. In this case, the fOk member enables the caller to sort out any invalid segments
contained in the output data.

208 EXPLORING WINDOWS 2000 MEMORY

typedef struct _SPY_SEGMENT

{

X86_SELECTOR Selector;

X86_DESCRIPTOR Descriptor;

PVOID pBase;

DWORD dLimit;

BOOL fOk;

}

SPY_SEGMENT, *PSPY_SEGMENT, **PPSPY_SEGMENT;

#define SPY_SEGMENT_ sizeof (SPY_SEGMENT)

// ---

NTSTATUS SpyOutputSegment (DWORD dSelector,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_SEGMENT ss;

SpySegment (X86_SEGMENT_OTHER, dSelector, &ss);

A SAMPLE MEMORY SPY DEVICE 209

return SpyOutputBinary (&ss, SPY_SEGMENT_,

pOutput, dOutput, pdInfo);

}

// ---

BOOL SpySegment (DWORD dSegment,

DWORD dSelector,

PSPY_SEGMENT pSegment)

{

BOOL fOk = FALSE;

if (pSegment != NULL)

{

fOk = TRUE;

if (!SpySelector (dSegment, dSelector,

&pSegment->Selector))

{

fOk = FALSE;

}

if (!SpyDescriptor (&pSegment->Selector,

&pSegment->Descriptor))

{

fOk = FALSE;

}

pSegment->pBase =

SpyDescriptorBase (&pSegment->Descriptor);

pSegment->dLimit =

SpyDescriptorLimit (&pSegment->Descriptor);

pSegment->fOk = fOk;

}

return fOk;

}

LISTING 4-15. Querying Segment Properties

SpySegment() relies on several other helper functions that provide the parts that
make up the resulting SPY_SEGMENT structure. First, SpySelector() copies a selector
value to the passed-in X86_SELECTOR structure (Listing 4-16). If the first argument,
dSegment, is set to X86_SEGMENT_OTHER, the dSelector argument is assumed to spec-
ify a valid selector value, so this value is simply assigned to the wValue member of the
output structure. Otherwise, dSelector is ignored, and dSegment is used in a switch/
case construct that selects one of the CPU’s segment registers or its task register TR.
Note that this requires a little bit of inline assembly—the C language doesn’t provide a
standard means for accessing processor-specific features such as segment registers.

210 EXPLORING WINDOWS 2000 MEMORY

#define X86_SEGMENT_OTHER 0

#define X86_SEGMENT_CS 1

#define X86_SEGMENT_DS 2

#define X86_SEGMENT_ES 3

#define X86_SEGMENT_FS 4

#define X86_SEGMENT_GS 5

#define X86_SEGMENT_SS 6

#define X86_SEGMENT_TSS 7

// ---

BOOL SpySelector (DWORD dSegment,

DWORD dSelector,

PX86_SELECTOR pSelector)

{

X86_SELECTOR Selector = {0, 0};

BOOL fOk = FALSE;

if (pSelector != NULL)

{

fOk = TRUE;

switch (dSegment)

{

case X86_SEGMENT_OTHER:

{

if (fOk = ((dSelector >> X86_SELECTOR_SHIFT)

<= X86_SELECTOR_LIMIT))

{

Selector.wValue = (WORD) dSelector;

}

break;

}

case X86_SEGMENT_CS:

{

__asm mov Selector.wValue, cs

break;

}

case X86_SEGMENT_DS:

{

__asm mov Selector.wValue, ds

break;

}

case X86_SEGMENT_ES:

{

__asm mov Selector.wValue, es

break;

}

case X86_SEGMENT_FS:

{

__asm mov Selector.wValue, fs

break;

A SAMPLE MEMORY SPY DEVICE 211

}

case X86_SEGMENT_GS:

{

__asm mov Selector.wValue, gs

break;

}

case X86_SEGMENT_SS:

{

__asm mov Selector.wValue, ss

break;

}

case X86_SEGMENT_TSS:

{

__asm str Selector.wValue

break;

}

default:

{

fOk = FALSE;

break;

}

}

RtlCopyMemory (pSelector, &Selector, X86_SELECTOR_);

}

return fOk;

}

LISTING 4-16. Obtaining Selector Values

SpyDescriptor() reads in the 64-bit descriptor pointed to by the segment selec-
tor (Listing 4-17). As you might recall, all selectors contain a Table Indicator (TI) bit
that decides whether the selector refers to a descriptor in the Global Descriptor Table
(GDT, TI=0) or Local Descriptor Table (LDT, TI=1). The upper half of Listing 4-17
handles the LDT case. First, the assembly language instructions SLDT and SGDT are used
to read the LDT selector value and the segment limit and base address of the GDT,
respectively. Remember that the linear base address of the GDT is specified explicitly,
whereas the LDT is referenced indirectly via a selector that points into the GDT. There-
fore, SpyDescriptor() first validates the LDT selector value. If it is not the null seg-
ment selector and does not point beyond the GDT limit, the SpyDescriptorType(),
SpyDescriptorLimit(), and SpyDescriptorBase() functions attached to the
bottom of Listing 4-17 are called to obtain the basic properties of the LDT:

• SpyDescriptorType() returns the values of a descriptor’s Type and S bit-
fields (cf. Listing 4-2). The LDT selector must point to a system descriptor
of type X86_DESCRIPTOR_SYS_LDT (2).

212 EXPLORING WINDOWS 2000 MEMORY

• SpyDescriptorLimit() compiles the segment limit from the Limit1 and
Limit2 bit-fields of a descriptor. If its G flag indicates a granularity of
4-KB, the value is shifted left by 12 bits, shifting in 1-bits from the
right end.

• SpyDescriptorBase() simply arranges the Base1, Base2, and Base3
bit-fields of a descriptor properly to yield a 32-bit linear address.

BOOL SpyDescriptor (PX86_SELECTOR pSelector,

PX86_DESCRIPTOR pDescriptor)

{

X86_SELECTOR ldt;

X86_TABLE gdt;

DWORD dType, dLimit;

BOOL fSystem;

PX86_DESCRIPTOR pDescriptors = NULL;

BOOL fOk = FALSE;

if (pDescriptor != NULL)

{

if (pSelector != NULL)

{

if (pSelector->TI) // ldt descriptor

{

__asm

{

sldt ldt.wValue

sgdt gdt.wLimit

}

if ((!ldt.TI) && ldt.Index &&

((ldt.wValue & X86_SELECTOR_INDEX)

<= gdt.wLimit))

{

dType = SpyDescriptorType (gdt.pDescriptors +

ldt.Index,

&fSystem);

dLimit = SpyDescriptorLimit (gdt.pDescriptors +

ldt.Index);

if ((dType == X86_DESCRIPTOR_SYS_LDT)

&&

((DWORD) (pSelector->wValue

& X86_SELECTOR_INDEX)

<= dLimit))

{

pDescriptors =

A SAMPLE MEMORY SPY DEVICE 213

SpyDescriptorBase (gdt.pDescriptors +

ldt.Index);

}

}

}

else // gdt descriptor

{

if (pSelector->Index)

{

__asm

{

sgdt gdt.wLimit

}

if ((pSelector->wValue & X86_SELECTOR_INDEX)

<= gdt.wLimit)

{

pDescriptors = gdt.pDescriptors;

}

}

}

}

if (pDescriptors != NULL)

{

RtlCopyMemory (pDescriptor,

pDescriptors + pSelector->Index,

X86_DESCRIPTOR_);

fOk = TRUE;

}

else

{

RtlZeroMemory (pDescriptor,

X86_DESCRIPTOR_);

}

}

return fOk;

}

// ---

PVOID SpyDescriptorBase (PX86_DESCRIPTOR pDescriptor)

{

return (PVOID) ((pDescriptor->Base1) |

(pDescriptor->Base2 << 16) |

(pDescriptor->Base3 << 24));

}

// ---

DWORD SpyDescriptorLimit (PX86_DESCRIPTOR pDescriptor)

{

return (pDescriptor->G ? (pDescriptor->Limit1 << 12) |

(pDescriptor->Limit2 << 28) | 0xFFF

(continued)

214 EXPLORING WINDOWS 2000 MEMORY

: (pDescriptor->Limit1) |

(pDescriptor->Limit2 << 16));

}

// ---

DWORD SpyDescriptorType (PX86_DESCRIPTOR pDescriptor,

PBOOL pfSystem)

{

if (pfSystem != NULL) *pfSystem = !pDescriptor->S;

return pDescriptor->Type;

}

LISTING 4-17. Obtaining Descriptor Values

If the selector’s TI bit indicates a GDT descriptor, things are much simpler.
Again, the SGDT instruction is used to get the size and location of the GDT in linear
memory, and if the descriptor index specified by the selector is within the proper
range, the pDescriptors variable is set to point to the GDT base address. In both the
LDT and GDT cases, the pDescriptor variable is non-NULL if the caller has passed
in a valid selector. In this case, the 64-bit descriptor value is copied to the caller’s
X86_DESCRIPTOR structure. Otherwise, all members of this structure are set to zero
with the kind help of RtlZeroMemory().

We are still in the discussion of the SpySegment() function shown in
Listing 4-15. The SpySelector() and SpyDescriptor() calls have been handled.
Only the concluding SpyDescriptorBase() and SpyDescriptorLimit() invoca-
tions are left, but you already know what these functions do (see Listing 4-17). If
SpySelector() and SpyDescriptor() succeed, the data returned in the SPY_
SEGMENT structure is valid. SpyDescriptorBase() and SpyDescriptorLimit()
don’t return error flags because they cannot fail—they just might return meaning-
less data if the supplied descriptor is invalid.

THE IOCTL FUNCTION SPY_IO_INTERRUPT

SPY_IO_INTERRUPT is similar to SPY_IO_SEGMENT, except that this function works on
interrupt descriptors stored in the system’s Interrupt Descriptor Table (IDT), rather
than on LDT or GDT descriptors. The IDT contains up to 256 descriptors that can rep-
resent task, interrupt, or trap gates (cf. Intel 1999c, pp. 5-11ff). By the way, interrupts
and traps are quite similar in nature, differing in a tiny detail only: An interrupt handler
is always entered with interrupts disabled, whereas the interrupt flag is left unchanged
upon entering a trap handler. The SPY_IO_INTERRUPT caller supplies an interrupt num-
ber between 0 and 256 in its input buffer and a SPY_INTERRUPT structure as output
buffer, which will contain the properties of the corresponding interrupt handler on suc-

A SAMPLE MEMORY SPY DEVICE 215

cessful return. The SpyOutputInterrupt() helper function invoked by the dispatcher is
a simple wrapper that calls SpyInterrupt() and copies the returned data to the output
buffer. Both functions, as well as the SPY_INTERRUPT structure they operate on, are
shown in Listing 4-18. The latter is filled by SpyInterrupt() with the following items:

• Selector specifies the selector of a Task-State Segment (TSS, see Intel
1999c, pp. 6-4ff) or a code segment. A code segment selector determines
the segment where an interrupt or trap handler is located.

• Gate is the 64-bit task, interrupt, or trap gate descriptor addressed by
the selector.

• Segment contains the properties of the segment addressed by the gate.

• pOffset specifies the offset of the interrupt or trap handler’s entry point
relative to the base address of the surrounding code segment. Because task
gates don’t comprise an offset value, this member must be ignored if the
input selector refers to a TSS.

• fOk is a flag that indicates whether the data in the SPY_INTERRUPT
structure is valid.

A TSS is typically used to guarantee that an error situation is handled by a
valid task. It is a special system segment type that holds 104 bytes of processor state
information needed to restore a task after a task switch has occurred, as outlined in
Table 4-3. The CPU always forces a task switch and saves all CPU registers to the
TSS when an interrupt associated with a TSS occurs. Windows 2000 stores task gates
in the interrupt slots 0x02 (Nonmaskable Interrupt [NMI]), 0x08 (Double Fault), and
0x12 (Stack-Segment Fault). The remaining entries point to interrupt handlers. Unused
interrupts are handled by dummy routines named KiUnexpectedInterruptNNN(),
where “NNN” is a decimal ordinal number. These handlers branch to the internal
function KiEndUnexpectedRange(), which in turn branches to KiUnexpected
InterruptTail(), passing in the number of the unhandled interrupt.

typedef struct _SPY_INTERRUPT

{

X86_SELECTOR Selector;

X86_GATE Gate;

SPY_SEGMENT Segment;

PVOID pOffset;

BOOL fOk;

}

SPY_INTERRUPT, *PSPY_INTERRUPT, **PPSPY_INTERRUPT;

(continued)

216 EXPLORING WINDOWS 2000 MEMORY

#define SPY_INTERRUPT_ sizeof (SPY_INTERRUPT)

// ---

NTSTATUS SpyOutputInterrupt (DWORD dInterrupt,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_INTERRUPT si;

SpyInterrupt (dInterrupt, &si);

return SpyOutputBinary (&si, SPY_INTERRUPT_,

pOutput, dOutput, pdInfo);

}

// ---

BOOL SpyInterrupt (DWORD dInterrupt,

PSPY_INTERRUPT pInterrupt)

{

BOOL fOk = FALSE;

if (pInterrupt != NULL)

{

if (dInterrupt <= X86_SELECTOR_LIMIT)

{

fOk = TRUE;

if (!SpySelector (X86_SEGMENT_OTHER,

dInterrupt << X86_SELECTOR_SHIFT,

&pInterrupt->Selector))

{

fOk = FALSE;

}

if (!SpyIdtGate (&pInterrupt->Selector,

&pInterrupt->Gate))

{

fOk = FALSE;

}

if (!SpySegment (X86_SEGMENT_OTHER,

pInterrupt->Gate.Selector,

&pInterrupt->Segment))

{

fOk = FALSE;

}

pInterrupt->pOffset = SpyGateOffset (&pInterrupt->Gate);

}

else

{

A SAMPLE MEMORY SPY DEVICE 217

RtlZeroMemory (pInterrupt, SPY_INTERRUPT_);

}

pInterrupt->fOk = fOk;

}

return fOk;

}

// ---

PVOID SpyGateOffset (PX86_GATE pGate)

{

return (PVOID) (pGate->Offset1 | (pGate->Offset2 << 16));

}

LISTING 4-18. Querying Interrupt Properties

TABLE 4-3. CPU Status Fields in the Task State Segment (TSS)

OFFSET BITS ID DESCRIPTION

0x00 16 Previous Task Link

0x04 32 ESP0 Stack Pointer Register for Privilege Level 0

0x08 16 SS0 Stack Segment Register for Privilege Level 0

0x0C 32 ESP1 Stack Pointer Register for Privilege Level 1

0x10 16 SS1 Stack Segment Register for Privilege Level 1

0x14 32 ESP2 Stack Pointer Register for Privilege Level 2

0x18 16 SS2 Stack Segment Register for Privilege Level 2

0x1C 32 CR3 Page-Directory Base Register (PDBR)

0x20 32 EIP Instruction Pointer Register

0x24 32 EFLAGS Processor Flags Register

0x28 32 EAX General-Purpose Register EAX

0x2C 32 ECX General-Purpose Register ECX

0x30 32 EDX General-Purpose Register EDX

0x34 32 EBX General-Purpose Register EDX

0x38 32 ESP Stack Pointer Register

0x3C 32 EBP Base Pointer Register

0x40 32 ESI Source Index Register

0x44 32 EDI Destination Index Register

0x48 16 ES Extra Segment Register

0x4C 16 CS Code Segment Register

0x50 16 SS Stack Segment Register

(continued)

218 EXPLORING WINDOWS 2000 MEMORY

TABLE 4-3. (continued)

OFFSET BITS ID DESCRIPTION

0x54 16 DS Data Segment Register

0x58 16 FS Additional Data Segment Register #1

0x5C 16 GS Additional Data Segment Register #2

0x60 16 LDT Local Descriptor Table Segment Selector

0x64 1 T Debug Trap Flag

0x66 16 I/O Map Base Address

0x68 — End of CPU State Information

The SpySegment() and SpySelector() functions called by SpyInterrupt()
have already been presented in Listings 4-15 and 4-16. SpyGateOffset(),
included at the end of Listing 4-18, works analogous to SpyDescriptorBase()
and SpyDescriptorLimit(), picking up the Offset1 and Offset2 bit-fields of an
X86_GATE structure and arranging them properly to yield a 32-bit address.
SpyIdtGate() is defined in Listing 4-19. It bears a strong similarity to
SpyDescriptor() in Listing 4-17 if the LDT clause would be omitted. The
assembly language instruction SIDT stores the 48-bit contents of the CPU’s IDT
register, comprising the 16-bit table limit and the 32-bit linear base address of
the IDT. The remaining code in Listing 4-19 compares the descriptor index of the
supplied selector to the IDT limit, and, if it is valid, the corresponding interrupt
descriptor is copied to the caller’s X86_GATE structure. Otherwise, all gate structure
members are set to zero.

BOOL SpyIdtGate (PX86_SELECTOR pSelector,

PX86_GATE pGate)

{

X86_TABLE idt;

PX86_GATE pGates = NULL;

BOOL fOk = FALSE;

if (pGate != NULL)

{

if (pSelector != NULL)

{

__asm

{

sidt idt.wLimit

}

if ((pSelector->wValue & X86_SELECTOR_INDEX)

A SAMPLE MEMORY SPY DEVICE 219

<= idt.wLimit)

{

pGates = idt.pGates;

}

}

if (pGates != NULL)

{

RtlCopyMemory (pGate,

pGates + pSelector->Index,

X86_GATE_);

fOk = TRUE;

}

else

{

RtlZeroMemory (pGate, X86_GATE_);

}

}

return fOk;

}

LISTING 4-19. Obtaining IDT Gate Values

THE IOCTL FUNCTION SPY_IO_PHYSICAL

The IOCTL SPY_IO_PHYSICAL function is simple, because it relies entirely on the
MmGetPhysicalAddress() function exported by ntoskrnl.exe. The IOCTL func-
tion handler simply calls SpyInputPointer() (see Listing 4-10) to get the linear
address to be converted, lets MmGetPhysicalAddress() look up the corresponding
physical address, and returns the resulting PHYSICAL_ADDRESS value to the caller.
Note that PHYSICAL_ADDRESS is a 64-bit LARGE_INTEGER. On most i386 systems,
the upper 32 bits will be always zero. However, on systems with Physical Address
Extension (PAE) enabled and more than 4 GB of memory installed, these bits can
assume nonzero values.

MmGetPhysicalAddress() uses the PTE array starting at linear address
0xC0000000 to find out the physical address. The basic mechanism works
as follows:

• If the linear address is within the range 0x80000000 to 0x9FFFFFFF, the
three most significant bits are set to zero, yielding a physical address in the
range 0x00000000 to 0x1FFFFFFF.

• Otherwise, the upper 20 bits are used as an index into the PTE array at
address 0xC0000000.

220 EXPLORING WINDOWS 2000 MEMORY

• If the P bit of the target PTE is set, indicating that the corresponding page
is present in physical memory, all PTE bits except for the 20-bit PFN are
stripped, and the least significant 12 bits of the linear address are added,
resulting in a proper 32-bit physical address.

• If the physical page is not present, MmGetPhysicalAddress() returns zero.

It is interesting to see that MmGetPhysicalAddress() assumes 4-KB pages for all
linear addresses outside the kernel memory range 0x80000000 to 0x9FFFFFFF. Other
functions, such as MmIsAddressValid(), first load the PDE of the linear address and
check its PS bit to find out whether the page size is 4 KB or 4 MB. This is a much
more general approach that can cope with arbitrary memory configurations. Both
functions return correct results, because Windows 2000 happens to use 4-MB pages
in the 0x80000000 to 0x9FFFFFFF memory area only. Some kernel API functions,
however, are apparently designed to be more flexible than others.

THE IOCTL FUNCTION SPY_IO_CPU_INFO

Several CPU instructions are available only to code running on privilege level zero,
which is the most privileged of the four available levels. In Windows 2000 terminol-
ogy, this means kernel-mode. Among the forbidden instructions are those that read
the contents of the control registers CR0, CR2, and CR3. Because these registers
contain interesting information, an application might wish to find a way to access
them, and the SPY_IO_CPU_INFO function is the solution. As Listing 4-20 shows, the
SpyOutputCpuInfo() function invoked by the IOCTL handler uses some ASM inline
code to read the control registers, along with other valuable information, such as the
contents of the IDT, GDT, and LDT registers and the segment selectors stored in the
registers CS, DS, ES, FS, GS, SS, and TR. The Task Register TR contains a selector
that refers to the TSS of the current task.

typedef struct _SPY_CPU_INFO

{

X86_REGISTER cr0;

X86_REGISTER cr2;

X86_REGISTER cr3;

SPY_SEGMENT cs;

SPY_SEGMENT ds;

SPY_SEGMENT es;

SPY_SEGMENT fs;

SPY_SEGMENT gs;

SPY_SEGMENT ss;

SPY_SEGMENT tss;

X86_TABLE idt;

X86_TABLE gdt;

A SAMPLE MEMORY SPY DEVICE 221

X86_SELECTOR ldt;

}

SPY_CPU_INFO, *PSPY_CPU_INFO, **PPSPY_CPU_INFO;

#define SPY_CPU_INFO_ sizeof (SPY_CPU_INFO)

// ---

NTSTATUS SpyOutputCpuInfo (PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_CPU_INFO sci;

PSPY_CPU_INFO psci = &sci;

__asm

{

push eax

push ebx

mov ebx, psci

mov eax, cr0

mov [ebx.cr0], eax

mov eax, cr2

mov [ebx.cr2], eax

mov eax, cr3

mov [ebx.cr3], eax

sidt [ebx.idt.wLimit]

mov [ebx.idt.wReserved], 0

sgdt [ebx.gdt.wLimit]

mov [ebx.gdt.wReserved], 0

sldt [ebx.ldt.wValue]

mov [ebx.ldt.wReserved], 0

pop ebx

pop eax

}

SpySegment (X86_SEGMENT_CS, 0, &sci.cs);

SpySegment (X86_SEGMENT_DS, 0, &sci.ds);

SpySegment (X86_SEGMENT_ES, 0, &sci.es);

SpySegment (X86_SEGMENT_FS, 0, &sci.fs);

SpySegment (X86_SEGMENT_GS, 0, &sci.gs);

SpySegment (X86_SEGMENT_SS, 0, &sci.ss);

SpySegment (X86_SEGMENT_TSS, 0, &sci.tss);

return SpyOutputBinary (&sci, SPY_CPU_INFO_,

pOutput, dOutput, pdInfo);

}

LISTING 4-20. Querying CPU State Information

222 EXPLORING WINDOWS 2000 MEMORY

The segment selectors are obtained with the help of the SpySegment() function
discussed earlier. See Listing 4-15 for details.

THE IOCTL FUNCTION SPY_IO_PDE_ARRAY

SPY_IO_PDE_ARRAY is another trivial function that simply copies the entire page-
directory from address 0xC0300000 to the caller’s output buffer. This buffer has to
take the form of a SPY_PDE_ARRAY structure shown in Listing 4-21. As you might
have guessed, this structure’s size is exactly 4 KB, and it comprises 1,024 32-bit PDE
values. The X86_PE structure used here, which represents a generalized page entry,
can be found in Listing 4-3, and the constant X86_PAGES_4M is defined in Listing 4-5.
Because the items in a SPY_PDE_ARRAY are always page-directory entries, the embed-
ded X86_PE structures are either of type X86_PDE_4M or X86_PDE_4K, depending on
the value of the page size bit PS.

It usually is not a good idea to copy memory contents without ensuring that the
source page is currently present in physical memory. However, the page-directory is
one of the few exceptions. The page-directory of the current task is always present in
physical memory while the task is running (Intel 1999c, pp. 3-23). It cannot be
swapped out to a pagefile unless another task is switched in. That’s why the CPU’s
Page-Directory Base Register (PDBR) doesn’t have a P (present) bit, like the PDEs
and PTEs. Please refer to the definition of the X86_PDBR structure in Listing 4-3 to
verify this.

typedef struct _SPY_PDE_ARRAY

{

X86_PE apde [X86_PAGES_4M];

}

SPY_PDE_ARRAY, *PSPY_PDE_ARRAY, **PPSPY_PDE_ARRAY;

#define SPY_PDE_ARRAY_ sizeof (SPY_PDE_ARRAY)

LISTING 4-21. Definition of SPY_PDE_ARRAY

THE IOCTL FUNCTION SPY_IO_PAGE_ENTRY

If you are interested in the page entry of a given linear address, this is the function
of choice. Listing 4-22 shows the internals of the SpyMemoryPageEntry() function
that handles this IOCTL request. The SPY_PAGE_ENTRY structure it returns is basi-
cally a X86_PE page entry, as defined in Listing 4-3, plus two convenient additions:
The dSize member indicates the page size in bytes, which is either X86_PAGE_4K

A SAMPLE MEMORY SPY DEVICE 223

(4,096 bytes) or X86_PAGE_4M (4,194,304 bytes), and the fPresent member indi-
cates whether the page is present in physical memory. This flag must be contrasted
to the return value of SpyMemoryPageEntry() itself, which can be TRUE even if
fPresent is FALSE. In this case, the supplied linear address is valid, but points to
a page currently swapped out to a pagefile. This situation is indicated by bit #10
of the page entry—referred to as PageFile in Listing 4-22—being set while the
P bit is clear. Please refer to the introduction to the X86_PNPE structure earlier in
this chapter for details. X86_PNPE represents a page-not-present entry and is
defined in Listing 4-3.

SpyMemoryPageEntry() first assumes that the target page is a 4-MB page, and,
therefore, copies the PDE of the specified linear address from the system’s PDE array
at address 0xC0300000 to the pe member of the SPY_PAGE_ENTRY structure. If the
P bit is set, the subordinate page or page-table is present, so the next test checks
the PS bit for the page size. If it is set, the PDE addresses a 4-MB page, and the work
is done—SpyMemoryPageEntry() returns TRUE, and the fPresent member of the
SPY_PAGE_ENTRY structure is set to TRUE as well. If the PS bit is zero, the PDE refers
to a PTE, so the code extracts this PTE from the array at address 0xC0000000 and
checks its P bit. If set, the 4-KB page comprising the linear address is present, and both
SpyMemoryPageEntry() and fPresent report TRUE. Otherwise, the retrieved value
must be a page-not-present entry, so fPresent is FALSE, and SpyMemoryPageEntry()
returns TRUE only if the PageFile bit of the page entry is set.

typedef struct _SPY_PAGE_ENTRY

{

X86_PE pe;

DWORD dSize;

BOOL fPresent;

}

SPY_PAGE_ENTRY, *PSPY_PAGE_ENTRY, **PPSPY_PAGE_ENTRY;

#define SPY_PAGE_ENTRY_ sizeof (SPY_PAGE_ENTRY)

// ---

BOOL SpyMemoryPageEntry (PVOID pVirtual,

PSPY_PAGE_ENTRY pspe)

{

SPY_PAGE_ENTRY spe;

BOOL fOk = FALSE;

spe.pe = X86_PDE_ARRAY [X86_PDI (pVirtual)];

spe.dSize = X86_PAGE_4M;

spe.fPresent = FALSE;

(continued)

224 EXPLORING WINDOWS 2000 MEMORY

if (spe.pe.pde4M.P)

{

if (spe.pe.pde4M.PS)

{

fOk = spe.fPresent = TRUE;

}

else

{

spe.pe = X86_PTE_ARRAY [X86_PAGE (pVirtual)];

spe.dSize = X86_PAGE_4K;

if (spe.pe.pte4K.P)

{

fOk = spe.fPresent = TRUE;

}

else

{

fOk = (spe.pe.pnpe.PageFile != 0);

}

}

}

if (pspe != NULL) *pspe = spe;

return fOk;

}

LISTING 4-22. Querying PDEs and PTEs

Note that SpyMemoryPageEntry() does not identify swapped-out 4-MB pages.
If a 4-MB PDE refers to an absent page, there is no indication whether the linear
address is invalid or the page is currently kept in a pagefile. 4-MB pages are used in
the kernel memory range 0x80000000 to 0x9FFFFFFF only. I have never seen one of
these pages swapped out, even in extreme low-memory situations, so I was not able
to examine any associated page-not-present entries.

THE IOCTL FUNCTION SPY_IO_MEMORY_DATA

The SPY_IO_MEMORY_DATA function is certainly one of the most important ones,
because it copies arbitrary amounts of memory data to a buffer supplied by the caller.
As you might recall, user-mode applications are readily passed in invalid addresses.
Therefore, this function is very cautious and verifies the validity of all source
addresses before touching them. Remember, the Blue Screen is lurking everywhere
in kernel-mode.

The calling application requests the contents of a memory block by passing in a
SPY_MEMORY_BLOCK structure—shown at the top of Listing 4-23—that specifies its
address and size. For convenience, the address is defined as a union, allowing interpre-
tation as a byte array (PBYTE pbAddress) or an arbitrary pointer (PVOID pAddress).

A SAMPLE MEMORY SPY DEVICE 225

typedef struct _SPY_MEMORY_BLOCK

{

union

{

PBYTE pbAddress;

PVOID pAddress;

};

DWORD dBytes;

}

SPY_MEMORY_BLOCK, *PSPY_MEMORY_BLOCK, **PPSPY_MEMORY_BLOCK;

#define SPY_MEMORY_BLOCK_ sizeof (SPY_MEMORY_BLOCK)

// ---

NTSTATUS SpyInputMemory (PSPY_MEMORY_BLOCK psmb,

PVOID pInput,

DWORD dInput)

{

return SpyInputBinary (psmb, SPY_MEMORY_BLOCK_, pInput, dInput);

}

The SpyInputMemory() function in Listing 4-23 copies this structure from the IOCTL
input buffer. The companion function SpyOutputMemory(), concluding Listing 4-23,
is a wrapper around SpyMemoryReadBlock(), which is shown in Listing 4-24. The
main duty of SpyOutputMemory() is to return the appropriate NTSTATUS values while
SpyMemoryReadBlock() provides the data.

SpyMemoryReadBlock() returns the memory contents in a SPY_MEMORY_DATA
structure, defined in Listing 4-25. I have chosen a different approach than in the pre-
vious definitions because SPY_MEMORY_DATA is a data type of variable size. Essentially,
it consists of a SPY_MEMORY_BLOCK structure named smb, followed by an array of
WORDs called awData[]. The length of the array is determined by the dBytes member
of smb. To allow easy definition of SPY_MEMORY_DATA instances as global or local
variables of a predetermined size, this structure’s definition is based on the macro
SPY_MEMORY_DATA_N(). The single argument of this macro specifies the size of the
awData[] array. The actual structure definition follows the macro definition, provid-
ing SPY_MEMORY_DATA with a zero-length awData[] array. The SPY_MEMORY_DATA__()
macro computes the overall size of a SPY_MEMORY_DATA structure given the size of its
data array, and the remaining definitions allow packing and unpacking the data
WORDs in the array. Obviously, the lower half of each WORD contains the memory data
byte and the upper half specifies flags. Currently, only bit #8 has a meaning, indicat-
ing whether the data byte in bits #0 to #7 is valid.

(continued)

226 EXPLORING WINDOWS 2000 MEMORY

// ---

NTSTATUS SpyOutputMemory (PSPY_MEMORY_BLOCK psmb,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

NTSTATUS ns = STATUS_BUFFER_TOO_SMALL;

if (*pdInfo = SpyMemoryReadBlock (psmb, pOutput, dOutput))

{

ns = STATUS_SUCCESS;

}

return ns;

}

DWORD SpyMemoryReadBlock (PSPY_MEMORY_BLOCK psmb,

PSPY_MEMORY_DATA psmd,

DWORD dSize)

{

DWORD i;

DWORD n = SPY_MEMORY_DATA__ (psmb->dBytes);

if (dSize >= n)

{

psmd->smb = *psmb;

for (i = 0; i < psmb->dBytes; i++)

{

psmd->awData [i] =

(SpyMemoryTestAddress (psmb->pbAddress + i)

? SPY_MEMORY_DATA_VALUE (psmb->pbAddress [i], TRUE)

: SPY_MEMORY_DATA_VALUE (0, FALSE));

}

}

else

{

if (dSize >= SPY_MEMORY_DATA_)

{

psmd->smb.pbAddress = NULL;

psmd->smb.dBytes = 0;

}

n = 0;

}

return n;

}

LISTING 4-23. Handling Memory Blocks

A SAMPLE MEMORY SPY DEVICE 227

// ---

BOOL SpyMemoryTestAddress (PVOID pVirtual)

{

return SpyMemoryPageEntry (pVirtual, NULL);

// ---

BOOL SpyMemoryTestBlock (PVOID pVirtual,

DWORD dBytes)

{

PBYTE pbData;

DWORD dData;

BOOL fOk = TRUE;

if (dBytes)

{

pbData = (PBYTE) ((DWORD_PTR) pVirtual & X86_PAGE_MASK);

dData = (((dBytes + X86_OFFSET_4K (pVirtual) - 1)

/ PAGE_SIZE) + 1) * PAGE_SIZE;

do {

fOk = SpyMemoryTestAddress (pbData);

pbData += PAGE_SIZE;

dData -= PAGE_SIZE;

}

while (fOk && dData);

}

return fOk;

}

LISTING 4-24. Copying Memory Block Contents

The validity of a data byte is determined by the function SpyMemoryTest
Address(), which is called by SpyMemoryReadBlock() for the address of each byte
before it is copied to the buffer. SpyMemoryTestAddress(), included in the lower
half of Listing 4-24, simply calls SpyMemoryPageEntry() with the second argument
set to NULL. The latter function has just been introduced in the course of the
discussion of the IOCTL function SPY_IO_PAGE_ENTRY (Listing 4-22). Setting its
PSPY_PAGE_ENTRY pointer argument to NULL means that the caller is not interested
in the page entry of the supplied linear address, so all that remains is the function’s
return value, which is TRUE if the linear address is valid. In the context of
SpyMemoryPageEntry(), an address is valid if the page it is contained in is either
present in physical memory or resident in one of the system’s pagefiles. Note that this
behavior is not compatible with the ntoskrnl.exe API function MmIsAddressValid(),
which will always return FALSE if the page is not present, even if it is a valid page
currently kept in a pagefile. Also included in Listing 4-24 is the function

228 EXPLORING WINDOWS 2000 MEMORY

#define SPY_MEMORY_DATA_N(_n) \

struct _SPY_MEMORY_DATA_##_n \

{ \

SPY_MEMORY_BLOCK smb; \

WORD awData [_n]; \

}

typedef SPY_MEMORY_DATA_N (0)

SPY_MEMORY_DATA, *PSPY_MEMORY_DATA, **PPSPY_MEMORY_DATA;

#define SPY_MEMORY_DATA_ sizeof (SPY_MEMORY_DATA)

#define SPY_MEMORY_DATA__(_n) (SPY_MEMORY_DATA_ + ((_n) * WORD_))

#define SPY_MEMORY_DATA_BYTE 0x00FF

#define SPY_MEMORY_DATA_VALID 0x0100

#define SPY_MEMORY_DATA_VALUE(_b,_v) \

((WORD) (((_b) & SPY_MEMORY_DATA_BYTE) | \

((_v) ? SPY_MEMORY_DATA_VALID : 0)))

LISTING 4-25. Definition of SPY_MEMORY_DATA

SpyMemoryTestBlock(), which is an enhanced version of SpyMemoryTestAddress().
It tests a memory range for validity by walking across the specified block in
4,096-byte steps, testing whether all pages it spans are accessible.

Accepting swapped-out pages as valid address ranges has the important
advantage that the page will be pulled back into physical memory as soon as
SpyMemoryReadBlock() tries to access one of its bytes. The sample memory dump
utility presented later would not be quite useful if it relied on MmIsAddressValid().
It would sometimes refuse to display the contents of certain address ranges, even if it
was able to display them 5 minutes before, because the underlying page recently
would have been transferred to a pagefile.

THE IOCTL FUNCTION SPY_IO_MEMORY_BLOCK

The SPY_IO_MEMORY_BLOCK function is related to SPY_IO_MEMORY_DATA in that it
also copies data blocks from arbitrary addresses to a caller-supplied buffer. The main
difference is that SPY_IO_MEMORY_DATA attempts to copy all bytes that are accessible,
whereas SPY_IO_MEMORY_BLOCK fails if the requested range comprises any invalid
addresses. This function will be needed in Chapter 6 to deliver the contents of data
structures living in kernel memory to a user-mode application. It is obvious that this
function must be very restrictive. A structure that contains inaccessible bytes cannot
be copied safely—the copy would be lacking parts of the data.

A SAMPLE MEMORY SPY DEVICE 229

Like SPY_IO_MEMORY_DATA, the SPY_IO_MEMORY_BLOCK function expects input
in the form of a SPY_MEMORY_BLOCK structure that specifies the base address and size
of the memory range to be copied. The returned copy is a faithful 1:1 reproduction of
the original data. The output buffer must be large enough to hold the entire copy.
Otherwise, an error is reported, and no data is sent back.

THE IOCTL FUNCTION SPY_IO_HANDLE_INFO

Like the SPY_IO_PHYSICAL function introduced above, this function allows a user-mode
application to call kernel-mode API functions that are otherwise unreachable. A kernel-
mode driver can always get a pointer to an object represented by a handle by simply call-
ing the ntoskrnl.exe function ObReferenceObjectByHandle(). There is no equivalent
function in the Win32 API. However, the application can instruct the spy device to
execute the function call on its behalf and to return the object pointer afterward. List-
ing 4-26 shows the SpyOutputHandleInfo() function called by the SpyDispatcher()
after obtaining the input handle via SpyInputHandle(), defined in Listing 4-10.

The SPY_HANDLE_INFO structure at the beginning of Listing 4-26 receives the
pointer to the body of the object associated with the handle and the handle attrib-
utes, both returned by ObReferenceObjectByHandle(). It is important to call
ObDereferenceObject() if ObReferenceObjectByHandle() reports success to reset
the object’s pointer reference count to its previous value. Failing to do so constitutes
an “object reference leak.”

typedef struct _SPY_HANDLE_INFO

{

PVOID pObjectBody;

DWORD dHandleAttributes;

}

SPY_HANDLE_INFO, *PSPY_HANDLE_INFO, **PPSPY_HANDLE_INFO;

#define SPY_HANDLE_INFO_ sizeof (SPY_HANDLE_INFO)

// ---

NTSTATUS SpyOutputHandleInfo (HANDLE hObject,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_HANDLE_INFO shi;

OBJECT_HANDLE_INFORMATION ohi;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

(continued)

230 EXPLORING WINDOWS 2000 MEMORY

if (hObject != NULL)

{

ns = ObReferenceObjectByHandle (hObject,

STANDARD_RIGHTS_READ,

NULL, KernelMode,

&shi.pObjectBody, &ohi);

}

if (ns == STATUS_SUCCESS)

{

shi.dHandleAttributes = ohi.HandleAttributes;

ns = SpyOutputBinary (&shi, SPY_HANDLE_INFO_,

pOutput, dOutput, pdInfo);

ObDereferenceObject (shi.pObjectBody);

}

return ns;

}

LISTING 4-26. Referencing an Object by Its Handle

A SAMPLE MEMORY DUMP UTILITY

Now that you have worked through the complex and possibly confusing IOCTL
function handler code of the memory spy device driver, you probably want to see
these functions in action. Therefore, I have created a sample console-mode utility
named “SBS Windows 2000 Memory Spy” that loads the spy driver and calls various
IOCTL functions, depending on the parameters passed in on the command line. This
application resides in the executable file w2k_mem.exe, and its source code is
included on the CD accompanying this book, in the directory \src\w2k_mem.

COMMAND LINE FORMAT

You can run the memory spy utility from the CD by invoking d:\bin\w2k_mem.exe,
where d: should be replaced by the drive letter of your CD-ROM drive. If w2k_mem.exe
is started without arguments, the lengthy command info screen shown in Example 4-1
is displayed. The basic command philosophy of w2k_mem is that a command consists of
one or more data requests, each providing at least a linear base address where the mem-
ory dump should start. Optionally, the memory block size can be specified as well—
otherwise, the default size 256 is used. The memory size must be prefixed by the “#”
character. Several option switches may be added that modify the default behavior of the
command. An option consists of a single-character option ID and a “+” or “–” prefix
that determines whether the option is switched on or off. By default, all options are
turned off.

A SAMPLE MEMORY SPY DEVICE 231

// w2k_mem.exe

// SBS Windows 2000 Memory Spy V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Usage: w2k_mem { { [+option|-option] [/<path>] } [#[[0]x]<size>] [[0]x]<base> }

<path> specifies a module to be loaded into memory.

Use the +x/-x switch to enable/disable its startup code.

If <size> is missing, the default size is 256 bytes.

Display address options (mutually exclusive):

+z -z zero-based display on / OFF

+r -r physical RAM addresses on / OFF

Display mode options (mutually exclusive):

+w -w WORD data formatting on / OFF

+d -d DWORD data formatting on / OFF

+q -q QWORD data formatting on / OFF

Addressing options (mutually exclusive):

+t -t TEB-relative addressing on / OFF

+f -f FS-relative addressing on / OFF

+u -u user-mode FS:[<base>] on / OFF

+k -k kernel-mode FS:[<base>] on / OFF

+h -h handle/object resolution on / OFF

+a -a add bias to last base on / OFF

+s -s sub bias from last base on / OFF

+p -p pointer from last block on / OFF

System status options (cumulative):

+o -o display OS information on / OFF

+c -c display CPU information on / OFF

+g -g display GDT information on / OFF

+i -i display IDT information on / OFF

+b -b display contiguous blocks on / OFF

Other options (cumulative):

+x -x execute DLL startup code on / OFF

Example: The following command displays the first 64

bytes of the current Process Environment Block (PEB)

in zero-based DWORD format, assuming that a pointer to

the PEB is located at offset 0x30 inside the current

Thread Environment Block (TEB):

w2k_mem +t #0 0 +pzd #64 0x30

Note: Specifying #0 after +t causes the TEB to be

addressed without displaying its contents.

EXAMPLE 4-1. Help Screen of the Memory Spy Utility

A data request is executed for each command line token that cannot be identi-
fied as an option, a data block size specification, a path, or any other command
modifier. Each plain number on the command line is assumed to specify a linear
address and triggers a hex dump, starting at this address. Numbers are interpreted
as decimal by default or hexadecimal if prefixed by “0x” or simply “x.”

Complex command line option models like the one employed by
w2k_mem.exe are much easier to grasp if some simple examples are provided.
Here is a short compilation:

• w2k_mem 0x80400000 displays the first 256 bytes of memory at linear
address 0x80400000, yielding something that should look similar to
Example 4-2. By the way, this is the DOS header of the ntoskrnl.exe
module (note the “MZ” ID at the beginning).

• w2k_mem #0x40 0x80400000 displays the same data block, but stops after
64 bytes, as demanded by the block size specification #0x40.

• w2k_mem +d #0x40 0x80400000 is another variant, this time packing the
bytes into 32-bit DWORD chunks because of the +d option. This option
remains in effect until reset by —d or overridden by a competing
option such as +w or +q.

• w2k_mem +wz #0x40 0x10000 +d —z 0x20000 contains two data
requests. First, the linear address range 0x10000 to 0x1003F is shown in
16-bit WORD format, followed by the range 0x20000 to 0x2003F in DWORD
format (Example 4-3). The first request also includes the +z switch,
which forces the numbers in the “Address” column to start at zero. In
the second request, the zero-based display mode is turned off by adding
a –z switch.

• w2k_mem +rd #4096 0xC0300000 displays the system’s page-directory at
address 0xC0300000 in DWORD format. The +r option enables the display of
physical RAM addresses in the “Address” column instead of linear ones.

By now, you should have a basic understanding of how the command line
format works. In the following subsections, some of the more exotic options and
features are discussed in more detail. Most of them alter the interpretation of the
address parameter they precede. In default mode, the specified address is a linear
base address where the memory dump starts. The options +t, +f, +u, +k, +h,
+a, +s, and +p change this default interpretation in various ways.

232 EXPLORING WINDOWS 2000 MEMORY

A SAMPLE MEMORY DUMP UTILITY 233

E:\>w2k_mem 0x80400000

// w2k_mem.exe

// SBS Windows 2000 Memory Spy V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Loading “SBS Windows 2000 Spy Device” (w2k_spy) ...

Driver: “D:\Program Files\DevStudio\MyProjects\w2k_mem\Release\w2k_spy.sys”

Opening “\\.\w2k_spy” ...

SBS Windows 2000 Spy Device V1.00 ready

80400000..804000FF: 256 valid bytes

Address | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

---------|-------------------------:-------------------------|-----------------

80400000 | 4D 5A 90 00-03 00 00 00 : 04 00 00 00-FF FF 00 00 | MZ•.........ÿÿ..

80400010 | B8 00 00 00-00 00 00 00 : 40 00 00 00-00 00 00 00 | ¸.......@.......

80400020 | 00 00 00 00-00 00 00 00 : 00 00 00 00-00 00 00 00 |

80400030 | 00 00 00 00-00 00 00 00 : 00 00 00 00-C8 00 00 00 |È...

80400040 | 0E 1F BA 0E-00 B4 09 CD : 21 B8 01 4C-CD 21 54 68 | ..º..´.Í!¸.LÍ!Th

80400050 | 69 73 20 70-72 6F 67 72 : 61 6D 20 63-61 6E 6E 6F | is program canno

80400060 | 74 20 62 65-20 72 75 6E : 20 69 6E 20-44 4F 53 20 | t be run in DOS

80400070 | 6D 6F 64 65-2E 0D 0D 0A : 24 00 00 00-00 00 00 00 | mode....$.......

80400080 | 50 7A C4 CE-14 1B AA 9D : 14 1B AA 9D-14 1B AA 9D | PzÄÎ..ª•..ª•..ª•

80400090 | 14 1B AB 9D-53 1B AA 9D : 18 3B A4 9D-5B 1B AA 9D | ..«•S.ª•.; •[.ª•

804000A0 | 42 13 AC 9D-15 1B AA 9D : 14 1B AA 9D-1A 19 AA 9D | B.¬•..ª•..ª•..ª•

804000B0 | 4D 38 B9 9D-12 1B AA 9D : 52 69 63 68-14 1B AA 9D | M81•..ª•Rich..ª•

804000C0 | 00 00 00 00-00 00 00 00 : 50 45 00 00-4C 01 13 00 |PE..L...

804000D0 | 17 9B 4D 38-00 00 00 00 : 00 00 00 00-E0 00 0E 03 | .?M8........à...

804000E0 | 0B 01 05 0C-C0 2D 14 00 : 80 D6 04 00-00 00 00 00 |À-..?Ö......

804000F0 | 20 D1 00 00-C0 04 00 00 : 80 73 06 00-00 00 40 00 | Ñ..À...?s....@.

256 bytes requested

256 bytes received

Closing the spy device ...

¤

EXAMPLE 4-2. A Sample Data Request

E:\>w2k_mem +wz #0x40 0x10000 +d -z 0x20000

// w2k_mem.exe

// SBS Windows 2000 Memory Spy V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Loading “SBS Windows 2000 Spy Device” (w2k_spy) ...

(continued)

EXAMPLE 4-3. Displaying Data in Special Formats

TEB-RELATIVE ADDRESSING

Each thread in a process has its own Thread Environment Block (TEB) where the
system keeps frequently used thread-specific data. In user-mode, the TEB of the
current thread is located in a separate 4-KB segment accessible via the processor’s
FS register. In kernel-mode, FS points to a different segment, as will be explained
below. All TEBs of a process are stacked up in linear memory at linear address
0x7FFDE000, expanding down in 4-KB steps as needed. That is, the TEB of the
second thread is found at address 0x7FFDD000, the TEB of the third thread at
0x7FFDC000, and so on. The contents of the TEBs and the Process Environment
Block (PEB) address 0x7FFDF000 will be discussed in more detail in Chapter 7
(see Listings 7-18 and 7-19). Here it should suffice to take note that TEBs exist
and that they are addressed by the FS register.

If the +t switch precedes an address on the command line, w2k_mem.exe adds
the base address of the FS segment to it, effectively applying a bias of 0x7FFDE000
bytes. Example 4-4 shows the output of the command w2k_mem +dt #0x38 0 on
my system. This time I have omitted the banner and status messages issued by
w2k_mem.exe. The omissions are marked by [...].

234 EXPLORING WINDOWS 2000 MEMORY

Driver: “D:\Program Files\DevStudio\MyProjects\w2k_mem\Release\ w2k_spy.sys”

Opening “\\.\w2k_spy” ...

SBS Windows 2000 Spy Device V1.00 ready

00010000..0001003F: 64 valid bytes

Address | 0000 0002-0004 0006 : 0008 000A-000C 000E | 00 02 04 06 08 0A 0C 0E

---------|---------------------:---------------------|------------------------

00000000 | 003D 0044-003A 003D : 0044 003A-005C 0050 | .= .D .: .= .D .: .\ .P

00000010 | 0072 006F-0067 0072 : 0061 006D-0020 0046 | .r .o .g .r .a .m . .F

00000020 | 0069 006C-0065 0073 : 005C 0044-0065 0076 | .i .l .e .s .\ .D .e .v

00000030 | 0053 0074-0075 0064 : 0069 006F-005C 004D | .S .t .u .d .i .o .\ .M

00020000..0002003F: 64 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

00020000 | 00001000 - 00000880 : 00000001 - 00000000 |?

00020010 | 02B20001 - 00000000 : 00000003 - 00000007 | .2..

00020020 | 0000000B - 0208006C : 00020290 - 00000018 |l ...•

00020030 | 02A0029E - 00020498 : 00840082 - 00020738 | . .? ...? .?.? ...8

128 bytes requested

128 bytes received

Closing the spy device ...

A SAMPLE MEMORY DUMP UTILITY 235

E:\>w2k_mem +dt #0x38 0

[...]

7FFDE000..7FFDE037: 56 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

7FFDE000 | 0012FA58 - 00130000 : 0012E000 - 00000000 | ..úXà.

7FFDE010 | 00001E00 - 00000000 : 7FFDE000 - 00000000 |ýà.

7FFDE020 | 000002C0 - 000002C8 : 00000000 - 00000000 | ...À ...È

7FFDE030 | 7FFDF000 - 00000000 : - | .ýô.

[...]

EXAMPLE 4-4. Displaying the first Thread Environment Block (TEB)

FS-RELATIVE ADDRESSING

I have already mentioned that the FS refers to different segments in user- and kernel-
mode. Whereas the +t switch selects the user-mode FS address as the reference point, the
+f switch uses the FS base address that is in effect in kernel-mode. Of course, a Win32
application has no way to get at this value, so once again the spy device is required.
w2k_mem.exe calls the IOCTL function SPY_IO_CPU_INFO, introduced in the previous
section, to read CPU status information that includes the kernel-mode values of all seg-
ment registers. From there, everything goes on just the same as with the +t switch.

The kernel-mode FS points to another thread-specific structure frequently
accessed by the Windows 2000 kernel, named the Kernel’s Processor Control Region
(KPCR). This structure has already been mentioned in the course of the discussion of the
IOCTL function SPY_IO_OS_INFO and will be revisited in Chapter 7 (see Listing 7-16).
Again, suffice it to note for now that this structure exists at linear address 0xFFDFF000,
and that the +f switch gives easy access to it. In Example 4-5, I have issued the com-
mand w2k_mem +df #0x54 0 to demonstrate that the +f switch in fact applies a bias
of 0xFFDFF000 bytes to the specified memory address.

E:\>w2k_mem +df #0x54 0

[...]

FFDFF000..FFDFF053: 84 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

FFDFF000 | BECD9CF0 - BECD9DF0 : BECD6000 - 00000000 | 3/4Í?Ô 3/4Í•Õ 3/4Í`.

FFDFF010 | 00000000 - 00000000 : 7FFDE000 - FFDFF000 |ýà. ÿßÕ.

FFDFF020 | FFDFF120 - 00000000 : 00000000 - 00000000 | ÿßñ

FFDFF030 | FFFF20C0 - 00000000 : 80036400 - 80036000 | ÿÿ À ?.d. ?.`.

FFDFF040 | 80244000 - 00010001 : 00000001 - 000000C9 | ?$@.É
FFDFF050 | 00000000 - : - |

[...]

EXAMPLE 4-5. Displaying the Kernel’s Processor Control Region (KPCR)

236 EXPLORING WINDOWS 2000 MEMORY

FS:[<bASE>] ADDRESSING

When examining Windows 2000 kernel code, you will frequently come across
instructions such as MOV EAX, and FS:[18h]. These instructions retrieve member
values of the TEB, KPCR, or other structures contained in the FS segment. Many of
them are pointers to other internal structures. The command line switches +u and +k
allow you to follow this indirection with ease. +u retrieves a pointer from the user-
mode FS segment; +k does the same in kernel-mode. For example, the command
w2k_mem +du #0x1E8 0x30 (see Example 4-6) dumps 488 bytes of the memory block
addressed by FS:[30h] in user-mode, which happens to be a pointer to the Process
Environment Block (PEB) of w2k_mem.exe. The command w2k_mem +dk #0x1C 0x20
(see Example 4-7) displays the first 28 bytes of memory pointed to by FS:[20h] in
kernel-mode, which is a pointer to the Kernel’s Processor Control Block (KPRCB),
briefly mentioned earlier in the discussion of the IOCTL function SPY_IO_OS_INFO
and also discussed in Chapter 7 (see Listing 7-15). Don’t worry if you don’t know
what a PEB or KPRCB is—you will know it after having read this book.

E:\>w2k_mem +du #0x1E8 0x30

[...]

7FFDF000..7FFDF1E7: 488 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

7FFDF000 | 00000000 - FFFFFFFF : 00400000 - 00131E90 | ÿÿÿÿ .@.. ...•

7FFDF010 | 00020000 - 00000000 : 00130000 - 77FCD170 | wüÑp

7FFDF020 | 77F8AA4C - 77F8AA7D : 00000001 - 77E33E58 | wøªL wøª} wã>X

7FFDF030 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF040 | 77FCD1A8 - 0000007F : 00000000 - 7F6F0000 | wüÑ¨o..

7FFDF050 | 7F6F0000 - 7F6F0688 : 7FFB0000 - 7FFC1000 | .o.. .o.? .û.. .ü..

7FFDF060 | 7FFD2000 - 00000001 : 00000000 - 00000000 | .ý

7FFDF070 | 079B8000 - FFFFE86D : 00100000 - 00002000 | .??. ÿÿèm

7FFDF080 | 00010000 - 00001000 : 00000003 - 00000010 |

7FFDF090 | 77FCE380 - 00410000 : 00000000 - 00000014 | wüã? .A..

7FFDF0A0 | 77FCD348 - 00000005 : 00000000 - 00000893 | wüÓH?

7FFDF0B0 | 00000002 - 00000003 : 00000004 - 00000000 |

7FFDF0C0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF0D0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF0E0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF0F0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF100 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF110 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF120 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF130 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF140 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF150 | 77FCDCC0 - 00000000 : 00000000 - 00000000 | wüÜÀ

7FFDF160 | 00000000 - 00000000 : 00000000 - 00000000 |

A SAMPLE MEMORY DUMP UTILITY 237

7FFDF170 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF180 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF190 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF1A0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF1B0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF1C0 | 00000000 - 00000000 : 00000000 - 00000000 |

7FFDF1D0 | 00000000 - 00000000 : 00000000 - 00020000 |

7FFDF1E0 | 7F6F06C2 - 00000000 : - | .o.Â

[...]

EXAMPLE 4-6. Displaying the Process Environment Block (PEB)

E:\>w2k_mem +dk #0x1C 0x20

[...]

FFDFF120..FFDFF13B: 28 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

-----|-----------:-----------|----------

FFDFF120 | 00010001 - 86BBA820 : 00000000 - 8046BDF0 | ?»¨ ?F 1/2ó

FFDFF130 | 00020000 - 00000001 : 05010106 - |

[...]

EXAMPLE 4-7. Displaying the Kernel’s Processor Control Block (KPRCB)

HANDLE/OBJECT RESOLUTION

Suppose you have an object HANDLE and want to see what the corresponding object
looks like in memory. This is an almost trivial task if you use the +h switch, which sim-
ply calls the spy device’s SPY_IO_HANDLE_INFO function (Listing 4-26) to look up the
object body of the given handle. The world of Windows 2000 objects is an amazing
topic that will be treated in depth in Chapter 7. So let’s forget about it for now.

RELATIVE ADDRESSING

Sometimes it might be useful to display a series of memory blocks that are spaced out
by the same number of bytes. This might be, for example, an array of structures, like
the stack of TEBs in a multithreaded application. The +a and +s switches enable this
kind of relative addressing by changing the interpretation of the specified address to
an offset. The difference between these options is that +a (“add bias”) yields a positive
offset, whereas +s (“subtract bias”) yields a negative one. Example 4-8 shows the out-
put of the command w2k_mem +d #32 0xC0000000 +a 4096 4096 on my system.
It samples the first 32 bytes of three consecutive 4-KB pages, starting at address
0xC0000000, where the system’s page-tables are located. Note the +a switch near the
end of the command. It causes the following “4096” tokens to be interpreted as offsets

238 EXPLORING WINDOWS 2000 MEMORY

E:\>w2k_mem +d #32 0xC0000000 +a 4096 4096

[...]

C0000000..C000001F: 32 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0000000 | 00000000 - 00000000 : 00000000 - 00000000 |

C0000010 | 00000000 - 00000000 : 00000000 - 00000000 |

C0001000..C000101F: 32 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0001000 | 037D1025 - 03324025 : 0329D025 - 04DDE025 | .}.% .2@% .)–D% .Ýà%

C0001010 | 06F17067 - 03297225 : 05115067 - 00000000 | .ñpg .)r% ..Pg

C0002000..C000201F: 0 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0002000 | - : - |

C0002010 | - : - |

96 bytes requested

64 bytes received

[...]

EXAMPLE 4-8. Sampling Page-Tables

to be added to the previous base address. The +a and +s switches remain in effect
until switched off explicitly by specifying —a or –s or overridden by any of the other
switches that change the interpretation of the address parameter.

Example 4-8 also shows what happens if an invalid linear address is passed
in. Obviously, the first pair of page-tables referring to the 4-MB address ranges
0x00000000 to 0x003F0000 and 0x00400000 to 0x007F0000 were valid, and the
third one was not. w2k_mem.exe reflects this fact by displaying an empty hex
dump table. The program knows which address ranges are valid because the spy
device’s SPY_IO_MEMORY_DATA function puts this information into the resulting
SPY_MEMORY_DATA structure (cf. Listing 4-25).

INDIRECT ADDRESSING

One of my favorite command options is +p, because it saved a lot of typing while
I was preparing this book. This option works similar to +u and +k, but doesn’t
use the FS segment as reference, but rather uses the previously displayed data

block. This is a great feature if you want to chase down a linked list of objects, for
example. Instead of displaying the first list member, reading out the address of the
next member, typing a new command with this address, and so on, simply append
+p to the command and a series of offsets that specify where the link to the next
object is located in the previous hex dump panel.

In Example 4-9, I have used this option to walk down the list of active
processes. First, I have asked the Kernel Debugger to give me the address of the
internal variable PsActiveProcessHead, which is a LIST_ENTRY structure mark-
ing the beginning of the process list. A LIST_ENTRY consists of a Flink (forward
link) member at offset 0 and a Blink (backward link) member at offset 4 (cf.
Listing 2-7). The command w2k_mem #8 +d 0x8046a180 +p 0 0 0 0 first dumps
the LIST_ENTRY of PsActiveProcessHead, and then it switches to indirect
addressing on behalf of the +p switch. The four zeros tell w2k_mem.exe to extract
the value at offset zero of the previous data block, which is, of course, the Flink
member of each LIST_ENTRY. Note that the Blink members in Example 4-9,
located at offset 4, do in fact point back to the previous LIST_ENTRY, as expected.

If enough zero-valued parameters would be appended to the command, the hex
dump would eventually return to PsActiveProcessHead, which marks the beginning
and the end of the process list. As explained in Chapter 2, the doubly-linked lists main-
tained by Windows 2000 are usually circular; that is, the Flink of the last list member
points to the first one, and the Blink of the first list member points to the last one.

A SAMPLE MEMORY DUMP UTILITY 239

E:\>w2k_mem #8 +d 0x8046a180 +p 0 0 0 0

[...]

8046A180..8046A187: 8 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

8046A180 | 8149D900 - 840D2BE0 : - | •IÙ. ?.+à

8149D900..8149D907: 8 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

8149D900 | 8131A4A0 - 8046A180 : - | •1 ?F¡?

8131A4A0..8131A4A7: 8 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C
---------|---------------------:---------------------|--------------------

8131A4A0 | 812FFDE0 - 8149D900 : - | •/ýà •IÙ.

812FFDE0..812FFDE7: 8 valid bytes

¤

(continued)

EXAMPLE 4-9. Walking Down the Active-Process List

LOADING MODULES ON THE FLY

Sometimes you might want to dump the memory image of a module, but the module
is not mapped into the linear address space of the w2k_mem.exe process. This prob-
lem can be solved by loading the module explicitly using the /<path> and +x com-
mand options. Every command token prefixed by a slash character is interpreted as a
module path, and w2k_mem.exe attempts to load this module from this path using the
Win32 API function LoadLibraryEx(). By default, the load option DONT_RESOLVE_
DLL_REFERENCES is used, causing the module to be loaded without initializing it. For
a DLL, this means that its DllMain() entry point is not called. Also, none of the
dependent modules specified in the import section is loaded. However, if you specify
the +x switch before the path, the module is loaded and fully initialized. Note that
some modules might refuse initialization in the context of the w2k_mem.exe process.
For example, kernel-mode device drivers should not be loaded with this option
turned on.

Loading and displaying a module is typically a two-step operation, as shown in
Example 4-10. First you should load the module without displaying any data, to find
out the base address assigned to it by the system. Fortunately, load addresses are
deterministic as long as no other modules are added to the process in the meantime,
so the next attempt to load the module will yield the same base address. In Example
4-10, I have loaded the kernel-mode device driver nwrdr.sys, which is the
Microsoft’s NetWare redirector. I’m not using IPX/SPX on my machine, so this driver
is not yet loaded. Obviously, LoadLibraryEx() succeeds, and the hex dumps of the
reported load address 0x007A0000 preceding and following this API call prove that
this memory region is initially unused but contains a DOS header afterward.

240 EXPLORING WINDOWS 2000 MEMORY

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

812FFDE0 | 812FA460 - 8131A4A0 : - | •/ ` •1

812FA460..812FA467: 8 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

812FA460 | 812E30C0 - 812FFDE0 : - | •.0À •/ýà

[...]

¤¤

E:\>w2k_mem /e:\winnt\system32\drivers\nwrdr.sys

[...]

You didn’t request any data!

A SAMPLE MEMORY DUMP UTILITY 241

LoadLibrary (e:\winnt\system32\drivers\nwrdr.sys) = 0x007A0000

[...]

E:\>w2k_mem 0x007A0000 /e:\winnt\system32\drivers\nwrdr.sys 0x007A0000

[...]

007A0000..007A00FF: 0 valid bytes

Address | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

---------|-------------------------:-------------------------|-----------------

007A0000 | - : - |

007A0010 | - : - |

007A0020 | - : - |

007A0030 | - : - |

007A0040 | - : - |

007A0050 | - : - |

007A0060 | - : - |

007A0070 | - : - |

007A0080 | - : - |

007A0090 | - : - |

007A00A0 | - : - |

007A00B0 | - : - |

007A00C0 | - : - |

007A00D0 | - : - |

007A00E0 | - : - |

007A00F0 | - : - |

LoadLibrary (e:\winnt\system32\drivers\nwrdr.sys) = 0x007A0000

007A0000..007A00FF: 256 valid bytes

Address | 00 01 02 03-04 05 06 07 : 08 09 0A 0B-0C 0D 0E 0F | 0123456789ABCDEF

---------|-------------------------:-------------------------|-----------------

007A0000 | 4D 5A 90 00-03 00 00 00 : 04 00 00 00-FF FF 00 00 | MZ•.........ÿÿ..

007A0010 | B8 00 00 00-00 00 00 00 : 40 00 00 00-00 00 00 00 | ¸.......@.......

007A0020 | 00 00 00 00-00 00 00 00 : 00 00 00 00-00 00 00 00 |

007A0030 | 00 00 00 00-00 00 00 00 : 00 00 00 00-D0 00 00 00 |–D...

007A0040 | 0E 1F BA 0E-00 B4 09 CD : 21 B8 01 4C-CD 21 54 68 | ..º..´.Í!¸.LÍ!Th

007A0050 | 69 73 20 70-72 6F 67 72 : 61 6D 20 63-61 6E 6E 6F | is program canno

007A0060 | 74 20 62 65-20 72 75 6E : 20 69 6E 20-44 4F 53 20 | t be run in DOS

007A0070 | 6D 6F 64 65-2E 0D 0D 0A : 24 00 00 00-00 00 00 00 | mode....$.......

007A0080 | 61 14 4B C1-25 75 25 92 : 25 75 25 92-25 75 25 92 | a.KÁ%u%?%u%?%u%?

007A0090 | 29 55 2B 92-27 75 25 92 : 7C 56 36 92-22 75 25 92 |)U+?’u%?|V6?”u%?

007A00A0 | 25 75 24 92-BF 75 25 92 : 0F 7D 23 92-24 75 25 92 | %u$?¿u%?.}#?$u%?

007A00B0 | 25 75 25 92-14 75 25 92 : 52 69 63 68-25 75 25 92 | %u%?.u%?Rich%u%?

007A00C0 | 00 00 00 00-00 00 00 00 : 00 00 00 00-00 00 00 00 |

007A00D0 | 50 45 00 00-4C 01 09 00 : 66 EC 08 38-00 00 00 00 | PE..L...fì.8....

007A00E0 | 00 00 00 00-E0 00 0E 03 : 0B 01 05 0C-00 2D 02 00 |à........-..

007A00F0 | 40 3A 00 00-00 00 00 00 : 3E 14 01 00-40 03 00 00 | @:......>...@...

[...]

EXAMPLE 4-10. Loading and Displaying a Module Image

242 EXPLORING WINDOWS 2000 MEMORY

Oddly, you can even load the .exe file of another application into memory
using the /<path> option. However, this module probably will be loaded to an
unusual address, because its preferred load address is usually occupied by
w2k_mem.exe. Moreover, you cannot get the loaded application to run—the +x
switch applies to DLLs only and has no effect on other module types.

DEMAND-PAGING IN ACTION

In the discussion of the spy device function SPY_IO_MEMORY_DATA, I mentioned that
this function is able to read the contents of memory pages that are flushed out to a
pagefile. Now is the time to prove this claim. First, it is necessary to maneuver the
system into a severe low-memory situation, forcing it to swap to the pagefiles any-
thing that isn’t urgently needed. My favorite method goes as follows:

1. Copy the Windows 2000 desktop to the clipboard by pressing the
Print key.

2. Paste this bitmap into a graphics application.

3. Inflate the bitmap to an enormous size.

Now watch out what the command w2k_mem +d #16 0xC0280000
0xA0000000 0xA0001000 0xA0002000 0xC0280000 yields on the screen. You might
wonder what this command is supposed to do. Well, it simply takes a snapshot of
some PTEs before and after touching the pages they refer to. The four PTEs found
at address 0xC0280000 are associated with the linear address range 0xA0000000 to
0xA0003FFF, which is part of the image of the kernel module win32k.sys. As
Example 4-11 shows, this address range has been swapped out because of the
bitmap operation I had performed just before. How do I know? Because the four
DWORDs at address 0xC0280000 are even numbers, meaning that their least signifi-
cant bit—the P bit of a PTE—is zero, indicating a nonpresent page. The next three
hex dump panels belong to the command parameters 0xA0000000, 0xA0001000,
and 0xA0002000, requesting data from three of the four pages currently under
examination. As it turns out, w2k_mem.exe has no problems accessing these
pages—the system simply swaps them in on demand. However, the final test is still
to come: What do the four PTEs look like afterward? The answer is given by the
last panel of Example 4-11: The first three PTEs have the P bit set, and the fourth
still indicates “not present.”

A SAMPLE MEMORY DUMP UTILITY 243

E:\>w2k_mem +d #16 0xC0280000 0xA0000000 0xA0001000 0xA0002000 0xC0280000

[...]

C0280000..C028000F: 16 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0280000 | 056A14E0 - 056A14E2 : 056A14E4 - 056A14E6 | .j.à .j.â .j.ä .j.æ

A0000000..A000000F: 16 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

A0000000 | 00905A4D - 00000003 : 00000004 - 0000FFFF | .•ZMÿÿ

A0001000..A000100F: 16 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

A0001000 | 000000A6 - FF0C75FF : 1738B415 - F8458BA0 | ...|
| ÿ.uÿ .8´. øE?

A0002000..A000200F: 16 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

A0002000 | 89A018E0 - F685D875 : 468D1A74 - 458D5020 | ? .à ö?Øu F•.t E•P

C0280000..C028000F: 16 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0280000 | 0556B123 - 028C2121 : 05AD1121 - 056A14E6 | .V±# .?!! .-.! .j.æ

[...]

EXAMPLE 4-11. Watching PTEs Change Their States

Before stepping to the next section, please study the first hex dump panel of
Example 4-11 once more. The four PTEs at address 0xC0280000 all look quite
similar. In fact, they differ only in the three least-significant bits. If you examine
more of these PNPES that refer to pages in the pagefiles, you find that they all have
bit #10 set. That’s why I assigned the name PageFile to this bit in Listing 4-3. If it
is set, the remaining bits—except for the P flag, of course—apparently specify the
location of this page in the pagefiles.

244 EXPLORING WINDOWS 2000 MEMORY

MORE COMMAND OPTIONS

Some of the most interesting command options listed in Example 4-1 have not yet
been explained. For example the “System status options” +o, +c, +g, +i, and
+b are missing, although they sound promising. I will return to them in the last
section of this chapter, where several secrets of the Windows 2000 memory system
will be revealed.

INTERFACING TO THE SPY DEVICE

Now that you know how w2k_mem.exe is used, it’s time to see how it works. Rather
than discuss command line parsing and dispatching, let’s see how this application
communicates with the spy device inside w2k_spy.sys.

DEVICE I/O CONTROL REVISITED

The kernel-mode side of IOCTL communication has already been shown in Listings
4-6 and 4-7. The spy device simply sits waiting for I/O Request Packets (IRPs) and
handles some of them, especially those tagged IRP_MJ_DEVICE_CONTROL, which
request some forbidden actions to be executed, at least forbidden in the context of
the user-mode application that sends these requests. It does so by calling the Win32
API function DeviceIoControl(), prototyped in Listing 4-27. The dwIoControlCode,
lpInBuffer, nInBufferSize, lpOutBuffer, nOutBufferSize, and lpBytesReturned
arguments should look familiar to you. In fact, they correspond 1:1 to the dCode,
pInput, dInput, pOutput, dOutput, and pdInfo arguments of the SpyDispatcher()
function in Listing 4-7. The remaining arguments are explained quickly. hDevice is
the handle to the spy device, and lpOverlapped optionally points to an OVERLAPPED
structure required for asynchronous IOCTL. We are not going to send asynchronous
requests, so this argument will always be NULL.

Listing 4-28 is a collection of wrapper functions that perform basic IOCTL
operations. The most basic function is IoControl(), which calls DeviceIoControl()
and tests the reported output data size. Because w2k_mem.exe sizes its output buffers
accurately, the number of output bytes should always be equal to the buffer size.
ReadBinary() is a simplified version of IoControl() for IOCTL functions that don’t
require input data. ReadCpuInfo(), ReadSegment(), and ReadPhysical() are
specifically tailored to the spy functions SPY_IO_CPU_INFO, SPY_IO_SEGMENT, and
SPY_IO_PHYSICAL, because these are the most frequently used IOCTL functions.
Encapsulating them in C functions makes the code much more readable.

A SAMPLE MEMORY DUMP UTILITY 245

BOOL WINAPI DeviceIoControl (HANDLE hDevice,

DWORD dwIoControlCode,

PVOID lpInBuffer,

DWORD nInBufferSize,

PVOID lpOutBuffer,

DWORD nOutBufferSize,

PDWORD lpBytesReturned,

POVERLAPPED lpOverlapped);

LISTING 4-27. Prototype of DeviceIoControl()

BOOL WINAPI IoControl (HANDLE hDevice,

DWORD dCode,

PVOID pInput,

DWORD dInput,

PVOID pOutput,

DWORD dOutput)

{

DWORD dData = 0;

return DeviceIoControl (hDevice, dCode,

pInput, dInput,

pOutput, dOutput,

&dData, NULL)

&&

(dData == dOutput);

}

// ---

BOOL WINAPI ReadBinary (HANDLE hDevice,

DWORD dCode,

PVOID pOutput,

DWORD dOutput)

{

return IoControl (hDevice, dCode, NULL, 0, pOutput, dOutput);

}

// ---

BOOL WINAPI ReadCpuInfo (HANDLE hDevice,

PSPY_CPU_INFO psci)

{

return IoControl (hDevice, SPY_IO_CPU_INFO,

NULL, 0,

psci, SPY_CPU_INFO_);

}

(continued)

LISTING 4-28. Various IOCTL Wrappers

All functions shown so far in this section require a spy device handle. It’s time
that I show how to obtain it. It is actually a quite simple Win32 operation, similar to
opening a file. Listing 4-29 shows the implementation of the command handler inside
w2k_mem.exe. This code uses the API functions w2kFilePath(), w2kServiceLoad(),
and w2kServiceUnload(), exported by the “SBS Windows 2000 Utility Library”
w2k_lib.dll, included on the companion CD of this book. If you have read the
section about the Windows 2000 Service Control Manager in Chapter 3, you already
know w2kServiceLoad() and w2kServiceUnload() from Listing 3-8. These power-
ful functions load and unload kernel-mode device drivers on the fly and handle
benign error situations, such as gracefully loading a driver that is already loaded.
w2kFilePath() is a helpful utility function that derives a file path from a base path,
given a file name or file extension. w2k_mem.exe calls it to obtain a fully qualified
path to the spy driver executable that matches its own path.

246 EXPLORING WINDOWS 2000 MEMORY

// ---

BOOL WINAPI ReadSegment (HANDLE hDevice,

DWORD dSelector,

PSPY_SEGMENT pss)

{

return IoControl (hDevice, SPY_IO_SEGMENT,

&dSelector, DWORD_,

pss, SPY_SEGMENT_);

}

// ---

BOOL WINAPI ReadPhysical (HANDLE hDevice,

PVOID pLinear,

PPHYSICAL_ADDRESS ppa)

{

return IoControl (hDevice, SPY_IO_PHYSICAL,

&pLinear, PVOID_,

ppa, PHYSICAL_ADDRESS_)

&&

(ppa->LowPart || ppa->HighPart);

}

WORD awSpyFile [] = SW(DRV_FILENAME);

WORD awSpyDevice [] = SW(DRV_MODULE);

WORD awSpyDisplay [] = SW(DRV_NAME);

WORD awSpyPath [] = SW(DRV_PATH);

A SAMPLE MEMORY DUMP UTILITY 247

// ---

void WINAPI Execute (PPWORD ppwArguments,

DWORD dArguments)

{

SPY_VERSION_INFO svi;

DWORD dOptions, dRequest, dReceive;

WORD awPath [MAX_PATH] = L”?”;

SC_HANDLE hControl = NULL;

HANDLE hDevice = NULL;

_printf (L”\r\nLoading \”%s\” (%s) ...\r\n”,

awSpyDisplay, awSpyDevice);

if (w2kFilePath (NULL, awSpyFile, awPath, MAX_PATH))

{

_printf (L”Driver: \”%s\”\r\n”,

awPath);

hControl = w2kServiceLoad (awSpyDevice, awSpyDisplay,

awPath, TRUE);

}

if (hControl != NULL)

{

_printf (L”Opening \”%s\” ...\r\n”,

awSpyPath);

hDevice = CreateFile (awSpyPath, GENERIC_READ,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

}

if (hDevice != INVALID_HANDLE_VALUE)

{

if (ReadBinary (hDevice, SPY_IO_VERSION_INFO,

&svi, SPY_VERSION_INFO_))

{

_printf (L”\r\n%s V%lu.%02lu ready\r\n”,

svi.awName,

svi.dVersion / 100, svi.dVersion % 100);

}

dOptions = COMMAND_OPTION_NONE;

dRequest = CommandParse (hDevice, ppwArguments, dArguments,

TRUE, &dOptions);

dOptions = COMMAND_OPTION_NONE;

dReceive = CommandParse (hDevice, ppwArguments, dArguments,

FALSE, &dOptions);

if (dRequest)

{

_printf (awSummary,

dRequest, (dRequest == 1 ? awByte : awBytes),

(continued)

248 EXPLORING WINDOWS 2000 MEMORY

dReceive, (dReceive == 1 ? awByte : awBytes));

}

_printf (L”\r\nClosing the spy device ...\r\n”);

CloseHandle (hDevice);

}

else

{

_printf (L”Spy device not available.\r\n”);

}

if ((hControl != NULL) && gfSpyUnload)

{

_printf (L”Unloading the spy device ...\r\n”);

w2kServiceUnload (hControl, awSpyDevice);

}

return;

}

LISTING 4-29. Controlling the Spy Device

Please note the four global string definitions at the top of Listing 4-29. The con-
stants DRV_FILENAME, DRV_MODULE, DRV_NAME, and DRV_PATH are drawn from the
header file of the spy device driver, w2k_spy.h. Table 4-4 lists their current values.
You will not find device-specific definitions in the source files of w2k_mem.exe.
w2k_spy.h provides everything a client application needs. This is very important: If
any device-specific definitions change in the future, there is no need to update any
application files. Just rebuild the application with the updated spy header file, and
everything will fall into place.

The w2kFilePath() call near the beginning of Listing 4-29 guarantees that
the w2k_spy.sys file specified by the global string awSpyFile (cf. Table 4-4) is
always loaded from the directory where w2k_mem.exe resides. Next, the code in
Listing 4-29 passes the global strings awSpyDevice and awSpyDisplay (cf. Table 4-4)
to w2kServiceLoad(), attempting to load and start the spy device driver. If the
driver was not loaded yet, these strings will be stored in the driver’s property list and
can be retrieved by other applications; otherwise, the current property settings are
retained. Although the w2kServiceLoad() call in Listing 4-29 returns a handle, this
is not a handle that can be used in any IOCTL calls. To get a handle to the spy device,
the Win32 multipurpose function CreateFile() must be used. This function opens
or creates almost anything that can be opened or created on Windows 2000. You cer-
tainly have called this function a million times to get a file handle. CreateFile() can
also open kernel-mode devices if the symbolic link name of the device is supplied in
the format \\.\<SymbolicLink> for the lpFileName argument. The symbolic link of
the spy device is named w2k_spy, so the first CreateFile() argument must be
\\.\w2k_spy, which is the value of the global string variable awSpyPath according
to Table 4-4.

TABLE 4-4. Device-Specific String Definitions

w2k_spy CONSTANT w2k_mem VARIABLE VALUE

DRV_FILENAME awSpyFile w2k_spy.sys

DRV_MODULE awSpyDevice w2k_spy

DRV_NAME awSpyDisplay SBS Windows 2000 Spy Device

DRV_PATH awSpyPath \\.\w2k_spy

If CreateFile() succeeds, it returns a device handle that can be passed to
DeviceIoControl(). The Execute() function in Listing 4-29 uses this handle imme-
diately to query the version information of the spy device, which it displays on the
screen if the IOCTL call succeeds. Next, the CommandParse() function is invoked
twice with a different BOOL value for the fourth argument. The first call simply checks
the command line for invalid parameters and displays any errors, and the second call
actually executes all commands. I do not want to discuss in detail the command parser.
The remaining code in Listing 4-29 is cleanup code that closes handles and optionally
unloads the spy drives. The source code of w2k_mem.exe contains other interesting code
snippets, but I will not discuss them here. Please see the files w2k_mem.c and w2k_mem.h
in the \src\w2k_mem directory on the sample CD for further details.

The only notable thing left is the gfSpyUnload flag tested before unloading the
spy driver. I have set this global flag to FALSE, so the driver will not be unloaded
automatically. This enhances the performance of w2k_mem.exe and other w2k_spy.
sys clients because loading a driver takes some time. The first client has to take the
loading overhead, but all successors will benefit from having the driver already in
memory. This setting also avoids conflict situations involving competitive clients, in
which one client attempts to unload the driver while another one is still using it. Of
course, Windows 2000 will not unload the driver unless all handles to its devices are
closed, but it will put it into a STOP_PENDING state that will not allow new clients to
access the device. However, if you don’t run w2k_spy.sys in a multiclient environ-
ment, and you are updating the device driver frequently, you should probably set the
gfSpyUnload flag to TRUE.

WINDOWS 2000 MEMORY INTERNALS

Along with the global separation of the 4-GB address space into user-mode and
kernel-mode portions, these two halves are subdivided into various smaller blocks.
As you might have guessed, most of them contain undocumented structures that
serve undocumented purposes. It would be easy to forget about them if they were
uninteresting. However, that’s not the case—some of them are a real gold mine for
anyone developing system diagnosis or debugging software.

A SAMPLE MEMORY DUMP UTILITY 249

250 EXPLORING WINDOWS 2000 MEMORY

BASIC OPERATING SYSTEM INFORMATION

Now the time has come to introduce one of the postponed command line options of
the memory spy application w2k_mem.exe. If you take a look at the lower half of the
program’s help screen in Example 4-1, you will see a section titled “System Status
Options.” Let’s try the option +o, named “display OS information.” Example 4-12
shows a sample run on my machine. The data displayed here are the contents of the
SPY_OS_INFO structure, defined in Listing 4-13 and set up by the spy device function
SpyOutputOsInfo(), also included in Listing 4-13. In Example 4-12, you can
already see some characteristic addresses within the 4-GB linear memory space of a
process. For example, the valid user address range is reported to be 0x00010000 to
0x7FFEFFFF. You have probably read in other programming books about Windows
NT or Windows 2000 that the first and last 64 KB of the user-mode half of linear
memory are “no-access regions” that are there to catch wild pointers produced by
common programming errors (cf. Solomon 1998, Chapter 5). The output of
w2k_mem.exe proves that this is correct.

E:\>w2k_mem +o

[...]

OS information:

———————-

Memory page size : 4096 bytes

Memory page shift : 12 bits

Memory PTI shift : 12 bits

Memory PDI shift : 22 bits

Memory page mask : 0xFFFFF000

Memory PTI mask : 0x003FF000

Memory PDI mask : 0xFFC00000

Memory PTE array : 0xC0000000

Memory PDE array : 0xC0300000

Lowest user address : 0x00010000

Thread environment block : 0x7FFDE000

Highest user address : 0x7FFEFFFF

User probe address : 0x7FFF0000

System range start : 0x80000000

Lowest system address : 0xC0800000

Shared user data : 0xFFDF0000

Processor control region : 0xFFDFF000

Processor control block : 0xFFDFF120

INTERFACING TO THE SPY DEVICE 251

Global flag : 0x00000000

i386 machine type : 0

Number of processors : 1

Product type : Windows NT Workstation (1)

Version & Build number : 5.00.2195

System root : “E:\WINNT”

[...]

EXAMPLE 4-12. Displaying Operating System Information

The last three lines of Example 4-12 contain interesting information about the
system, mostly extracted from the SharedUserData area at address 0xFFDF0000. The
data structure maintained there by the system is called KUSER_SHARED_DATA and is
defined in the DDK header file ntddk.h.

WINDOWS 2000 SEGMENTS AND DESCRIPTORS

Another fine option of w2k_mem.exe is +c, which displays and interprets the contents
of the processor’s segment registers and descriptor tables. Example 4-13 shows the
typical output. The contents of the CS, DS, and ES segment registers clearly demon-
strate that Windows 2000 provides each process with a flat 4-GB address space:
These basic segments start at offset 0x00000000 and have a limit of 0xFFFFFFFF.

The flag characters in the rightmost column indicate the segment type as
defined by its descriptor’s Type member. The type attributes of code and data segments
are symbolized by combinations of the characters “cra” and “ewa,” respectively. A
dash means that the corresponding attribute is not set. A Task State Segment (TSS)
can have the attributes “a” (available) and “b” (busy) only. All applicable attributes
are summarized in Table 4-5. Example 4-13 shows that the Windows 2000 CS seg-
ments are nonconforming and allow execute/read access, whereas the DS, ES, FS,
and SS segments are of expand-up type and allow read/write access. Another incon-
spicuous but important detail is the different DPL of the CS, FS, and SS segments in
user- and kernel-mode. DPL is the Descriptor Privilege Level. For nonconforming
code segments, the DPL specifies the privilege level a caller must be on in order to be
able to call into this segment (cf. Intel 1999c, pp. 4-8f). In user-mode, the required
level is three; in kernel-mode, it is zero. For data segments, the DPL is the lowest
privilege level required to be able to access the segment. This means that the FS and
SS segments are accessible from all privilege levels in user-mode, whereas only level-0
accesses are allowed in kernel-mode.

252 EXPLORING WINDOWS 2000 MEMORY

E:\>w2k_mem +c

[...]

CPU information:

————————

User mode segments:

CS : Selector = 001B, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = CODE -ra

DS : Selector = 0023, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

ES : Selector = 0023, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

FS : Selector = 0038, Base = 7FFDE000, Limit = 00000FFF, DPL3, Type = DATA -wa

SS : Selector = 0023, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

TSS : Selector = 0028, Base = 80244000, Limit = 000020AB, DPL0, Type = TSS32 b

Kernel mode segments:

CS : Selector = 0008, Base = 00000000, Limit = FFFFFFFF, DPL0, Type = CODE -ra

DS : Selector = 0023, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

ES : Selector = 0023, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

FS : Selector = 0030, Base = FFDFF000, Limit = 00001FFF, DPL0, Type = DATA -wa

SS : Selector = 0010, Base = 00000000, Limit = FFFFFFFF, DPL0, Type = DATA -wa

TSS : Selector = 0028, Base = 80244000, Limit = 000020AB, DPL0, Type = TSS32 b

IDT : Limit = 07FF, Base = 80036400

GDT : Limit = 03FF, Base = 80036000

LDT : Selector = 0000

CR0 : Contents = 8001003B

CR2 : Contents = 00401050

CR3 : Contents = 06F70000

[...]

EXAMPLE 4-13. Displaying CPU Information

The contents of the IDT and GDT registers show that the GDT spans from lin-
ear address 0x80036000 to 800363FF, immediately followed by the IDT, occupying
the address range 0x80036400 to 0x80036BFF. With each descriptor taking 64 bits,
the GDT and IDT contain 128 and 256 entries, respectively. Note that the GDT
could comprise as many as 8,192 entries, but Windows 2000 uses only a small frac-
tion of them.

The w2k_mem.exe utility features two more options—+g and +i—that display
more details about the GDT and IDT. Example 4-14 demonstrates the output of the
+g option. It is similar to the “kernel-mode segments:” section of Example 4-13, but
lists all segment selectors available in kernel-mode, not just those that are stored in
segment registers. w2k_mem.exe compiles this list by looping through the entire GDT,

INTERFACING TO THE SPY DEVICE 253

TABLE 4-5. Code and Data Segment Type Attributes

SEGMENT ATTRIBUTE DESCRIPTION

CODE c Conforming segment (may be entered by less privileged code)

CODE r Read-access allowed (as opposed to execute-only access)

CODE a Segment has been accessed

DATA e Expand-down segment (typical attribute for stack segments)

DATA w Write-access allowed (as opposed to read-only access)

DATA a Segment has been accessed

TSS32 a Task State Segment is available

TSS32 b Task State Segment is busy

querying the spy device for segment information by means of the IOCTL function
SPY_IO_SEGMENT. Only valid selectors are displayed. It is interesting to compare
Examples 4-13 and 4-14 with the GDT selector definitions in ntddk.h, summarized
in Table 4-6. Obviously, they are in accordance with the details reported by
w2k_mem.exe.

E:\>w2k_mem +g

[...]

GDT information:

————————

001 : Selector = 0008, Base = 00000000, Limit = FFFFFFFF, DPL0, Type = CODE -ra

002 : Selector = 0010, Base = 00000000, Limit = FFFFFFFF, DPL0, Type = DATA -wa

003 : Selector = 0018, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = CODE -ra

004 : Selector = 0020, Base = 00000000, Limit = FFFFFFFF, DPL3, Type = DATA -wa

005 : Selector = 0028, Base = 80244000, Limit = 000020AB, DPL0, Type = TSS32 b

006 : Selector = 0030, Base = FFDFF000, Limit = 00001FFF, DPL0, Type = DATA -wa

007 : Selector = 0038, Base = 7FFDE000, Limit = 00000FFF, DPL3, Type = DATA -wa

008 : Selector = 0040, Base = 00000400, Limit = 0000FFFF, DPL3, Type = DATA -wa

009 : Selector = 0048, Base = E2E6A000, Limit = 00000177, DPL0, Type = LDT

00A : Selector = 0050, Base = 80470040, Limit = 00000068, DPL0, Type = TSS32 a

00B : Selector = 0058, Base = 804700A8, Limit = 00000068, DPL0, Type = TSS32 a

00C : Selector = 0060, Base = 00022AB0, Limit = 0000FFFF, DPL0, Type = DATA -wa

00D : Selector = 0068, Base = 000B8000, Limit = 00003FFF, DPL0, Type = DATA -w-

00E : Selector = 0070, Base = FFFF7000, Limit = 000003FF, DPL0, Type = DATA -w-

00F : Selector = 0078, Base = 80400000, Limit = 0000FFFF, DPL0, Type = CODE -r-

010 : Selector = 0080, Base = 80400000, Limit = 0000FFFF, DPL0, Type = DATA -w-

011 : Selector = 0088, Base = 00000000, Limit = 00000000, DPL0, Type = DATA -w-

(continued)

254 EXPLORING WINDOWS 2000 MEMORY

014 : Selector = 00A0, Base = 814985A8, Limit = 00000068, DPL0, Type = TSS32 a

01C : Selector = 00E0, Base = F0430000, Limit = 0000FFFF, DPL0, Type = CODE cra

01D : Selector = 00E8, Base = 00000000, Limit = 0000FFFF, DPL0, Type = DATA -w-

01E : Selector = 00F0, Base = 8042DCE8, Limit = 000003B7, DPL0, Type = CODE —-

01F : Selector = 00F8, Base = 00000000, Limit = 0000FFFF, DPL0, Type = DATA -w-

020 : Selector = 0100, Base = F0440000, Limit = 0000FFFF, DPL0, Type = DATA -wa

021 : Selector = 0108, Base = F0440000, Limit = 0000FFFF, DPL0, Type = DATA -wa

022 : Selector = 0110, Base = F0440000, Limit = 0000FFFF, DPL0, Type = DATA –wa

[...]

EXAMPLE 4-14. Displaying GDT Descriptors

TABLE 4-6. GDT Selectors Defined in ntddk.h

SYMBOL VALUE COMMENTS

KGDT_NULL 0x0000 Null segment selector (invalid)

KGDT_R0_CODE 0x0008 CS register in kernel-mode

KGDT_R0_DATA 0x0010 SS register in kernel-mode

KGDT_R3_CODE 0x0018 CS register in user-mode

KGDT_R3_DATA 0x0020 DS, ES, and SS register in user-mode, DS and ES register in kernel-mode

KGDT_TSS 0x0028 Task State Segment in user- and kernel-mode

KGDT_R0_PCR 0x0030 FS register in kernel-mode (Processor Control Region)

KGDT_R3_TEB 0x0038 FS register in user-mode (Thread Environment Block)

KGDT_VDM_TILE 0x0040 Base 0x00000400, limit 0x0000FFFF (Virtual DOS Machine)

KGDT_LDT 0x0048 Local Descriptor Table

KGDT_DF_TSS 0x0050 ntoskrnl.exe variable KiDoubleFaultTSS

KGDT_NMI_TSS 0x0058 ntoskrnl.exe variable KiNMITSS

The selectors in Example 4-14 that are not listed in Table 4-6 can in part be
identified by looking for familiar base addresses or memory contents, and by using
the Kernel Debugger to look up the symbols for some of the base addresses. Table 4-7
comprises the selectors that I have identified so far.

The +i option of w2k_mem.exe dumps the gate descriptors stored in the IDT.
Example 4-15 is an excerpt from this rather long list, comprising only the first
20 entries that have a predefined meaning assigned by Intel (Intel 1999c, pp. 5-6).
Interrupts 0x14 to 0x1F are reserved for Intel; the remaining range 0x20 to 0xFF is
available to the operating system.

In Table 4-8, I have summarized all interrupts that refer to identifiable and non-
trivial interrupt, trap, and task gates. Most of the user defined interrupts point to
dummy handlers named KiUnexpectedInterruptNNN(), as explained earlier in this
chapter. Some interrupt handlers are located at addresses that can’t be resolved to
symbols by the Kernel Debugger.

INTERFACING TO THE SPY DEVICE 255

TABLE 4-7. More GDT Selectors

VALUE BASE DESCRIPTION

0x0078 0x80400000 ntoskrnl.exe code segment

0x0080 0x80400000 ntoskrnl.exe data segment

0x00A0 0x814985A8 TSS (EIP member points to HalpMcaExceptionHandlerWrapper)

0x00E0 0xF0430000 ROM BIOS code segment

0x00F0 0x8042DCE8 ntoskrnl.exe function KiI386CallAbios

0x0100 0xF0440000 ROM BIOS data segment

0x0108 0xF0440000 ROM BIOS data segment

0x0110 0xF0440000 ROM BIOS data segment

E:\>w2k_mem +i

[...]

IDT information:

————————

00 : Pointer = 0008:804625E6, Base = 00000000, Limit = FFFFFFFF, Type = INT32

01 : Pointer = 0008:80462736, Base = 00000000, Limit = FFFFFFFF, Type = INT32

02 : TSS = 0058, Base = 804700A8, Limit = 00000068, Type = TASK

03 : Pointer = 0008:80462A0E, Base = 00000000, Limit = FFFFFFFF, Type = INT32

04 : Pointer = 0008:80462B72, Base = 00000000, Limit = FFFFFFFF, Type = INT32

05 : Pointer = 0008:80462CB6, Base = 00000000, Limit = FFFFFFFF, Type = INT32

06 : Pointer = 0008:80462E1A, Base = 00000000, Limit = FFFFFFFF, Type = INT32

07 : Pointer = 0008:80463350, Base = 00000000, Limit = FFFFFFFF, Type = INT32

08 : TSS = 0050, Base = 80470040, Limit = 00000068, Type = TASK

09 : Pointer = 0008:8046370C, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0A : Pointer = 0008:80463814, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0B : Pointer = 0008:80463940, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0C : Pointer = 0008:80463C44, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0D : Pointer = 0008:80463E50, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0E : Pointer = 0008:804648A4, Base = 00000000, Limit = FFFFFFFF, Type = INT32

0F : Pointer = 0008:80464C3F, Base = 00000000, Limit = FFFFFFFF, Type = INT32

10 : Pointer = 0008:80464D47, Base = 00000000, Limit = FFFFFFFF, Type = INT32

11 : Pointer = 0008:80464E6B, Base = 00000000, Limit = FFFFFFFF, Type = INT32

12 : TSS = 00A0, Base = 814985A8, Limit = 00000068, Type = TASK

13 : Pointer = 0008:80464C3F, Base = 00000000, Limit = FFFFFFFF, Type = INT32

[...]

EXAMPLE 4-15. Displaying IDT Gate Descriptors

TABLE 4-8. Windows 2000 Interrupt, Trap, and Task Gates

INT INTEL DESCRIPTION OWNER HANDLER/TSS

0x00 Divide Error (DE) ntoskrnl.exe KiTrap00

0x01 Debug (DB) ntoskrnl.exe KiTrap01

0x02 NMI Interrupt ntoskrnl.exe KiNMITSS

0x03 Breakpoint (BP) ntoskrnl.exe KiTrap03

0x04 Overflow (OF) ntoskrnl.exe KiTrap04

0x05 BOUND Range Exceeded (BR) ntoskrnl.exe KiTrap05

0x06 Undefined Opcode (UD) ntoskrnl.exe KiTrap06

0x07 No Math Coprocessor (NM) ntoskrnl.exe KiTrap07

0x08 Double Fault (DF) ntoskrnl.exe KiDouble

0x09 Coprocessor Segment Overrun ntoskrnl.exe KiTrap09

0x0A Invalid TSS (TS) ntoskrnl.exe KiTrap0A

0x0B Segment Not Present (NP) ntoskrnl.exe KiTrap0B

0x0C Stack-Segment Fault (SS) ntoskrnl.exe KiTrap0C

0x0D General Protection (GP) ntoskrnl.exe KiTrap0D

0x0E Page Fault (PF) ntoskrnl.exe KiTrap0E

0x0F (Intel reserved) ntoskrnl.exe KiTrap0F

0x10 Math Fault (MF) ntoskrnl.exe KiTrap10

0x11 Alignment Check (AC) ntoskrnl.exe KiTrap11

0x12 Machine Check (MC) ? ?

0x13 Streaming SIMD Extensions ntoskrnl.exe KiTrap0F

0x14-0x1F (Intel reserved) ntoskrnl.exe KiTrap0F

0x2A User Defined ntoskrnl.exe KiGetTickCount

0x2B User Defined ntoskrnl.exe KiCallbackReturn

0x2C User Defined ntoskrnl.exe KiSetLowWaitHighThread

0x2D User Defined ntoskrnl.exe KiDebugService

0x2E User Defined ntoskrnl.exe KiSystemService

0x2F User Defined ntoskrnl.exe KiTrap0F

0x30 User Defined hal.dll HalpClockInterrupt

0x38 User Defined hal.dll HalpProfileInterrupt

WINDOWS 2000 MEMORY AREAS

The last w2k_mem.exe option that remains to be discussed is the +b switch. It gener-
ates an enormously long list of contiguous memory regions within the 4-GB linear
address space. w2k_mem.exe builds this list by walking through the entire PTE array
at address 0xC0000000, using the spy device’s IOCTL function SPY_IO_PAGE_ENTRY.

256 EXPLORING WINDOWS 2000 MEMORY

The dSize member contained in each resulting SPY_PAGE_ENTRY structure is added to
the linear address associated with the PTE to get the linear address of the next PTE to
be retrieved. Listing 4-30 shows the implementation of this option.

WINDOWS 2000 MEMORY INTERNALS 257

DWORD WINAPI DisplayMemoryBlocks (HANDLE hDevice)

{

SPY_PAGE_ENTRY spe;

PBYTE pbPage, pbBase;

DWORD dBlock, dPresent, dTotal;

DWORD n = 0;

pbPage = 0;

pbBase = INVALID_ADDRESS;

dBlock = 0;

dPresent = 0;

dTotal = 0;

n += _printf (L”\r\nContiguous memory blocks:”

L”\r\n-------------\r\n\r\n”);

do {

if (!IoControl (hDevice, SPY_IO_PAGE_ENTRY,

&pbPage, PVOID_,

&spe, SPY_PAGE_ENTRY_))

{

n += _printf (L” !!! Device I/O error !!!\r\n”);

break;

}

if (spe.fPresent)

{

dPresent += spe.dSize;

}

if (spe.pe.dValue)

{

dTotal += spe.dSize;

if (pbBase == INVALID_ADDRESS)

{

n += _printf (L”%5lu : 0x%08lX ->”,

++dBlock, pbPage);

pbBase = pbPage;

}

}

else

{

if (pbBase != INVALID_ADDRESS)

{

n += _printf (L” 0x%08lX (0x%08lX bytes)\r\n”,

pbPage-1, pbPage-pbBase);

(continued)

258 EXPLORING WINDOWS 2000 MEMORY

pbBase = INVALID_ADDRESS;

}

}

}

while (pbPage += spe.Size);

if (pbBase != INVALID_ADDRESS)

{

n += _printf (L”0x%08lX\r\n”, pbPage-1);

}

n += _printf (L”\r\n”

L” Present bytes: 0x%08lX\r\n”

L” Total bytes: 0x%08lX\r\n”,

dPresent, dTotal);

return n;

}

LISTING 4-30. Finding Contiguous Linear Memory Blocks

Example 4-16 is an excerpt from a sample run on my machine, showing some
of the more interesting regions. Some very obvious addresses are 0x00400000, where
the image of w2k_mem.exe starts (block #13), and 0x10000000, where the image of
w2k_lib.dll is located (block #23). The TEB and PEB pages also are clearly dis-
cernible (block #104), as are the hal.dll, ntoskrnl.exe, and win32k.sys areas
(blocks #105 and 106). Blocks #340 to 350 are, of course, the valid fragments of the
system’s PTE array, featuring the page-directory as part of block #347. Block #2122
contains the SharedUserData area, and #2123 comprises the KPCR, KPRCB, and
CONTEXT structures containing thread and processor status information.

E:\>w2k_mem +b
[...]

Contiguous memory blocks:

1 : 0x00010000 -> 0x00010FFF (0x00001000 bytes)

2 : 0x00020000 -> 0x00020FFF (0x00001000 bytes)

3 : 0x0012D000 -> 0x00138FFF (0x0000C000 bytes)

4 : 0x00230000 -> 0x00230FFF (0x00001000 bytes)

5 : 0x00240000 -> 0x00241FFF (0x00002000 bytes)

6 : 0x00247000 -> 0x00247FFF (0x00001000 bytes)

7 : 0x0024F000 -> 0x00250FFF (0x00002000 bytes)

WINDOWS 2000 MEMORY INTERNALS 259

8 : 0x00260000 -> 0x00260FFF (0x00001000 bytes)

9 : 0x00290000 -> 0x00290FFF (0x00001000 bytes)

10 : 0x002E0000 -> 0x002E0FFF (0x00001000 bytes)

11 : 0x002E2000 -> 0x002E3FFF (0x00002000 bytes)

12 : 0x003B0000 -> 0x003B1FFF (0x00002000 bytes)

13 : 0x00400000 -> 0x00404FFF (0x00005000 bytes)

14 : 0x00406000 -> 0x00406FFF (0x00001000 bytes)

15 : 0x00410000 -> 0x00410FFF (0x00001000 bytes)

16 : 0x00419000 -> 0x00419FFF (0x00001000 bytes)

17 : 0x0041B000 -> 0x0041BFFF (0x00001000 bytes)

18 : 0x00450000 -> 0x00450FFF (0x00001000 bytes)

19 : 0x00760000 -> 0x00760FFF (0x00001000 bytes)

20 : 0x00770000 -> 0x00770FFF (0x00001000 bytes)

21 : 0x00780000 -> 0x00783FFF (0x00004000 bytes)

22 : 0x00790000 -> 0x00791FFF (0x00002000 bytes)

23 : 0x10000000 -> 0x10003FFF (0x00004000 bytes)

24 : 0x10005000 -> 0x10005FFF (0x00001000 bytes)

25 : 0x1000E000 -> 0x10016FFF (0x00009000 bytes)

26 : 0x759B0000 -> 0x759B1FFF (0x00002000 bytes)

[...]

103 : 0x7FFD2000 -> 0x7FFD3FFF (0x00002000 bytes)

104 : 0x7FFDE000 -> 0x7FFE0FFF (0x00003000 bytes)

105 : 0x80000000 -> 0xA01A5FFF (0x201A6000 bytes)

106 : 0xA01B0000 -> 0xA01F2FFF (0x00043000 bytes)

107 : 0xA0200000 -> 0xA02C7FFF (0x000C8000 bytes)

108 : 0xA02F0000 -> 0xA03FFFFF (0x00110000 bytes)

109 : 0xA4000000 -> 0xA4001FFF (0x00002000 bytes)

110 : 0xBE63B000 -> 0xBE63CFFF (0x00002000 bytes)

[...]

340 : 0xC0000000 -> 0xC0001FFF (0x00002000 bytes)

341 : 0xC0040000 -> 0xC0040FFF (0x00001000 bytes)

342 : 0xC01D6000 -> 0xC01D6FFF (0x00001000 bytes)

343 : 0xC01DA000 -> 0xC01DAFFF (0x00001000 bytes)

344 : 0xC01DD000 -> 0xC01E0FFF (0x00004000 bytes)

345 : 0xC01FD000 -> 0xC01FDFFF (0x00001000 bytes)

346 : 0xC01FF000 -> 0xC0280FFF (0x00082000 bytes)

347 : 0xC0290000 -> 0xC0301FFF (0x00072000 bytes)

348 : 0xC0303000 -> 0xC0386FFF (0x00084000 bytes)

349 : 0xC0389000 -> 0xC038CFFF (0x00004000 bytes)

350 : 0xC039E000 -> 0xC03FFFFF (0x00062000 bytes)

[...]

2121 : 0xFFC00000 -> 0xFFD0FFFF (0x00110000 bytes)

2122 : 0xFFDF0000 -> 0xFFDF0FFF (0x00001000 bytes)

2123 : 0xFFDFF000 -> 0xFFDFFFFF (0x00001000 bytes)

[...]

Present bytes: 0x22AA9000

Total bytes: 0x2B8BA000

[...]

EXAMPLE 4-16. A Sample List of Contiguous Memory Blocks

260 EXPLORING WINDOWS 2000 MEMORY

The odd thing about the +b option of w2k_mem.exe is that it reports an
amount of used memory that is far beyond any reasonable value. Note the
summary lines at the end of Example 4-16. Am I really using 700 MB of memory
now? The Windows 2000 Task Manager indicates 150 MB—so what’s going on
here? This strange effect comes from memory block #105, which is reported to
range from 0x80000000 to 0xA01A5FFF, spanning 0x201A6000 bytes, which
equals 538,599,424 bytes. This is obviously nonsense. The problem is that the
entire linear address range from 0x80000000 to 0x9FFFFFFF is mapped to the
physical address range 0x00000000 to 0x1FFFFFFF, as already noted earlier in this
chapter. All 4-MB pages in this range have valid PDEs in the page-directory at
address 0xC0300000, which can be proved by issuing the command w2k_mem +d
#0x200 0xC0300800 (Example 4-17). Because all PDEs in the resulting list are odd
numbers, the corresponding pages must be present; however, they are not neces-
sarily backed up by physical memory. In fact, large portions of this memory range
are really “holes” and seem to be filled with 0xFF bytes if copied to a buffer.
Therefore, you shouldn’t take the memory usage summary displayed by
w2k_mem.exe too seriously.

E:\>w2k_mem +d #0x200 0xC0300800

[...]

C0300800..C03009FF: 512 valid bytes

Address | 00000000 - 00000004 : 00000008 - 0000000C | 0000 0004 0008 000C

---------|---------------------:---------------------|--------------------

C0300800 | 000001E3 - 004001E3 : 008001E3 - 00C001E3 | ...ã .@.ã .?.ã .À.ã

C0300810 | 010001E3 - 014001E3 : 018001E3 - 01C001E3 | ...ã .@.ã .?.ã .À.ã

C0300820 | 020001E3 - 024001E3 : 028001E3 - 02C001E3 | ...ã .@.ã .?.ã .À.ã

C0300830 | 030001E3 - 034001E3 : 038001E3 - 03C001E3 | ...ã .@.ã .?.ã .À.ã

C0300840 | 040001E3 - 044001E3 : 048001E3 - 04C001E3 | ...ã .@.ã .?.ã .À.ã

C0300850 | 050001E3 - 054001E3 : 058001E3 - 05C001E3 | ...ã .@.ã .?.ã .À.ã

C0300860 | 060001E3 - 064001E3 : 068001E3 - 06C001E3 | ...ã .@.ã .?.ã .À.ã

C0300870 | 070001E3 - 074001E3 : 078001E3 - 07C001E3 | ...ã .@.ã .?.ã .À.ã

C0300880 | 080001E3 - 084001E3 : 088001E3 - 08C001E3 | ...ã .@.ã .?.ã .À.ã

C0300890 | 090001E3 - 094001E3 : 098001E3 - 09C001E3 | ...ã .@.ã .?.ã .À.ã

C03008A0 | 0A0001E3 - 0A4001E3 : 0A8001E3 - 0AC001E3 | ...ã .@.ã .?.ã .À.ã

C03008B0 | 0B0001E3 - 0B4001E3 : 0B8001E3 - 0BC001E3 | ...ã .@.ã .?.ã .À.ã

C03008C0 | 0C0001E3 - 0C4001E3 : 0C8001E3 - 0CC001E3 | ...ã .@.ã .?.ã .À.ã

C03008D0 | 0D0001E3 - 0D4001E3 : 0D8001E3 - 0DC001E3 | ...ã .@.ã .?.ã .À.ã

C03008E0 | 0E0001E3 - 0E4001E3 : 0E8001E3 - 0EC001E3 | ...ã .@.ã .?.ã .À.ã

C03008F0 | 0F0001E3 - 0F4001E3 : 0F8001E3 - 0FC001E3 | ...ã .@.ã .?.ã .À.ã

C0300900 | 100001E3 - 104001E3 : 108001E3 - 10C001E3 | ...ã .@.ã .?.ã .À.ã

WINDOWS 2000 MEMORY INTERNALS 261

C0300910 | 110001E3 - 114001E3 : 118001E3 - 11C001E3 | ...ã .@.ã .?.ã .À.ã

C0300920 | 120001E3 - 124001E3 : 128001E3 - 12C001E3 | ...ã .@.ã .?.ã .À.ã

C0300930 | 130001E3 - 134001E3 : 138001E3 - 13C001E3 | ...ã .@.ã .?.ã .À.ã

C0300940 | 140001E3 - 144001E3 : 148001E3 - 14C001E3 | ...ã .@.ã .?.ã .À.ã

C0300950 | 150001E3 - 154001E3 : 158001E3 - 15C001E3 | ...ã .@.ã .?.ã .À.ã

C0300960 | 160001E3 - 164001E3 : 168001E3 - 16C001E3 | ...ã .@.ã .?.ã .À.ã

C0300970 | 170001E3 - 174001E3 : 178001E3 - 17C001E3 | ...ã .@.ã .?.ã .À.ã

C0300980 | 180001E3 - 184001E3 : 188001E3 - 18C001E3 | ...ã .@.ã .?.ã .À.ã

C0300990 | 190001E3 - 194001E3 : 198001E3 - 19C001E3 | ...ã .@.ã .?.ã .À.ã

C03009A0 | 1A0001E3 - 1A4001E3 : 1A8001E3 - 1AC001E3 | ...ã .@.ã .?.ã .À.ã

C03009B0 | 1B0001E3 - 1B4001E3 : 1B8001E3 - 1BC001E3 | ...ã .@.ã .?.ã .À.ã

C03009C0 | 1C0001E3 - 1C4001E3 : 1C8001E3 - 1CC001E3 | ...ã .@.ã .?.ã .À.ã

C03009D0 | 1D0001E3 - 1D4001E3 : 1D8001E3 - 1DC001E3 | ...ã .@.ã .?.ã .À.ã

C03009E0 | 1E0001E3 - 1E4001E3 : 1E8001E3 - 1EC001E3 | ...ã .@.ã .?.ã .À.ã

C03009F0 | 1F0001E3 - 1F4001E3 : 1F8001E3 - 1FC001E3 | ...ã .@.ã .?.ã .À.ã

[...]

EXAMPLE 4-17. The PDEs of the Address Range 0x80000000 to 0x9FFFFFFF

THE WINDOWS 2000 MEMORY MAP

The last part of this chapter is dedicated to the general layout of the 4-GB linear
address space as it is “seen” by a Windows 2000 process. Table 4-9 lists the address
ranges of various essential data structures. The big holes between them are used for
several purposes, such as load areas for process modules and device drivers, memory
pools, working set lists, and the like. Note that some addresses and block sizes might
vary considerably from system to system, depending on the memory and hardware
configuration, the process properties, and several other variables. Therefore, use this
list only as a rough sketch, not as an accurate roadmap.

Some physical memory blocks appear twice or more in the linear address space.
For example, the SharedUserData area at linear address 0xFFDF0000 is mirrored at
address 0x7FFE0000. Both refer to the same page in physical memory—writing a byte
to 0xFFDF0000+n mysteriously changes the value of the byte at 0x7FFE0000+n. This is
the world of virtual memory—a physical address can be mapped anywhere into the
linear address space, even to several addresses at the same time. It’s just a matter of
setting up the page-directory and page-tables appropriately. Please recall Figures 4-3
and 4-4, which clearly show that linear addresses are fake. Their Directory and
Table bit fields are just pointers to structures that determine the real location of the
data. And if the PFNs of two PTEs happen to be identical, the corresponding linear
addresses refer to the same physical memory location.

262 EXPLORING WINDOWS 2000 MEMORY

TABLE 4-9. Identifiable Memory Regions in the Address Space of a Process

START END HEX SIZE TYPE/DESCRIPTION

0x00000000 0x0000FFFF 10000 Lower guard block

0x00010000 0x0001FFFF 10000 WCHAR[]/Environment strings, allocated in 4-KB pages

0x00020000 0x0002FFFF 10000 PROCESS_PARAMETERS/allocated in 4-KB pages

0x00030000 0x0012FFFF 100000 DWORD [4000]/Process stack (default: 1 MB)

0x7FFDD000 0x7FFDDFFF 1000 TEB/Thread Environment Block of thread #2

0x7FFDE000 0x7FFDEFFF 1000 TEB/Thread Environment Block of thread #1

0x7FFDF000 0x7FFDFFFF 1000 PEB/Process Environment Block

0x7FFE0000 0x7FFE02D7 2D8 KUSER_SHARED_DATA/SharedUserData in user-mode

0x7FFF0000 0x7FFFFFFF 10000 Upper guard block

0x80000000 0x800003FF 400 IVT/Interrupt Vector Table

0x80036000 0x800363FF 400 KGDTENTRY[80]/Global Descriptor Table

0x80036400 0x80036BFF 800 KIDTENTRY[100]/Interrupt Descriptor Table

0x800C0000 0x800FFFFF 40000 VGA/ROM BIOS

0x80244000 0x802460AA 20AB KTSS/user/kernel Task State Segment (busy)

0x8046AB80 0x8046ABBF 40 KeServiceDescriptorTable

0x8046ABC0 0x8046ABFF 40 KeServiceDescriptorTableShadow

0x80470040 0x804700A7 68 KTSS/KiDoubleFaultTSS

0x804700A8 0x8047010F 68 KTSS/KiNMITSS

0x804704D8 0x804708B7 3E0 PROC[F8]/KiServiceTable

0x804708B8 0x804708BB 4 DWORD/KiServiceLimit

0x804708BC 0x804709B3 F8 BYTE[F8]/KiArgumentTable

0x814C6000 0x82CC5FFF 1800000 PFN[100000]/MmPfnDatabase (max. for 4 GB)

0xA01859F0 0xA01863EB 9FC PROC[27F]/W32pServiceTable

0xA0186670 0xA01868EE 27F BYTE[27F]/W32pArgumentTable

0xC0000000 0xC03FFFFF 400000 X86_PE[100000]/page-directory and page-tables

0xC1000000 0xE0FFFFFF 20000000 System Cache (MmSystemCacheStart, MmSystemCacheEnd)

0xE1000000 0xE77FFFFF 6800000 Paged Pool (MmPagedPoolStart, MmPagedPoolEnd)

0xF0430000 0xF043FFFF 10000 ROM BIOS code segment

0xF0440000 0xF044FFFF 10000 ROM BIOS data segment

WINDOWS 2000 MEMORY INTERNALS 263

TABLE 4-9. (continued)

START END HEX SIZE TYPE/DESCRIPTION

0xFFDF0000 0xFFDF02D7 2D8 KUSER_SHARED_DATA/SharedUserData in kernel-mode

0xFFDFF000 0xFFDFF053 54 KPCR/Processor Control Region (kernel-mode FS segment)

0xFFDFF120 0xFFDFF13B 1C KPRCB/Processor Control Block

0xFFDFF13C 0xFFDFF407 2CC CONTEXT/Thread Context (CPU state)

0xFFDFF620 0xFFDFF71F 100 Lookaside list directories

