
Intercepting operating system calls is an all-time favorite of programmers every-
where. The motivations for this public interest are numerous: code profiling and

optimization, reverse engineering, user activity logging, and the like. All of these
share a common intention: to pass control to a special piece of code whenever an
application calls a system service, making it possible to find out which service was
called, what parameters it received, what results it returned, and how long it took to
execute. Based on a technique originally proposed by Mark Russinovich and Bryce
Cogswell (Russinovich and Cogswell 1997), this chapter presents a general frame-
work for implanting hooks into arbitrary Native API functions. The approach used
here is completely data-driven, so it can be easily extended and adapted to other
Windows 2000/NT versions. The data gathered from the API calls of all processes in
the system are written to a circular buffer that can be read by a client application via
device I/O control. The protocol data are formatted as a simple line-oriented ANSI
text stream that obeys strict formatting rules, making automated postprocessing by
an application easy. To demonstrate the basic outline of such a client application, this
chapter also presents a sample protocol data viewer running in a console window.

PATCHING THE SERVICE DESCRIPTOR TABLE

Whereas “primitive” operating systems such as DOS or Windows 3.xx offered little
resistance to programmers who wanted to apply hooks to their Application Program-
ming Interfaces (APIs), Win32 systems such as Windows 2000, Windows NT, and
Windows 9x are much harder to handle, because they use clever protection mecha-
nisms to separate unrelated pieces of code from each other. Setting a system-wide
hook on a Win32 API is not a small task. Fortunately, we have Win32 wizards such
as Matt Pietrek (Pietrek 1996e) and Jeffrey Richter (Richter 1997), who have put
much work into showing us how it can be done, despite the fact that there’s no

265

C H A P T E R 5

Monitoring
Native API Calls

simple and elegant solution. In 1997, Russinovich and Cogswell presented a completely
different approach to system-wide hooks for Windows NT, intercepting the system at a
much lower level (Russinovich and Cogswell 1997). They proposed to inject the log-
ging mechanism into the Native API dispatcher, just below the frontier between user-
mode and kernel-mode, where Windows NT exposes a “bottleneck” that all user-mode
threads must pass through to be serviced by the operating system kernel.

SERVICE AND ARGUMENT TABLES

As discussed in Chapter 2, the doorway through which all Native API calls originat-
ing in user-mode must pass is the INT 2Eh interface that provides an i386 interrupt
gate for the privilege level change. You might recall as well that all INT 2Eh calls are
handled in kernel-mode by the internal function KiSystemService(), which uses
the system’s Service Descriptor Table (SDT) to look up the entry points of the Native
API handlers. In Figure 5-1, the interrelations of the basic components of this
dispatching mechanism are outlined. The formal definitions of the SERVICE_
DESCRIPTOR_TABLE structure and its subtypes from Chapter 2 (Listing 2-1) are
repeated in Listing 5-1.

KiSystemService() is called with two arguments, passed in by the INT 2Eh

caller in the CPU registers EAX and EDX. EAX contains a zero-based index into an
array of API handler function pointers, and EDX points to the caller’s argument stack.
KiSystemService() retrieves the base address of the function array by reading the
value of the ServiceTable member of a public ntoskrnl.exe data structure named
KeServiceDescriptorTable, shown on the left-hand side of Figure 5-1. Actually,
KeServiceDescriptorTable points to an array of four service table parameter struc-
tures, but only the first one contains valid entries by default. KiSystemService()
looks up the address of the function that should handle the API call by using EAX as
an index into the internal KiServiceTable structure. Before calling the target func-
tion, KiSystemService() queries the KiArgumentTable structure in much the same
way to find out how many bytes were passed in by the caller on the argument stack,
and uses this value to copy the arguments to the current kernel-mode stack. After
that, a simple assembly language CALL instruction is required to invoke the API han-
dler. Everything is then set up as a normal __stdcall C function would expect.

Windows 2000 provides another service descriptor table parameter block named
KeServiceDescriptorTableShadow. Whereas KeServiceDescriptorTable
is publicly exported by ntoskrnl.exe so kernel-mode drivers can readily access it,
KeServiceDescriptorTableShadow is not. On Windows 2000, KeService
DescriptorTableShadow follows immediately after KeServiceDescriptorTable, but
you should not count on that—this rule does not hold on Windows NT 4.0, and it is
possible that it won’t hold on future updates of Windows 2000. The difference between
both parameter blocks is that in KeServiceDescriptorTableShadow the second slot

266 MONITORING NATIVE API CALLS

PATCHING THE SERVICE DESCRIPTOR TABLE 267

ServiceTable
CounterTable = NULL
ServiceLimit = 0xF8
ArgumentTable

ServiceTable = NULL
CounterTable = NULL
ServiceLimit = 0
ArgumentTable = NULL

ServiceTable = NULL
CounterTable = NULL
ServiceLimit = 0
ArgumentTable = NULL

ServiceTable = NULL
CounterTable = NULL
ServiceLimit = 0
ArgumentTable = NULL

0x18 0x00
0x20 0x01
0x2C 0x02
0x2C 0x03
0x40 0x04
0x2C 0x05

0x08 0xF3
0x0C 0xF4
0x10 0xF5
0x04 0xF6
0x00 0xF7

NtAcceptConnectPort 0x00
NtAccessCheck 0x01
NtAccessCheckAndAuditAlarm 0x02
NtAccessCheckByType 0x03
NtAccessCheckByTypeAndAuditAlarm 0x04
NtAccessCheckByTypeResultList 0x05

NtOpenChannel 0xF3
NtReplyWaitSendChannel 0xF4
NtSendWaitReplyChannel 0xF5
NtSetContextChannel 0xF6
NtYieldExecution 0xF7

...

...

KeServiceDescriptorTable

KiArgumentTable

KiServiceTable

FIGURE 5-1. Structure of the KeServiceDescriptorTable

typedef NTSTATUS (NTAPI *NTPROC) ();

typedef NTPROC *PNTPROC;

#define NTPROC_ sizeof (NTPROC)

// ---

typedef struct _SYSTEM_SERVICE_TABLE

{

PNTPROC ServiceTable; // array of entry points

PDWORD CounterTable; // array of usage counters

DWORD ServiceLimit; // number of table entries

PBYTE ArgumentTable; // array of byte counts

}

SYSTEM_SERVICE_TABLE,

* PSYSTEM_SERVICE_TABLE,

**PPSYSTEM_SERVICE_TABLE;

// ---

typedef struct _SERVICE_DESCRIPTOR_TABLE

{

SYSTEM_SERVICE_TABLE ntoskrnl; // ntoskrnl.exe (native api)

(continued)

268 MONITORING NATIVE API CALLS

SYSTEM_SERVICE_TABLE win32k; // win32k.sys (gdi/user support)

SYSTEM_SERVICE_TABLE Table3; // not used

SYSTEM_SERVICE_TABLE Table4; // not used

}

SERVICE_DESCRIPTOR_TABLE,

* PSERVICE_DESCRIPTOR_TABLE,

**PPSERVICE_DESCRIPTOR_TABLE;

LISTING 5-1. Definition of the SERVICE_DESCRIPTOR_TABLE Structure

is used by the system, too. It contains references to the internal w32pServiceTable
and w32pArgumentTable structures that are used by the Win32 kernel-mode compo-
nent win32k.sys to dispatch its own API calls, as shown in Figure 5-2. KiSystem
Service() knows that it is handling a win32k.sys API call by examining bits #12
and 13 of the function index in register EAX. If both bits are zero, it is a Native API
call handled by ntoskrnl.exe, so KiSystemService() uses the first SDT slot. If bit
#12 is set and bit #13 is zero, KiSystemService() uses the second slot. The remain-
ing two bit combinations are assigned to the last pair of slots, which are currently not
used by the system. This means that the index numbers of Native API calls poten-
tially range from 0x0000 to 0x0FFF, and win32k.sys calls involve index numbers in
the range 0x1000 to 0x1FFF. Consequently, the ranges 0x2000 to 0x2FFF and 0x3000
to 0x3FFF are assigned to the reserved tables. On Windows 2000, the Native API
service table contains 248 entries and the win32k.sys table contains 639 entries.

The ingenious idea of Russinovich and Cogswell was to hook API calls by
simply putting a different handler into the KiServiceTable array. This handler
would ultimately call the original handler inside ntoskrnl.exe, but it had the
opportunity to take a peek at the input and output parameters of the called function.
This approach is extremely powerful but also very simple. Because all user-mode
threads have to pass through this needle’s eye in order to get their Native API
requests serviced, a simple exchange of function pointers installs a global hook that
continues to work reliably even after new processes and threads have been started.
There is no need for a notification mechanism that signals the addition or removal of
processes and threads.

Unfortunately, the system service pointer tables are subject to nontrivial
changes across Windows NT versions. Table 5-1 compares the KiServiceTable
entries of Windows 2000 and Windows NT 4.0. It is obvious that not only has the
number of handlers been increased from 211 to 248 but the new handlers haven’t
been appended to the end of the list. They were inserted somewhere in between!
Thus, a service function index of, say, 0x20 refers to NtCreateFile() on Windows
2000 but is associated with NtCreateProfile() on Windows NT 4.0. Consequently,

FIGURE 5-2. Structure of KeServiceDescriptorTableShadow

an API call monitor that installs a hook by manipulating the entries in the service
function table must carefully check the Windows NT version it is running on. This
can be done in several ways:

• One possibility is to check the public NtBuildNumber variable exported by
ntoskrnl.exe, as Russinovich and Cogswell did in their original article
(Russinovich and Cogswell 1997). Windows NT 4.0 exposes a build
number of 1,381 for all service packs. The build number of Windows
2000 is currently 2,195. Hopefully, this number will remain as stable
as it did in the previous Windows NT versions.

• Another possibility is to check the NtMajorVersion and NtMinorVersion
members of the SharedUserData structure defined in the Windows 2000
header file ntddk.h. All Windows NT 4.0 service packs set SharedUserData-
>NtMajorVersion to four and SharedUserData->NtMinorVersion to zero.
Windows 2000 currently indicates a Windows NT version of 5.0.

PATCHING THE SERVICE DESCRIPTOR TABLE 269

ServiceTable
CounterTable = NULL
ServiceLimit = 0xF8
ArgumentTable

ServiceTable
CounterTable = NULL
ServiceLimit = 0x27F
ArgumentTable

ServiceTable = NULL
CounterTable = NULL
ServiceLimit = 0
ArgumentTable = NULL

ServiceTable = NULL
CounterTable = NULL
ServiceLimit = 0
ArgumentTable = NULL

0x04 0x000
0x04 0x001
0x18 0x002
0x10 0x003
0x14 0x004
0x08 0x005

0x04 0x27A
0x04 0x27B
0x10 0x27C
0x18 0x27D
0x04 0x27E

NtGdiAbortDoc 0x000
NtGdiAbortPath 0x001
NtGdiAddFontResourceW 0x002
NtGdiAddRemoteFontToDC 0x003
NtGdiAddFontMemResourceEx 0x004
NtGdiRemoveMergeFont 0x005

NtGdiGetDhpdev 0x27A
NtGdiEngCheckAbort 0x27B
NtGdiHT_Get8BPPFormatPalette 0x27C
NtGdiHT_Get8BPPMaskPalette 0x27D
NtGdiUpdateTransform 0x27E

...

...

KeServiceDescriptorTableShadow

W32pArgumentTable

KiArgumentTable
W32pServiceTable

KiServiceTable

• The code presented in this chapter uses yet another alternative—it tests
whether the ServiceLimit member of the SDT entry matches its
expectations, which is 211 (0xD3) for Windows NT 4.0 and 248 (0xF8)
for Windows 2000.

TABLE 5-1. Windows 2000 and NT 4.0 Service Table Comparison

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtAcceptConnectPort 0x00 NtAcceptConnectPort

NtAccessCheck 0x01 NtAccessCheck

NtAccessCheckAndAuditAlarm 0x02 NtAccessCheckAndAuditAlarm

NtAccessCheckByType 0x03 NtAddAtom

NtAccessCheckByTypeAndAuditAlarm 0x04 NtAdjustGroupsToken

NtAccessCheckByTypeResultList 0x05 NtAdjustPrivilegesToken

NtAccessCheckByTypeResultListAndAuditAlarm 0x06 NtAlertResumeThread

NtAccessCheckByTypeResultListAndAuditAlarmByHandle 0x07 NtAlertThread

NtAddAtom 0x08 NtAllocateLocallyUniqueId

NtAdjustGroupsToken 0x09 NtAllocateUuids

NtAdjustPrivilegesToken 0x0A NtAllocateVirtualMemory

NtAlertResumeThread 0x0B NtCallbackReturn

NtAlertThread 0x0C NtCancelIoFile

NtAllocateLocallyUniqueId 0x0D NtCancelTimer

NtAllocateUserPhysicalPages 0x0E NtClearEvent

NtAllocateUuids 0x0F NtClose

NtAllocateVirtualMemory 0x10 NtCloseObjectAuditAlarm

NtAreMappedFilesTheSame 0x11 NtCompleteConnectPort

NtAssignProcessToJobObject 0x12 NtConnectPort

NtCallbackReturn 0x13 NtContinue

NtCancelIoFile 0x14 NtCreateDirectoryObject

NtCancelTimer 0x15 NtCreateEvent

NtCancelDeviceWakeupRequest 0x16 NtCreateEventPair

NtClearEvent 0x17 NtCreateFile

NtClose 0x18 NtCreateIoCompletion

NtCloseObjectAuditAlarm 0x19 NtCreateKey

NtCompleteConnectPort 0x1A NtCreateMailslotFile

NtConnectPort 0x1B NtCreateMutant

NtContinue 0x1C NtCreateNamedPipeFile

NtCreateDirectoryObject 0x1D NtCreatePagingFile

NtCreateEvent 0x1E NtCreatePort

NtCreateEventPair 0x1F NtCreateProcess

NtCreateFile 0x20 NtCreateProfile

NtCreateIoCompletion 0x21 NtCreateSection

270 MONITORING NATIVE API CALLS

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtCreateJobObject 0x22 NtCreateSemaphore

NtCreateKey 0x23 NtCreateSymbolicLinkObject

NtCreateMailslotFile 0x24 NtCreateThread

NtCreateMutant 0x25 NtCreateTimer

NtCreateNamedPipeFile 0x26 NtCreateToken

NtCreatePagingFile 0x27 NtDelayExecution

NtCreatePort 0x28 NtDeleteAtom

NtCreateProcess 0x29 NtDeleteFile

NtCreateProfile 0x2A NtDeleteKey

NtCreateSection 0x2B NtDeleteObjectAuditAlarm

NtCreateSemaphore 0x2C NtDeleteValueKey

NtCreateSymbolicLinkObject 0x2D NtDeviceIoControlFile

NtCreateThread 0x2E NtDisplayString

NtCreateTimer 0x2F NtDuplicateObject

NtCreateToken 0x30 NtDuplicateToken

NtCreateWaitablePort 0x31 NtEnumerateKey

NtDelayExecution 0x32 NtEnumerateValueKey

NtDeleteAtom 0x33 NtExtendSection

NtDeleteFile 0x34 NtFindAtom

NtDeleteKey 0x35 NtFlushBuffersFile

NtDeleteObjectAuditAlarm 0x36 NtFlushInstructionCache

NtDeleteValueKey 0x37 NtFlushKey

NtDeviceIoControlFile 0x38 NtFlushVirtualMemory

NtDisplayString 0x39 NtFlushWriteBuffer

NtDuplicateObject 0x3A NtFreeVirtualMemory

NtDuplicateToken 0x3B NtFsControlFile

NtEnumerateKey 0x3C NtGetContextThread

NtEnumerateValueKey 0x3D NtGetPlugPlayEvent

NtExtendSection 0x3E NtGetTickCount

NtFilterToken 0x3F NtImpersonateClientOfPort

NtFindAtom 0x40 NtImpersonateThread

NtFlushBuffersFile 0x41 NtInitializeRegistry

NtFlushInstructionCache 0x42 NtListenPort

NtFlushKey 0x43 NtLoadDriver

NtFlushVirtualMemory 0x44 NtLoadKey

NtFlushWriteBuffer 0x45 NtLoadKey2

NtFreeUserPhysicalPages 0x46 NtLockFile

NtFreeVirtualMemory 0x47 NtLockVirtualMemory

NtFsControlFile 0x48 NtMakeTemporaryObject

PATCHING THE SERVICE DESCRIPTOR TABLE 271

(continued)

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtGetContextThread 0x49 NtMapViewOfSection

NtGetDevicePowerState 0x4A NtNotifyChangeDirectoryFile

NtGetPlugPlayEvent 0x4B NtNotifyChangeKey

NtGetTickCount 0x4C NtOpenDirectoryObject

NtGetWriteWatch 0x4D NtOpenEvent

NtImpersonateAnonymousToken 0x4E NtOpenEventPair

NtImpersonateClientOfPort 0x4F NtOpenFile

NtImpersonateThread 0x50 NtOpenIoCompletion

NtInitializeRegistry 0x51 NtOpenKey

NtInitiatePowerAction 0x52 NtOpenMutant

NtIsSystemResumeAutomatic 0x53 NtOpenObjectAuditAlarm

NtListenPort 0x54 NtOpenProcess

NtLoadDriver 0x55 NtOpenProcessToken

NtLoadKey 0x56 NtOpenSection

NtLoadKey2 0x57 NtOpenSemaphore

NtLockFile 0x58 NtOpenSymbolicLinkObject

NtLockVirtualMemory 0x59 NtOpenThread

NtMakeTemporaryObject 0x5A NtOpenThreadToken

NtMapUserPhysicalPages 0x5B NtOpenTimer

NtMapUserPhysicalPagesScatter 0x5C NtPlugPlayControl

NtMapViewOfSection 0x5D NtPrivilegeCheck

NtNotifyChangeDirectoryFile 0x5E NtPrivilegedServiceAuditAlarm

NtNotifyChangeKey 0x5F NtPrivilegeObjectAuditAlarm

NtNotifyChangeMultipleKeys 0x60 NtProtectVirtualMemory

NtOpenDirectoryObject 0x61 NtPulseEvent

NtOpenEvent 0x62 NtQueryInformationAtom

NtOpenEventPair 0x63 NtQueryAttributesFile

NtOpenFile 0x64 NtQueryDefaultLocale

NtOpenIoCompletion 0x65 NtQueryDirectoryFile

NtOpenJobObject 0x66 NtQueryDirectoryObject

NtOpenKey 0x67 NtQueryEaFile

NtOpenMutant 0x68 NtQueryEvent

NtOpenObjectAuditAlarm 0x69 NtQueryFullAttributesFile

NtOpenProcess 0x6A NtQueryInformationFile

NtOpenProcessToken 0x6B NtQueryIoCompletion

NtOpenSection 0x6C NtQueryInformationPort

NtOpenSemaphore 0x6D NtQueryInformationProcess

NtOpenSymbolicLinkObject 0x6E NtQueryInformationThread

272 MONITORING NATIVE API CALLS

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtOpenThread 0x6F NtQueryInformationToken

NtOpenThreadToken 0x70 NtQueryIntervalProfile

NtOpenTimer 0x71 NtQueryKey

NtPlugPlayControl 0x72 NtQueryMultipleValueKey

NtPowerInformation 0x73 NtQueryMutant

NtPrivilegeCheck 0x74 NtQueryObject

NtPrivilegedServiceAuditAlarm 0x75 NtQueryOleDirectoryFile

NtPrivilegeObjectAuditAlarm 0x76 NtQueryPerformanceCounter

NtProtectVirtualMemory 0x77 NtQuerySection

NtPulseEvent 0x78 NtQuerySecurityObject

NtQueryInformationAtom 0x79 NtQuerySemaphore

NtQueryAttributesFile 0x7A NtQuerySymbolicLinkObject

NtQueryDefaultLocale 0x7B NtQuerySystemEnvironmentValue

NtQueryDefaultUILanguage 0x7C NtQuerySystemInformation

NtQueryDirectoryFile 0x7D NtQuerySystemTime

NtQueryDirectoryObject 0x7E NtQueryTimer

NtQueryEaFile 0x7F NtQueryTimerResolution

NtQueryEvent 0x80 NtQueryValueKey

NtQueryFullAttributesFile 0x81 NtQueryVirtualMemory

NtQueryInformationFile 0x82 NtQueryVolumeInformationFile

NtQueryInformationJobObject 0x83 NtQueueApcThread

NtQueryIoCompletion 0x84 NtRaiseException

NtQueryInformationPort 0x85 NtRaiseHardError

NtQueryInformationProcess 0x86 NtReadFile

NtQueryInformationThread 0x87 NtReadFileScatter

NtQueryInformationToken 0x88 NtReadRequestData

NtQueryInstallUILanguage 0x89 NtReadVirtualMemory

NtQueryIntervalProfile 0x8A NtRegisterThreadTerminatePort

NtQueryKey 0x8B NtReleaseMutant

NtQueryMultipleValueKey 0x8C NtReleaseSemaphore

NtQueryMutant 0x8D NtRemoveIoCompletion

NtQueryObject 0x8E NtReplaceKey

NtQueryOpenSubKeys 0x8F NtReplyPort

NtQueryPerformanceCounter 0x90 NtReplyWaitReceivePort

NtQueryQuotaInformationFile 0x91 NtReplyWaitReplyPort

NtQuerySection 0x92 NtRequestPort

NtQuerySecurityObject 0x93 NtRequestWaitReplyPort

NtQuerySemaphore 0x94 NtResetEvent

PATCHING THE SERVICE DESCRIPTOR TABLE 273

(continued)

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtQuerySymbolicLinkObject 0x95 NtRestoreKey

NtQuerySystemEnvironmentValue 0x96 NtResumeThread

NtQuerySystemInformation 0x97 NtSaveKey

NtQuerySystemTime 0x98 NtSetIoCompletion

NtQueryTimer 0x99 NtSetContextThread

NtQueryTimerResolution 0x9A NtSetDefaultHardErrorPort

NtQueryValueKey 0x9B NtSetDefaultLocale

NtQueryVirtualMemory 0x9C NtSetEaFile

NtQueryVolumeInformationFile 0x9D NtSetEvent

NtQueueApcThread 0x9E NtSetHighEventPair

NtRaiseException 0x9F NtSetHighWaitLowEventPair

NtRaiseHardError 0xA0 NtSetHighWaitLowThread

NtReadFile 0xA1 NtSetInformationFile

NtReadFileScatter 0xA2 NtSetInformationKey

NtReadRequestData 0xA3 NtSetInformationObject

NtReadVirtualMemory 0xA4 NtSetInformationProcess

NtRegisterThreadTerminatePort 0xA5 NtSetInformationThread

NtReleaseMutant 0xA6 NtSetInformationToken

NtReleaseSemaphore 0xA7 NtSetIntervalProfile

NtRemoveIoCompletion 0xA8 NtSetLdtEntries

NtReplaceKey 0xA9 NtSetLowEventPair

NtReplyPort 0xAA NtSetLowWaitHighEventPair

NtReplyWaitReceivePort 0xAB NtSetLowWaitHighThread

NtReplyWaitReceivePortEx 0xAC NtSetSecurityObject

NtReplyWaitReplyPort 0xAD NtSetSystemEnvironmentValue

NtRequestDeviceWakeup 0xAE NtSetSystemInformation

NtRequestPort 0xAF NtSetSystemPowerState

NtRequestWaitReplyPort 0xB0 NtSetSystemTime

NtRequestWakeupLatency 0xB1 NtSetTimer

NtResetEvent 0xB2 NtSetTimerResolution

NtResetWriteWatch 0xB3 NtSetValueKey

NtRestoreKey 0xB4 NtSetVolumeInformationFile

NtResumeThread 0xB5 NtShutdownSystem

NtSaveKey 0xB6 NtSignalAndWaitForSingleObject

NtSaveMergedKeys 0xB7 NtStartProfile

NtSecureConnectPort 0xB8 NtStopProfile

NtSetIoCompletion 0xB9 NtSuspendThread

NtSetContextThread 0xBA NtSystemDebugControl

NtSetDefaultHardErrorPort 0xBB NtTerminateProcess

274 MONITORING NATIVE API CALLS

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtSetDefaultLocale 0xBC NtTerminateThread

NtSetDefaultUILanguage 0xBD NtTestAlert

NtSetEaFile 0xBE NtUnloadDriver

NtSetEvent 0xBF NtUnloadKey

NtSetHighEventPair 0xC0 NtUnlockFile

NtSetHighWaitLowEventPair 0xC1 NtUnlockVirtualMemory

NtSetInformationFile 0xC2 NtUnmapViewOfSection

NtSetInformationJobObject 0xC3 NtVdmControl

NtSetInformationKey 0xC4 NtWaitForMultipleObjects

NtSetInformationObject 0xC5 NtWaitForSingleObject

NtSetInformationProcess 0xC6 NtWaitHighEventPair

NtSetInformationThread 0xC7 NtWaitLowEventPair

NtSetInformationToken 0xC8 NtWriteFile

NtSetIntervalProfile 0xC9 NtWriteFileGather

NtSetLdtEntries 0xCA NtWriteRequestData

NtSetLowEventPair 0xCB NtWriteVirtualMemory

NtSetLowWaitHighEventPair 0xCC NtCreateChannel

NtSetQuotaInformationFile 0xCD NtListenChannel

NtSetSecurityObject 0xCE NtOpenChannel

NtSetSystemEnvironmentValue 0xCF NtReplyWaitSendChannel

NtSetSystemInformation 0xD0 NtSendWaitReplyChannel

NtSetSystemPowerState 0xD1 NtSetContextChannel

NtSetSystemTime 0xD2 NtYieldExecution

NtSetThreadExecutionState 0xD3 N/A

NtSetTimer 0xD4 N/A

NtSetTimerResolution 0xD5 N/A

NtSetUuidSeed 0xD6 N/A

NtSetValueKey 0xD7 N/A

NtSetVolumeInformationFile 0xD8 N/A

NtShutdownSystem 0xD9 N/A

NtSignalAndWaitForSingleObject 0xDA N/A

NtStartProfile 0xDB N/A

NtStopProfile 0xDC N/A

NtSuspendThread 0xDD N/A

NtSystemDebugControl 0xDE N/A

NtTerminateJobObject 0xDF N/A

NtTerminateProcess 0xE0 N/A

NtTerminateThread 0xE1 N/A

NtTestAlert 0xE2 N/A

PATCHING THE SERVICE DESCRIPTOR TABLE 275

(continued)

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0

NtUnloadDriver 0xE3 N/A

NtUnloadKey 0xE4 N/A

NtUnlockFile 0xE5 N/A

NtUnlockVirtualMemory 0xE6 N/A

NtUnmapViewOfSection 0xE7 N/A

NtVdmControl 0xE8 N/A

NtWaitForMultipleObjects 0xE9 N/A

NtWaitForSingleObject 0xEA N/A

NtWaitHighEventPair 0xEB N/A

NtWaitLowEventPair 0xEC N/A

NtWriteFile 0xED N/A

NtWriteFileGather 0xEE N/A

NtWriteRequestData 0xEF N/A

NtWriteVirtualMemory 0xF0 N/A

NtCreateChannel 0xF1 N/A

NtListenChannel 0xF2 N/A

NtOpenChannel 0xF3 N/A

NtReplyWaitSendChannel 0xF4 N/A

NtSendWaitReplyChannel 0xF5 N/A

NtSetContextChannel 0xF6 N/A

NtYieldExecution 0xF7 N/A

The most important step taken by Russinovich and Cogswell was to write a ker-
nel-mode device driver that installs and maintains the Native API hooks, because user-
mode modules do not have the appropriate privileges to modify the system at this low
system level. Like the spy driver in Chapter 4, this is a somewhat unusual driver,
because it does not perform the usual I/O request processing. It just exposes a simple
Device I/O Control (IOCTL) interface to give user-mode code access to the data it col-
lects. The main task of this driver is to manipulate the KiServiceTable and intercept
and log selected calls to the Windows 2000 Native API. Although this method is sim-
ple and elegant, it is also somewhat alarming. Its simplicity reminds me of the old
DOS days when hooking a system service was as simple as modifying a pointer in the
processor’s interrupt vector table. Anyone who knows how to write a basic Windows
2000 kernel-mode driver can hook any NT system service without much effort.

Russinovich and Cogswell used their technique to develop a very useful Windows
NT registry monitor. While adapting their code for other spying tasks, I quickly became
annoyed by the requirement of writing an individual hook function for each API func-
tion on which I wanted to spy. To avoid having to write extensive stereotypic code, I

276 MONITORING NATIVE API CALLS

wanted to find a way to force all API functions I was interested in through a single
hook function. This turned out to be a task that took considerable time and showed me
all possible variants of Blue Screens. However, this resulted in a general-purpose solu-
tion that enabled me to vary the set of hooked API functions with minimum effort.

ASSEMBLY LANGUAGE TO THE RESCUE

The main obstacle to a general-purpose solution was the typical parameter passing
mechanism of the C language. As you may know, C usually passes function argu-
ments on the CPU stack before calling the function’s entry point. Depending on the
number of arguments a function requires, the size of the argument stack varies con-
siderably. The 248 Native API functions of Windows 2000 involve argument stack
sizes between zero and 68 bytes. Given the diligent type checking of C, this makes
writing a unique hook function a tough job. Microsoft Visual C/C++ comes with a
versatile integrated assembly language (ASM) compiler that is capable of processing
moderately complex code. Ironically, the advantage of ASM in this situation is
exactly what is commonly regarded as one of its biggest drawbacks: ASM doesn’t
provide a strict type checking mechanism. As long as the number of bits is OK, you
can store almost anything in any register and you can call any address without con-
cern for what is currently on the stack. Although this is a dangerous feature in appli-
cation programming, it comes in quite handy here: In ASM, it is easy to call a
common entry point with different arguments on the stack, and this feature will be
exploited in the API hook dispatcher introduced in a moment.

The Microsoft Visual C/C++ inline assembler is invoked by putting ASM code
into delimited blocks tagged by the keyword __asm. It lacks the macro definition and
evaluation capabilities of Microsoft’s big Macro Assembler (MASM), but this doesn’t
severely restrict its usefulness. The best feature of the inline assembler is that it has
access to all C variables and type definitions, so it is quite easy to mix C and ASM code.
However, when ASM code is included in a C function, some important basic conven-
tions of the C compiler must be obeyed to avoid interference with the compiled C code:

• The caller of a C function assumes that the CPU registers EBP, EBX, ESI,
and EDI are preserved.

• If the ASM code is mixed with C code in a single function, be careful
to preserve all intermediate values the C code might hold in registers.
It is always a good idea to save and restore all registers used inside an
__asm clause.

• 8-bit function results (CHAR, BYTE, etc.) are returned in register AL.

• 16-bit function results (SHORT, WORD, etc.) are returned in register AX.

PATCHING THE SERVICE DESCRIPTOR TABLE 277

• 32-bit function results (INT, LONG, DWORD, pointers, etc.) are returned in
register EAX.

• 64-bit function results (__int64, LONGLONG, DWORDLONG, etc.) are
returned in register pair EDX:EAX. Register EAX contains bits #0 to 31, and
EDX holds bits #32 to 63.

• Functions with a fixed number of arguments usually pass arguments
according to the __stdcall convention. From the caller’s perspective,
this means that the arguments must be pushed onto the stack in reverse
order before the call, and the callee is responsible for removing them
from the stack before returning. From the perspective of the called
function, this means that the stack pointer ESP points to the caller’s
return address, followed by the arguments in their original order. The
original order is retained because the stack grows downward, from high
linear addresses to lower ones. Therefore, the argument pushed last by
the caller (i.e., argument #1) appears as the first argument in the array
pointed to by ESP.

• Some API functions with fixed arguments, most notably the C Runtime
Library functions exported by ntdll.dll and ntoskrnl.exe,
traditionally employ the __cdecl calling convention, which involves
the same argument ordering as __stdcall, but forces the caller to clean
up the argument stack.

• Functions with a variable number of arguments are always of the __cdecl
type, because only the caller knows exactly how many arguments were
passed to the callee. Therefore, the responsibility of removing the
arguments from the stack is left to the caller.

• Functions declared with the __fastcall modifier expect the first two
arguments in the CPU registers ECX and EDX. If more arguments are
required, they are passed in on the stack in reverse order, and the callee
cleans up the stack, as in the __stdcall scheme.

• Many C compilers build a stack frame for the function arguments
immediately after entering the function, using the CPU’s base pointer
register EBP. This code, shown in Listing 5-2, is frequently referred to as
a function’s “prologue” and “epilogue.” Some compilers use the more
elegant i386 ENTER and LEAVE operations that integrate this EBP/ESP
shuffling into single instructions (cf. Intel 1999b). After the prologue has

SomeFunction:

278 MONITORING NATIVE API CALLS

LISTING 5-2. Stack frame, prologue, and epilogue

been executed, the stack appears as shown in Figure 5-3. The value of
the EBP register is the unique point of reference that splits the function’s
parameter stack into (1) the local storage area containing all local
variables defined within the scope of the function and (2) the caller’s
argument stack, including the EBP backup slot and the return address.
Note that the latest versions of Microsoft Visual C/C++ don’t use stack
frames by default. Instead, the code accesses the values on the stack
through register ESP, specifying the offset of the variable relative to the
current top of the stack. Code of this kind is extremely difficult to read,
because each PUSH and POP instruction affects the ESP value and,
consequently, all parameter offsets. Because EBP isn’t required in this
scenario, it is used as an additional general-purpose register.

• Be extremely careful when accessing C variables. One of the most frequent
inline ASM bugs is that you are loading the address of a variable to a
register instead of its value, and vice versa. In case of potential ambiguity,
use the ptr and offset address operators. For example, the instruction
mov eax, dword ptr SomeVariable loads the DWORD-type value of
SomeVariable to register EAX, whereas mov eax, offset SomeVariable

loads its linear address (i.e., a pointer to its value) to EAX.

THE HOOK DISPATCHER

The code that follows is extremely difficult. It took many hours to write, and pro-
duced an incredible number of Blue Screens in the process. My original approach
involved a separate module, written in native ASM language and assembled with
Microsoft’s MASM. However, this design created problems on the linker level,
so I changed to inline ASM inserted into the main C module. Instead of creating
another kernel-mode driver, I decided to integrate the hook code into the spy device

PATCHING THE SERVICE DESCRIPTOR TABLE 279

; this is the function’s prologue

push ebp ; save current value of ebp

mov ebp, esp ; set stack frame base address

sub esp, SizeOfLocalStorage ; create local storage area

...

; this is the function’s epilogue

mov esp, ebp ; destroy local storage area

pop ebp ; restore value of ebp

ret

280 MONITORING NATIVE API CALLS

0010:00000000

Stack Segment

ESP [EBP – X]

Local Storage Area
(X Bytes)

EBP

[EBP – 0x4]

[EBP]

[EBP + 0x4]

[EBP + 0x8]

[EBP + 0xC]

[EBP + (N+1)*4]

0010:FFFFFFFF

…

Caller's EBP Value

Caller's Return Address

Function Argument #1

Function Argument #2

…

Function Argument #N

FIGURE 5-3. Typical Layout of a Stack Frame

introduced in Chapter 4. Remember the SPY_IO_HOOK_* IOCTL functions listed at
the bottom of Table 4-2? Now is the time to take a closer look at them. The next
section of sample code is taken from the source files w2k_spy.c and w2k_spy.h,
found on the CD accompanying this book, in the \src\w2k_spy directory.

In Listing 5-3, the core parts of the Native API hook mechanism are shown.
The listing starts with a couple of constant and structure definitions referenced by the
code and is followed by the definition of the array aSpyHooks[]. Following this
array is a macro that evaluates to three important lines of inline assembly language
that will be investigated in a moment. The last part of Listing 5-3 is made up of the
function SpyHookInitializeEx(). On first sight, it is difficult to grasp what this
function is supposed to do. This function is a combination of two functions:

1. The “outer” part of SpyHookInitializeEx() consists of C code that
simply populates the aSpyHooks[] array with pointers to the spy device’s
hook functions and their associated protocol format strings. This function
is split in two sections. The first ends inside the first __asm clause at the
jmp SpyHook9 instruction. It is obvious that the second section must start
at an ASM label named SpyHook9, which can be found near the end of the
second __asm block.

2. The “inner” part of SpyHookInitializeEx() comprises everything
between the two C sections of the code. It starts with an extensive
repetition of SpyHook macro invocations and is followed by a large and
complex ASM code section. As you may have guessed, this code is the
common hook handler mentioned earlier.

PATCHING THE SERVICE DESCRIPTOR TABLE 281

#define SPY_CALLS 0x00000100 // max api call nesting level

#define SDT_SYMBOLS_NT4 0xD3

#define SDT_SYMBOLS_NT5 0xF8

#define SDT_SYMBOLS_MAX SDT_SYMBOLS_NT5

// ---

typedef struct _SPY_HOOK_ENTRY

{

NTPROC Handler;

PBYTE pbFormat;

}

SPY_HOOK_ENTRY, *PSPY_HOOK_ENTRY, **PPSPY_HOOK_ENTRY;

#define SPY_HOOK_ENTRY_ sizeof (SPY_HOOK_ENTRY)

// ---

typedef struct _SPY_CALL

{

BOOL fInUse; // set if used entry

HANDLE hThread; // id of calling thread

PSPY_HOOK_ENTRY pshe; // associated hook entry

PVOID pCaller; // caller’s return address

DWORD dParameters; // number of parameters

DWORD adParameters [1+256]; // result and parameters

}

SPY_CALL, *PSPY_CALL, **PPSPY_CALL;

#define SPY_CALL_ sizeof (SPY_CALL)

// ---

(continued)

282 MONITORING NATIVE API CALLS

SPY_HOOK_ENTRY aSpyHooks [SDT_SYMBOLS_MAX];

// --

// The SpyHook macro defines a hook entry point in inline assembly

// language. The common entry point SpyHook2 is entered by a call

// instruction, allowing the hook to be identified by its return

// address on the stack. The call is executed through a register to

// remove any degrees of freedom from the encoding of the call.

#define SpyHook \

__asm push eax \

__asm mov eax, offset SpyHook2 \

__asm call eax

// ---

// The SpyHookInitializeEx() function initializes the aSpyHooks[]

// array with the hook entry points and format strings. It also

// hosts the hook entry points and the hook dispatcher.

void SpyHookInitializeEx (PPBYTE ppbSymbols,

PPBYTE ppbFormats)

{

DWORD dHooks1, dHooks2, i, j, n;

__asm

{

jmp SpyHook9

ALIGN 8

SpyHook1: ; start of hook entry point section

}

// the number of entry points defined in this section

// must be equal to SDT_SYMBOLS_MAX (i.e. 0xF8)

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //08

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //10

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //18

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //20

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //28

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //30

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //38

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //40

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //48

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //50

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //58

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //60

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //68

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //70

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //78

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //80

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //88

PATCHING THE SERVICE DESCRIPTOR TABLE 283

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //90

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //98

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //A0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //A8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //B0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //B8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //C0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //C8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //D0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //D8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //E0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //E8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //F0

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //F8

__asm

{

SpyHook2: ; end of hook entry point section

pop eax ; get stub return address

pushfd

push ebx

push ecx

push edx

push ebp

push esi

push edi

sub eax, offset SpyHook1 ; compute entry point index

mov ecx, SDT_SYMBOLS_MAX

mul ecx

mov ecx, offset SpyHook2

sub ecx, offset SpyHook1

div ecx

dec eax

mov ecx, gfSpyHookPause ; test pause flag

add ecx, -1

sbb ecx, ecx

not ecx

lea edx, [aSpyHooks + eax * SIZE SPY_HOOK_ENTRY]

test ecx, [edx.pbFormat] ; format string == NULL?

jz SpyHook5

push eax

push edx

call PsGetCurrentThreadId ; get thread id

mov ebx, eax

pop edx

pop eax

cmp ebx, ghSpyHookThread ; ignore hook installer

jz SpyHook5

mov edi, gpDeviceContext

lea edi, [edi.SpyCalls] ; get call context array

mov esi, SPY_CALLS ; get number of entries

(continued)

284 MONITORING NATIVE API CALLS

SpyHook3:

mov ecx, 1 ; set in-use flag

xchg ecx, [edi.fInUse]

jecxz SpyHook4 ; unused entry found

add edi, SIZE SPY_CALL ; try next entry

dec esi

jnz SpyHook3

mov edi, gpDeviceContext

inc [edi.dMisses] ; count misses

jmp SpyHook5 ; array overflow

SpyHook4:

mov esi, gpDeviceContext

inc [esi.dLevel] ; set nesting level

mov [edi.hThread], ebx ; save thread id

mov [edi.pshe], edx ; save PSPY_HOOK_ENTRY

mov ecx, offset SpyHook6 ; set new return address

xchg ecx, [esp+20h]

mov [edi.pCaller], ecx ; save old return address

mov ecx, KeServiceDescriptorTable

mov ecx, [ecx].ntoskrnl.ArgumentTable

movzx ecx, byte ptr [ecx+eax] ; get argument stack size

shr ecx, 2

inc ecx ; add 1 for result slot

mov [edi.dParameters], ecx ; save number of parameters

lea edi, [edi.adParameters]

xor eax, eax ; initialize result slot

stosd

dec ecx

jz SpyHook5 ; no arguments

lea esi, [esp+24h] ; save argument stack

rep movsd

SpyHook5:

mov eax, [edx.Handler] ; get original handler

pop edi

pop esi

pop ebp

pop edx

pop ecx

pop ebx

popfd

xchg eax, [esp] ; restore eax and...

ret ; ...jump to handler

SpyHook6:

push eax

pushfd

push ebx

push ecx

push edx

push ebp

push esi

push edi

push eax

PATCHING THE SERVICE DESCRIPTOR TABLE 285

call PsGetCurrentThreadId ; get thread id

mov ebx, eax

pop eax

mov edi, gpDeviceContext

lea edi, [edi.SpyCalls] ; get call context array

mov esi, SPY_CALLS ; get number of entries

SpyHook7:

cmp ebx, [edi.hThread] ; find matching thread id

jz SpyHook8

add edi, SIZE SPY_CALL ; try next entry

dec esi

jnz SpyHook7

push ebx ; entry not found ?!?

call KeBugCheck

SpyHook8:

push edi ; save SPY_CALL pointer

mov [edi.adParameters], eax ; store NTSTATUS

push edi

call SpyHookProtocol

pop edi ; restore SPY_CALL pointer

mov eax, [edi.pCaller]

mov [edi.hThread], 0 ; clear thread id

mov esi, gpDeviceContext

dec [esi.dLevel] ; reset nesting level

dec [edi.fInUse] ; clear in-use flag

pop edi

pop esi

pop ebp

pop edx

pop ecx

pop ebx

popfd

xchg eax, [esp] ; restore eax and...

ret ; ...return to caller

SpyHook9:

mov dHooks1, offset SpyHook1

mov dHooks2, offset SpyHook2

}

n = (dHooks2 - dHooks1) / SDT_SYMBOLS_MAX;

for (i = j = 0; i < SDT_SYMBOLS_MAX; i++, dHooks1 += n)

{

if ((ppbSymbols != NULL) && (ppbFormats != NULL) &&

(ppbSymbols [j] != NULL))

{

aSpyHooks [i].Handler = (NTPROC) dHooks1;

aSpyHooks [i].pbFormat =

SpySearchFormat (ppbSymbols [j++], ppbFormats);

}

else

{

(continued)

286 MONITORING NATIVE API CALLS

aSpyHooks [i].Handler = NULL;

aSpyHooks [i].pbFormat = NULL;

}

}

return;

}

LISTING 5-3. Implementation of the Hook Dispatcher

So what is the SpyHook macro all about? Inside SpyHookInitializeEx(), this
macro is repeated exactly 248 (0xF8) times, which matches the number of Windows
2000 Native API functions. At the top of Listing 5-3, this number is assigned to the
constant SDT_SYMBOLS_MAX, which is the maximum of SDT_SYMBOLS_NT4 and
SDT_SYMBOLS_NT5. Yes, that’s right—I am going to support Windows NT 4.0 as
well! Back to the SpyHook macro: This sequence of invocations produces the ASM
code shown in Listing 5-4. Each SpyHook entry produces three lines of code:

1. First, the current contents of the EAX register are saved on the stack.

2. Next, the linear address of the label SpyHook2 is stored in EAX.

3. Finally, a CALL to the address in EAX is performed.

You might wonder what will happen when this CALL returns. Would the next
group of SpyHook code lines be invoked? No—this CALL is not supposed to return,
because the return address of this call is removed immediately from the stack after
reaching the destination label SpyHook2, as the POP EAX instruction at the end of List-
ing 5-4 proves. This apparently senseless code is a trick of the old ASM programming
days that has fallen into disuse in today’s world of high-level object-oriented applica-
tion development. This trick was applied by ASM gurus when they had to build an
array of homogenous entry points to be dispatched to individual functions. Using
almost identical code for all entry points guarantees equal spacing, so the index of
the entry point used by a client could easily be calculated from the return address of
the CALL instruction, the base address and total size of the array, and the number of
entries, using a simple rule of three.

SpyHook1:

push eax

mov eax, offset SpyHook2

call eax

push eax

mov eax, offset SpyHook2

call eax

; 244 boring repetitions omitted

push eax

PATCHING THE SERVICE DESCRIPTOR TABLE 287

mov eax, offset SpyHook2

call eax

push eax

mov eax, offset SpyHook2

call eax

SpyHook2:

pop eax

LISTING 5-4. Expansion of the SpyHook Macro Invocations

For example, the return address of the first CALL EAX instruction in Listing 5-4
is the address of the second entry point. Generally, the return address of the N-th
CALL EAX is equal to the address of entry N+1, except for the last one, which, of
course, would return to SpyHook2. Thus, the zero-based array index of all entry
points can be computed by the general formula in Figure 5-4. The underlying rule
of three is as follows: SDT_SYMBOLS_MAX entry points fit into the memory block
SpyHook2—SpyHook1. How many entry points fit into ReturnAddress—SpyHook1?
Because the result of this computation is a number between one and SDT_SYMBOLS_
MAX, it must be decremented by one to get the zero-based index.

The implementation of the formula in Figure 5-4 can be found in Listing 5-3,
right after the ASM label SpyHook2. It is also included in the lower left corner
of Figure 5-5, which presents the basic mechanics of the hook dispatch mechanism.
Note that the i386 MUL instruction yields a 64-bit result in registers EDX:EAX, while
the DIV instruction expects a 64-bit dividend in EDX:EAX, so there is no danger
of an integer overflow. In the upper left corner, the KiServiceTable is depicted,
which will be patched with the addresses of the entry points generated by the
SpyHook macro. The middle section shows again the expanded macro code from
Listing 5-4. The linear addresses of the entry points are shown on the right-hand
side. By pure coincidence, the size of each entry point is 8 bytes, so the address is
computed by multiplying the KiServiceTable index of each function by 8 and
adding it to the address of SpyHook1.

Actually, I was just kidding—it’s not pure coincidence that each entry is 8 bytes
long. In reality, I spent a considerable amount of time figuring out the ideal imple-
mentation of the hook entries. Although not strictly necessary, aligning code on 32-bit
boundaries is never a bad idea, because it speeds up performance. Of course, the per-
formance gain is marginal here. You may wonder why I perform an indirect CALL
to label SpyHook2 through register EAX—wouldn’t a simple middle-of-the-road
CALL SpyHook2 instruction have been much more efficient? Right! However, the
problem with the i386 call (and jump) instructions is that they can be implemented
in several ways that have the same effect but yield different instruction sizes. Just
consult Intel’s Instruction Set Reference of the Pentium CPU family (Intel 1999b).

288 MONITORING NATIVE API CALLS

Because the choice of variant used is up to the compiler/assembler, there would be no
guarantee that all entry points would end up in the same encoding. On the other
hand, a MOV EAX with a constant 32-bit operand is always encoded in the same way,
and so is the CALL EAX instruction.

Other points in Listing 5-3 should be clarified. Let’s start with the final C code
section starting after the label SpyHook9. The ASM code at this label has preset the C
variables dHook1 and dHook2 with the linear addresses of the labels SpyHook1 and
SpyHook2. Next, the variable n is set to the size of each hook entry point by dividing

(ReturnAddress – SpyHook1) * SDT_SYMBOLS_MAX

SpyHook2 – SpyHook1
Index = – 1

FIGURE 5-4. Identifying Hook Entry Points by their Return Addresses

0x00: NtAcceptConnectPort

0x86: NtQueryInformationProcess
0x87: NtQueryInformationThread

0xF7: NtYieldExecution

…

…

KiServiceTable SpyHookInitializeEx()

SpyHook1:
push
mov
call

eax
eax, offset SpyHook2
eax

…

push
mov
call

eax
eax, offset SpyHook2
eax

push
mov
call

eax
eax, offset SpyHook2
eax

…

push
mov
call

eax
eax, offset SpyHook2
eax

SpyHook2:
pop
…
call
…
xchg
ret

eax ; get return address

SpyHookProtocol

eax, [esp]

Address = SpyHook1 + (0x00 * 8)

Address = SpyHook1 + (0x86 * 8)

Address = SpyHook1 + (0x87 * 8)

Address = SpyHook1 + (0xF7 * 8)

Address = SpyHook1 + (0xF8 * 8)

Service Table Index Determination:

pop
sub
mov
mul
mov
sub
div
dec

eax ; get return address
eax, offset SpyHook1
ecx, SDT_SYMBOLS_MAX
ecx
ecx, offset SpyHook2
ecx, offset SpyHook1
ecx
eax

FIGURE 5-5. Functional Principle of the Hook Dispatcher

the size of the entry point array by the number of entries. Of course, this will yield
eight. The remaining part of Listing 5-3 is a loop that initializes all entries of the
global aSpyHooks[] array. This array consists of SPY_HOOK_ENTRY structures
defined in the top half of Listing 5-3, and each entry is associated with a Native
API function. To understand how their Handler and pbFormat members are set up,
it is necessary to know more about the arguments ppbSymbols and ppbFormats
passed to SpyHookInitializeEx(). Listing 5-5 shows the wrapper function
SpyHookInitialize() that calls SpyHookInitializeEx() with arguments appropri-
ate for the operating system (OS) version currently running. As noted earlier, the
code doesn’t test the OS version or the build number directly, but rather compares
the ServiceLimit member of the SDT entry assigned to ntoskrnl.exe with the con-
stants SDT_SYMBOLS_NT4 and SDT_SYMBOLS_NT5. If none of them matches, the spy
device will initialize all aSpyHooks[] entries with NULL pointers, effectively disabling
the entire Native API hook mechanism.

PATCHING THE SERVICE DESCRIPTOR TABLE 289

BOOL SpyHookInitialize (void)

{

BOOL fOk = TRUE;

switch (KeServiceDescriptorTable->ntoskrnl.ServiceLimit)

{

case SDT_SYMBOLS_NT4:

{

SpyHookInitializeEx (apbSdtSymbolsNT4, apbSdtFormats);

break;

}

case SDT_SYMBOLS_NT5:

{

SpyHookInitializeEx (apbSdtSymbolsNT5, apbSdtFormats);

break;

}

default:

{

SpyHookInitializeEx (NULL, NULL);

fOk = FALSE;

break;

}

}

return fOk;

}

LISTING 5-5. SpyHookInitialize() Chooses the Symbol Table Matching the OS Version

The global arrays apbSdtSymbolsNT4[] and apbSdtSymbolsNT5[] passed into
SpyHookInitializeEx() as first argument ppbSymbols are simply string tables that
contain all Windows NT 4.0 and Windows 2000 Native API function names, sorted
by their KiServiceTable index, and terminated by a NULL pointer. The string array
apbSdtFormats[] is shown in Listing 5-6. This format string list is one of the most
important parts of the hook mechanism because it determines which Native API calls
are logged and the appearance of each log entry. Obviously, the structure of these
strings is borrowed from the printf() function of the C Runtime Library but
specifically tailored to the most frequently used argument types of the Native API.
Table 5-2 is a complete list of format IDs recognized by the API logger.

290 MONITORING NATIVE API CALLS

PBYTE apbSdtFormats [] =

{

“%s=NtCancelIoFile(%!,%i)”,

“%s=NtClose(%-)”,

“%s=NtCreateFile(%+,%n,%o,%i,%l,%n,%n,%n,%n,%p,%n)”,

“%s=NtCreateKey(%+,%n,%o,%n,%u,%n,%d)”,

“%s=NtDeleteFile(%o)”,

“%s=NtDeleteKey(%-)”,

“%s=NtDeleteValueKey(%!,%u)”,

“%s=NtDeviceIoControlFile(%!,%p,%p,%p,%i,%n,%p,%n,%p,%n)”,

“%s=NtEnumerateKey(%!,%n,%n,%p,%n,%d)”,

“%s=NtEnumerateValueKey(%!,%n,%n,%p,%n,%d)”,

“%s=NtFlushBuffersFile(%!,%i)”,

“%s=NtFlushKey(%!)”,

“%s=NtFsControlFile(%!,%p,%p,%p,%i,%n,%p,%n,%p,%n)”,

“%s=NtLoadKey(%o,%o)”,

“%s=NtLoadKey2(%o,%o,%n)”,

“%s=NtNotifyChangeKey(%!,%p,%p,%p,%i,%n,%b,%p,%n,%b)”,

“%s=NtNotifyChangeMultipleKeys(%!,%n,%o,%p,%p,%p,%i,%n,%b,%p,%n,%b)”,

“%s=NtOpenFile(%+,%n,%o,%i,%n,%n)”,

“%s=NtOpenKey(%+,%n,%o)”,

“%s=NtOpenProcess(%+,%n,%o,%c)”,

“%s=NtOpenThread(%+,%n,%o,%c)”,

“%s=NtQueryDirectoryFile(%!,%p,%p,%p,%i,%p,%n,%n,%b,%u,%b)”,

“%s=NtQueryInformationFile(%!,%i,%p,%n,%n)”,

“%s=NtQueryInformationProcess(%!,%n,%p,%n,%d)”,

“%s=NtQueryInformationThread(%!,%n,%p,%n,%d)”,

“%s=NtQueryKey(%!,%n,%p,%n,%d)”,

“%s=NtQueryMultipleValueKey(%!,%p,%n,%p,%d,%d)”,

“%s=NtQueryOpenSubKeys(%o,%d)”,

“%s=NtQuerySystemInformation(%n,%p,%n,%d)”,

“%s=NtQuerySystemTime(%l)”,

“%s=NtQueryValueKey(%!,%u,%n,%p,%n,%d)”,

“%s=NtQueryVolumeInformationFile(%!,%i,%p,%n,%n)”,

“%s=NtReadFile(%!,%p,%p,%p,%i,%p,%n,%l,%d)”,

“%s=NtReplaceKey(%o,%!,%o)”,

“%s=NtSetInformationKey(%!,%n,%p,%n)”,

“%s=NtSetInformationFile(%!,%i,%p,%n,%n)”,

“%s=NtSetInformationProcess(%!,%n,%p,%n)”,

“%s=NtSetInformationThread(%!,%n,%p,%n)”,

“%s=NtSetSystemInformation(%n,%p,%n)”,

“%s=NtSetSystemTime(%l,%l)”,

“%s=NtSetValueKey(%!,%u,%n,%n,%p,%n)”,

“%s=NtSetVolumeInformationFile(%!,%i,%p,%n,%n)”,

“%s=NtUnloadKey(%o)”,

“%s=NtWriteFile(%!,%p,%p,%p,%i,%p,%n,%l,%d)”,

NULL

};

PATCHING THE SERVICE DESCRIPTOR TABLE 291

LISTING 5-6. Format Strings Used by the Native API Logger

It’s important to note that each format string must contain the function
correctly spelled. SpyHookInitializeEx() walks though the list of Native API
symbols it receives via its ppbSymbols argument and attempts to find a format
string in the ppbFormats list that contains a matching function name. The compari-
son is performed by the helper function SpySearchFormat(), invoked in the if
clause at the end of Listing 5-3. Because many string search operations must be
performed for all aSpyHooks[] entries to be set up, I am using a highly optimized
search engine based on the ingenious “Shift/And Search Algorithm.” If you want to
learn more about its implementation, please check out the SpySearch*() function
group in the source file \src\w2k_spy\w2k_spy.c on the companion CD. As soon as
SpyHookInitializeEx() exits the loop, all Handler members in the aSpyHooks[]
array point to the appropriate hook entry points, and the pbFormat members provide
the matching format string, if any. With Windows NT 4.0, both members of the
entries in the index range 0xD3 to 0xF8 are set to NULL, because they are undefined
for this version.

TABLE 5-2. Recognized Format Control IDs

ID NAME DESCRIPTION

%+ Handle (register) Logs a handle and object name and adds them to the handle
table

%! Handle (retrieve) Logs a handle and retrieves its object name from the
handle table

%- Handle (unregister) Logs a handle and object name and removes them from the
handle table

%a ANSI string Logs a string of 8-bit ANSI characters

%b BOOLEAN Logs an 8-bit BOOLEAN value

%c CLIENT_ID * Logs the members of a CLIENT_ID structure

(continued)

TABLE 5-2. (continued)

ID NAME DESCRIPTION

%d DWORD * Logs the value of the addressed DWORD

%i IO_STATUS_BLOCK * Logs the members of an IO_STATUS_BLOCK structure

%l LARGE_INTEGER * Logs the value of a LARGE_INTEGER structure

%n Number (DWORD) Logs the value of an unsigned 32-bit number

%o OBJECT_ATTRIBUTES * Logs the ObjectName of an object

%p Pointer Logs the target address of a pointer

%s Status (NTSTATUS) Logs a NT status code

%u UNICODE_STRING * Logs the Buffer member of an UNICODE_STRING
structure

%w Wide character string Logs a string of 16-bit Unicode characters

%% Percent escape Logs a single ‘%’ character

The most notable property of this hook mechanism design is that it is com-
pletely data driven. The hook dispatcher can be adapted to a new Windows 2000
release by simply adding a new API symbol table. Moreover, the logging of addi-
tional API functions can be enabled at any time by adding new format strings to the
apbSdtFormats[] array. There is no need to write any additional code—the actions
of the API spy are completely determined by a set of character strings! However, care
must be taken while defining format strings. Never forget that w2k_spy.sys runs as a
kernel-mode driver. On this system level, errors are not handled very gracefully.
Giving an invalid argument to a Win32 API is not a problem—you will get an error
window, and the application will be terminated. In kernel-mode, the tiniest access
violation will cause a Blue Screen. So be careful—an improper or missing format
control ID at the right place can easily tear down your system. Even a simple charac-
ter string sometimes can be deadly!

The only thing left to discuss is the large ASM block inside SpyHook
InitializeEx(), enclosed by the ASM labels SpyHook2 and SpyHook9. One inter-
esting property of this code is that it is never executed when SpyHookInitializeEx()
is called. On entry, the function code simply jumps across this entire section and
resumes execution at the label SpyHook9, shortly before the C section containing
the aSpyHooks[] array initialization starts. This code can only be entered via the
Handler members of this array. Later, I will show how these entry points are linked
to the SDT.

One of my foremost aims in designing this code was to make it absolutely non-
intrusive. Intercepting operating system calls is dangerous because you never know
whether the called code relies on some unknown properties of the calling context.
Theoretically, it should suffice to obey the __stdcall convention, but it is possible

292 MONITORING NATIVE API CALLS

that problems may occur. I have chosen to put the original Native API function han-
dler into almost exactly the same environment it would find if no hooks were pre-
sent. This means that the function should run on the original argument stack and see
all CPU registers as they are passed in by the caller. Of course, a minimal degree of
intrusion must be accepted—otherwise, no monitoring would be possible. Here, the
most significant intervention is the manipulation of the return address on the stack.
If you flip back to Figure 5-3, you see that the caller’s return address is on top of
the argument stack on entry of the function. The hook dispatcher inside Spy
HookInitializeEx() grabs this address and puts its own SpyHook6 label address
there. Thus, the original Native API function handler will branch to this location
after terminating, enabling the hook dispatcher to inspect its arguments and
returned values.

Before calling the original handler, the dispatcher sets up a SPY_CALL control
block (see top section of Listing 5-3) containing parameters it needs later. Some of
them are required for proper API call logging, whereas others provide information
about the caller so the dispatcher can return control to it after writing the log entry,
just as if nothing had happened. The spy device maintains an array of SPY_CALL
structures in its global DEVICE_CONTEXT block, accessible via the global variable
gpDeviceContext in w2k_spy.c. The hook dispatcher searches for a free SPY_CALL
slot by examining their fInUse members. It uses the CPU’s XCHG instruction to load
and set this member in a single operation. This is very important because this code
runs in a multithreaded environment, where read/write accesses to global data must
be protected against race conditions. If a free slot is available, the dispatcher stores
the caller’s thread ID obtained from PsGetCurrentThreadId(), the address of the
SPY_HOOK_ ENTRY associated with the current API function, the return address of the
caller, and the entire argument stack. The number of argument bytes to be copied is
taken from the KiArgumentTable array stored in the system’s SDT. If all SPY_CALL
entries are in use, the original API function handler is invoked without logging it.

The necessity of a SPY_CALL array comes again from the multithreading nature
of Windows 2000. It happens quite frequently that a Native API function is sus-
pended, and another thread gains control, invoking another Native API function dur-
ing its time slice. This means that the spy device’s hook dispatcher can be reentered at
any time and at any execution point. If the hook dispatcher would have a single
global SPY_CALL storage area, it would be overwritten by the running thread before
the waiting thread has finished using it. This situation is an ideal candidate for a
Blue Screen. To gain a better sense of the nesting level typically occurring within the
Native API, I have added the dLevel and dMisses members to the spy’s DEVICE_
CONTEXT structure. Whenever the hook dispatcher is reentered (i.e., whenever a new
SPY_CALL slot is occupied) dLevel is increased by one. If the maximum nesting level
is exceeded (i.e., if no more SPY_CALL structures are available), dMisses is increased,
indicating that a log entry is missing. My observations have shown that in practical

PATCHING THE SERVICE DESCRIPTOR TABLE 293

situations, nesting levels of up to four are easily observable. It is possible that the
Native API is reentered even more frequently in heavy-load situations, so I set the
upper limit generously to 256.

Before invoking the original API handler, the hook dispatcher restores all CPU
registers including the EFLAGS, and branches to the function’s entry point. This is
done immediately before the SpyHook6 label in Listing 5-3. At this time, SpyHook6 is
on top of the stack, followed by the caller’s arguments. As soon as the API handler
exits, control is passed back to the hook dispatcher at the SpyHook6 label. The code
executed from there on is also designed to be as nonintrusive as possible. This time,
the main objective is to allow the caller to see the call context almost exactly as it was
set up by the original API function handler. The main problem of the dispatcher is
now to find the SPY_CALL entry where it has stored the information about the current
API call. The only reliable cue it has is the caller’s thread ID, which has been saved to
the hThread member of the SPY_CALL structure. Therefore, the dispatcher loops
through the entire SPY_CALL array trying to find a matching thread ID. Note that the
code is not concerned about the value of the fInUse flag; this is not necessary
because all unused entries have hThread set to zero, which is the thread ID of the
system idle thread. The loop should always terminate before the end of the array is
reached. Otherwise, the dispatcher cannot return control to the caller, which is fatal.
In this case, the code has few options, so it runs into a KeBugCheck() that results in a
controlled system shutdown. This situation should never occur, but if it does, some-
thing terrible must have happened to the system, so the shutdown is probably the
best solution.

If the matching SPY_CALL slot can be found, the hook dispatcher has almost
finished its job. The last major action is the invocation of the logging function
SpyHookProtocol(), passing in a pointer to the SPY_CALL structure. Everything
the logger needs is stored there. After SpyHookProtocol() returns, the dispatcher
frees its SPY_CALL slot, restores all CPU registers, and returns to the caller.

THE API HOOK PROTOCOL

A good API spy should look at the arguments after the original function has been
called, because the function might return additional data in buffers passed in by ref-
erence. Therefore, the main logging function SpyHookProtocol() is called at the end
of the hook handler, just before the API function returns to the caller. Before discussing
secrets of its implementation, examine the following two sample protocols for a
foretaste of what’s to come. Figure 5-6 is a snapshot of the logged file operations
performed in the context of the console command dir c:\.

294 MONITORING NATIVE API CALLS

Please compare the log entries listed in Figure 5-6 with the protocol format
strings contained in Listing 5-6. In Example 5-1, the format strings of NtOpenFile()
and NtClose() are contrasted to the first and fourth protocol lines in Figure 5-6,
respectively. The similarities are striking; for each format control ID preceded by a per-
cent character (cf. Table 5-2), an associated parameter value entry is generated in the
protocol. However, the protocol obviously contains some additional information that is
not part of the format strings. I’ll reveal the reason for this discrepancy in a moment.

The general format of a protocol entry is shown in Example 5-2. Each entry
consists of a fixed number of fields with intermittent separators. The separators
allow the entries to be easily parsed by a program. The fields are constructed on the
basis of the following set of simple rules:

• All numeric quantities are stated in hexadecimal notation without leading
zeros and without the usual leading “0x.”

• Function arguments are separated by commas.

• String arguments are enclosed in double quotes.

• If a pointer argument is NULL, its value is omitted.

• The values of structure members are separated by dots.

PATCHING THE SERVICE DESCRIPTOR TABLE 295

18:s0=NtOpenFile(+46C.18,n100001,o"\??\C:\",i0.1,n3,n4021)1BFEE5AE05B6710,278,2
19:s0=NtQueryInformationFile(!46C.18="\??\C:\",i0.6,p12E21C,n210,n9)1BFEE5AE05B6710,278,2
1A:s0=NtQueryVolumeInformationFile(!46C.18="\??\C:\",i0.12,p1321C8,n21C,n5)1BFEE5AE05B6710,278,2
1B:s0=NtClose(-46C.18="\??\C:\")1BFEE5AE05B6710,278,1
1C:s0=NtOpenFile(+46C.18,n100001,o"\??\C:\",i0.1,n3,n4021)1BFEE5AE05B6710,278,2
1D:s0=NtQueryInformationFile(!46C.18="\??\C:\",i0.6,p12E664,n210,n9)1BFEE5AE05B6710,278,2
1E:s0=NtQueryVolumeInformationFile(!46C.18="\??\C:\",i0.26,p1321C8,n220,n1)1BFEE5AE05B6710,278,2
1F:s0=NtClose(-46C.18="\??\C:\")1BFEE5AE05B6710,278,1
20:s0=NtOpenFile(+46C.18,n100001,o"\??\c:\",i0.1,n3,n4021)1BFEE5AE05FFCA0,278,2
21:s0=NtQueryDirectoryFile(!46C.18="\??\c:\",p,p,p,i0.68,p12E994,n268,n3,bTRUE,u"*",bFALSE)1BFEE5AE05FFCA0,278,2
22:s0=NtQueryDirectoryFile(!46C.18="\??\c:\",p,p,p,i0.9FE,p139128,n1000,n3,bFALSE,u,bFALSE)1BFEE5AE05FFCA0,278,2
23:s80000006=NtQueryDirectoryFile(!46C.18="\??\c:\",p,p,p,i80000006.0,p139128,n1000,n3,bFALSE,u,bFALSE)1BFEE5AE0661960,278,2
24:s0=NtClose(-46C.18="\??\c:\")1BFEE5AE0661960,278,1
25:s0=NtOpenFile(+46C.18,n100001,o"\??\c:\",i0.1,n3,n800021)1BFEE5AE0661960,278,2
26:s0=NtQueryVolumeInformationFile(!46C.18="\??\c:\",i0.20,p12ED10,n20,n7)1BFEE5AE0661960,278,2
27:s0=NtClose(-46C.18="\??\c:\")1BFEE5AE0661960,278,1

FIGURE 5-6. Sample Protocol of the Command dir c:\

EXAMPLE 5-2. General Protocol Entry Format

• Object names associated with a handle are appended to the handle’s value
with a separating “=” character.

• The date/time stamp is specified in 1/10 microsecond since 01-01-1601—
the basic system time format of Windows 2000.

• The thread ID indicates the unique numeric identifier of the thread that
called the API function.

• The handle count states the number of handles currently registered in the
spy device’s handle list. This list allows the protocol function to look up
the object names associated with handles.

Figure 5-7 is another API spy protocol resulting from the command
type c:\boot.ini issued in a console window. The following is the semantic interpreta-
tion of some selected log entries:

• In line 0x31, NtCreateFile() is called to open the file \??\c:\boot.ini.
(o”\??\c:\boot.ini”) The function returned an NTSTATUS code of zero
(s0), that is, STATUS_SUCCESS, and allocated a new file handle with value
0x18, owned by process 0x46C (+46C.18). Consequently, the handle
count rises from one to two.

• In line 0x36, the type command reads in the first 512 bytes (n200) from
file \??\c:\boot.ini to a buffer at the linear address 0x0012F5B4
(p12F5B4), passing the handle obtained from NtCreateFile()
(!46C.18=”\??\c:\boot.ini”) to NtReadFile(). The system
successfully returns 512 bytes (i0.200).

296 MONITORING NATIVE API CALLS

“%s=NtOpenFile(%+,%n,%o,%i,%n,%n)”

18:s0=NtOpenFile(+46C.18,n100001,o”\??\C:\”,i0.1,n3,n4021)1BFEE5AE05B6710,278,2

“%s=NtClose(%-)”

1B:s0=NtClose(-46C.18=”\??\C:\”)1BFEE5AE05B6710,278,1

EXAMPLE 5-1. Comparing Format Strings to Protocol Entries

<#>:<status>=<function>(<arguments>)<time>,<thread>,<handles>

FIGURE 5-7. Sample Protocol of the Command type c:\boot.ini

• In line 0x39, another file block of 512 bytes is ordered (n200). This time,
however, the end of the file is reached, so NtReadFile() returns 75 bytes
only (i0.4B). Obviously, the size of my boot.ini file is 512 + 75 = 587
bytes, which is correct.

• In line 0x3C, the file handle to \??\c:\boot.ini is successfully released
by NtClose() (-46C.18=”\??\c:\boot.ini”), so the handle count drops
from two to one.

By now, you should have an idea of how the API spy protocol is structured,
which will help you grasp the details of the protocol generation mechanism, to
be discussed next. As already noted, the main API call logging function is called
SpyHookProtocol(). This function, shown in Listing 5-7, uses the data in the
SPY_CALL structure it receives from the hook dispatcher to write a protocol record
for each API function call to a circular buffer. A spy device client can read this proto-
col via IOCTL calls. Each record is a text line terminated by a single line-feed charac-
ter (‘\n’ in C notation). Access to the protocol buffer is serialized by means of the
kernel mutex KMUTEX kmProtocol, located in the global DEVICE_CONTEXT structure
of the spy device. The functions SpyHookWait() and SpyHookRelease() in Listing
5-7 acquire and release this mutex object. All accesses to the protocol buffer must be
preceded by SpyHookWait() and followed SpyHookRelease(), as demonstrated by
the SpyHookProtocol() function.

PATCHING THE SERVICE DESCRIPTOR TABLE 297

2D:s0=NtOpenFile(+46C.18,n100001,o"\??\c:\",i0.1,n3,n4021)1BFEE5B075EE890,278,2
2E:s0=NtQueryDirectoryFile(!46C.18="\??\c:\",p,p,p,i0.6E,p12F4DC,n268,n3,bTRUE,u"boot.ini",bFALSE)1BFEE5B075EE890,278,2
2F:s80000006=NtQueryDirectoryFile(!46C.18="\??\c:\",p,p,p,i80000006.0,p1389F0,n1000,n3,bFALSE,u,bFALSE)1BFEE5B07606FC0,278,2
30:s0=NtClose(-46C.18="\??\c:\")1BFEE5B07606FC0,278,1
31:s0=NtCreaterFile(+46C.18,n80100080,o"\??\c:\boot.ini",i0.1,I,n80,n3,n1n60,p,n0)1BFEE5B07606FC0,278,2
32:s0=NtQueryVolumeInformationFile(!46C.18="\??\c:\boot.ini",i0.8,p12E728,n8,n4)1BFEE5B07606FC0,278,2
33:s0=NtQueryVolumeInformationFile(!46C.18="\??\c:\boot.ini",i0.8,p12E778,n8,n4)1BFEE5B07606FC0,278,2
34:s0=NtQueryInformationFile(!46C.18="\??\c:\boot.ini",i0.18,p12E758,n18,n5)1BFEE5B07606FC0,278,2
35:s0=NtSetInformationFile(!46C.18="\??\c:\boot.ini",i0.0,p12E780,n8,nE)1BFEE5B07606FC0,278,2
36:s0=NtReadFile(!46C.18="\??\c:\boot.ini",p,p,p,i0.200,p12F5B4,n200,I,d)1BFEE5B07606FC0,278,2
37:s0=NtQueryInformationFile(!46C.18="\??\c:\boot.ini",i0.8,p12E780,n8,nE)1BREE5B07650550,278,2
38:s0=NtSetInformationFile(!46C.18="\??\c:\boot.ini",i0.0,p12E780,n8,nE)1BFEE5B07650550,278,2
39:s0=NtReadFile(!46C.18="\??\c:\boot.ini",p,p,p,i0.4B,p12F5B4,n200,I,d)1BFEE5B07650550,278,2
3A:s0=NtQueryInformationFile(!46C.18="\??\c:\boot.ini",i0.8,p12E780,n8,nE)1BFEE5B07650550,278,2
3B:s0=NtSetInformationFile(!46C.18="\??\c:\boot.ini",i0.0,p12E780,n8,nE)1BFEE5B07650550,278,2
3C:s0=NtClose(-46C.18="\??\c:\boot.ini")1BFEE5B07650550,278,1

NTSTATUS SpyHookWait (void)

{

return MUTEX_WAIT (gpDeviceContext->kmProtocol);

}

// ---

LONG SpyHookRelease (void)

{

return MUTEX_RELEASE (gpDeviceContext->kmProtocol);

}

// ---

// <#>:<status>=<function>(<arguments>)<time>,<thread>,<handles>

void SpyHookProtocol (PSPY_CALL psc)

{

LARGE_INTEGER liTime;

PSPY_PROTOCOL psp = &gpDeviceContext->SpyProtocol;

KeQuerySystemTime (&liTime);

SpyHookWait ();

if (SpyWriteFilter (psp, psc->pshe->pbFormat,

psc->adParameters,

psc->dParameters))

{

SpyWriteNumber (psp, 0, ++(psp->sh.dCalls)); // <#>:

SpyWriteChar (psp, 0, ‘:’);

// <status>=

SpyWriteFormat (psp, psc->pshe->pbFormat, // <function>

psc->adParameters); // (<arguments>)

SpyWriteLarge (psp, 0, &liTime); // <time>,

SpyWriteChar (psp, 0, ‘,’);

SpyWriteNumber (psp, 0, (DWORD) psc->hThread); // <thread>,

SpyWriteChar (psp, 0, ‘,’);

SpyWriteNumber (psp, 0, psp->sh.dHandles); // <handles>

SpyWriteChar (psp, 0, ‘\n’);

}

SpyHookRelease ();

return;

}

298 MONITORING NATIVE API CALLS

LISTING 5-7. The main hook protocol function SpyHookProtocol()

PATCHING THE SERVICE DESCRIPTOR TABLE 299

If you compare the main body of SpyHookProtocol() in Listing 5-7 with the
general protocol entry layout in Example 5-2, it is obvious which statement generates
which entry field. It also becomes clear why the protocol strings in Listing 5-6 don’t
account for the entire entry data—some function-independent data are added by
SpyHookProtocol() without the help of the format string. It’s the SpyWriteFormat()
call at the heart of SpyHookProtocol() that generates the <status>=<function>
(<arguments>) part, based on the format string associated with the currently logged
API function. Consult the source files w2k_spy.c and w2k_spy.h in directory
\src\w2k_spy of the accompanying sample CD for more information about the
implementation of the various SpyWrite*() functions inside the spy device driver.

Note that this code is somewhat critical. This code was written in 1997 for Win-
dows NT 4.0, and it worked like a charm then. After porting the program to Windows
2000, occasional Blue Screens occurred when the hooks remained installed for a longer
time interval. Worse yet, some special operations reliably produced an instant Blue
Screen, for example, navigating to “My Computer” in the File \ Open dialog of my
favorite text editor. Analyzing numerous crash dumps, I found that the crashes were
the result of invalid non-NULL pointers passed to some API functions. As soon as
the spy device attempted to follow one of these pointers in order to log the data it
referenced, the system crashed. Typical candidates were pointers to IO_STATUS_BLOCK
structures, and invalid string pointers inside UNICODE_STRING and OBJECT_ATTRIBUTES
structures. I also found some UNICODE_STRINGs with Buffer members that were not
zero-terminated. Therefore, I emphasize again that you should not assume that all
UNICODE_STRINGs are zero-terminated. In case of doubt, the Length member always
tells the number of valid bytes you can expect at the Buffer address.

To remedy this problem, I have added pointer validation to all logging functions
that have to follow client pointers. To this end, I use the SpyMemoryTestAddress()
function discussed in Chapter 4 that checks out whether a linear address points to a
valid page-table entry (PTE). See Listings 4-22 and 4-24 for details. Another alterna-
tive possibility would have been the addition of Structured Exception Handling
(SEH) clauses (__try / __except).

HANDLING HANDLES

It is important to note that SpyHookProtocol() logs an API function call only if the
SpyWriteFilter() function in its if clause condition returns TRUE. This is a trick
that helps to suppress garbage in the hook protocol. For example, moving the mouse
across the screen triggers a distracting series of NtReadFile() calls. Another source of
garbage has an interesting equivalent in physics: If you are measuring a physical effect
in an experimental situation, the act of measurement itself interferes with the mea-
sured effect and leads to distortion of the results. This also can happen in API logging.
Note that the NtDeviceIoControlFile() function is also included in the format string

array in Listing 5-6. However, a client of the spy device uses device I/O control calls to
read the API hook protocol. This means that the client will find its own NtDeviceIo-
ControlFile() calls in the protocol data. Depending on the frequency of the IOCTL
transactions, the desired data might easily get lost in self-made noise. The spy device
works around this problem by remembering the ID of the thread that installed the API
hooks to be able to ignore all API calls originating from this thread.

SpyWriteFilter() eliminates garbage by ignoring all API calls involving han-
dles if the call that generated the handle has not been logged. If the spy device
observes that a handle is closed or otherwise returned to the system, any subsequent
functions using this handle value are discarded as well. Effectively, this trick sup-
presses all API calls that involve long-term handles created by the system or other
processes before the start of the API hook protocol. Of course, filtering can be
enabled or disabled on behalf of the client by means of IOCTL. You can easily test
the usefulness of the filter mechanism with the sample client application introduced
later in this chapter. You will be surprised how great this simple “noise filter” works!

In Listing 5-6, the functions that generate handles are NtCreateFile(),
NtCreateKey(), NtOpenFile(), NtOpenKey(), NtOpenProcess(), and
NtOpenThread(). All of these functions contain a %+ control token in their format
strings, which is identified as “Handle (register)” in Table 5-2. Functions that close
or invalidate handles are NtClose() and NtDeleteKey(). Both include a %- token in
their format strings, labeled “Handle (unregister)” in Table 5-2. Other functions that
simply use a handle without creating or releasing it feature a %! format control ID.
Basically, a handle is a number that uniquely identifies an object in the context of a
process. Physically, it provides an index into a handle table that contains the proper-
ties of the associated object. When a new handle is issued by an API function, the
client usually has to pass in an OBJECT_ATTRIBUTES structure that contains, among
other things, the name of the object it wishes to access. Later, this name is no longer
required because the system can look up all object properties it needs using the object
handle and the handle table. This is unfortunate for the user of an API spy because it
necessitates wading through countless protocol entries containing meaningless num-
bers instead of symbolic names. Therefore, my spy device registers all object names
together with the respective handle values and the IDs of the owning processes,
updating this list whenever a new handle appears. When one of the registered han-
dle/process pairs reappears later, the API logger retrieves the original symbolic name
from the list and adds it to the protocol.

A handle remains registered until it is explicitly closed by an API function or
reappears in an API call that generates a new handle. With Windows 2000, I fre-
quently observed that the same handle value is returned several times by the system,
although the protocol doesn’t contain any call that has closed this handle before. I
don’t remember having seen this with Windows NT 4.0. A registered handle that
reappears with different object attributes has obviously been closed somehow, so it

300 MONITORING NATIVE API CALLS

must be unregistered. Otherwise, the handle directory of the spy device eventually
would run into an overflow situation.

The SpyWriteFilter() function called by SpyHookProtocol() in Listing 5-7 is
an essential part of this handle tracking mechanism. Every call to any of the hooked
API functions has to pass through it. The implementation is shown in Listing 5-8.

PATCHING THE SERVICE DESCRIPTOR TABLE 301

BOOL SpyWriteFilter (PSPY_PROTOCOL psp,

PBYTE pbFormat,

PVOID pParameters,

DWORD dParameters)

{

PHANDLE phObject = NULL;

HANDLE hObject = NULL;

POBJECT_ATTRIBUTES poa = NULL;

PDWORD pdNext;

DWORD i, j;

pdNext = pParameters;

i = j = 0;

while (pbFormat [i])

{

while (pbFormat [i] && (pbFormat [i] != ‘%’)) i++;

if (pbFormat [i] && pbFormat [++i])

{

j++;

switch (pbFormat [i++])

{

case ‘b’:

case ‘a’:

case ‘w’:

case ‘u’:

case ‘n’:

case ‘l’:

case ‘s’:

case ‘i’:

case ‘c’:

case ‘d’:

case ‘p’:

{

break;

}

case ‘o’:

{

if (poa == NULL)

{

poa = (POBJECT_ATTRIBUTES) *pdNext;

(continued)

302 MONITORING NATIVE API CALLS

}

break;

}

case ‘+’:

{

if (phObject == NULL)

{

phObject = (PHANDLE) *pdNext;

}

break;

}

case ‘!’:

case ‘-’:

{

if (hObject == NULL)

{

hObject = (HANDLE) *pdNext;

}

break;

}

default:

{

j—;

break;

}

}

pdNext++;

}

}

return // number of arguments ok

(j == dParameters)

&&

// no handles involved

(((phObject == NULL) && (hObject == NULL))

||

// new handle, successfully registered

((phObject != NULL) &&

SpyHandleRegister (psp, PsGetCurrentProcessId (),

*phObject, OBJECT_NAME (poa)))

||

// registered handle

SpyHandleSlot (psp, PsGetCurrentProcessId (), hObject)

||

// filter disabled

(!gfSpyHookFilter));

}

LISTING 5-8. SpyWriteFilter() Excludes Undesired API Calls from the Protocol

PATCHING THE SERVICE DESCRIPTOR TABLE 303

Basically, SpyWriteFilter() scans a protocol format string for occurrences of
%o (object attributes), %+ (new handle), %! (open handle), and %- (closed handle) and
takes special actions for certain combinations, as follows:

• If no handles are involved, the API call is always logged. This concerns all
API functions with format strings that don’t contain the format control
IDs %+, %!, and %-.

• If %+ is included in the format string, indicating that this function
allocates a new handle, this handle is registered and associated with
the name of the first %o item in the format string using the helper
function SpyHandleRegister(). If no such item exists, the handle is
registered with an empty string. If the registration succeeds, the call
is logged.

• If %! or %- occur in the format string, the called function uses or closes an
open handle. In this case, SpyWriteFilter() tests whether this handle is
registered by querying its slot number via SpyHandleSlot(). If this
function succeeds, the API call is logged.

• In all other cases, the call is logged only if the filter mechanism is disabled,
as indicated by the global Boolean variable gfSpyHookFilter.

The handle directory is part of the SPY_PROTOCOL structure, included in the
global DEVICE_CONTEXT structure of the spy device w2k_spy.sys and defined in
Listing 5-9, along with its SPY_HEADER substructure. Following the structure defini-
tions is the source code of the four handle management functions SpyHandleSlot(),
SpyHandleName(), SpyHandleUnregister(), and SpyHandleRegister(). A han-
dle is registered by appending its value to the current end of the ahObjects[] array.
At the same time, the ID of the owning process is added to the ahProcesses[]
array, the object name is copied to the awNames[] buffer, and the start offset of the
name is stored in the adNames[] array. When a handle is unregistered, these actions
are undone, shifting left all subsequent array members to ensure that none of the
arrays contains “holes.” The constant definitions at the top of Listing 5-9 define the
dimensions of the handle directory: It can take up to 4,096 handles, the name data
limit is set to 1,048,576 Unicode characters (2 MB), and the protocol buffer size
amounts to 1 MB.

304 MONITORING NATIVE API CALLS

#define SPY_HANDLES 0x00001000 // max number of handles

#define SPY_NAME_BUFFER 0x00100000 // object name buffer size

#define SPY_DATA_BUFFER 0x00100000 // protocol data buffer size

// ---

typedef struct _SPY_HEADER

{

LARGE_INTEGER liStart; // start time

DWORD dRead; // read data index

DWORD dWrite; // write data index

DWORD dCalls; // api usage count

DWORD dHandles; // handle count

DWORD dName; // object name index

}

SPY_HEADER, *PSPY_HEADER, **PPSPY_HEADER;

#define SPY_HEADER_ sizeof (SPY_HEADER)

// ---

typedef struct _SPY_PROTOCOL

{

SPY_HEADER sh; // protocol header

HANDLE ahProcesses [SPY_HANDLES]; // process id array

HANDLE ahObjects [SPY_HANDLES]; // handle array

DWORD adNames [SPY_HANDLES]; // name offsets

WORD awNames [SPY_NAME_BUFFER]; // name strings

BYTE abData [SPY_DATA_BUFFER]; // protocol data

}

SPY_PROTOCOL, *PSPY_PROTOCOL, **PPSPY_PROTOCOL;

#define SPY_PROTOCOL_ sizeof (SPY_PROTOCOL)

// ---

DWORD SpyHandleSlot (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject)

{

DWORD dSlot = 0;

if (hObject != NULL)

{

while ((dSlot < psp->sh.dHandles)

&&

((psp->ahProcesses [dSlot] != hProcess) ||

(psp->ahObjects [dSlot] != hObject))) dSlot++;

PATCHING THE SERVICE DESCRIPTOR TABLE 305

dSlot = (dSlot < psp->sh.dHandles ? dSlot+1 : 0);

}

return dSlot;

}

// ---

DWORD SpyHandleName (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject,

PWORD pwName,

DWORD dName)

{

WORD w;

DWORD i;

DWORD dSlot = SpyHandleSlot (psp, hProcess, hObject);

if ((pwName != NULL) && dName)

{

i = 0;

if (dSlot)

{

while ((i+1 < dName) &&

(w = psp->awNames [psp->adNames [dSlot-1] + i]))

{

pwName [i++] = w;

}

}

pwName [i] = 0;

}

return dSlot;

}

// ---

DWORD SpyHandleUnregister (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject,

PWORD pwName,

DWORD dName)

{

DWORD i, j;

DWORD dSlot = SpyHandleName (psp, hProcess, hObject,

pwName, dName);

if (dSlot)

{

if (dSlot == psp->sh.dHandles)

{

// remove last name entry

(continued)

306 MONITORING NATIVE API CALLS

psp->sh.dName = psp->adNames [dSlot-1];

}

else

{

i = psp->adNames [dSlot-1];

j = psp->adNames [dSlot];

// shift left all remaining name entries

while (j < psp->sh.dName)

{

psp->awNames [i++] = psp->awNames [j++];

}

j -= (psp->sh.dName = i);

// shift left all remaining handles and name offsets

for (i = dSlot; i < psp->sh.dHandles; i++)

{

psp->ahProcesses [i-1] = psp->ahProcesses [i];

psp->ahObjects [i-1] = psp->ahObjects [i];

psp->adNames [i-1] = psp->adNames [i] - j;

}

}

psp->sh.dHandles—;

}

return dSlot;

}

// ---

DWORD SpyHandleRegister (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject,

PUNICODE_STRING puName)

{

PWORD pwName;

DWORD dName;

DWORD i;

DWORD dSlot = 0;

if (hObject != NULL)

{

// unregister old handle with same value

SpyHandleUnregister (psp, hProcess, hObject, NULL, 0);

if (psp->sh.dHandles == SPY_HANDLES)

{

CONTROLLING THE API HOOKS IN USER-MODE 307

// unregister oldest handle if overflow

SpyHandleUnregister (psp, psp->ahProcesses [0],

psp->ahObjects [0], NULL, 0);

}

pwName = ((puName != NULL) && SpyMemoryTestAddress (puName)

? puName->Buffer

: NULL);

dName = ((pwName != NULL) && SpyMemoryTestAddress (pwName)

? puName->Length / WORD_

: 0);

if (dName + 1 <= SPY_NAME_BUFFER - psp->sh.dName)

{

// append object to end of list

psp->ahProcesses [psp->sh.dHandles] = hProcess;

psp->ahObjects [psp->sh.dHandles] = hObject;

psp->adNames [psp->sh.dHandles] = psp->sh.dName;

for (i = 0; i < dName; i++)

{

psp->awNames [psp->sh.dName++] = pwName [i];

}

psp->awNames [psp->sh.dName++] = 0;

psp->sh.dHandles++;

dSlot = psp->sh.dHandles;

}

}

return dSlot;

}

LISTING 5-9. Handle Management Structures and Functions

CONTROLLING THE API HOOKS IN USER-MODE

A spy device client running in user-mode can control the Native API hook mechanism
and the protocol it generates by means of a set of IOCTL functions. This set of functions
with names of type SPY_IO_HOOK_* was mentioned in Chapter 4, where the memory
spying functions of w2k_spy.sys were discussed (see Listing 4-7 and Table 4-2).

The relevant part of Table 4-2 is repeated below in Table 5-3. Listing 5-10 is an
excerpt from Listing 4-7, demonstrating how the hook management functions are
dispatched. Each of these functions is reviewed in the subsequent subsections.

TABLE 5-3. IOCTL Hook Management Functions Supported by the Spy Device

FUNCTION NAME ID IOCTL CODE DESCRIPTION

SPY_IO_HOOK_INFO 11 0x8000602C Returns info about Native API hooks

SPY_IO_HOOK_INSTALL 12 0x8000E030 Installs Native API hooks

SPY_IO_HOOK_REMOVE 13 0x8000E034 Removes Native API hooks

SPY_IO_HOOK_PAUSE 14 0x8000E038 Pauses/resumes the hook protocol

SPY_IO_HOOK_FILTER 15 0x8000E03C Enables/disables the hook protocol filter

SPY_IO_HOOK_RESET 16 0x8000E040 Clears the hook protocol

SPY_IO_HOOK_READ 17 0x80006044 Reads data from the hook protocol

SPY_IO_HOOK_WRITE 18 0x8000E048 Writes data to the hook protocol

308 MONITORING NATIVE API CALLS

NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,

DWORD dCode,

PVOID pInput,

DWORD dInput,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

SPY_MEMORY_BLOCK smb;

SPY_PAGE_ENTRY spe;

SPY_CALL_INPUT sci;

PHYSICAL_ADDRESS pa;

DWORD dValue, dCount;

BOOL fReset, fPause, fFilter, fLine;

PVOID pAddress;

PBYTE pbName;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);

*pdInfo = 0;

switch (dCode)

{

// ===

// unrelated IOCTL functions omitted (cf. Listing 4-7)

// ===

case SPY_IO_HOOK_INFO:

{

ns = SpyOutputHookInfo (pOutput, dOutput, pdInfo);

break;

}

CONTROLLING THE API HOOKS IN USER-MODE 309

case SPY_IO_HOOK_INSTALL:

{

if (((ns = SpyInputBool (&fReset,

pInput, dInput))

== STATUS_SUCCESS)

&&

((ns = SpyHookInstall (fReset, &dCount))

== STATUS_SUCCESS))

{

ns = SpyOutputDword (dCount,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_REMOVE:

{

if (((ns = SpyInputBool (&fReset,

pInput, dInput))

== STATUS_SUCCESS)

&&

((ns = SpyHookRemove (fReset, &dCount))

== STATUS_SUCCESS))

{

ns = SpyOutputDword (dCount,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_PAUSE:

{

if ((ns = SpyInputBool (&fPause,

pInput, dInput))

== STATUS_SUCCESS)

{

fPause = SpyHookPause (fPause);

ns = SpyOutputBool (fPause,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_FILTER:

{

if ((ns = SpyInputBool (&fFilter,

pInput, dInput))

== STATUS_SUCCESS)

{

fFilter = SpyHookFilter (fFilter);

ns = SpyOutputBool (fFilter,

pOutput, dOutput, pdInfo);

}

(continued)

310 MONITORING NATIVE API CALLS

break;

}

case SPY_IO_HOOK_RESET:

{

SpyHookReset ();

ns = STATUS_SUCCESS;

break;

}

case SPY_IO_HOOK_READ:

{

if ((ns = SpyInputBool (&fLine,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputHookRead (fLine,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_HOOK_WRITE:

{

SpyHookWrite (pInput, dInput);

ns = STATUS_SUCCESS;

break;

}

// ===

// unrelated IOCTL functions omitted (cf. Listing 4-7)

// ===

}

MUTEX_RELEASE (pDeviceContext->kmDispatch);

return ns;

}

LISTING 5-10. Excerpt from the Spy Driver’s Hook Command Dispatcher

THE IOCTL FUNCTION SPY_IO_HOOK_INFO

The IOCTL Function SPY_IO_HOOK_INFO function fills a SPY_HOOK_INFO structure
with information about the current state of the hook mechanism, as well as the
system’s SDT. This structure (Listing 5-11) contains or references various other
structures introduced earlier:

• The SERVICE_DESCRIPTOR_TABLE is defined in Listing 5-1.

• SPY_CALL and SPY_HOOK_ENTRY are defined in Listing 5-2.

• SPY_HEADER and SPY_PROTOCOL are defined in Listing 5-9.

CONTROLLING THE API HOOKS IN USER-MODE 311

typedef struct _SPY_HOOK_INFO

{

SPY_HEADER sh;

PSPY_CALL psc;

PSPY_PROTOCOL psp;

PSERVICE_DESCRIPTOR_TABLE psdt;

SERVICE_DESCRIPTOR_TABLE sdt;

DWORD ServiceLimit;

NTPROC ServiceTable [SDT_SYMBOLS_MAX];

BYTE ArgumentTable [SDT_SYMBOLS_MAX];

SPY_HOOK_ENTRY SpyHooks [SDT_SYMBOLS_MAX];

}

SPY_HOOK_INFO, *PSPY_HOOK_INFO, **PPSPY_HOOK_INFO;

#define SPY_HOOK_INFO_ sizeof (SPY_HOOK_INFO)

LISTING 5-11. Definition of the SPY_HOOK_INFO structure

Be careful when evaluating the members of this structure. Some of them are
pointers into kernel-mode memory that is not accessible from user-mode. However,
you can use the spy device’s SPY_IO_MEMORY_DATA function to examine the contents
of these memory blocks.

THE IOCTL FUNCTION SPY_IO_HOOK_INSTALL

The IOCTL SPY_IO_HOOK_INSTALL function patches the service table of ntoskrnl.
exe inside the system’s SDT with the hook entry points stored in the global
aSpyHooks[] array. This array is prepared by SpyHookInitialize() (Listing 5-5) and
SpyHookInitializeEx() (Listing 5-3) during driver initialization. Each aSpyHooks[]
entry comprises a hook entry point and a corresponding format string address, if
available. The SpyDispatcher() calls the SpyHookInstall() helper function shown in
Listing 5-12 to install the hooks. SpyHookInstall() in turn uses SpyHookExchange(),
also included in Listing 5-12, to perform this task.

DWORD SpyHookExchange (void)

{

PNTPROC ServiceTable;

BOOL fPause;

DWORD i;

DWORD n = 0;

fPause = SpyHookPause (TRUE);

ServiceTable = KeServiceDescriptorTable->ntoskrnl.ServiceTable;

for (i = 0; i < SDT_SYMBOLS_MAX; i++)

(continued)

312 MONITORING NATIVE API CALLS

{

if (aSpyHooks [i].pbFormat != NULL)

{

aSpyHooks [i].Handler = (NTPROC)

InterlockedExchange ((PLONG) ServiceTable+i,

(LONG) aSpyHooks [i].Handler);

n++;

}

}

gfSpyHookState = !gfSpyHookState;

SpyHookPause (fPause);

return n;

}

// ---

NTSTATUS SpyHookInstall (BOOL fReset,

PDWORD pdCount)

{

DWORD n = 0;

NTSTATUS ns = STATUS_INVALID_DEVICE_STATE;

if (!gfSpyHookState)

{

ghSpyHookThread = PsGetCurrentThreadId ();

n = SpyHookExchange ();

if (fReset) SpyHookReset ();

ns = STATUS_SUCCESS;

}

*pdCount = n;

return ns;

}

LISTING 5-12. Patching the System’s API Service Table

SpyHookExchange() is used both in the installation and removal of hooks,
because it simply swaps the entries in the system’s API service table and the aSpy
Hooks[] array. Therefore, calling this function twice restores the service table and
the array to their original states. SpyHookExchange() loops through the aSpy
Hooks[] array and searches for entries that contain a format string pointer. The
presence of such a string indicates that the function should be monitored. In
this case, the API function pointer in the service table and the Handler member
of the aSpyHooks[] entry are exchanged using the ntoskrnl.exe function
InterlockedExchange(), which guarantees that no other thread can interfere

CONTROLLING THE API HOOKS IN USER-MODE 313

in this operation. The protocol mechanism is temporarily paused until the entire ser-
vice table is patched. SpyHookInstall() is merely a wrapper around SpyHookEx-
change() that performs some additional actions:

• The service table is not touched if the global gfSpyHookState flag
indicates that the hooks are already installed.

• The thread ID of the caller is written to the global variable ghSpyHookThread.
The hook dispatcher inside SpyHookInitializeEx() uses this information
to suppress all API calls originating from this thread. Otherwise, the
hook protocol would be interrupted with irrelevant and distracting
material as a result of the interaction of the spy device and its user-mode
client.

• On request of the client, the protocol is reset. This means that all buffer
contents are discarded and the handle directory is reinitialized.

The SPY_IO_HOOK_INSTALL function receives a Boolean input parameter from
the caller. If TRUE, the protocol is reset after the hooks have been installed. This is the
most frequently used option. Passing in FALSE continues a protocol eventually left
over from a previous hook session. The return value of the function tells you how
many service table entries were patched. On Windows 2000, SPY_IO_HOOK_INSTALL
reports a value of 44, which is the number of entries in the format string array
apbSdtFormats[] in Listing 5-6. On Windows NT 4.0, only 42 hooks are installed,
because the API functions NtNotifyChangeMultipleKeys() and NtQueryOpen
SubKeys() are not supported by this operating system version.

THE IOCTL FUNCTION SPY_IO_HOOK_REMOVE

The IOCTL SPY_IO_HOOK_REMOVE function is similar to SPY_IO_HOOK_INSTALL,
because it basically reverses the actions of the latter. The IOCTL input and output
arguments are identical. However, the SpyHookRemove() helper function called inside
the SpyDispatcher() deviates in some important respects from SpyHookInstall(),
as a comparison of Listing 5-12 and 5-13 reveals:

• The call is ignored if the global gfSpyHookState flag indicates that no
hooks are currently installed.

• After the service table has been restored to its original state, the thread
ID of the client that installed the hooks is cleared by setting the global
variable ghSpyHookThread to zero.

• The most important extra feature is the do/while loop in the middle of
Listing 5-13. In this loop, SpyHookRemove() tests whether other threads
are currently serviced by the hook dispatcher by testing the fInUse
members of all SPY_CALL structures inside the global DEVICE_CONTEXT
structure. This is necessary because a client might attempt to unload the
spy driver immediately after uninstalling the hooks. If this happens while
some other processes’ API calls are still within the hook dispatcher, the
system throws an exception, followed by a Blue Screen. These in-use tests
are performed in 100-msec intervals to give the other threads time to exit
the spy device.

314 MONITORING NATIVE API CALLS

NTSTATUS SpyHookRemove (BOOL fReset,

PDWORD pdCount)

{

LARGE_INTEGER liDelay;

BOOL fInUse;

DWORD i;

DWORD n = 0;

NTSTATUS ns = STATUS_INVALID_DEVICE_STATE;

if (gfSpyHookState)

{

n = SpyHookExchange ();

if (fReset) SpyHookReset ();

do {

for (i = 0; i < SPY_CALLS; i++)

{

if (fInUse = gpDeviceContext->SpyCalls [i].fInUse)

break;

}

liDelay.QuadPart = -1000000;

KeDelayExecutionThread (KernelMode, FALSE, &liDelay);

}

while (fInUse);

ghSpyHookThread = 0;

ns = STATUS_SUCCESS;

}

*pdCount = n;

return ns;

}

LISTING 5-13. Restoring the System’s API Service Table

CONTROLLING THE API HOOKS IN USER-MODE 315

Note that a final 100-msec delay is added even if all fInUse flags are clear. This
precaution is required because a tiny security hole exists inside the hook dispatcher,
just between the instruction where the fInUse flag of the current SPY_CALL entry is
reset and the RET instruction where the dispatcher returns control to the caller (cf.
Listing 5-2 between the ASM labels SpyHook8 and SpyHook9). If all fInUse flags are
FALSE, there is a small probability that some threads have been suspended just before
the RET instruction could be executed. Delaying the hook removal for another 100-
msec interval should allow all threads time to leave this critical code sequence.

THE IOCTL FUNCTION SPY_IO_HOOK_PAUSE

The IOCTL SPY_IO_HOOK_PAUSE function, shown in Listing 5-14, allows a client to
temporarily disable and reenable the hook protocol function. Essentially, it sets the
global variable gfSpyHookPause to the Boolean value supplied by the client and
returns its previous value, using the ntoskrnl.exe API function Interlocked
Exchange(). By default, the protocol is enabled; that is, gfSpyHookPause is FALSE.

It is important to note that SPY_IO_HOOK_PAUSE works totally independent of
SPY_IO_HOOK_INSTALL and SPY_IO_HOOK_REMOVE. If the protocol is paused while
hooks are installed, the hooks remain in effect, but the hook dispatcher lets all API
calls pass through without interference. You can also disable the protocol before
installing the hooks, if you don’t want the protocol to start automatically after
SPY_IO_HOOK_INSTALL has patched the API service table. Note that the protocol is
automatically reset when the protocol is resumed.

THE IOCTL FUNCTION SPY_IO_HOOK_FILTER

The IOCTL function SPY_IO_HOOK_FILTER manipulates a global flag, as shown in
Listing 5-15. Here, the global flag gfSpyHookFilter is set to the client-supplied
value, and the previous setting is returned. The default value is FALSE; that is, the
filter is disabled.

BOOL SpyHookPause (BOOL fPause)

{

BOOL fPause1 = (BOOL)

InterlockedExchange ((PLONG) &gfSpyHookPause,

(LONG) fPause);

if (!fPause) SpyHookReset ();

return fPause1;

}

LISTING 5-14. Switching the Protocol On and Off

LISTING 5-15. Switching the Protocol Filter On and Off

You already know the variable gfSpyHookFilter from the discussion of the
SpyWriteFilter() function in Listing 5-8. If gfSpyHookFilter is TRUE, this func-
tion helps SpyHookProtocol() (see Listing 5-7) to drop all API calls that involve
handles not previously registered by the spy device.

THE IOCTL FUNCTION SPY_IO_HOOK_RESET

The IOCTL SPY_IO_HOOK_RESET function resets the protocol mechanism to its
original state, clearing the data buffer and discarding all registered handles. The Spy
HookReset() function called by the SpyDispatcher() is merely a wrapper around
SpyWriteReset(). Both functions are included in Listing 5-16. SpyHookReset()
features additional serialization by means of the mutex calls SpyHookWait() and
SpyHookRelease() (see Listing 5-7).

THE IOCTL FUNCTION SPY_IO_HOOK_READ

The API hook logger writes the protocol data to the abData[] buffer inside the
global SPY_PROTOCOL structure shown in Listing 5-9. This byte array is designed as a
circular buffer. That is, it features a pair of pointers for read and write access, respec-
tively. Whenever one of the pointers moves past the end of the buffer, it is reset to the
buffer base. The read pointer always tries to catch up with the write pointer, and if
both point to the same location, the buffer is empty.

SPY_IO_HOOK_READ is by far the most important hook management function
offered by the spy device. It reads arbitrary amounts of data from the protocol data
buffer and adjusts the read pointer appropriately. This function should be called fre-
quently while the protocol is enabled, to avoid buffer overflows. Listing 5-17 shows
the function set handling this IOCTL request. The basic handlers are SpyReadData()
and SpyReadLine(). The difference between them is that the former returns the
requested amount of data, if available, whereas the latter retrieves single lines only.
Line mode can be very convenient when the read data must be filtered by a client
application. Callers of SPY_IO_HOOK_READ pass in a Boolean value that decides
whether block mode (FALSE) or line mode (TRUE) is requested.

316 MONITORING NATIVE API CALLS

BOOL SpyHookFilter (BOOL fFilter)

{

return (BOOL) InterlockedExchange ((PLONG) &gfSpyHookFilter,

(LONG) fFilter);

}

CONTROLLING THE API HOOKS IN USER-MODE 317

void SpyWriteReset (PSPY_PROTOCOL psp)

{

KeQuerySystemTime (&psp->sh.liStart);

psp->sh.dRead = 0;

psp->sh.dWrite = 0;

psp->sh.dCalls = 0;

psp->sh.dHandles = 0;

psp->sh.dName = 0;

return;

}

// ---

void SpyHookReset (void)

{

SpyHookWait ();

SpyWriteReset (&gpDeviceContext->SpyProtocol);

SpyHookRelease ();

return;

}

LISTING 5-16. Resetting the Protocol

DWORD SpyReadData (PSPY_PROTOCOL psp,

PBYTE pbData,

DWORD dData)

{

DWORD i = psp->sh.dRead;

DWORD n = 0;

while ((n < dData) && (i != psp->sh.dWrite))

{

pbData [n++] = psp->abData [i++];

if (i == SPY_DATA_BUFFER) i = 0;

}

psp->sh.dRead = i;

return n;

}

// ---

DWORD SpyReadLine (PSPY_PROTOCOL psp,

PBYTE pbData,

DWORD dData)

{

BYTE b = 0;

(continued)

318 MONITORING NATIVE API CALLS

DWORD i = psp->sh.dRead;

DWORD n = 0;

while ((b != ‘\n’) && (i != psp->sh.dWrite))

{

b = psp->abData [i++];

if (i == SPY_DATA_BUFFER) i = 0;

if (n < dData) pbData [n++] = b;

}

if (b == ‘\n’)

{

// remove current line from buffer

psp->sh.dRead = i;

}

else

{

// don’t return any data until full line available

n = 0;

}

if (n)

{

pbData [n-1] = 0;

}

else

{

if (dData) pbData [0] = 0;

}

return n;

}

// ---

DWORD SpyHookRead (PBYTE pbData,

DWORD dData,

BOOL fLine)

{

DWORD n = 0;

SpyHookWait ();

n = (fLine ? SpyReadLine : SpyReadData)

(&gpDeviceContext->SpyProtocol, pbData, dData);

SpyHookRelease ();

return n;

}

// ---

CONTROLLING THE API HOOKS IN USER-MODE 319

LISTING 5-17. Reading from the Protocol Buffer

The SpyOutputHookRead() and SpyHookRead() functions are trivial.
SpyHookRead() adds the usual mutex serialization and chooses between
SpyReadLine() and SpyReadData(), and SpyOutputHookRead() postprocesses
its results as demanded by the IOCTL framework.

THE IOCTL FUNCTION SPY_IO_HOOK_WRITE

The IOCTL SPY_IO_HOOK_WRITE function allows the client to write data to the proto-
col buffer. An application can use this feature to add separators or additional status
information to the protocol. The implementation is shown in Listing 5-18. SpyHook
Write() is yet another wrapper with additional mutex serialization. The SpyWrite
Data() function it calls is the basic protocol generator of the spy device. All Spy
Write*() helper functions (e.g., the SpyWriteFormat(), SpyWriteNumber(), Spy
WriteChar(), and SpyWriteLarge() functions used by SpyHookProtocol() in
Listing 5-7) are ultimately built upon it.

NTSTATUS SpyOutputHookRead (BOOL fLine,

PVOID pOutput,

DWORD dOutput,

PDWORD pdInfo)

{

*pdInfo = SpyHookRead (pOutput, dOutput, fLine);

return STATUS_SUCCESS;

}

DWORD SpyWriteData (PSPY_PROTOCOL psp,

PBYTE pbData,

DWORD dData)

{

BYTE b;

DWORD i = psp->sh.dRead;

DWORD j = psp->sh.dWrite;

DWORD n = 0;

while (n < dData)

{

psp->abData [j++] = pbData [n++];

if (j == SPY_DATA_BUFFER) j = 0;

if (j == i)

{

// remove first line from buffer

(continued)

320 MONITORING NATIVE API CALLS

do {

b = psp->abData [i++];

if (i == SPY_DATA_BUFFER) i = 0;

}

while ((b != ‘\n’) && (i != j));

// remove half line only if single line

if ((i == j) &&

((i += (SPY_DATA_BUFFER / 2)) >= SPY_DATA_BUFFER))

{

i -= SPY_DATA_BUFFER;

}

}

}

psp->sh.dRead = i;

psp->sh.dWrite = j;

return n;

}

// ---

DWORD SpyHookWrite (PBYTE pbData,

DWORD dData)

{

DWORD n = 0;

SpyHookWait ();

n = SpyWriteData

(&gpDeviceContext->SpyProtocol, pbData, dData);

SpyHookRelease ();

return n;

}

LISTING 5-18. Writing to the Protocol Buffer

Note how SpyWriteData() handles overflow situations. If the read pointer
advances slowly, the write pointer may lap it. In this situation, two options are available:

1. Write access is disabled until the read pointer is advanced.

2. Buffered data is discarded to make space.

The spy device chooses the second option. If an overflow occurs, the entire
protocol line at the current read pointer position is dropped by advancing the read
pointer to the next line. If the buffer contains just a single line (which is highly

improbable), only the first half of the line is discarded. The code handling these
situations is marked in Listing 5-18 by appropriate comments.

A SAMPLE HOOK PROTOCOL READER

To help you write your own API hook client applications, I have added a very simple
sample application that reads the hook protocol buffer and displays it in a console
window. The pause, filter, and reset functions can be issued by pressing keys P, F,
and R on the keyboard, and the output can be filtered according to a series of user-
specified function name patterns. The application is called “SBS Windows 2000 API
Hook Viewer,” and its source code is available on the book’s companion CD in the
directory tree \src\w2k_hook.

CONTROLLING THE SPY DEVICE

For convenience, the w2k_hook.exe application uses a couple of simple wrappers for
the various SPY_IO_HOOK_* IOCTL functions, summarized in Listing 5-19. These
utility functions make the code much more readable and minimize the probability of
parameter errors during the development of a spy device client application.

A SAMPLE HOOK PROTOCOL READER 321

BOOL WINAPI SpyIoControl (HANDLE hDevice,

DWORD dCode,

PVOID pInput,

DWORD dInput,

PVOID pOutput,

DWORD dOutput)

{

DWORD dInfo = 0;

return DeviceIoControl (hDevice, dCode,

pInput, dInput,

pOutput, dOutput,

&dInfo, NULL)

&&

(dInfo == dOutput);

}

// ---

BOOL WINAPI SpyVersionInfo (HANDLE hDevice,

PSPY_VERSION_INFO psvi)

{

return SpyIoControl (hDevice, SPY_IO_VERSION_INFO,

NULL, 0,

(continued)

322 MONITORING NATIVE API CALLS

psvi, SPY_VERSION_INFO_);

}

// ---

BOOL WINAPI SpyHookInfo (HANDLE hDevice,

PSPY_HOOK_INFO pshi)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_INFO,

NULL, 0,

pshi, SPY_HOOK_INFO_);

}

// ---

BOOL WINAPI SpyHookInstall (HANDLE hDevice,

BOOL fReset,

PDWORD pdCount)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_INSTALL,

&fReset, BOOL_,

pdCount, DWORD_);

}

// ---

BOOL WINAPI SpyHookRemove (HANDLE hDevice,

BOOL fReset,

PDWORD pdCount)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_REMOVE,

&fReset, BOOL_,

pdCount, DWORD_);

}

// ---

BOOL WINAPI SpyHookPause (HANDLE hDevice,

BOOL fPause,

PBOOL pfPause)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_PAUSE,

&fPause, BOOL_,

pfPause, BOOL_);

}

// ---

A SAMPLE HOOK PROTOCOL READER 323

BOOL WINAPI SpyHookFilter (HANDLE hDevice,

BOOL fFilter,

PBOOL pfFilter)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_FILTER,

&fFilter, BOOL_,

pfFilter, BOOL_);

}

// ---

BOOL WINAPI SpyHookReset (HANDLE hDevice)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_RESET,

NULL, 0,

NULL, 0);

}

// ---

DWORD WINAPI SpyHookRead (HANDLE hDevice,

BOOL fLine,

PBYTE pbData,

DWORD dData)

{

DWORD dInfo;

if (!DeviceIoControl (hDevice, SPY_IO_HOOK_READ,

&fLine, BOOL_,

pbData, dData,

&dInfo, NULL))

{

dInfo = 0;

}

return dInfo;

}

// ---

BOOL WINAPI SpyHookWrite (HANDLE hDevice,

PBYTE pbData)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_WRITE,

pbData, lstrlenA (pbData),

NULL, 0);

}

LISTING 5-19. Device I/O Control Utility Functions

Before the functions in Listing 5-19 can be used, the spy device must be loaded
and started. This operation is much the same as that outlined in Chapter 4 in con-
junction with the memory spy application w2k_mem.exe. Listing 5-20 shows the
application’s main function, Execute(), which loads and unloads the spy device
driver, opens and closes a device handle, and interacts with the device via IOCTL. If
you compare Listing 5-20 to Listing 4-29, the similarities at the beginning and end
are obvious. Only the middle sections, where the application-dependent code is
located, are different.

324 MONITORING NATIVE API CALLS

void WINAPI Execute (PPWORD ppwFilters,

DWORD dFilters)

{

SPY_VERSION_INFO svi;

SPY_HOOK_INFO shi;

DWORD dCount, i, j, k, n;

BOOL fPause, fFilter, fRepeat;

BYTE abData [HOOK_MAX_DATA];

WORD awData [HOOK_MAX_DATA];

WORD awPath [MAX_PATH] = L”?”;

SC_HANDLE hControl = NULL;

HANDLE hDevice = INVALID_HANDLE_VALUE;

_printf (L”\r\nLoading \”%s\” (%s) ...\r\n”,

awSpyDisplay, awSpyDevice);

if (w2kFilePath (NULL, awSpyFile, awPath, MAX_PATH))

{

_printf (L”Driver: \”%s\”\r\n”,

awPath);

hControl = w2kServiceLoad (awSpyDevice, awSpyDisplay,

awPath, TRUE);

}

if (hControl != NULL)

{

_printf (L”Opening \”%s\” ...\r\n”,

awSpyPath);

hDevice = CreateFile (awSpyPath,

GENERIC_READ | GENERIC_WRITE,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

}

else

{

A SAMPLE HOOK PROTOCOL READER 325

_printf (L”Unable to load the spy device driver.\r\n”);

}

if (hDevice != INVALID_HANDLE_VALUE)

{

if (SpyVersionInfo (hDevice, &svi))

{

_printf (L”\r\n”

L”%s V%lu.%02lu ready\r\n”,

svi.awName,

svi.dVersion / 100, svi.dVersion % 100);

}

if (SpyHookInfo (hDevice, &shi))

{

_printf (L”\r\n”

L”API hook parameters: 0x%08lX\r\n”

L”SPY_PROTOCOL structure: 0x%08lX\r\n”

L”SPY_PROTOCOL data buffer: 0x%08lX\r\n”

L”KeServiceDescriptorTable: 0x%08lX\r\n”

L”KiServiceTable: 0x%08lX\r\n”

L”KiArgumentTable: 0x%08lX\r\n”

L”Service table size: 0x%lX (%lu)\r\n”,

shi.psc,

shi.psp,

shi.psp->abData,

shi.psdt,

shi.sdt.ntoskrnl.ServiceTable,

shi.sdt.ntoskrnl.ArgumentTable,

shi.ServiceLimit, shi.ServiceLimit);

}

SpyHookPause (hDevice, TRUE, &fPause); fPause = FALSE;

SpyHookFilter (hDevice, TRUE, &fFilter); fFilter = FALSE;

if (SpyHookInstall (hDevice, TRUE, &dCount))

{

_printf (L”\r\n”

L”Installed %lu API hooks\r\n”,

dCount);

}

_printf (L”\r\n”

L”Protocol control keys:\r\n”

L”\r\n”

L”P - pause ON/off\r\n”

L”F - filter ON/off\r\n”

L”R - reset protocol\r\n”

L”ESC - exit\r\n”

L”\r\n”);

for (fRepeat = TRUE; fRepeat;)

{

(continued)

326 MONITORING NATIVE API CALLS

if (n = SpyHookRead (hDevice, TRUE,

abData, HOOK_MAX_DATA))

{

if (abData [0] == ‘-’)

{

n = 0;

}

else

{

i = 0;

while (abData [i] && (abData [i++] != ‘=’));

j = i;

while (abData [j] && (abData [j] != ‘(‘)) j++;

k = 0;

while (i < j) awData [k++] = abData [i++];

awData [k] = 0;

for (i = 0; i < dFilters; i++)

{

if (PatternMatcher (ppwFilters [i], awData))

{

n = 0;

break;

}

}

}

if (!n) _printf (L”%hs\r\n”, abData);

Sleep (0);

}

else

{

Sleep (HOOK_IOCTL_DELAY);

}

switch (KeyboardData ())

{

case ‘P’:

{

SpyHookPause (hDevice, fPause, &fPause);

SpyHookWrite (hDevice, (fPause ? abPauseOff

: abPauseOn));

break;

}

case ‘F’:

{

SpyHookFilter (hDevice, fFilter, &fFilter);

SpyHookWrite (hDevice, (fFilter ? abFilterOff

: abFilterOn));

A SAMPLE HOOK PROTOCOL READER 327

break;

}

case ‘R’:

{

SpyHookReset (hDevice);

SpyHookWrite (hDevice, abReset);

break;

}

case VK_ESCAPE:

{

_printf (L”%hs\r\n”, abExit);

fRepeat = FALSE;

break;

}

}

}

if (SpyHookRemove (hDevice, FALSE, &dCount))

{

_printf (L”\r\n”

L”Removed %lu API hooks\r\n”,

dCount);

}

_printf (L”\r\nClosing the spy device ...\r\n”);

CloseHandle (hDevice);

}

else

{

_printf (L”Unable to open the spy device.\r\n”);

}

if ((hControl != NULL) && gfSpyUnload)

{

_printf (L”Unloading the spy device ...\r\n”);

w2kServiceUnload (awSpyDevice, hControl);

}

return;

}

LISTING 5-20. The Main Application Framework

Note that the Execute() function in Listing 5-20 requests GENERIC_READ and
GENERIC_WRITE access in the CreateFile() call, whereas the function in Listing 4-29
uses only GENERIC_READ access. The reason for this discrepancy is buried in the
IOCTL codes used by these applications. Whereas the memory spy in Chapter 4 uses
read-only functions throughout, the API hook viewer discussed here calls functions
that modify system data and hence require a device handle with additional write
access. If you examine the IOCTL codes in the third column of Table 5-3, you can see
that most of them have the hex digit E at the fourth position from the right, whereas
SPY_IO_HOOK_INFO and SPY_IO_HOOK_READ have the digit 6 there. According to
Figure 4-6 in Chapter 4, this means that the latter pair of hook management func-
tions require a device handle with read access, whereas the remaining ones require

read/write rights. The designer of a device driver must decide which read/write access
right combinations are demanded by the I/O requests handled by the device. Patching
the system’s API service table is a radical write operation, so urging a client to obtain
a handle with write access is certainly appropriate.

Most of the remaining code in Listing 5-20 should be self-explaining. Following
are features that are worth noting:

• The SPY_IO_HOOK_READ function is operated in line mode, as the second
argument of the SpyHookRead() call at the beginning of the big for
loop shows.

• The user of the application can specify a series of pattern strings with
embedded wildcards ‘*’ and ‘?’ on the command line. These patterns are
compared sequentially with the function name within each protocol line
using the helper function PatternMatcher() shown in Listing 5-21.
If no pattern matches the name, the line is suppressed. To view the hook
protocol unfiltered, the command w2k_hook * must be issued.

• After handling a protocol line, the application returns the rest of its time
slice to the system by calling Sleep (0), so the time is available for
other processes.

• If no protocol data is available, the application suspends itself for 10 msec
(HOOK_IOCTL_DELAY) before polling the spy device again. This reduces the
CPU load considerably in times with low usage of the Native API.

• In the main loop, the keyboard is polled as well. All keys except P, F, R,
and Esc are ignored. P switches the pause mode on and off (default: on),
F enables and disables filtering by handle (default: enabled), R resets the
protocol, and Esc terminates the application.

• If one of the P, F, R, or Esc keys is pressed, a separator line is written to the
hook protocol buffer using the SPY_IO_HOOK_WRITE function. This line
indicates the state change resulting from the entered command. Writing the
separator to the buffer is better than writing it directly to the console
window because the state change might appear on the screen with some
delay. For example, if the P key is pressed to halt the display, the application
will continue to generate output until all data has been read from the
protocol buffer. The separator generated by the P command will be
appended after the last entry, so it appears at the correct location.

• Just like the w2k_mem.exe application in Chapter 4, w2k_hook.exe
unloads the spy device only if the global flag gfSpyUnload is set. By
default, it is not set—for the reasons explained in Chapter 4.

328 MONITORING NATIVE API CALLS

A SAMPLE HOOK PROTOCOL READER 329

BOOL WINAPI PatternMatcher (PWORD pwFilter,

PWORD pwData)

{

DWORD i, j;

i = j = 0;

while (pwFilter [i] && pwData [j])

{

if (pwFilter [i] != ‘?’)

{

if (pwFilter [i] == ‘*’)

{

i++;

if ((pwFilter [i] != ‘*’) && (pwFilter [i] != ‘?’))

{

if (pwFilter [i])

{

while (pwData [j] &&

(!PatternMatcher (pwFilter + i,

pwData + j)))

{

j++;

}

}

return (pwData [j]);

}

}

if ((WORD) CharUpperW ((PWORD) (pwFilter [i])) !=

(WORD) CharUpperW ((PWORD) (pwData [j])))

{

return FALSE;

}

}

i++;

j++;

}

if (pwFilter [i] == ‘*’) i++;

return !(pwFilter [i] || pwData [j]);

}

LISTING 5-21. A Simple String Pattern Matcher

The examples shown in Figures 5-6 and 5-7 were generated by w2k_hook.exe
with the name patterns *file and ntclose specified on the command line. This fil-
ters out all file management function calls plus NtClose(). It is important to keep
in mind that the name patterns are applied to the protocol data after it has been gen-
erated, whereas the “garbage” filter of the spy device based on registered handles
manipulates the protocol before it is written. If you exclude protocol entries by
specifying name patterns on the w2k_hook.exe command line, this has absolutely no

effect on the protocol data generator. The only effect is that protocol entries are
thrown away after having been retrieved from the protocol buffer.

HIGHLIGHTS AND PITFALLS

The API hooking mechanism of Russinovich and Cogswell (Russinovich and
Cogswell 1997) adapted here is clearly ingenious and elegant. The following are
its most notable advantages:

• Installing and uninstalling a hook in the system’s API service table is a
simple pointer exchange operation.

• After the hook is installed, it receives the Native API calls of all processes
running in the system, even of new ones started after the hook installation.

• Because the hook device runs in kernel-mode, it has maximum access to all
system resources. It is even allowed to execute privileged CPU instructions.

The following are problem areas I encountered during the development of
my spy device:

• The hook device must be designed and written with extreme care.
Because all traffic occurring on the Native API level will pass through in
the context of various application threads, it must be as stable as the
operating system kernel itself. The smallest oversight may immediately
crash the system.

• Only a small part of the kernel’s API traffic is logged. For example, API
calls originating from other kernel-mode modules don’t pass through the
system’s INT 2Eh gate and hence don’t appear in the hook protocol. Also,
many important functions exported by ntdll.dll and ntoskrnl.exe are
not part of the Native API, so they cannot be hooked in the service table.

The incomplete API coverage is clearly more restrictive than the demand for sta-
bility. Anyway, it is amazing how much useful data can be gained about the internals
of an application by tracing its Native API calls. For example, I was able to gain deep
insight into the NetWare Core Protocol (NCP) operations performed by Microsoft’s
NetWare redirector nwrdr.sys by simply observing its NtFsControlFile() traffic.
Therefore, this approach to API monitoring is certainly the most proficient of the
alternatives available to date for Windows 2000.

330 MONITORING NATIVE API CALLS

