CHAPTER 6

Calling Kernel
API Functions
from User-Mode

n Chapter 2, I explained how Windows 2000 allows user-mode applications to

call a subset of its kernel API functions—the Native API—by means of an interrupt
gate mechanism. Chapters 4 and 5 relied heavily on a mechanism referred to as
Device I/O Control (IOCTL) to carry out additional tasks that aren’t allowed in user-
mode. Both the Native API and IOCTL are quite powerful, but think of the benefit
of being able to call almost any kernel-mode function as if it were located in a normal
user-mode DLL. This is generally considered impossible. However, I will demonstrate
in this chapter that it is possible with the help of a couple of wacky programming
tricks. Again, [OCTL will come to the rescue to solve a problem that seems impossi-
ble at first sight. This chapter is revolutionary because it builds a general-purpose
bridge from user-mode to kernel-mode, allowing the Win32 application to call kernel
API functions just as if they were part of the Win32 API. Even better, an application
can call internal kernel functions that are not even available to kernel-mode drivers,
with the help of the symbol files coming with the Windows 2000 debugging tools.
This “kernel call interface” works seamlessly in the background, almost completely
unnoticed by the calling application.

A GENERAL KERNEL CALL INTERFACE

In Chapter 4, we used a kernel-mode driver to call selected kernel API functions on
behalf of a user-mode program. For example, the spy_10_pHYSICAL function offered
by the spy driver w2k_spy . sys is merely a wrapper around the memory manager’s
MmGetPhysicalAddress () function. Another example is SPY_T0O_HANDLE_INFO,
which is built upon the object manager’s obreferenceobjectByHandle () and
ObDereferenceObject () functions. Although this technique works fine, it is quite
tedious and inefficient to design a custom IOCTL function for every kernel API
function that should be made available to user-mode code. Therefore, I have added

331

332 CALLING KERNEL API FUNCTIONS FROM USER-MODE

a general-purpose IOCTL function to the spy device inside the sample driver
w2k_spy . sys that calls arbitrary kernel-mode functions, given a symbolic name or an
entry point plus a list of arguments. This sounds like a lot of work, but you will be
surprised how simple the necessary code actually is. The only difficulty is that again
we will need a good deal of inline assembly language (ASM).

DESIGNING A GATE TO KERNEL-MODE

If a program running in user-mode wants to call a kernel-mode function, it has to
solve two problems. First, it must somehow jump across the barrier between user-
mode and kernel-mode, and second, it must transfer data in and out. For the subset
comprising the Native API, the ntd11.4d11 component takes over this duty, using an
interrupt gate to accomplish the mode change and CPU registers to pass in a pointer
to the caller’s argument stack and to return the function’s result to the caller. For ker-
nel functions not included in the Native API, the operating system doesn’t offer such
a gate mechanism. Therefore, we will have to create our own. Part one of the prob-
lem is easily solved: The w2k_spy . sys driver introduced in Chapter 4 and extended
in Chapter 5 crosses the user-to-kernel-mode border back and forth many times dur-
ing its IOCTL transactions. And because IOCTL optionally allows passing data
blocks in both directions, the date transfer problem is solved as well. In the end, the
whole matter boils down to the following simple sequence of steps:

1. The user-mode application posts an IOCTL request, passing in
information about the function to be called, as well as a pointer to its
argument stack.

2. The kernel-mode driver dispatches the request, copies the arguments onto
its own stack, calls the function, and passes the results back to the caller in
the IOCTL output buffer.

3. The caller picks up the results of the IOCTL operation and proceeds as it
would after a normal DLL function call.

The main problem with this scenario is that the kernel-mode module must cope
with various data formats and calling conventions. Following is a list of situations
the driver must be prepared for:

® The size of the argument stack depends on the target function. Because it
is impractical to give the driver detailed knowledge about all functions
it might possibly have to call, the caller must supply the size of the
argument stack.

A GENERAL KERNEL CALL INTERFACE 333

e Windows 2000 kernel API functions use three calling conventions:
__stdcall, _ cdecl, and _ fastcall, which differ considerably in the
way arguments are treated. __stdcall and __cdecl require all arguments
to be passed in on the stack, whereas _ fastcall aims at minimizing
stack fumbling overhead by passing the first two arguments in the CPU
registers Ecx and EDx. On the other hand, __stdcall and _ fastcall
agree in the way arguments are removed from the stack, forcing the called
code to take over the responsibility. __cdec1, however, leaves this task to
the calling code. Although the stack cleanup problem can be easily solved
by saving the stack pointer before the call and resetting it to its original
position after returning, regardless of the calling convention, the driver is
helpless with respect to the __fastcall convention. Therefore, the caller
must specify on every call whether the _ fastcall convention is in effect,
to allow the driver to prepare the registers Ecx and EDx if necessary.

e Windows 2000 kernel functions return results in various sizes, ranging
from zero to 64 bits. The 64-bit register pair EDX: EAX transports the
results back to the caller. Data is filled in from the least-significant end
toward the most-significant end. For example, if a function returns a 16-
bit sHORT data type, only register ax (comprising AL and aH) is significant.
The upper half of £ax and the entire EDx contents are undefined. Because
the driver is ignorant of the called function’s I/O data, it must assume the
worst case, which is 64-bits. Otherwise, the result may be truncated.

e The application might supply invalid arguments. In user-mode, this is
usually benign. At worst, the application process is aborted with an error
message box. Occasionally, this error results in system damage that
requires a reboot for recovery. In kernel-mode, the most frequent
programming error, known as “bad pointer,” almost instantly results in a
Blue Screen of Death, which might cause loss of user data. This problem
can be addressed to a great extent by using the operating system’s
Structured Exception Handling (SEH) mechanism.

That said, let’s examine how our spy driver handles function properties,
arguments, and results. Listing 6-1 shows the involved IOCTL input and output
structures, SPY_CALL_INPUT and spy_cArL_ouTpuT. The latter is quite simple—it
consists of a ULARGE_INTEGER structure that is used by Windows 2000 to represent a
64-bit value both as a single 64-bit integer and a pair of 32-bit halves. Please consult
Listing 2-3 in Chapter 2 for the layout of this structure.

334 CALLING KERNEL API FUNCTIONS FROM USER-MODE

typedef struct _SPY_CALL_INPUT
{
BOOL fFastCall;
DWORD dArgumentBytes;
PVOID pArguments;
PBYTE pbSymbol;
PVOID pEntryPoint;
}
SPY_CALL_INPUT, *PSPY_CALL_INPUT, **PPSPY_CALL_INPUT;

#define SPY_CALL_INPUT_ sizeof (SPY_CALL_INPUT)

typedef struct _SPY_CALL_OUTPUT

{
ULARGE_INTEGER uliResult;

}
SPY_CALL_OUTPUT, *PSPY_CALL_OUTPUT, **PPSPY_CALL_OUTPUT;

#define SPY_CALL_OUTPUT_ sizeof (SPY_CALL_OUTPUT)

LISTING 6-1. Definition of sSPY_CALL_INPUT and SPY_CALL_OUTPUT

SPY_CALI_INPUT needs a bit more explanation. The purpose of the fFastcall
member should be obvious. It signals to the spy driver that the function to be called
obeys the __fastcall convention, so the first two arguments, if any, must not be
passed in on the stack, but in CPU registers. dArgumentBytes specifies the number of
bytes piled up on the argument stack, and pAarguments points to the top of this stack.
The remaining arguments, pbSymbol and pEntryPoint, are mutually exclusive, and
tell the driver which function to execute. You can specify either a function name or a
plain entry point address. The other member should always be set to nurL. If both
values are non-NULL, pbSymbol takes precedence over pEntryPoint. Calling a func-
tion by name rather than by address adds an additional step, where the entry point
of the specified symbolic name is determined. If it can be retrieved, the function is
entered through this address. Passing in an entry point simply bypasses the symbol
resolution step.

Finding the linear address associated with a symbol exported by a kernel-mode
module sounds easier than it actually is. The powerful Win32 functions GetModule
Handle () and GetProcAddress (), which work fine with all components within the
Win32 subsystem, do not recognize kernel-mode system modules and drivers. Imple-
menting this part of the sample code was difficult, the details are covered in the next
section of this chapter. For now, let’s assume that a valid entry point is available, no
matter how it has been supplied. Listing 6-2 shows the function spycal1 () that

A GENERAL KERNEL CALL INTERFACE 335

constitutes the core part of my kernel call interface. As you see, it is almost 100%
assembly language. It is always unpleasant to resort to ASM in a C program, but
some tasks simply can’t be done in pure C. In this case, the problem is that spy-
call () needs total control of the stack and the CPU registers, and therefore it must
bypass the C compiler and optimizer, which use the stack and registers as they see fit.
Before delving into the details of Listing 6-2, let me describe another special fea-
ture of the spyca11 () function that obscures the code. As explained in Chapter 2, the
Windows 2000 system modules export some of their variables by name. Typical
examples are NtBuildNumber and KeServiceDescriptorTable. The Portable Exe-
cutable (PE) file format of Windows 2000/NT/9x provides a general-purpose mecha-
nism for attaching symbols to addresses, regardless of whether an address points to
code or data. Therefore, a Windows 2000 module is free to attach exported symbols
to its global variables at will. A client module can dynamically link to them like it
links to function symbols, and it is able to use these variables as if they were located
in its own global data section. Of course, my kernel call interface would not be com-
plete if it were not able to cope with this kind of symbol as well, so I decided that
negative values of the dArgumentBytes member inside the sPY_CALI_INPUT structure
should indicate that data is to be copied from the entry point instead of calling it.
Valid values range from -1 to -9, where -1 means that the entry point address itself
is copied to the spy_carr,_ouTput buffer. For the remaining values, their one’s com-
plement states the number of bytes copied from the entry point, that is, -2 copies a
single BYTE or CHAR; -3, a 16-bit WORD or SHORT; -5, a 32-bit DWORD or LONG; and -9
a 64-bit DWORDLONG or LONGLONG. You may wonder why it should be necessary to
copy the entry point itself. Well, some kernel symbols, such as keservicebescriptor
Table point to structures that exceed the 64-bit return value limit, so it is wiser to
return the plain pointer rather than truncating the value to 64 bits.

void SpyCall (PSPY_CALL_INPUT psci,
PSPY_CALL_OUTPUT psco)
{
PVOID pStack;

asm

{

pushfd

pushad

xor eax, eax

mov ebx, psco ; get output parameter block
lea edi, [ebx.uliResult] ; get result buffer

mov [edi], eax ; clear result buffer (lo)
mov [edi+4d], eax ; clear result buffer (hi)
mov ebx, psci ; get input parameter block
mov ecx, [ebx.dArgumentBytes]

(continued)

336 CALLING KERNEL API FUNCTIONS FROM USER-MODE

cmp ecx, -9 ; call or store/copy?
jb SpyCall2
mov esi, [ebx.pEntryPoint] ; get entry point
not ecx ; get number of bytes
jecxz SpyCalll ; 0 -> store entry point
rep movsb ; copy data from entry point
Jjmp SpyCalls

SpyCalll:
mov [edi], esi ; store entry point
Jmp SpyCalls

SpyCall2:
mov esi, [ebx.pArguments]
cmp [ebx.fFastCall], ; _ fastcall convention?
jz SpyCall3
cmp ecx, 4 ; 1lst argument available?
ib SpyCall3
mov eax, [esi] ; eax = 1lst argument
add esi, 4 ; remove argument from list
sub ecx, 4
cmp ecx, 4 ; 2nd argument available?
jb SpyCall3
mov edx, [esi] ; edx = 2nd argument
add esi, 4 ; remove argument from list
sub ecx, 4

SpyCall3:
mov pStack, esp ; save stack pointer
jecxz SpyCall4d ; no (more) arguments
sub esp, ecx ; copy argument stack
mov edi, esp
shr ecx, 2
rep movsd

SpyCalld:
mov ecx, eax ; load 1st __ fastcall arg
call [ebx.pEntryPoint] ; call entry point
mov esp, pStack ; restore stack pointer
mov ebx, psco ; get output parameter block
mov [ebx.uliResult.LowPart], eax ; store result (lo)
mov [ebx.uliResult.HighPart], edx ; store result (hi)

SpyCalls:
popad
popfd
}

return;
}
LISTING 6-2. The Core Function of the Kernel Call Interface

A GENERAL KERNEL CALL INTERFACE 337

With the special case of accessing exported variables kept in mind, Listing 6-2
shouldn’t be too difficult to understand. First, the 64-bit result buffer is cleared,
guaranteeing that unused bits are always zero. Next, the dArgumentBytes member
of the input data is compared with -9 to find out whether the client requested a func-
tion call or a data copying operation. The function call handler starts at the label
SpyCall2. After setting register EST to the top of the argument stack by evaluating
the pArguments member, it is time to check the calling convention. If __fastcall is
required and there is at least one 32-bit value on the stack, spycal1l () removes it and
stores it temporarily in Eax. If another 32-bit value is available, it is removed as well
and stored in EDx. Any remaining arguments remain on the stack. Meanwhile, the
label spyca113 is reached. Now the current top-of-stack address is saved to the local
variable pstack, and the argument stack (minus the arguments removed in the
__fastcall case) is copied to the spy driver’s stack using the fast i386 REP MOVSD
instruction. Note that the direction flag that determines whether MovsD proceeds
upward or downward in memory can be assumed to be clear by default; that is, EsT
and EDT are incremented after each copying step. The only thing left to do before
executing the CaLL instruction is to copy the first _ fastcall argument from its
preliminary location Eax to its final destination Ecx. spycall () blindly copies
EAX to ECX because this operation doesn’t create havoc if the calling convention is
__stdcall or __cdecl. The Mov ECcx, EAX instruction is so fast that executing it in
vain is much more efficient than jumping around it after testing the value of the
fFastCall member.

After the call to the function’s entry point returns, SpyCall () resets the stack
pointer to the location saved off to the variable pstack. This takes care of the differ-
ent stack cleanup policy of __stdcall and __fastcall versus __cdecl. A __cdecl
function returns to the caller, with the EsP register pointing to the top of the argu-
ment stack, whereas an __stdcall ora __fastcall function resets it to its original
address before the call. Forcing EsP to a previously backed-up address always cleans
up the stack properly, no matter which calling convention is used. The last few ASM
lines of spycall () store the function result returned in EDX: EaX to the caller’s
SPY_CALIL_OUTPUT structure. No attempt is made to find out the correct result size.
This is unnecessary because the caller knows exactly how many valid result bits it can
expect. Copying too many bits does no harm—they are simply ignored by the caller.

One thing that should be noted about the code in Listing 6-2 is that it contains
absolutely no provisions for invalid arguments. It does not even check the validity
of the stack pointer itself. In kernel-mode, this is equivalent to playing with fire.
However, how could the spy driver verify all arguments? A 32-bit value on the stack

338 CALLING KERNEL API FUNCTIONS FROM USER-MODE

could be a counter value, a bit-field array, or maybe a pointer. Only the caller and the
called target function know the argument semantics. The spycal1 () function is a
simple pass-through layer that has no knowledge about the type of data it forwards.
Adding context-sensitive argument checking to this function would amount to
rewriting large parts of the operating system. Fortunately, Windows 2000 offers an
easy way out of this dilemma: Structured Exception Handling (SEH).

SEH is an easy-to-use framework that enables a program to catch exceptions
that would otherwise crash the system. An exception is an abnormal situation that
forces the CPU to stop whatever it is currently doing. Typical operations that gener-
ate exceptions are reading from or writing to linear addresses that don’t map to
physical or paged-out memory, writing data to a code segment, attempting to execute
instructions in a data segment, or dividing a number by zero. Some exceptions are
benign. For example, accessing a memory location that has been swapped to a page-
file generates an exception that the system can handle by bringing the target page
back to physical memory. However, most exceptions are fatal, because the operating
system has no idea how to recover from the exception, so the system simply shuts
down. This reaction might seem harsh, but sometimes it is better to halt an imminent
catastrophe before things become worse. With SEH, the program that caused the
exception is granted a second chance. Using the Microsoft-specific C construct __try
/__except, an arbitrary sequence of instructions can be guarded against exceptions.
If an exception puts the system into a critical state, a custom handler inside the pro-
gram is invoked, allowing the programmer to provide a more useful reaction than
just triggering a Blue Screen.

Obviously, SEH is also able to work around the parameter validation problem
of our spy device. Listing 6-3 shows a wrapper that puts the spycal1 () function into
a SEH frame. The guarded code is enclosed in the braces of the __try clause. Of
course, not only the spycal1 () instruction is protected; all subordinate code that is
executed in the context of the call is protected as well. If an exception is thrown, the
code inside the __except clause is entered, as demanded by the filter expression
EXCEPTION_EXECUTE_HANDLER. The exception handler in Listing 6-3 is trivial. It just
causes SpyCallEx () to return the status code STATUS_ACCESS_VIOLATION instead of
sTatus_succiss, which will in turn result in failure of the peviceIoControl () call
on the user-mode side. No Blue Screen appears; the only problem remaining after the
exception is that the results of the called function are undefined, but this is something
the caller should be prepared for anyway.

LINKING TO SYSTEM MODULES AT RUNTIME 339

NTSTATUS SpyCallEx (PSPY_CALL_INPUT psci,
PSPY_CALL_OUTPUT psco)
{
NTSTATUS ns = STATUS_SUCCESS;
__try
{
SpyCall (psci, psco);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
ns = STATUS_ACCESS_VIOLATION;
}
return ns;

}

LISTING 6-3. Adding Structured Exception Handling to the Kernel Call Interface

Although SEH catches the most common parameter errors, you should not
expect it to be a remedy against any garbage a client application might possibly
deliver to a kernel API function. Some bad function arguments silently wreck the
system without causing an exception. For example, a function that copies a string
can easily overwrite vital parts of system memory if the destination buffer pointer is
set to the wrong address. This kind of bug might remain undetected for a long time,
until the system suddenly and unexpectedly breaks down when the program execu-
tion eventually rushes into the modified memory area. While testing the spy driver, I
occasionally managed to get the test application hung in its IOCTL call to the spy
device. The application didn’t respond anymore and even refused to be removed from
memory. Even worse, the system became unable to shut down. This is almost as
annoying as a Blue Screen!

LINKING TO SYSTEM MODULES AT RUNTIME

After implementing the basic kernel call interface, the next problem is to resolve
symbolic function names to linear addresses required in the ASM carL instruction in
Listing 6-2. This step is very important because you cannot be sure that the entry
points of the various kernel API functions remain unchanged over a longer period.
Whenever possible, functions should be called by name. Calling a system function by
address is certainly exceptional, typically restricted to functions that are not exported
by the target module. In most cases, it is more desirable to use the symbolic name,
which is provided somewhere in the module’s export section.

340 CALLING KERNEL API FUNCTIONS FROM USER-MODE

LooKING Ur NAMES EXPORTED BY A PE IMAGE

For a Win32 programmer, linking at runtime to a function exported by a DLL is an
everyday task. For example, if you want to write a DLL that uses the enhanced fea-
tures of Windows 2000, but also runs on legacy systems such as Windows 95 or 98
with reduced functionality, you should link to the special functions at runtime,
silently falling back to default behavior if these functions aren’t available. In this
case, you would just call GetModuleHandle () if the DLL is already in memory and
is guaranteed to stay there long enough, or LoadLibrary () if it has to be loaded or
must be protected against premature unloading. The returned module handle can in
turn be used in a sequence of GetProcaddress () calls that retrieve the entry points
of all DLL functions the application wants to call. So it seems only logical to try the
same with kernel functions exported by ntoskrnl.exe, hal.dll, or other system
modules. However, neither of the above functions works in this situation! Get
ModuleHandle () reports that no such module is loaded, and GetProcaddress ()
returns NULL all the time if you pass in a hard-coded module handle, for example,
(HMODULE) 0x80400000 for ntoskrnl.exe. On second thought, this seems reason-
able; these functions are designed for Win32 components that run in user-mode and
therefore are loaded into the lower half of the 4-GB linear address space. Why should
they care about kernel-mode components that are out of reach for Win32 applica-
tions anyway?

If the Win32 subsystem is ignorant about the modules in kernel memory, the
next logical step is to let a kernel-mode driver do the work—the usual strategy
applied throughout this book. The undocumented MmGetSystemRoutineAddress ()
function, exported by ntoskrnl.exe, obviously does the job, but, unfortunately, it
isn’t available on Windows NT 4.0. Because the main premise of this book’s sample
code is to remain compatible with the Windows 2000 predecessor to the greatest
extent possible, I chose to reject this special feature looking up the function entries
without the help of the system. The Windows 2000 runtime library provides some
limited support for image file parsing, such as the undocumented rRt1ImageNt
Header () function, whose prototype is shown in Listing 6-4. This simple function
takes the base address of a module image mapped to linear memory (i.e., a pointer to
its IMAGE_DOS_HEADER structure, as defined in the Win32 SDK header file winnt .h)
and returns a pointer to the Portable PE header referenced by the DOS header’s
e_lfanew member at file offset 0x3c. This function must be used with care, because
it performs only minimal sanity checks on the input pointer. It tests it for NULL
and oxFFFFFFFF and verifies that the memory block it points to contains the vz
signature at the beginning. This means that if you pass in a bogus address that is nei-
ther NULL nor 0xFFFFFFFF, a Blue Screen will be triggered immediately when rt1
ImageNtHeader () reads the DOS header signature. Oddly, Windows NT 4.0 runs
this code in an SEH frame, whereas Windows 2000 doesn’t.

LINKING TO SYSTEM MODULES AT RUNTIME 341

PIMAGE_NT_HEADERS NTAPI RtlImageNtHeader (PVOID Base) ;

LISTING 6-4. The Prototype of RtllmageNtHeader()

Listing 6-4 shows that Rt1TImageNtHeader () returns a pointer to an IMAGE_
NT_HEADERS structure. The entire set of PE file structures is defined in winnt .h.
Unfortunately, the DDK header files do not have them, so it is necessary to add
these definitions manually. My spy driver contains the structures it needs for symbol
lookup (Listing 6-5) in its header file w2k_spy.h. IMAGE_NT_HEADERS is simply a
concatenation of the PE signature “PE\0\0, ” an IMAGE_FILE_HEADER, and an
IMAGE_OPTIONAL_HEADER. The latter ends with an array of IMAGE_DATA_DIRECTORY
structures providing fast lookup of file sections with special duties. The first array
entry, identified by the index TMAGE_DIRECTORY ENTRY EXPORT defined at the very
beginning of Listing 6-5, points to the export section that contains the names and
addresses of the functions exported by the module. This is the section where we must
look up the function names passed to the kernel call interface.

#define IMAGE_DIRECTORY_ENTRY_EXPORT
#define IMAGE_DIRECTORY_ENTRY_IMPORT
#define IMAGE_DIRECTORY_ENTRY_RESOURCE
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION
#define IMAGE_DIRECTORY_ENTRY_SECURITY
#define IMAGE_DIRECTORY_ENTRY_BASERELOC
#define IMAGE_DIRECTORY_ENTRY_DEBUG
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR
#define IMAGE_DIRECTORY_ENTRY_TLS

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
#define IMAGE_DIRECTORY_ENTRY_IAT

#define IMAGE_DIRECTORY_ENTRY_DELAY_ IMPORT
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

0w J o Ul W NP o

R e
s W NP o W

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

typedef struct _IMAGE_FILE_HEADER
{
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
}
IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

(continued)

342 CALLING KERNEL API FUNCTIONS FROM USER-MODE

typedef struct _IMAGE_DATA_DIRECTORY
{
DWORD VirtualAddress;
DWORD Size;
}
IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

typedef struct _IMAGE_OPTIONAL_HEADER
{

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit ;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory
[IMAGE_NUMBEROF_DIRECTORY_ENTRIES] ;

}

IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

typedef struct _IMAGE_NT_HEADERS
{

LINKING TO SYSTEM MODULES AT RUNTIME 343

DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER OptionalHeader;
}

IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;

typedef struct _IMAGE_EXPORT_DIRECTORY
{
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames ;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;
}
IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

LISTING 6-5. A Subset of the Basic PE File Structures

The layout of the export section inside a PE file is governed by the TMacE
EXPORT_DIRECTORY structure, found at the bottom of Listing 6-5. Basically, it
consists of a header composed of the members of the TMAGE_EXPORT_DIRECTORY,
plus three variable-length arrays and a sequence of zero-terminated ANSI strings.
An export item is usually identified by the following three parameters:

1. A zero-terminated symbolic name, consisting of 8-bit ANSI characters
2. A 16-bit ordinal number

3. A 32-bit target offset relative to the beginning of the file image

The export mechanism is not restricted to functions. It is merely a means to
assign a symbol to an address inside the PE image. For functions, the symbol is
attached to its entry point. For public variables, the symbol references its base
address. The assignments are achieved by filling three parallel arrays with the charac-
teristic parameters of the symbols. In Figure 6-1, these arrays are referred to as Array
of Target Addresses, Array of Name Offsets, and Array of Ordinal Numbers. They
correspond to the IMAGE_EXPORT_DIRECTORY members AddressOfFunctions,
AddressOfNames, and AddressOfNameOrdinals, respectively, which Supply the

344 CALLING KERNEL API FUNCTIONS FROM USER-MODE

array offsets relative to the image base address. The Name member contains the offset
of a symbol string that names the PE file itself. If the executable file is renamed, this
entry can be used to retrieve its original name. Figure 6-1 is just a common example
of an export section arrangement—the order of the arrays and the symbol string sub-
section is not fixed. A PE file writer can shuffle them around to its liking, as long as
the members of the IMAGE_EXPORT_DIRECTORY reference them correctly. The same is
true for the string referenced by the Name member. Although it is usually located at
the beginning of the name string sequence, this is not a requirement. Never rely on
assumptions about the locations of the variable portions of the export section.

The NumberofFunctions and NumberOfNames members of the
IMAGE_EXPORT_DIRECTORY specify the number of entries in the addressofFunctions
and AddressOfNames arrays, respectively. No count is specified for the Addressof
NameOrdinals array, because it always contains as many entries as the Addressof
Names array. The maintenance of separate entry counts for addresses and names
suggests that it might be possible to build executables that export unnamed
addresses. I have never seen such a file, but it is a good idea to keep this possibility in
mind while accessing the arrays. Again, don’t rely on assumptions!

The process of looking up the address of an exported function or variable by
name requires the following steps, given a module base address (i.e., an HMODULE in
Win32 lingo):

1. Call Rt1TmageNtHeader () with the module’s base address to get at its
IMAGE_NT_HEADERS. If this function returns NnurL, the address does not
reference a valid PE image.

2. Use the constant IMAGE_DIRECTORY_ENTRY_EXPORT as an index into the
DataDirectory of the OptionalHeader member to find out the offset of
the export section.

3. Locate the name array inside the export section by evaluating the
AddressOfNames member of the IMAGE_EXPORT DIRECTORY header.

4. Enumerate the names until a match is found or the end of the array
indicated by NumberofNames is reached.

5. If a matching name is available, use the name array index to read the
associated ordinal number from the array of ordinals. The values in this
array are zero-based, so you can use the name’s ordinal immediately as an
index into the address array.

6. Add the module’s base address to the offset retrieved from the address array.

LINKING TO SYSTEM MODULES AT RUNTIME 345

IMAGE_EXPORT_DIRECTORY

Name

AddressOfFunctions
AddressOfNames
AddressOfNameOrdinals

¥ N

Array of Target Addresses
(DWORD)

A

Array of Name Offsets
(DWORD)

A

Array of Ordinal Numbers
(WORD)

F

Sequence of Name Strings
(BYTE)

FIGURE 6-1. Typical Layout of a PE File’s Export Section

This sequence of steps appears fairly simple. However, it contains one
unknown quantity: the module base address. Whereas the above actions basically
reflect the behavior of the Win32 GetProcaddress () function, finding the module
address means mimicking the behavior of GetModuleHandle () . If you scan the
function names exported by ntoskrnl.exe, you won’t be able to find anything
that sounds even remotely like a function that might do the trick. The reason
is that the Windows 2000 kernel provides a comprehensive function for this and
many other tasks that involve access to internal system data. This function is
called NtQuerySystemInformation() .

346 CALLING KERNEL API FUNCTIONS FROM USER-MODE

LOCATING SYSTEM MODULES AND DRIVERS IN MEMORY

NtQuerySystemInformation () is one of the most essential API functions for Windows
2000 system programmers, and there is hardly any built-in administration utility that
does not make use of it—yet you won’t find it mentioned anywhere in the Device
Driver Kit (DDK) documentation. There is a single mention in the comments to the
CONFIGURATION_ INFORMATION structure inside ntddk.h, proving that this function
exists, but that’s it. If an “undocumentedness coefficient” would exist that were defined
as the usefulness of a function divided by its frequency of occurrence in the Microsoft
documentation, NtQuerySystemInformation () would certainly be ranked at the top.
Along with many other wonderful things, this function can return a list of loaded sys-
tem modules, including all system core components and kernel-mode drivers.

The spy driver source files contain the bare minimum of code and type defini-
tions required to obtain the loaded-module list from NtQuerySystemInformation () .
From the caller’s point of view, it is a simple function. It expects four arguments, as
shown in Listing 6-6. The SystemInformationClass is a numeric zero-based value
that specifies the type of information to be queried. The information—which can be
of variable length, depending on the information class—is copied to the system
Information buffer supplied by the caller. The buffer length is specified by the
SystemInformationLength argument. On success, the actual number of bytes copied
to the buffer is written to the variable pointed to by Returnrength. The problem
with this function is that it doesn’t report how many bytes it wanted to copy if it
finds out that the buffer is too small. Thus, the caller must apply a trial-and-error
heuristic until the returned status code changes from STATUS_INFO_LENGTH_MTSMATCH
(0xC0000004) tO STATUS_SUCCESS (0x00000000).

Listing 6-6 doesn’t show NtQuerySystemInformation () itself, but rather its
twin, zwQuerySystemInformation (), which is identical except for the function name
prefix. You might recall from Chapter 2 that the nt* and zw* variants of the Native
API functions work exactly the same if called from user-mode. The interface module
ntdll.d11 routes each pair through the same INT 2Eh stub. In kernel-mode, however,
things are different. In this case, Native API calls are handled by ntoskrnl.exe, using
different execution paths for Nt* and zw* functions. The zw* variants are again routed
through the INT 2En interrupt gate, exactly as ntd11.d11. The Nt* variants, however,

NTSTATUS NTAPI ZwQuerySystemInformation (DWORD SystemInformationClass,
PVOID SystemInformation,
DWORD SystemInformationLength,
PDWORD ReturnLength) ;

LISTING 6-6. The Prototype of NtQuerySystemInformation ()

LINKING TO SYSTEM MODULES AT RUNTIME 347

bypass this gate. In the glossary of the DDK documentation, Microsoft provides the
following description for the zw* function set (Microsoft 2000f):

“A set of entry points parallel to the executive’s system services. A call to a
ZwXxx entry point from kernel-mode code (including calls from other system
services or drivers) supplies the corresponding system service, except the caller’s
access rights and the arguments to the Zw ‘alias’ are not checked for validity,
and the call does not cause the previous mode to be set to user mode.”
(Windows 2000 DDK \ Kernel-Mode Drivers \ Design Guide \ Kernel-Mode
Glossary \ Z \ Zw routines.)

The last passage about the “previous mode” is important. Peter G. Viscarola
and W. Anthony Mason put it in different, more clarifying words:

“Although either variant of the function may typically be called from Kernel
mode, the Zw variant is used in place of the Nt version to cause the previous
mode (and hence the mode in which the request was issued) to be set to Kernel
mode.” (Viscarola and Mason 1999, p. 18).

The side effect of this previous-mode handling is that calling NtQuerySystem
Information() from a kernel-mode driver without any additional provisions returns
an error status of STATUS_ACCESS_VIOLATION (0xC0000005), whereas zwQuery
Systemlnformation()SucceedsOratleaﬁjfturnsSTATUS_INFO_LENGTH_MISMATCH.

In Listing 6-7, the constant and type definitions required for the system
ModuleTnformation class are shown. The list of loaded modules is returned in the
form of a MODULE_LTST structure, composed of a 32-bit module count and an array
of MODULE_INFO structures, one for each module.

#define SystemModuleInformation 11 // SYSTEMINFOCLASS

typedef struct _MODULE_INFO
{
DWORD dReservedl;
DWORD dReserved?;
PVOID pBase;
DWORD dSize;
DWORD dFlags;
WORD wIndex;
WORD wRank;
WORD wLoadCount; honﬂnued

348 CALLING KERNEL API FUNCTIONS FROM USER-MODE

WORD wNameOffset;

BYTE abPath [MAXIMUM_FILENAME_LENGTH] ;

}

MODULE_INFO, *PMODULE_INFO, **PPMODULE_INFO;

#define MODULE_INFO_ sizeof (MODULE_INFO)

typedef struct _MODULE_LIST
{
DWORD dModules;
MODULE_INFO aModules [];
}
MODULE_LIST, *PMODULE_LIST, **PPMODULE_LIST;

#define MODULE_LIST_ sizeof (MODULE_LIST)

LISTING 6-7. SystemModuleTInformation Definitions

Now everything is set up for a zZwQuerySystemInformation () call. Listing 6-8
contains the spyModuleList () function that implements the usual trial-and-error
loop required for this API function, along with two simple memory management
functions, SpyMemoryCreate () and SpyMemoryDestroy (), that internally call the
Windows 2000 Executive functions ExallocatePoolWithTag () and ExFreePool () .
The code starts out with a 4,096-byte buffer and doubles its size if the status code
says STATUS_INFO_LENGTH_MISMATCH. All other status codes break the loop. The
optional arguments pdpata and pns provide more information about the returned
value. If spyModuleList () yields nuLL, indicating failure, the NTsTATUS buffer
pointed to by pns receives an error status code and *pdpata is set to zero. On suc-
cess, *pdbata specifies the number of bytes copied to the buffer, and *pns reports
STATUS_SUCCESS.

#define SPY_TAG ‘>YPS’ // SPY> read backwards

PVOID SpyMemoryCreate (DWORD dSize)
{
return ExAllocatePoolWithTag (PagedPool, max (dSize, 1),
SPY_TAG) ;

LINKING TO SYSTEM MODULES AT RUNTIME

349

PVOID SpyMemoryDestroy (PVOID pData)
{
if (pDbata != NULL) ExFreePool (pData);
return NULL;

PMODULE_LIST SpyModuleList (PDWORD pdData,
PNTSTATUS pns)
{
DWORD dsize;
DWORD dbata = 0;
NTSTATUS ns STATUS_INVALID_PARAMETER;
PMODULE_LIST pml = NULL;

for (dSize = PAGE_SIZE; (pml == NULL) && dSize; dSize <<= 1)
{
if ((pml = SpyMemoryCreate (dSize)) == NULL)
{
ns = STATUS_NO_MEMORY ;

break;
}
ns = ZwQuerySystemInformation (SystemModuleInformation,
pml, dSize, &dData) ;
if (ns != STATUS_SUCCESS)
{
pml = SpyMemoryDestroy (pml) ;
dbata = 0;
if (ns != STATUS_INFO_LENGTH_MISMATCH) break;
}
}
if (pdData != NULL) *pdData = dData;
if (pns != NULL) *pns = ns;

return pml;

}

LISTING 6-8. Obtaining a module list from ZwQuerySystemInformation()

The remaining actions to be taken to retrieve the base address of a given

module are quite simple. Listing 6-9 defines two more functions: SpyModuleFind ()

is an enhanced spyModuleList () wrapper that scans the module list returned by
ZwQuerySystemInformation () for a specified module file name, and spyModule

Base () in turn wraps SpyModuleFind (), extracting just the base address of the mod-
ule in question from its MODULE_INFO and discarding the rest. The spyModuleHeader ()

function concluding Listing 6-9 calls spyModuleBase () and passes the result to
Rt1ImageNtHeader () . This function provides the first step to the export section
of a loaded module.

350 CALLING KERNEL API FUNCTIONS FROM USER-MODE

PMODULE_LIST SpyModuleFind (PBYTE pbModule,
PDWORD pdIndex,
PNTSTATUS pns)

{

DWORD i;
DWORD dIndex = -1;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PMODULE_LIST pml = NULL;
if ((pml = SpyModuleList (NULL, &ns)) != NULL)
{
for (i = 0; i1 < pml->dModules; i++)
{
if (!_stricmp (pml->aModules [i].abPath +
pml->aModules [i].wNameOffset,
pbModule))

{
dIndex = 1i;
break;
}
}
if (dIndex == -1)
{
pml = SpyMemoryDestroy (pml) ;
ns = STATUS_NO_SUCH_FILE;
}
}
if (pdIndex != NULL) *pdIndex = dIndex;
if (pns != NULL) *pns = ns;

return pml;

PVOID SpyModuleBase (PBYTE pbModule,
PNTSTATUS pns)

{
PMODULE_LIST pml;

DWORD dIndex;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pBase = NULL;

if ((pml = SpyModuleFind (pbModule, &dIndex, &ns)) != NULL)

{
pBase = pml->aModules [dIndex].pBase;
SpyMemoryDestroy (pml) ;
}
if (pns != NULL) *pns = ns;

return pBase;

LINKING TO SYSTEM MODULES AT RUNTIME 351

PIMAGE_NT_HEADERS SpyModuleHeader (PBYTE pbModule,
PPVOID ppBase,
PNTSTATUS pns)

{

PVOID pBase = NULL;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PIMAGE_NT_HEADERS pinh = NULL;
if (((pBase = SpyModuleBase (pbModule, &ns)) != NULL) &&
((pinh = RtlImageNtHeader (pBase)) == NULL))
{

ns = STATUS_INVALID_ IMAGE_FORMAT;
}
if (ppBase != NULL) *ppBase = pBase;
if (pns = NULL) *pns = ns;
return pinh;

}

LISTING 6-9. Looking Up Information About a Specified Module

RESOLVING SYMBOLS OF EXPORTED FUNCTIONS AND VARIABLES

The previous subsections explained how a PE file image is searched for a symbolic
name of an exported function or variable and how the base address of a loaded
system module or driver can be determined. Now it is time to put the loose ends
together. Essentially, looking up a symbol exported by a given module is a three-step
procedure:

1. Find out the linear base address of the module.
2. Search the export section of this module for the symbol.

3. Add the symbol offset to the module address.

The first step was discussed at some length above. Listing 6-10 provides
the implementation details concerning the remaining steps. SpyModuleExport ()
expects a file name, such as ntoskrnl.exe, hal.dll, ntfs.sys, or similar, for the
pbModule argument, and returns a pointer to the module’s TMAGE_EXPORT_DIRECTORY
structure, provided that the module is present in kernel memory and features an
export section. The optional ppBase and pns arguments return additional informa-
tion: *ppBase returns the module base address on success, and *pns reports a diag-
nostic error status on failure. First, SpyModuleExport () calls SpyModuleHeader ()
to locate the TMAGE_NT_HEADERS; then it evaluates the PE patabirectory that con-
tains the characteristic parameters of the export section in its first slot. If the

352 CALLING KERNEL API FUNCTIONS FROM USER-MODE

VirtualAddress member of this TMAGE_DATA_DIRECTORY entry (cf. Listing 6-5) is
non-NULL, and the size member states a reasonable value, the PE image contains
an export section. In this case, SpyModuleExport () uses the PTR_ADD () macro
included at the top of Listing 6-10 to add the module base address to the virtual
Address, yielding the absolute linear address of the TMAGE_ExPORT_DIRECTORY. Oth-
erwise, it returns NULL and sets the status code to STATUS_DATA_ERROR (0xC000003E).

#define PTR_ADD(_base,_offset) \
((PVOID) ((PBYTE) (_base) + (DWORD) (_offset)))
/) mm e
PIMAGE_EXPORT_DIRECTORY SpyModuleExport (PBYTE pbModule,
PPVOID ppBase,
PNTSTATUS pns)
{
PIMAGE_NT_HEADERS pinh;
PIMAGE_DATA_ DIRECTORY pidd;
PVOID pBase = NULL;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PIMAGE_EXPORT_DIRECTORY pied = NULL;
if ((pinh = SpyModuleHeader (pbModule, &pBase, &ns)) != NULL)
{
pidd = pinh->OptionalHeader.DataDirectory
+ IMAGE_DIRECTORY_ENTRY_EXPORT;
if (pidd->VirtualAddress &&
(pidd->Size >= IMAGE_EXPORT_DIRECTORY_))
{
pied = PTR_ADD (pBase, pidd->VirtualAddress);
}
else
{
ns = STATUS_DATA_ERROR;
}
}
if (ppBase != NULL) *ppBase = pBase;
if (pns != NULL) *pns = ns;
return pied;
}

LINKING TO SYSTEM MODULES AT RUNTIME

353

/] mm e -
PVOID SpyModuleSymbol (PBYTE pbModule,

PBYTE pbName,

PPVOID ppBase,

PNTSTATUS pns)

{
PIMAGE_EXPORT_DIRECTORY pied;

PDWORD pdNames, pdFunctions;
PWORD pwOrdinals;
DWORD i, 3
PVOID pBase = NULL;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PVOID pAddress = NULL;
if ((pied = SpyModuleExport (pbModule, &pBase, &ns)) != NULL)
{
pdNames = PTR_ADD (pBase, pied->AddressOfNames) ;
pdFunctions = PTR_ADD (pBase, pied->AddressOfFunctions) ;
pwOrdinals = PTR_ADD (pBase, pied->AddressOfNameOrdinals) ;
for (i = 0; i < pied->NumberOfNames; i++)
{
j = pwOrdinals [i];

if (!strcmp (PTR_ADD (pBase, pdNames [i]), pbName))
{
if (j < pied->NumberOfFunctions)
{
pAddress = PTR_ADD (pBase, pdFunctions [Jj]);
}
break;
}
}
if (pAddress == NULL)
{
ns = STATUS_PROCEDURE_NOT_FOUND;
}
}
if (ppBase != NULL) *ppBase = pBase;
if (pns != NULL) *pns = ns;
return pAddress;

}

LISTING 6-10. Looking Up Symbols in a Module’s Export Section

354 CALLING KERNEL API FUNCTIONS FROM USER-MODE

SpyModuleSymbol () does the final work. Here you find the code that accesses
the various items shown in Figure 6-1. After requesting an IMAGE_EXPORT_DIRECTORY
pointer from SpyModuleExport (), the linear addresses of the address, name, and
ordinal arrays are determined, again with the help of the pTR_aDpD () macro. Fortu-
nately, the PE file format specifies pointers to its internal data structures consistently
as offsets from the base address of the image, so the PTR_aADD () macro constitutes a
convenient general-purpose shortcut whenever a linear address must be computed
from such an offset. It is important to note the role of the ordinal number array dur-
ing address lookup. If the symbol has been found in the name array, the variable i
contains the zero-based index of the array entry pointing to the symbol name. This
value cannot be used as is to retrieve the associated address—it must be converted by
means of the ordinal number array. The code line j = pwordinals [i]; does the
trick. The resulting zero-based ordinal number j is the index that finally selects the
correct address. Note that ordinal numbers are 16-bit quantities, whereas the other
two arrays contain 32-bit numbers. If the symbol passed to SpyModulesymbol () as
its pbName argument cannot be resolved, a NULL pointer is returned, along with a
status code of STATUS_PROCEDURE_NOT_FOUND (0xC000007A).

Although it looks like spyModulesymbol () provides everything we need to
call kernel functions by name, ’'m putting one more wrapper around it. Listing 6-11
shows the ultimate achievement: The function spyModuleSymbolEx () takes a single
string composed of a module/symbol pair in the form *module!symbol” and resolves
it with the help of spyModulesymbol () . The largest part of the code is busy parsing
the input string into a module name and a symbol. If no “ !~ separator is found, spy
ModuleSymbolEx () assumes that ntoskrnl.exe is the target module, because this is
certainly the most frequently used option.

PVOID SpyModuleSymbolEx (PBYTE pbSymbol,
PPVOID ppBase,
PNTSTATUS pns)
{

DWORD i;

BYTE abModule [MAXIMUM_FILENAME_LENGTH] = “ntoskrnl.exe”;
PBYTE pbName = pbSymbol;

PVOID pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pAddress = NULL;

for (i = 0; pbSymbol [i] && (pbSymbol [i] != ‘!7); i++);

if (pbSymbol [1i++]
{

LINKING TO SYSTEM MODULES AT RUNTIME 355

if (1 <= MAXIMUM_FILENAME_LENGTH)
{
strcpyn (abModule, pbSymbol, 1i);
pbName = pbSymbol + 1i;
}
else
{
pbName = NULL;
}
}
if (pbName != NULL)
{
pAddress = SpyModuleSymbol (abModule, pbName, &pBase, &ns);
}
if (ppBase != NULL) *ppBase = pBase;
if (pns != NULL) *pns = ns;
return pAddress;
}

LISTING 6-11. A Powerful Symbol Lookup Function

THE BRIDGE TO USER-MODE

Now the evolution of the kernel call interface will slowly come to an end—at least as
far as kernel-mode is concerned. Let me sum up what we have so far:

A function named spycallEx () (Listing 6-3) that receives a
spy_carnt,_INpPUT control block containing a target address and some
function arguments. It calls the specified address and returns any results in
a spy_carI,_ouTputT control block.

® A mechanism to look up exported system functions and variables by
name, represented by the function spyModuleSymbolEx () (Listing 6-11).

So the last question is: “How do we make this stuff accessible to user-mode
applications?” The answer is, of course: “Via Device I/O Control,” as usual. To this
end, the spy device provides a couple of IOCTL functions, summarized in Table 6-1.
This is yet another excerpt from Table 4-2 in Chapter 4, which is a complete sum-
mary of all IOCTL functions offered by w2k_spy.sys. Listing 6-12 excerpts the rele-
vant portions of the spyDispatcher () function, which is shown in Listing 4-7 in
Chapter 4.

356 CALLING KERNEL API FUNCTIONS FROM USER-MODE

The last row in Table 6-1 names the spy_10_cart function that will serve as the
bridge to user-mode. The remaining functions are there just for fun. I thought that
once the spy device has access to this sort of valuable information, it would be nice to
make it available to applications as well. As in Chapters 4 and 5, short descriptions
of all newly introduced IOCTL functions follow.

TABLE 6-1. IOCTL Functions Associated with the Kernel Call Interface

FUNCTION NAME ID IOCTL CODE DESCRIPTION

SPY_IO_MODULE_INFO 19 0x8000604C Returns information about loaded
system modules

SPY_IO_PE_HEADER 20 0x80006050 Returns IMAGE_NT_HEADERS data

SPY_IO_PE_EXPORT 21 0x80006054 Returns IMAGE_EXPORT_
DIRECTORY data

SPY_IO_PE_SYMBOL 22 0x80006058 Returns the address of an exported
system symbol

SPY_IO_CALL 23 0x8000E05C Calls a function inside a loaded
module

NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,

DWORD dCode,
PVOID pInput,
DWORD dInput,
PVOID pOutput,
DWORD dOutput,
PDWORD pdInfo)

{

SPY_MEMORY_BLOCK smb;
SPY_PAGE_ENTRY spe;
SPY_CALL_INPUT sci;
PHYSICAL_ADDRESS pa;

DWORD dvalue, dCount;

BOOL fReset, fPause, fFilter, fLine;
PVOID pAddress;

PBYTE pbName ;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch) ;

*pdInfo = 0;

switch (dCode)
{

LINKING TO SYSTEM MODULES AT RUNTIME

357

//
// unrelated IOCTL functions omitted (cf. Listing 4-7)
// ===
case SPY_IO_MODULE_INFO:
{
if ((ns = SpyInputPointer (&pbName,
pInput, dInput))

== STATUS_SUCCESS)

ns = SpyOutputModuleInfo (pbName,
pOutput, dOutput, pdInfo);
}
break;
}
case SPY_IO_PE_HEADER:
{
if ((ns = SpyInputPointer (&pAddress,
pInput, dInput))

STATUS_SUCCESS)

-~

ns = SpyOutputPeHeader (pAddress,
pOutput, dOutput, pdInfo);
}
break;
}
case SPY_IO_PE_EXPORT:
{
if ((ns = SpyInputPointer (&pAddress,
pInput, dInput)
== STATUS_SUCCESS)

ns = SpyOutputPeExport (pAddress,
pOutput, dOutput, pdInfo);
}
break;
}
case SPY_IO_PE_SYMBOL:
{
if ((ns = SpyInputPointer (&pbName,
pInput, dInput))
== STATUS_SUCCESS)

ns = SpyOutputPeSymbol (pbName,
pOutput, dOutput, pdInfo);
}
break;
}
case SPY_TIO_CALL:
{

(continued)

358 CALLING KERNEL API FUNCTIONS FROM USER-MODE

if ((ns = SpyInputBinary (&sci, SPY_CALL_INPUT_,
pInput, dInput)
== STATUS_SUCCESS)

ns = SpyOutputCall (&sci,
pOutput, dOutput, pdInfo);

break;

}
// =================SSSS=SSSSSSSSSSsS=SSSSS==sSsS===ss=====
// unrelated IOCTL functions omitted (cf. Listing 4-7)
//

MUTEX_RELEASE (pDeviceContext->kmDispatch) ;
return ns;

}

LISTING 6-12. Excerpt from the Spy Driver’s Hook Command Dispatcher

THE IOCTL FuncTtioN SPY 10 MODULE_INFO

The IOCTL spy_10_MODULE_INFO function receives a module base address and
sends back a spy_MoDULE_1NFO structure if the address points to a valid PE image.
The definition of this structure plus the related spyoutputModuleInfo () helper
function called by the spyDispatcher () in Listing 6-12 are shown in Listing 6-13.
SpyOutputModuleInfo () is based on SpyModuleFind () (Listing 6-9), which returns
MODULE_INFO data obtained from ZwQuerySystemInformation (). The MODULE_INFO
is converted to spY_MODULE_INFO format and sent off to the caller.

typedef struct _SPY_MODULE_INFO
{
PVOID pBase;
DWORD dSize;
DWORD dFlags;
DWORD dIndex;
DWORD dLoadCount;
DWORD dNameOffset;
BYTE abPath [MAXIMUM_ FILENAME_LENGTH] ;
}
SPY_MODULE_INFO, *PSPY_MODULE_INFO, **PPSPY_MODULE_INFO;

#define SPY_MODULE_INFO_ sizeof (SPY_MODULE_INFO)

LINKING TO SYSTEM MODULES AT RUNTIME

359

NTSTATUS SpyOutputModuleInfo (PBYTE pbModule,
PVOID pOutput,
DWORD dOutput,
PDWORD pdInfo)
{
SPY_MODULE_INFO smi;

PMODULE_LIST pml;

PMODULE__INFO pmi ;

DWORD dIndex;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pbModule != NULL) && SpyMemoryTestAddress (pbModule) &&
((pml = SpyModuleFind (pbModule, &dIndex, &ns)) != NULL))
{

pmi = pml->aModules + dIndex;

smi.pBase = pmi->pBase;
smi.dSize = pmi->dSize;
smi.dFlags = pmi->dFlags;
smi.dIndex = pmi->wIndex;
smi.dLoadCount = pmi->wLoadCount;

smi.dNameOffset = pmi->wNameOffset;

strcpyn (smi.abPath, pmi->abPath, MAXIMUM_FILENAME_LENGTH) ;

ns = SpyOutputBinary (&smi, SPY MODULE_INFO_,
pOutput, dOutput, pdInfo);

SpyMemoryDestroy (pml) ;
}

return ns;

}

LISTING 6-13. Implementation of sPY_I10_MODULE_INFO

THE IOCTL FuncTtioN SPY 10 PE_ HEADER

The IOCTL spy_10_PE_HEADER function is merely an IOCTL wrapper for the
ntoskrnl.exe API function Rt1TImageNtHeader (), as Listing 6-14 proves. Like
SPY_TO_MODULE_INFO, it expects a module base address. The returned data is the
module’s TMAGE_NT_HEADERS structure.

NTSTATUS SpyOutputPeHeader (PVOID pBase,
PVOID pOutput,
DWORD dOutput,
PDWORD pdInfo)

(continued)

360 CALLING KERNEL API FUNCTIONS FROM USER-MODE

{
PIMAGE_NT_HEADERS pinh;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pBase != NULL) && SpyMemoryTestAddress (pBase) &&
((pinh = RtlImageNtHeader (pBase)) != NULL))
{

ns = SpyOutputBinary (pinh, IMAGE_NT HEADERS_,
pOutput, dOutput, pdInfo);
}
return ns;

}

LISTING 6-14. Implementation of SPY_10_PE_HEADER

THE IOCTL FuncTtioN SPY_1IO_PE_EXPORT

The IOCTL spy_10_PE_EXPORT function is more interesting than the previous one.

In short, it returns the IMAGE_EXPORT DIRECTORY associated with a module base
address to the caller. A close look at its implementation in Listing 6-15 reveals

a strong similarity to the SpyModuleExport () function in Listing 6-10. However,
SpyOutputPeExport () does a lot of additional work. The reason for this is that the
IMAGE_EXPORT_DIRECTORY contains relative addresses throughout, as explained earlier.
The caller can’t make much use of these offsets after the data has been copied to a sepa-
rate buffer, because the base address to which the offsets relate has changed. Without
additional address information from the PE header, it is impossible to compute a new
matching base address. To save the caller from this excess work, SpyoutputPeExport ()
converts all offsets that point into the export section to offsets relative to the beginning
of this section by subtracting its Virtualaddress specified in the TMAGE_DATA_
DIRECTORY. The entries in the address array must be handled differently because

they refer to other sections in the PE image. Therefore, spyoutputPeExport ()

relocates them to absolute linear addresses by adding the image base address.

NTSTATUS SpyOutputPeExport (PVOID pBase,

PVOID pOutput,
DWORD dOutput,
PDWORD pdInfo)

{

PIMAGE_NT_HEADERS pinh;

PIMAGE_DATA_DIRECTORY pidd;

PIMAGE_EXPORT DIRECTORY pied;

PVOID pData;

DWORD dData, dBias, 1i;

LINKING TO SYSTEM MODULES AT RUNTIME

361

PDWORD pdData;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pBase != NULL) && SpyMemoryTestAddress (pBase) &&
((pinh = RtlImageNtHeader (pBase)) != NULL))

{
pidd = pinh->OptionalHeader.DataDirectory
+ IMAGE_DIRECTORY_ENTRY_EXPORT;

if (pidd->VirtualAddress &&
(pidd->Size >= IMAGE_EXPORT DIRECTORY_))
{
pData = (PBYTE) pBase + pidd->VirtualAddress;
dData = pidd->Size;

if ((ns = SpyOutputBinary (pData, dData,
pOutput, dOutput, pdInfo))
== STATUS_SUCCESS)
{
pied = pOutput;
dBias = pidd->VirtualAddress;

pied->Name -= dBias;
pied->AddressOfFunctions -= dBias;
pied->AddressOfNames -= dBias;
pied->AddressOfNameOrdinals -= dBias;

pdData = PTR_ADD (pied, pied->AddressOfFunctions);

for (i = 0; i < pied->NumberOfFunctions; i++)
{
pdData [i] += (DWORD) pBase;

}
pdData = PTR_ADD (pied, pied->AddressOfNames) ;

for (i = 0; i < pied->NumberOfNames; i++)
{
pdData [i] -= dBias;
}

else
{
ns = STATUS_DATA_ERROR;
}
}
return ns;

}

LISTING 6-15. Implementation of SPY_T0_PE_EXPORT

362 CALLING KERNEL API FUNCTIONS FROM USER-MODE

THE IOCTL FunctioN SPY_10 PE SYMBOL

The IOCTL spv_10_PE_symMBoL function makes the symbol lookup engine of the ker-
nel call interface accessible to user-mode applications. Its implementation, shown in
Listing 6-16, isn’t extraordinarily exciting, because it is an IOCTL wrapper for the
SpyModuleSymbolEx () function in Listing 6-11. The caller must pass in a pointer to a
string in the form “module!symbol, ” or simply “symbol” if the symbol should be
looked up in the export section of ntoskrnl.exe, and gets back a