
In Chapter 2, I explained how Windows 2000 allows user-mode applications to 
call a subset of its kernel API functions—the Native API—by means of an interrupt

gate mechanism. Chapters 4 and 5 relied heavily on a mechanism referred to as
Device I/O Control (IOCTL) to carry out additional tasks that aren’t allowed in user-
mode. Both the Native API and IOCTL are quite powerful, but think of the benefit 
of being able to call almost any kernel-mode function as if it were located in a normal
user-mode DLL. This is generally considered impossible. However, I will demonstrate
in this chapter that it is possible with the help of a couple of wacky programming
tricks. Again, IOCTL will come to the rescue to solve a problem that seems impossi-
ble at first sight. This chapter is revolutionary because it builds a general-purpose
bridge from user-mode to kernel-mode, allowing the Win32 application to call kernel
API functions just as if they were part of the Win32 API. Even better, an application
can call internal kernel functions that are not even available to kernel-mode drivers,
with the help of the symbol files coming with the Windows 2000 debugging tools.
This “kernel call interface” works seamlessly in the background, almost completely
unnoticed by the calling application.

A GENERAL KERNEL CALL INTERFACE

In Chapter 4, we used a kernel-mode driver to call selected kernel API functions on
behalf of a user-mode program. For example, the SPY_IO_PHYSICAL function offered
by the spy driver w2k_spy.sys is merely a wrapper around the memory manager’s
MmGetPhysicalAddress() function. Another example is SPY_IO_HANDLE_INFO,
which is built upon the object manager’s ObReferenceObjectByHandle() and
ObDereferenceObject() functions. Although this technique works fine, it is quite
tedious and inefficient to design a custom IOCTL function for every kernel API 
function that should be made available to user-mode code. Therefore, I have added 
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a general-purpose IOCTL function to the spy device inside the sample driver
w2k_spy.sys that calls arbitrary kernel-mode functions, given a symbolic name or an
entry point plus a list of arguments. This sounds like a lot of work, but you will be
surprised how simple the necessary code actually is. The only difficulty is that again
we will need a good deal of inline assembly language (ASM).

DESIGNING A GATE TO KERNEL-MODE

If a program running in user-mode wants to call a kernel-mode function, it has to
solve two problems. First, it must somehow jump across the barrier between user-
mode and kernel-mode, and second, it must transfer data in and out. For the subset
comprising the Native API, the ntdll.dll component takes over this duty, using an
interrupt gate to accomplish the mode change and CPU registers to pass in a pointer
to the caller’s argument stack and to return the function’s result to the caller. For ker-
nel functions not included in the Native API, the operating system doesn’t offer such
a gate mechanism. Therefore, we will have to create our own. Part one of the prob-
lem is easily solved: The w2k_spy.sys driver introduced in Chapter 4 and extended
in Chapter 5 crosses the user-to-kernel-mode border back and forth many times dur-
ing its IOCTL transactions. And because IOCTL optionally allows passing data
blocks in both directions, the date transfer problem is solved as well. In the end, the
whole matter boils down to the following simple sequence of steps:

1. The user-mode application posts an IOCTL request, passing in
information about the function to be called, as well as a pointer to its
argument stack.

2. The kernel-mode driver dispatches the request, copies the arguments onto
its own stack, calls the function, and passes the results back to the caller in
the IOCTL output buffer.

3. The caller picks up the results of the IOCTL operation and proceeds as it
would after a normal DLL function call.

The main problem with this scenario is that the kernel-mode module must cope
with various data formats and calling conventions. Following is a list of situations
the driver must be prepared for:

• The size of the argument stack depends on the target function. Because it
is impractical to give the driver detailed knowledge about all functions
it might possibly have to call, the caller must supply the size of the
argument stack.
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• Windows 2000 kernel API functions use three calling conventions:
__stdcall, __cdecl, and __fastcall, which differ considerably in the
way arguments are treated. __stdcall and __cdecl require all arguments
to be passed in on the stack, whereas __fastcall aims at minimizing
stack fumbling overhead by passing the first two arguments in the CPU
registers ECX and EDX. On the other hand, __stdcall and __fastcall
agree in the way arguments are removed from the stack, forcing the called
code to take over the responsibility. __cdecl, however, leaves this task to
the calling code. Although the stack cleanup problem can be easily solved
by saving the stack pointer before the call and resetting it to its original
position after returning, regardless of the calling convention, the driver is
helpless with respect to the __fastcall convention. Therefore, the caller
must specify on every call whether the __fastcall convention is in effect,
to allow the driver to prepare the registers ECX and EDX if necessary.

• Windows 2000 kernel functions return results in various sizes, ranging
from zero to 64 bits. The 64-bit register pair EDX:EAX transports the
results back to the caller. Data is filled in from the least-significant end
toward the most-significant end. For example, if a function returns a 16-
bit SHORT data type, only register AX (comprising AL and AH) is significant.
The upper half of EAX and the entire EDX contents are undefined. Because
the driver is ignorant of the called function’s I/O data, it must assume the
worst case, which is 64-bits. Otherwise, the result may be truncated.

• The application might supply invalid arguments. In user-mode, this is
usually benign. At worst, the application process is aborted with an error
message box. Occasionally, this error results in system damage that
requires a reboot for recovery. In kernel-mode, the most frequent
programming error, known as “bad pointer,” almost instantly results in a
Blue Screen of Death, which might cause loss of user data. This problem
can be addressed to a great extent by using the operating system’s
Structured Exception Handling (SEH) mechanism.

That said, let’s examine how our spy driver handles function properties, 
arguments, and results. Listing 6-1 shows the involved IOCTL input and output
structures, SPY_CALL_INPUT and SPY_CALL_OUTPUT. The latter is quite simple—it
consists of a ULARGE_INTEGER structure that is used by Windows 2000 to represent a
64-bit value both as a single 64-bit integer and a pair of 32-bit halves. Please consult
Listing 2-3 in Chapter 2 for the layout of this structure.
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LISTING 6-1. Definition of SPY_CALL_INPUT and SPY_CALL_OUTPUT

SPY_CALL_INPUT needs a bit more explanation. The purpose of the fFastCall
member should be obvious. It signals to the spy driver that the function to be called
obeys the __fastcall convention, so the first two arguments, if any, must not be
passed in on the stack, but in CPU registers. dArgumentBytes specifies the number of
bytes piled up on the argument stack, and pArguments points to the top of this stack.
The remaining arguments, pbSymbol and pEntryPoint, are mutually exclusive, and
tell the driver which function to execute. You can specify either a function name or a
plain entry point address. The other member should always be set to NULL. If both
values are non-NULL, pbSymbol takes precedence over pEntryPoint. Calling a func-
tion by name rather than by address adds an additional step, where the entry point
of the specified symbolic name is determined. If it can be retrieved, the function is
entered through this address. Passing in an entry point simply bypasses the symbol
resolution step.

Finding the linear address associated with a symbol exported by a kernel-mode
module sounds easier than it actually is. The powerful Win32 functions GetModule
Handle() and GetProcAddress(), which work fine with all components within the
Win32 subsystem, do not recognize kernel-mode system modules and drivers. Imple-
menting this part of the sample code was difficult, the details are covered in the next
section of this chapter. For now, let’s assume that a valid entry point is available, no
matter how it has been supplied. Listing 6-2 shows the function SpyCall() that

334 CALLING KERNEL API FUNCTIONS FROM USER-MODE

typedef struct _SPY_CALL_INPUT

{

BOOL  fFastCall;

DWORD dArgumentBytes;

PVOID pArguments;

PBYTE pbSymbol;

PVOID pEntryPoint;

}

SPY_CALL_INPUT, *PSPY_CALL_INPUT, **PPSPY_CALL_INPUT;

#define SPY_CALL_INPUT_ sizeof (SPY_CALL_INPUT)

// -----------------------------------------------------------------

typedef struct _SPY_CALL_OUTPUT

{

ULARGE_INTEGER uliResult;

}

SPY_CALL_OUTPUT, *PSPY_CALL_OUTPUT, **PPSPY_CALL_OUTPUT;

#define SPY_CALL_OUTPUT_ sizeof (SPY_CALL_OUTPUT)



constitutes the core part of my kernel call interface. As you see, it is almost 100%
assembly language. It is always unpleasant to resort to ASM in a C program, but
some tasks simply can’t be done in pure C. In this case, the problem is that Spy-
Call() needs total control of the stack and the CPU registers, and therefore it must
bypass the C compiler and optimizer, which use the stack and registers as they see fit.

Before delving into the details of Listing 6-2, let me describe another special fea-
ture of the SpyCall() function that obscures the code. As explained in Chapter 2, the
Windows 2000 system modules export some of their variables by name. Typical
examples are NtBuildNumber and KeServiceDescriptorTable. The Portable Exe-
cutable (PE) file format of Windows 2000/NT/9x provides a general-purpose mecha-
nism for attaching symbols to addresses, regardless of whether an address points to
code or data. Therefore, a Windows 2000 module is free to attach exported symbols
to its global variables at will. A client module can dynamically link to them like it
links to function symbols, and it is able to use these variables as if they were located
in its own global data section. Of course, my kernel call interface would not be com-
plete if it were not able to cope with this kind of symbol as well, so I decided that
negative values of the dArgumentBytes member inside the SPY_CALL_INPUT structure
should indicate that data is to be copied from the entry point instead of calling it.
Valid values range from –1 to –9, where –1 means that the entry point address itself
is copied to the SPY_CALL_OUTPUT buffer. For the remaining values, their one’s com-
plement states the number of bytes copied from the entry point, that is, –2 copies a
single BYTE or CHAR; –3, a 16-bit WORD or SHORT; –5, a 32-bit DWORD or LONG; and –9
a 64-bit DWORDLONG or LONGLONG. You may wonder why it should be necessary to
copy the entry point itself. Well, some kernel symbols, such as KeServiceDescriptor
Table point to structures that exceed the 64-bit return value limit, so it is wiser to
return the plain pointer rather than truncating the value to 64 bits.
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void SpyCall (PSPY_CALL_INPUT  psci,

PSPY_CALL_OUTPUT psco)

{

PVOID pStack;

__asm

{

pushfd

pushad

xor     eax, eax

mov     ebx, psco               ; get output parameter block

lea     edi, [ebx.uliResult]    ; get result buffer

mov     [edi  ], eax            ; clear result buffer (lo)

mov     [edi+4], eax            ; clear result buffer (hi)

mov     ebx, psci               ; get input parameter block

mov     ecx, [ebx.dArgumentBytes]

(continued)
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cmp     ecx, -9                 ; call or store/copy?

jb      SpyCall2

mov     esi, [ebx.pEntryPoint]  ; get entry point

not     ecx                     ; get number of bytes

jecxz   SpyCall1                ; 0 -> store entry point

rep     movsb                   ; copy data from entry point

jmp     SpyCall5

SpyCall1:

mov     [edi], esi              ; store entry point

jmp     SpyCall5

SpyCall2:

mov     esi, [ebx.pArguments]

cmp     [ebx.fFastCall], eax    ; __fastcall convention?

jz      SpyCall3

cmp     ecx, 4                  ; 1st argument available?

jb      SpyCall3

mov     eax, [esi]              ; eax = 1st argument

add     esi, 4                  ; remove argument from list

sub     ecx, 4

cmp     ecx, 4                  ; 2nd argument available?

jb      SpyCall3

mov     edx, [esi]              ; edx = 2nd argument

add     esi, 4                  ; remove argument from list

sub     ecx, 4

SpyCall3:

mov     pStack, esp             ; save stack pointer

jecxz   SpyCall4                ; no (more) arguments

sub     esp, ecx                ; copy argument stack

mov     edi, esp

shr     ecx, 2

rep     movsd

SpyCall4:

mov     ecx, eax                ; load 1st __fastcall arg

call    [ebx.pEntryPoint]       ; call entry point

mov     esp, pStack             ; restore stack pointer

mov     ebx, psco               ; get output parameter block

mov     [ebx.uliResult.LowPart ], eax   ; store result (lo)

mov     [ebx.uliResult.HighPart], edx   ; store result (hi)

SpyCall5:

popad

popfd

}

return;

}

LISTING 6-2. The Core Function of the Kernel Call Interface



With the special case of accessing exported variables kept in mind, Listing 6-2
shouldn’t be too difficult to understand. First, the 64-bit result buffer is cleared, 
guaranteeing that unused bits are always zero. Next, the dArgumentBytes member 
of the input data is compared with –9 to find out whether the client requested a func-
tion call or a data copying operation. The function call handler starts at the label
SpyCall2. After setting register ESI to the top of the argument stack by evaluating
the pArguments member, it is time to check the calling convention. If __fastcall is
required and there is at least one 32-bit value on the stack, SpyCall() removes it and
stores it temporarily in EAX. If another 32-bit value is available, it is removed as well
and stored in EDX. Any remaining arguments remain on the stack. Meanwhile, the
label SpyCall3 is reached. Now the current top-of-stack address is saved to the local
variable pStack, and the argument stack (minus the arguments removed in the
__fastcall case) is copied to the spy driver’s stack using the fast i386 REP MOVSD

instruction. Note that the direction flag that determines whether MOVSD proceeds
upward or downward in memory can be assumed to be clear by default; that is, ESI
and EDI are incremented after each copying step. The only thing left to do before
executing the CALL instruction is to copy the first __fastcall argument from its
preliminary location EAX to its final destination ECX. SpyCall() blindly copies
EAX to ECX because this operation doesn’t create havoc if the calling convention is
__stdcall or __cdecl. The MOV ECX, EAX instruction is so fast that executing it in
vain is much more efficient than jumping around it after testing the value of the
fFastCall member.

After the call to the function’s entry point returns, SpyCall() resets the stack
pointer to the location saved off to the variable pStack. This takes care of the differ-
ent stack cleanup policy of __stdcall and __fastcall versus __cdecl. A __cdecl
function returns to the caller, with the ESP register pointing to the top of the argu-
ment stack, whereas an __stdcall or a __fastcall function resets it to its original
address before the call. Forcing ESP to a previously backed-up address always cleans
up the stack properly, no matter which calling convention is used. The last few ASM
lines of SpyCall()store the function result returned in EDX:EAX to the caller’s
SPY_CALL_OUTPUT structure. No attempt is made to find out the correct result size.
This is unnecessary because the caller knows exactly how many valid result bits it can
expect. Copying too many bits does no harm—they are simply ignored by the caller.

One thing that should be noted about the code in Listing 6-2 is that it contains
absolutely no provisions for invalid arguments. It does not even check the validity 
of the stack pointer itself. In kernel-mode, this is equivalent to playing with fire.
However, how could the spy driver verify all arguments? A 32-bit value on the stack
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could be a counter value, a bit-field array, or maybe a pointer. Only the caller and the
called target function know the argument semantics. The SpyCall() function is a
simple pass-through layer that has no knowledge about the type of data it forwards.
Adding context-sensitive argument checking to this function would amount to
rewriting large parts of the operating system. Fortunately, Windows 2000 offers an
easy way out of this dilemma: Structured Exception Handling (SEH).

SEH is an easy-to-use framework that enables a program to catch exceptions
that would otherwise crash the system. An exception is an abnormal situation that
forces the CPU to stop whatever it is currently doing. Typical operations that gener-
ate exceptions are reading from or writing to linear addresses that don’t map to
physical or paged-out memory, writing data to a code segment, attempting to execute
instructions in a data segment, or dividing a number by zero. Some exceptions are
benign. For example, accessing a memory location that has been swapped to a page-
file generates an exception that the system can handle by bringing the target page
back to physical memory. However, most exceptions are fatal, because the operating
system has no idea how to recover from the exception, so the system simply shuts
down. This reaction might seem harsh, but sometimes it is better to halt an imminent
catastrophe before things become worse. With SEH, the program that caused the
exception is granted a second chance. Using the Microsoft-specific C construct __try
/__except, an arbitrary sequence of instructions can be guarded against exceptions.
If an exception puts the system into a critical state, a custom handler inside the pro-
gram is invoked, allowing the programmer to provide a more useful reaction than
just triggering a Blue Screen.

Obviously, SEH is also able to work around the parameter validation problem
of our spy device. Listing 6-3 shows a wrapper that puts the SpyCall() function into
a SEH frame. The guarded code is enclosed in the braces of the __try clause. Of
course, not only the SpyCall() instruction is protected; all subordinate code that is
executed in the context of the call is protected as well. If an exception is thrown, the
code inside the __except clause is entered, as demanded by the filter expression
EXCEPTION_EXECUTE_HANDLER. The exception handler in Listing 6-3 is trivial. It just
causes SpyCallEx() to return the status code STATUS_ACCESS_VIOLATION instead of
STATUS_SUCCESS, which will in turn result in failure of the DeviceIoControl() call
on the user-mode side. No Blue Screen appears; the only problem remaining after the
exception is that the results of the called function are undefined, but this is something
the caller should be prepared for anyway.
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LISTING 6-3. Adding Structured Exception Handling to the Kernel Call Interface

Although SEH catches the most common parameter errors, you should not
expect it to be a remedy against any garbage a client application might possibly
deliver to a kernel API function. Some bad function arguments silently wreck the 
system without causing an exception. For example, a function that copies a string
can easily overwrite vital parts of system memory if the destination buffer pointer is
set to the wrong address. This kind of bug might remain undetected for a long time,
until the system suddenly and unexpectedly breaks down when the program execu-
tion eventually rushes into the modified memory area. While testing the spy driver, I
occasionally managed to get the test application hung in its IOCTL call to the spy
device. The application didn’t respond anymore and even refused to be removed from
memory. Even worse, the system became unable to shut down. This is almost as
annoying as a Blue Screen!

LINKING TO SYSTEM MODULES AT RUNTIME

After implementing the basic kernel call interface, the next problem is to resolve 
symbolic function names to linear addresses required in the ASM CALL instruction in
Listing 6-2. This step is very important because you cannot be sure that the entry
points of the various kernel API functions remain unchanged over a longer period.
Whenever possible, functions should be called by name. Calling a system function by
address is certainly exceptional, typically restricted to functions that are not exported
by the target module. In most cases, it is more desirable to use the symbolic name,
which is provided somewhere in the module’s export section.
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NTSTATUS SpyCallEx (PSPY_CALL_INPUT  psci,

PSPY_CALL_OUTPUT psco)

{

NTSTATUS ns = STATUS_SUCCESS;

__try

{

SpyCall (psci, psco);

}

__except (EXCEPTION_EXECUTE_HANDLER)

{

ns = STATUS_ACCESS_VIOLATION;

}

return ns;

}



LOOKING UP NAMES EXPORTED BY A PE IMAGE

For a Win32 programmer, linking at runtime to a function exported by a DLL is an
everyday task. For example, if you want to write a DLL that uses the enhanced fea-
tures of Windows 2000, but also runs on legacy systems such as Windows 95 or 98
with reduced functionality, you should link to the special functions at runtime,
silently falling back to default behavior if these functions aren’t available. In this
case, you would just call GetModuleHandle() if the DLL is already in memory and 
is guaranteed to stay there long enough, or LoadLibrary() if it has to be loaded or
must be protected against premature unloading. The returned module handle can in
turn be used in a sequence of GetProcAddress() calls that retrieve the entry points 
of all DLL functions the application wants to call. So it seems only logical to try the
same with kernel functions exported by ntoskrnl.exe, hal.dll, or other system
modules. However, neither of the above functions works in this situation! Get
ModuleHandle() reports that no such module is loaded, and GetProcAddress()
returns NULL all the time if you pass in a hard-coded module handle, for example,
(HMODULE) 0x80400000 for ntoskrnl.exe. On second thought, this seems reason-
able; these functions are designed for Win32 components that run in user-mode and
therefore are loaded into the lower half of the 4-GB linear address space. Why should
they care about kernel-mode components that are out of reach for Win32 applica-
tions anyway?

If the Win32 subsystem is ignorant about the modules in kernel memory, the
next logical step is to let a kernel-mode driver do the work—the usual strategy
applied throughout this book. The undocumented MmGetSystemRoutineAddress()
function, exported by ntoskrnl.exe, obviously does the job, but, unfortunately, it
isn’t available on Windows NT 4.0. Because the main premise of this book’s sample
code is to remain compatible with the Windows 2000 predecessor to the greatest
extent possible, I chose to reject this special feature looking up the function entries
without the help of the system. The Windows 2000 runtime library provides some
limited support for image file parsing, such as the undocumented RtlImageNt
Header() function, whose prototype is shown in Listing 6-4. This simple function
takes the base address of a module image mapped to linear memory (i.e., a pointer to
its IMAGE_DOS_HEADER structure, as defined in the Win32 SDK header file winnt.h)
and returns a pointer to the Portable PE header referenced by the DOS header’s
e_lfanew member at file offset 0x3C. This function must be used with care, because
it performs only minimal sanity checks on the input pointer. It tests it for NULL
and 0xFFFFFFFF and verifies that the memory block it points to contains the MZ
signature at the beginning. This means that if you pass in a bogus address that is nei-
ther NULL nor 0xFFFFFFFF, a Blue Screen will be triggered immediately when Rtl
ImageNtHeader() reads the DOS header signature. Oddly, Windows NT 4.0 runs
this code in an SEH frame, whereas Windows 2000 doesn’t.
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PIMAGE_NT_HEADERS NTAPI RtlImageNtHeader (PVOID Base);

LISTING 6-4. The Prototype of RtlImageNtHeader()

#define IMAGE_DIRECTORY_ENTRY_EXPORT             0

#define IMAGE_DIRECTORY_ENTRY_IMPORT             1

#define IMAGE_DIRECTORY_ENTRY_RESOURCE           2

#define IMAGE_DIRECTORY_ENTRY_EXCEPTION          3

#define IMAGE_DIRECTORY_ENTRY_SECURITY           4

#define IMAGE_DIRECTORY_ENTRY_BASERELOC          5

#define IMAGE_DIRECTORY_ENTRY_DEBUG              6

#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT          7

#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR          8

#define IMAGE_DIRECTORY_ENTRY_TLS                9

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG       10

#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT      11

#define IMAGE_DIRECTORY_ENTRY_IAT               12

#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT      13

#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR    14

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES        16

// -----------------------------------------------------------------

typedef struct _IMAGE_FILE_HEADER

{

WORD  Machine;

WORD  NumberOfSections;

DWORD TimeDateStamp;

DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

WORD  SizeOfOptionalHeader;

WORD  Characteristics;

}

IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

Listing 6-4 shows that RtlImageNtHeader() returns a pointer to an IMAGE_
NT_HEADERS structure. The entire set of PE file structures is defined in winnt.h.
Unfortunately, the DDK header files do not have them, so it is necessary to add
these definitions manually. My spy driver contains the structures it needs for symbol
lookup (Listing 6-5) in its header file w2k_spy.h. IMAGE_NT_HEADERS is simply a
concatenation of the PE signature “PE\0\0,” an IMAGE_FILE_HEADER, and an
IMAGE_OPTIONAL_HEADER. The latter ends with an array of IMAGE_DATA_DIRECTORY
structures providing fast lookup of file sections with special duties. The first array
entry, identified by the index IMAGE_DIRECTORY_ENTRY_EXPORT defined at the very
beginning of Listing 6-5, points to the export section that contains the names and
addresses of the functions exported by the module. This is the section where we must
look up the function names passed to the kernel call interface.

(continued)
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// -----------------------------------------------------------------

typedef struct _IMAGE_DATA_DIRECTORY

{

DWORD VirtualAddress;

DWORD Size;

}

IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

// -----------------------------------------------------------------

typedef struct _IMAGE_OPTIONAL_HEADER

{

WORD                 Magic;

BYTE                 MajorLinkerVersion;

BYTE                 MinorLinkerVersion;

DWORD                SizeOfCode;

DWORD                SizeOfInitializedData;

DWORD                SizeOfUninitializedData;

DWORD                AddressOfEntryPoint;

DWORD                BaseOfCode;

DWORD                BaseOfData;

DWORD                ImageBase;

DWORD                SectionAlignment;

DWORD                FileAlignment;

WORD                 MajorOperatingSystemVersion;

WORD                 MinorOperatingSystemVersion;

WORD                 MajorImageVersion;

WORD                 MinorImageVersion;

WORD                 MajorSubsystemVersion;

WORD                 MinorSubsystemVersion;

DWORD                Win32VersionValue;

DWORD                SizeOfImage;

DWORD                SizeOfHeaders;

DWORD                CheckSum;

WORD                 Subsystem;

WORD                 DllCharacteristics;

DWORD                SizeOfStackReserve;

DWORD                SizeOfStackCommit;

DWORD                SizeOfHeapReserve;

DWORD                SizeOfHeapCommit;

DWORD                LoaderFlags;

DWORD                NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory

[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

}

IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

// -----------------------------------------------------------------

typedef struct _IMAGE_NT_HEADERS

{



LISTING 6-5. A Subset of the Basic PE File Structures

The layout of the export section inside a PE file is governed by the IMAGE_
EXPORT_DIRECTORY structure, found at the bottom of Listing 6-5. Basically, it
consists of a header composed of the members of the IMAGE_EXPORT_DIRECTORY,
plus three variable-length arrays and a sequence of zero-terminated ANSI strings.
An export item is usually identified by the following three parameters:

1. A zero-terminated symbolic name, consisting of 8-bit ANSI characters

2. A 16-bit ordinal number

3. A 32-bit target offset relative to the beginning of the file image

The export mechanism is not restricted to functions. It is merely a means to
assign a symbol to an address inside the PE image. For functions, the symbol is
attached to its entry point. For public variables, the symbol references its base
address. The assignments are achieved by filling three parallel arrays with the charac-
teristic parameters of the symbols. In Figure 6-1, these arrays are referred to as Array
of Target Addresses, Array of Name Offsets, and Array of Ordinal Numbers. They
correspond to the IMAGE_EXPORT_DIRECTORY members AddressOfFunctions,
AddressOfNames, and AddressOfNameOrdinals, respectively, which supply the
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DWORD                 Signature;

IMAGE_FILE_HEADER     FileHeader;

IMAGE_OPTIONAL_HEADER OptionalHeader;

}

IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;

// -----------------------------------------------------------------

typedef struct _IMAGE_EXPORT_DIRECTORY

{

DWORD Characteristics;

DWORD TimeDateStamp;

WORD  MajorVersion;

WORD  MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOfFunctions;

DWORD NumberOfNames;

DWORD AddressOfFunctions;

DWORD AddressOfNames;

DWORD AddressOfNameOrdinals;

}

IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;



array offsets relative to the image base address. The Name member contains the offset
of a symbol string that names the PE file itself. If the executable file is renamed, this
entry can be used to retrieve its original name. Figure 6-1 is just a common example
of an export section arrangement—the order of the arrays and the symbol string sub-
section is not fixed. A PE file writer can shuffle them around to its liking, as long as
the members of the IMAGE_EXPORT_DIRECTORY reference them correctly. The same is
true for the string referenced by the Name member. Although it is usually located at
the beginning of the name string sequence, this is not a requirement. Never rely on
assumptions about the locations of the variable portions of the export section.

The NumberOfFunctions and NumberOfNames members of the
IMAGE_EXPORT_DIRECTORY specify the number of entries in the AddressOfFunctions
and AddressOfNames arrays, respectively. No count is specified for the AddressOf
NameOrdinals array, because it always contains as many entries as the AddressOf
Names array. The maintenance of separate entry counts for addresses and names 
suggests that it might be possible to build executables that export unnamed
addresses. I have never seen such a file, but it is a good idea to keep this possibility in
mind while accessing the arrays. Again, don’t rely on assumptions!

The process of looking up the address of an exported function or variable by
name requires the following steps, given a module base address (i.e., an HMODULE in
Win32 lingo):

1. Call RtlImageNtHeader() with the module’s base address to get at its
IMAGE_NT_HEADERS. If this function returns NULL, the address does not
reference a valid PE image.

2. Use the constant IMAGE_DIRECTORY_ENTRY_EXPORT as an index into the
DataDirectory of the OptionalHeader member to find out the offset of
the export section.

3. Locate the name array inside the export section by evaluating the
AddressOfNames member of the IMAGE_EXPORT_DIRECTORY header.

4. Enumerate the names until a match is found or the end of the array
indicated by NumberOfNames is reached.

5. If a matching name is available, use the name array index to read the
associated ordinal number from the array of ordinals. The values in this
array are zero-based, so you can use the name’s ordinal immediately as an
index into the address array.

6. Add the module’s base address to the offset retrieved from the address array.
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FIGURE 6-1. Typical Layout of a PE File’s Export Section

This sequence of steps appears fairly simple. However, it contains one
unknown quantity: the module base address. Whereas the above actions basically
reflect the behavior of the Win32 GetProcAddress() function, finding the module
address means mimicking the behavior of GetModuleHandle(). If you scan the
function names exported by ntoskrnl.exe, you won’t be able to find anything
that sounds even remotely like a function that might do the trick. The reason
is that the Windows 2000 kernel provides a comprehensive function for this and
many other tasks that involve access to internal system data. This function is
called NtQuerySystemInformation().
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Name
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LOCATING SYSTEM MODULES AND DRIVERS IN MEMORY

NtQuerySystemInformation() is one of the most essential API functions for Windows
2000 system programmers, and there is hardly any built-in administration utility that
does not make use of it—yet you won’t find it mentioned anywhere in the Device 
Driver Kit (DDK) documentation. There is a single mention in the comments to the 
CONFIGURATION_INFORMATION structure inside ntddk.h, proving that this function
exists, but that’s it. If an “undocumentedness coefficient” would exist that were defined
as the usefulness of a function divided by its frequency of occurrence in the Microsoft
documentation, NtQuerySystemInformation() would certainly be ranked at the top.
Along with many other wonderful things, this function can return a list of loaded sys-
tem modules, including all system core components and kernel-mode drivers.

The spy driver source files contain the bare minimum of code and type defini-
tions required to obtain the loaded-module list from NtQuerySystemInformation().
From the caller’s point of view, it is a simple function. It expects four arguments, as
shown in Listing 6-6. The SystemInformationClass is a numeric zero-based value
that specifies the type of information to be queried. The information—which can be
of variable length, depending on the information class—is copied to the System
Information buffer supplied by the caller. The buffer length is specified by the 
SystemInformationLength argument. On success, the actual number of bytes copied
to the buffer is written to the variable pointed to by ReturnLength. The problem
with this function is that it doesn’t report how many bytes it wanted to copy if it
finds out that the buffer is too small. Thus, the caller must apply a trial-and-error
heuristic until the returned status code changes from STATUS_INFO_LENGTH_MISMATCH
(0xC0000004) to STATUS_SUCCESS (0x00000000).

Listing 6-6 doesn’t show NtQuerySystemInformation() itself, but rather its
twin, ZwQuerySystemInformation(), which is identical except for the function name
prefix. You might recall from Chapter 2 that the Nt* and Zw* variants of the Native
API functions work exactly the same if called from user-mode. The interface module
ntdll.dll routes each pair through the same INT 2Eh stub. In kernel-mode, however,
things are different. In this case, Native API calls are handled by ntoskrnl.exe, using
different execution paths for Nt* and Zw* functions. The Zw* variants are again routed
through the INT 2Eh interrupt gate, exactly as ntdll.dll. The Nt* variants, however, 

346 CALLING KERNEL API FUNCTIONS FROM USER-MODE

NTSTATUS NTAPI ZwQuerySystemInformation (DWORD  SystemInformationClass,

PVOID  SystemInformation,

DWORD  SystemInformationLength,

PDWORD ReturnLength);

LISTING 6-6. The Prototype of NtQuerySystemInformation()



bypass this gate. In the glossary of the DDK documentation, Microsoft provides the
following description for the Zw* function set (Microsoft 2000f):

“A set of entry points parallel to the executive’s system services. A call to a
ZwXxx entry point from kernel-mode code (including calls from other system
services or drivers) supplies the corresponding system service, except the caller’s
access rights and the arguments to the Zw ‘alias’ are not checked for validity,
and the call does not cause the previous mode to be set to user mode.”
(Windows 2000 DDK \ Kernel-Mode Drivers \ Design Guide \ Kernel-Mode
Glossary \ Z \ Zw routines.)

The last passage about the “previous mode” is important. Peter G. Viscarola
and W. Anthony Mason put it in different, more clarifying words:

“Although either variant of the function may typically be called from Kernel
mode, the Zw variant is used in place of the Nt version to cause the previous
mode (and hence the mode in which the request was issued) to be set to Kernel
mode.” (Viscarola and Mason 1999, p. 18).

The side effect of this previous-mode handling is that calling NtQuerySystem
Information() from a kernel-mode driver without any additional provisions returns
an error status of STATUS_ACCESS_VIOLATION (0xC0000005), whereas ZwQuery
SystemInformation() succeeds or at least returns STATUS_INFO_LENGTH_MISMATCH.

In Listing 6-7, the constant and type definitions required for the System
ModuleInformation class are shown. The list of loaded modules is returned in the
form of a MODULE_LIST structure, composed of a 32-bit module count and an array
of MODULE_INFO structures, one for each module.
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#define SystemModuleInformation 11 // SYSTEMINFOCLASS

// -----------------------------------------------------------------

typedef struct _MODULE_INFO

{

DWORD dReserved1;

DWORD dReserved2;

PVOID pBase;

DWORD dSize;

DWORD dFlags;

WORD  wIndex;

WORD  wRank;

WORD  wLoadCount; (continued)



LISTING 6-7. SystemModuleInformation Definitions

Now everything is set up for a ZwQuerySystemInformation() call. Listing 6-8
contains the SpyModuleList() function that implements the usual trial-and-error
loop required for this API function, along with two simple memory management
functions, SpyMemoryCreate() and SpyMemoryDestroy(), that internally call the
Windows 2000 Executive functions ExAllocatePoolWithTag() and ExFreePool().
The code starts out with a 4,096-byte buffer and doubles its size if the status code
says STATUS_INFO_LENGTH_MISMATCH. All other status codes break the loop. The
optional arguments pdData and pns provide more information about the returned
value. If SpyModuleList() yields NULL, indicating failure, the NTSTATUS buffer
pointed to by pns receives an error status code and *pdData is set to zero. On suc-
cess, *pdData specifies the number of bytes copied to the buffer, and *pns reports
STATUS_SUCCESS.
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WORD  wNameOffset;

BYTE  abPath [MAXIMUM_FILENAME_LENGTH];

}

MODULE_INFO, *PMODULE_INFO, **PPMODULE_INFO;

#define MODULE_INFO_ sizeof (MODULE_INFO)

// -----------------------------------------------------------------

typedef struct _MODULE_LIST

{

DWORD       dModules;

MODULE_INFO aModules [];

}

MODULE_LIST, *PMODULE_LIST, **PPMODULE_LIST;

#define MODULE_LIST_ sizeof (MODULE_LIST)

#define SPY_TAG ‘>YPS’ // SPY> read backwards

// -----------------------------------------------------------------

PVOID SpyMemoryCreate (DWORD dSize)

{

return ExAllocatePoolWithTag (PagedPool, max (dSize, 1),

SPY_TAG);

}

// -----------------------------------------------------------------
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PVOID SpyMemoryDestroy (PVOID pData)

{

if (pData != NULL) ExFreePool (pData);

return NULL;

}

// -----------------------------------------------------------------

PMODULE_LIST SpyModuleList (PDWORD    pdData,

PNTSTATUS pns)

{

DWORD        dSize;

DWORD        dData = 0;

NTSTATUS     ns    = STATUS_INVALID_PARAMETER;

PMODULE_LIST pml   = NULL;

for (dSize = PAGE_SIZE; (pml == NULL) && dSize; dSize <<= 1)

{

if ((pml = SpyMemoryCreate (dSize)) == NULL)

{

ns = STATUS_NO_MEMORY;

break;

}

ns = ZwQuerySystemInformation (SystemModuleInformation,

pml, dSize, &dData);

if (ns != STATUS_SUCCESS)

{

pml   = SpyMemoryDestroy (pml);

dData = 0;

if (ns != STATUS_INFO_LENGTH_MISMATCH) break;

}

}

if (pdData != NULL) *pdData = dData;

if (pns    != NULL) *pns    = ns;

return pml;

}

LISTING 6-8. Obtaining a module list from ZwQuerySystemInformation()

The remaining actions to be taken to retrieve the base address of a given 
module are quite simple. Listing 6-9 defines two more functions: SpyModuleFind()
is an enhanced SpyModuleList() wrapper that scans the module list returned by
ZwQuerySystemInformation() for a specified module file name, and SpyModule
Base() in turn wraps SpyModuleFind(), extracting just the base address of the mod-
ule in question from its MODULE_INFO and discarding the rest. The SpyModuleHeader()
function concluding Listing 6-9 calls SpyModuleBase() and passes the result to
RtlImageNtHeader(). This function provides the first step to the export section
of a loaded module.
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PMODULE_LIST SpyModuleFind (PBYTE     pbModule,

PDWORD    pdIndex,

PNTSTATUS pns)

{

DWORD        i;

DWORD        dIndex = -1;

NTSTATUS     ns     = STATUS_INVALID_PARAMETER;

PMODULE_LIST pml    = NULL;

if ((pml = SpyModuleList (NULL, &ns)) != NULL)

{

for (i = 0; i < pml->dModules; i++)

{

if (!_stricmp (pml->aModules [i].abPath +

pml->aModules [i].wNameOffset,

pbModule))

{

dIndex = i;

break;

}

}

if (dIndex == -1)

{

pml = SpyMemoryDestroy (pml);

ns  = STATUS_NO_SUCH_FILE;

}

}

if (pdIndex != NULL) *pdIndex = dIndex;

if (pns     != NULL) *pns     = ns;

return pml;

}

// -----------------------------------------------------------------

PVOID SpyModuleBase (PBYTE     pbModule,

PNTSTATUS pns)

{

PMODULE_LIST pml;

DWORD        dIndex;

NTSTATUS     ns    = STATUS_INVALID_PARAMETER;

PVOID        pBase = NULL;

if ((pml = SpyModuleFind (pbModule, &dIndex, &ns)) != NULL)

{

pBase = pml->aModules [dIndex].pBase;

SpyMemoryDestroy (pml);

}

if (pns != NULL) *pns = ns;

return pBase;

}

// -----------------------------------------------------------------



LISTING 6-9. Looking Up Information About a Specified Module

RESOLVING SYMBOLS OF EXPORTED FUNCTIONS AND VARIABLES

The previous subsections explained how a PE file image is searched for a symbolic
name of an exported function or variable and how the base address of a loaded 
system module or driver can be determined. Now it is time to put the loose ends
together. Essentially, looking up a symbol exported by a given module is a three-step
procedure:

1. Find out the linear base address of the module.

2. Search the export section of this module for the symbol.

3. Add the symbol offset to the module address.

The first step was discussed at some length above. Listing 6-10 provides 
the implementation details concerning the remaining steps. SpyModuleExport()
expects a file name, such as ntoskrnl.exe, hal.dll, ntfs.sys, or similar, for the
pbModule argument, and returns a pointer to the module’s IMAGE_EXPORT_DIRECTORY
structure, provided that the module is present in kernel memory and features an
export section. The optional ppBase and pns arguments return additional informa-
tion: *ppBase returns the module base address on success, and *pns reports a diag-
nostic error status on failure. First, SpyModuleExport() calls SpyModuleHeader()
to locate the IMAGE_NT_HEADERS; then it evaluates the PE DataDirectory that con-
tains the characteristic parameters of the export section in its first slot. If the 

PIMAGE_NT_HEADERS SpyModuleHeader (PBYTE     pbModule,

PPVOID    ppBase,

PNTSTATUS pns)

{

PVOID             pBase = NULL;

NTSTATUS          ns    = STATUS_INVALID_PARAMETER;

PIMAGE_NT_HEADERS pinh  = NULL;

if (((pBase = SpyModuleBase (pbModule, &ns)) != NULL) &&

((pinh  = RtlImageNtHeader (pBase))      == NULL))

{

ns = STATUS_INVALID_IMAGE_FORMAT;

}

if (ppBase != NULL) *ppBase = pBase;

if (pns    != NULL) *pns    = ns;

return pinh;

}
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VirtualAddress member of this IMAGE_DATA_DIRECTORY entry (cf. Listing 6-5) is
non-NULL, and the Size member states a reasonable value, the PE image contains
an export section. In this case, SpyModuleExport() uses the PTR_ADD() macro
included at the top of Listing 6-10 to add the module base address to the Virtual
Address, yielding the absolute linear address of the IMAGE_EXPORT_DIRECTORY. Oth-
erwise, it returns NULL and sets the status code to STATUS_DATA_ERROR (0xC000003E).
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#define PTR_ADD(_base,_offset) \

((PVOID) ((PBYTE) (_base) + (DWORD) (_offset)))

// -----------------------------------------------------------------

PIMAGE_EXPORT_DIRECTORY SpyModuleExport (PBYTE     pbModule,

PPVOID    ppBase,

PNTSTATUS pns)

{

PIMAGE_NT_HEADERS       pinh;

PIMAGE_DATA_DIRECTORY   pidd;

PVOID                   pBase = NULL;

NTSTATUS                ns    = STATUS_INVALID_PARAMETER;

PIMAGE_EXPORT_DIRECTORY pied  = NULL;

if ((pinh = SpyModuleHeader (pbModule, &pBase, &ns)) != NULL)

{

pidd = pinh->OptionalHeader.DataDirectory

+ IMAGE_DIRECTORY_ENTRY_EXPORT;

if (pidd->VirtualAddress &&

(pidd->Size >= IMAGE_EXPORT_DIRECTORY_))

{

pied = PTR_ADD (pBase, pidd->VirtualAddress);

}

else

{

ns = STATUS_DATA_ERROR;

}

}

if (ppBase != NULL) *ppBase = pBase;

if (pns    != NULL) *pns    = ns;

return pied;

}
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// -----------------------------------------------------------------

PVOID SpyModuleSymbol (PBYTE     pbModule,

PBYTE     pbName,

PPVOID    ppBase,

PNTSTATUS pns)

{

PIMAGE_EXPORT_DIRECTORY pied;

PDWORD                  pdNames, pdFunctions;

PWORD                   pwOrdinals;

DWORD                   i, j;

PVOID                   pBase    = NULL;

NTSTATUS                ns       = STATUS_INVALID_PARAMETER;

PVOID                   pAddress = NULL;

if ((pied = SpyModuleExport (pbModule, &pBase, &ns)) != NULL)

{

pdNames     = PTR_ADD (pBase, pied->AddressOfNames);

pdFunctions = PTR_ADD (pBase, pied->AddressOfFunctions);

pwOrdinals  = PTR_ADD (pBase, pied->AddressOfNameOrdinals);

for (i = 0; i < pied->NumberOfNames; i++)

{

j = pwOrdinals [i];

if (!strcmp (PTR_ADD (pBase, pdNames [i]), pbName))

{

if (j < pied->NumberOfFunctions)

{

pAddress = PTR_ADD (pBase, pdFunctions [j]);

}

break;

}

}

if (pAddress == NULL)

{

ns = STATUS_PROCEDURE_NOT_FOUND;

}

}

if (ppBase != NULL) *ppBase = pBase;

if (pns    != NULL) *pns    = ns;

return pAddress;

}

LISTING 6-10. Looking Up Symbols in a Module’s Export Section



SpyModuleSymbol() does the final work. Here you find the code that accesses
the various items shown in Figure 6-1. After requesting an IMAGE_EXPORT_DIRECTORY
pointer from SpyModuleExport(), the linear addresses of the address, name, and
ordinal arrays are determined, again with the help of the PTR_ADD() macro. Fortu-
nately, the PE file format specifies pointers to its internal data structures consistently
as offsets from the base address of the image, so the PTR_ADD() macro constitutes a
convenient general-purpose shortcut whenever a linear address must be computed
from such an offset. It is important to note the role of the ordinal number array dur-
ing address lookup. If the symbol has been found in the name array, the variable i
contains the zero-based index of the array entry pointing to the symbol name. This
value cannot be used as is to retrieve the associated address—it must be converted by
means of the ordinal number array. The code line j = pwOrdinals [i]; does the
trick. The resulting zero-based ordinal number j is the index that finally selects the
correct address. Note that ordinal numbers are 16-bit quantities, whereas the other
two arrays contain 32-bit numbers. If the symbol passed to SpyModuleSymbol() as
its pbName argument cannot be resolved, a NULL pointer is returned, along with a 
status code of STATUS_PROCEDURE_NOT_FOUND (0xC000007A).

Although it looks like SpyModuleSymbol() provides everything we need to 
call kernel functions by name, I’m putting one more wrapper around it. Listing 6-11
shows the ultimate achievement: The function SpyModuleSymbolEx() takes a single
string composed of a module/symbol pair in the form “module!symbol” and resolves
it with the help of SpyModuleSymbol(). The largest part of the code is busy parsing
the input string into a module name and a symbol. If no “!” separator is found, Spy
ModuleSymbolEx() assumes that ntoskrnl.exe is the target module, because this is
certainly the most frequently used option.
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PVOID SpyModuleSymbolEx (PBYTE     pbSymbol,

PPVOID    ppBase,

PNTSTATUS pns)

{

DWORD    i;

BYTE     abModule [MAXIMUM_FILENAME_LENGTH] = “ntoskrnl.exe”;

PBYTE    pbName   = pbSymbol;

PVOID    pBase    = NULL;

NTSTATUS ns       = STATUS_INVALID_PARAMETER;

PVOID    pAddress = NULL;

for (i = 0; pbSymbol [i] && (pbSymbol [i] != ‘!’); i++);

if (pbSymbol [i++])

{



LISTING 6-11. A Powerful Symbol Lookup Function

THE BRIDGE TO USER-MODE

Now the evolution of the kernel call interface will slowly come to an end—at least as
far as kernel-mode is concerned. Let me sum up what we have so far:

• A function named SpyCallEx() (Listing 6-3) that receives a
SPY_CALL_INPUT control block containing a target address and some
function arguments. It calls the specified address and returns any results in
a SPY_CALL_OUTPUT control block.

• A mechanism to look up exported system functions and variables by
name, represented by the function SpyModuleSymbolEx() (Listing 6-11).

So the last question is: “How do we make this stuff accessible to user-mode
applications?” The answer is, of course: “Via Device I/O Control,” as usual. To this
end, the spy device provides a couple of IOCTL functions, summarized in Table 6-1.
This is yet another excerpt from Table 4-2 in Chapter 4, which is a complete sum-
mary of all IOCTL functions offered by w2k_spy.sys. Listing 6-12 excerpts the rele-
vant portions of the SpyDispatcher() function, which is shown in Listing 4-7 in
Chapter 4.
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if (i <= MAXIMUM_FILENAME_LENGTH)

{

strcpyn (abModule, pbSymbol, i);

pbName = pbSymbol + i;

}

else

{

pbName = NULL;

}

}

if (pbName != NULL)

{

pAddress = SpyModuleSymbol (abModule, pbName, &pBase, &ns);

}

if (ppBase != NULL) *ppBase = pBase;

if (pns    != NULL) *pns    = ns;

return pAddress;

}



The last row in Table 6-1 names the SPY_IO_CALL function that will serve as the
bridge to user-mode. The remaining functions are there just for fun. I thought that
once the spy device has access to this sort of valuable information, it would be nice to
make it available to applications as well. As in Chapters 4 and 5, short descriptions
of all newly introduced IOCTL functions follow.

TABLE 6-1. IOCTL Functions Associated with the Kernel Call Interface

FUNCTION NAME ID IOCTL CODE DESCRIPTION

SPY_IO_MODULE_INFO 19 0x8000604C Returns information about loaded 
system modules

SPY_IO_PE_HEADER 20 0x80006050 Returns IMAGE_NT_HEADERS data

SPY_IO_PE_EXPORT 21 0x80006054 Returns IMAGE_EXPORT_ 
DIRECTORY data

SPY_IO_PE_SYMBOL 22 0x80006058 Returns the address of an exported 
system symbol

SPY_IO_CALL 23 0x8000E05C Calls a function inside a loaded 
module
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NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,

DWORD           dCode,

PVOID           pInput,

DWORD           dInput,

PVOID           pOutput,

DWORD           dOutput,

PDWORD          pdInfo)

{

SPY_MEMORY_BLOCK smb;

SPY_PAGE_ENTRY   spe;

SPY_CALL_INPUT   sci;

PHYSICAL_ADDRESS pa;

DWORD            dValue, dCount;

BOOL             fReset, fPause, fFilter, fLine;

PVOID            pAddress;

PBYTE            pbName;

HANDLE           hObject;

NTSTATUS         ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);

*pdInfo = 0;

switch (dCode)

{
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// ===================================================

// unrelated IOCTL functions omitted (cf. Listing 4-7)

// ===================================================

case SPY_IO_MODULE_INFO:

{

if ((ns = SpyInputPointer (&pbName,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputModuleInfo (pbName,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_HEADER:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeHeader (pAddress,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_EXPORT:

{

if ((ns = SpyInputPointer (&pAddress,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeExport (pAddress,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_PE_SYMBOL:

{

if ((ns = SpyInputPointer (&pbName,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeSymbol (pbName,

pOutput, dOutput, pdInfo);

}

break;

}

case SPY_IO_CALL:

{

(continued)



LISTING 6-12. Excerpt from the Spy Driver’s Hook Command Dispatcher

THE IOCTL FUNCTION SPY_IO_MODULE_INFO

The IOCTL SPY_IO_MODULE_INFO function receives a module base address and
sends back a SPY_MODULE_INFO structure if the address points to a valid PE image.
The definition of this structure plus the related SpyOutputModuleInfo() helper 
function called by the SpyDispatcher() in Listing 6-12 are shown in Listing 6-13.
SpyOutputModuleInfo() is based on SpyModuleFind() (Listing 6-9), which returns
MODULE_INFO data obtained from ZwQuerySystemInformation(). The MODULE_INFO
is converted to SPY_MODULE_INFO format and sent off to the caller.
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if ((ns = SpyInputBinary (&sci, SPY_CALL_INPUT_,

pInput, dInput))

== STATUS_SUCCESS)

{

ns = SpyOutputCall (&sci,

pOutput, dOutput, pdInfo);

}

break;

}

// ===================================================

// unrelated IOCTL functions omitted (cf. Listing 4-7)

// ===================================================

}

MUTEX_RELEASE (pDeviceContext->kmDispatch);

return ns;

}

typedef struct _SPY_MODULE_INFO

{

PVOID pBase;

DWORD dSize;

DWORD dFlags;

DWORD dIndex;

DWORD dLoadCount;

DWORD dNameOffset;

BYTE  abPath [MAXIMUM_FILENAME_LENGTH];

}

SPY_MODULE_INFO, *PSPY_MODULE_INFO, **PPSPY_MODULE_INFO;

#define SPY_MODULE_INFO_ sizeof (SPY_MODULE_INFO)

// -----------------------------------------------------------------



LISTING 6-13. Implementation of SPY_IO_MODULE_INFO

THE IOCTL FUNCTION SPY_IO_PE_HEADER

The IOCTL SPY_IO_PE_HEADER function is merely an IOCTL wrapper for the
ntoskrnl.exe API function RtlImageNtHeader(), as Listing 6-14 proves. Like
SPY_IO_MODULE_INFO, it expects a module base address. The returned data is the
module’s IMAGE_NT_HEADERS structure.
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NTSTATUS SpyOutputModuleInfo (PBYTE  pbModule,

PVOID  pOutput,

DWORD  dOutput,

PDWORD pdInfo)

{

SPY_MODULE_INFO smi;

PMODULE_LIST    pml;

PMODULE_INFO    pmi;

DWORD           dIndex;

NTSTATUS        ns = STATUS_INVALID_PARAMETER;

if ((pbModule != NULL) && SpyMemoryTestAddress (pbModule) &&

((pml = SpyModuleFind (pbModule, &dIndex, &ns)) != NULL))

{

pmi = pml->aModules + dIndex;

smi.pBase       = pmi->pBase;

smi.dSize       = pmi->dSize;

smi.dFlags      = pmi->dFlags;

smi.dIndex      = pmi->wIndex;

smi.dLoadCount  = pmi->wLoadCount;

smi.dNameOffset = pmi->wNameOffset;

strcpyn (smi.abPath, pmi->abPath, MAXIMUM_FILENAME_LENGTH);

ns = SpyOutputBinary (&smi, SPY_MODULE_INFO_,

pOutput, dOutput, pdInfo);

SpyMemoryDestroy (pml);

}

return ns;

}

NTSTATUS SpyOutputPeHeader (PVOID  pBase,

PVOID  pOutput,

DWORD  dOutput,

PDWORD pdInfo)

(continued)
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{

PIMAGE_NT_HEADERS pinh;

NTSTATUS          ns = STATUS_INVALID_PARAMETER;

if ((pBase != NULL) && SpyMemoryTestAddress (pBase) &&

((pinh = RtlImageNtHeader (pBase)) != NULL))

{

ns = SpyOutputBinary (pinh, IMAGE_NT_HEADERS_,

pOutput, dOutput, pdInfo);

}

return ns;

}

LISTING 6-14. Implementation of SPY_IO_PE_HEADER

THE IOCTL FUNCTION SPY_IO_PE_EXPORT

The IOCTL SPY_IO_PE_EXPORT function is more interesting than the previous one.
In short, it returns the IMAGE_EXPORT_DIRECTORY associated with a module base
address to the caller. A close look at its implementation in Listing 6-15 reveals 
a strong similarity to the SpyModuleExport() function in Listing 6-10. However, 
SpyOutputPeExport() does a lot of additional work. The reason for this is that the
IMAGE_EXPORT_DIRECTORY contains relative addresses throughout, as explained earlier.
The caller can’t make much use of these offsets after the data has been copied to a sepa-
rate buffer, because the base address to which the offsets relate has changed. Without
additional address information from the PE header, it is impossible to compute a new
matching base address. To save the caller from this excess work, SpyOutputPeExport()
converts all offsets that point into the export section to offsets relative to the beginning
of this section by subtracting its VirtualAddress specified in the IMAGE_DATA_
DIRECTORY. The entries in the address array must be handled differently because 
they refer to other sections in the PE image. Therefore, SpyOutputPeExport()
relocates them to absolute linear addresses by adding the image base address.

NTSTATUS SpyOutputPeExport (PVOID  pBase,

PVOID  pOutput,

DWORD  dOutput,

PDWORD pdInfo)

{

PIMAGE_NT_HEADERS       pinh;

PIMAGE_DATA_DIRECTORY   pidd;

PIMAGE_EXPORT_DIRECTORY pied;

PVOID                   pData;

DWORD                   dData, dBias, i;
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PDWORD                  pdData;

NTSTATUS                ns = STATUS_INVALID_PARAMETER;

if ((pBase != NULL) && SpyMemoryTestAddress (pBase) &&

((pinh = RtlImageNtHeader (pBase)) != NULL))

{

pidd = pinh->OptionalHeader.DataDirectory

+ IMAGE_DIRECTORY_ENTRY_EXPORT;

if (pidd->VirtualAddress &&

(pidd->Size >= IMAGE_EXPORT_DIRECTORY_))

{

pData = (PBYTE) pBase + pidd->VirtualAddress;

dData = pidd->Size;

if ((ns = SpyOutputBinary (pData, dData,

pOutput, dOutput, pdInfo))

== STATUS_SUCCESS)

{

pied  = pOutput;

dBias = pidd->VirtualAddress;

pied->Name                  -= dBias;

pied->AddressOfFunctions    -= dBias;

pied->AddressOfNames        -= dBias;

pied->AddressOfNameOrdinals -= dBias;

pdData = PTR_ADD (pied, pied->AddressOfFunctions);

for (i = 0; i < pied->NumberOfFunctions; i++)

{

pdData [i] += (DWORD) pBase;

}

pdData = PTR_ADD (pied, pied->AddressOfNames);

for (i = 0; i < pied->NumberOfNames; i++)

{

pdData [i] -= dBias;

}

}

}

else

{

ns = STATUS_DATA_ERROR;

}

}

return ns;

}

LISTING 6-15. Implementation of SPY_IO_PE_EXPORT



THE IOCTL FUNCTION SPY_IO_PE_SYMBOL

The IOCTL SPY_IO_PE_SYMBOL function makes the symbol lookup engine of the ker-
nel call interface accessible to user-mode applications. Its implementation, shown in
Listing 6-16, isn’t extraordinarily exciting, because it is an IOCTL wrapper for the
SpyModuleSymbolEx() function in Listing 6-11. The caller must pass in a pointer to a
string in the form “module!symbol,” or simply “symbol” if the symbol should be
looked up in the export section of ntoskrnl.exe, and gets back a pointer to the
symbol’s associated linear address, or NULL if the symbol is invalid or an error occurs.

THE IOCTL FUNCTION SPY_IO_CALL

Finally, this is the IOCTL SPY_IO_CALL function we have been waiting for. Listing
6-17 provides the implementation details. This function calls SpyModuleSymbolEx()
if the passed-in symbol string address is OK, and continues with SpyCallEx() if the
symbol could be resolved. Like SPY_IO_PE_SYMBOL, this function expects the symbol
name to be specified as “module!symbol” or simply “symbol,” with the latter variant
defaulting to ntoskrnl.exe. This time, however, the symbol string must be supplied
as part of a properly initialized SPY_CALL_INPUT structure. On success, SPY_IO_CALL
returns a SPY_CALL_OUTPUT structure containing either the result of the function 
call if the symbol refers to an API function or the value of the target variable if the
symbol specifies a public variable such as NtBuildNumber or KeService
DescriptorTable.

If SPY_IO_CALL fails, no data is returned. The caller must be prepared to 
handle this situation properly. Ignoring this error would mean returning bogus data
from a kernel function call. If this data is passed in turn to another kernel function,
problems may occur. If you are lucky, the faulty data is caught by the exception 
handler inside SpyCallEx(). If you are not so lucky, the entire process may hang 
persistently inside the spy device IOCTL call. As usual, however, there is a probabil-
ity of a Blue Screen. But don’t worry—the next section shows how the kernel call
interface is properly used in user-mode applications.
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NTSTATUS SpyOutputPeSymbol (PBYTE  pbSymbol,

PVOID  pOutput,

DWORD  dOutput,

PDWORD pdInfo)

{

PVOID    pAddress;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pbSymbol != NULL) && SpyMemoryTestAddress (pbSymbol)

&&
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((pAddress = SpyModuleSymbolEx (pbSymbol, NULL, &ns))

!= NULL))

{

ns = SpyOutputPointer (pAddress,

pOutput, dOutput, pdInfo);

}

return ns;

}

NTSTATUS SpyOutputCall (PSPY_CALL_INPUT psci,

PVOID           pOutput,

DWORD           dOutput,

PDWORD          pdInfo)

{

SPY_CALL_OUTPUT sco;

NTSTATUS        ns = STATUS_INVALID_PARAMETER;

if (psci->pbSymbol != NULL)

{

psci->pEntryPoint =

(SpyMemoryTestAddress (psci->pbSymbol)

? SpyModuleSymbolEx  (psci->pbSymbol, NULL, &ns)

: NULL);

}

if ((psci->pEntryPoint != NULL)              &&

SpyMemoryTestAddress (psci->pEntryPoint) &&

((ns = SpyCallEx (psci, &sco)) == STATUS_SUCCESS))

{

ns = SpyOutputBinary (&sco, SPY_CALL_OUTPUT_,

pOutput, dOutput, pdInfo);

}

return ns;

}

LISTING 6-17. Implementation of SPY_IO_CALL

ENCAPSULATING THE CALL INTERFACE IN A DLL

Although it is good news that w2k_spy.sys exports an IOCTL call interface for 
kernel functions, this interface is somewhat clumsy to operate. Suppose you want to
call a simple function such as MmGetPhysicalAddress() or MmIsAddressValid().
First, you must fill a SPY_CALL_INPUT structure with information about the function
and its arguments. Next, you must issue a Win32 DeviceIoControl() call. If this
function reports ERROR_SUCCESS, the returned SPY_CALL_OUTPUT structure must be



evaluated. Otherwise, the error must be handled properly. Doesn’t sound very
appealing, does it? Fortunately, we have DLLs, so the solution to this problem is to
hide the IOCTL mechanism in a DLL that does the dirty work. That’s the purpose of
the w2k_call.dll project included on this book’s sample CD. The code snippets
reprinted in this section are excerpts from the files w2k_call.c and w2k_call.h,
found on the CD in the \src\w2k_call directory.

HANDLING IOCTL FUNCTION CALLS

Before anything else, the DeviceIoControl() calls must be encapsulated in a conve-
nient way, because this is the bottleneck through which all kernel function calls must
pass. Listing 6-18 shows the wrapper function w2kSpyControl(), which contains a
DeviceIoControl() invocation at its heart. Altogether, this function carries out the
following tasks:

• Validates the input/output parameters

• Loads the spy device driver and opens the spy device, if not yet done

• Invokes DeviceIoControl()

• Tests the output data for the expected size

• Sets the Win32 last-error code appropriately

If successful, the system’s last-error code, to be retrieved by the application via
GetLastError(), is set to ERROR_SUCCESS (0). Otherwise, it is set according to the
following strategy:

• If the input or output parameters are invalid, the last-error value is
ERROR_INVALID_PARAMETER (87), indicating “The parameter is incorrect”
according to the winerror.h header file in the Platform Software
Development Kit (SDK).

• If the spy device can’t be initialized, the last-error value is
ERROR_GEN_FAILURE (31), indicating “A device attached to the system is
not functioning.”

• If the size of the data returned by the spy device doesn’t match the caller’s
buffer size, the last-error value is ERROR_DATATYPE_MISMATCH, indicating
“Data supplied is of wrong type.”

• In all other cases, w2kSpyControl() preserves the last-error value set by
the DeviceIoControl() function, whatever it might be. Usually, it will be
the NTSTATUS returned by the spy device, but mapped to a more or less
appropriate Win32 status code.
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LISTING 6-18. The Basic DeviceIoControl() Wrapper

The w2kSpyStartup() call in Listing 6-18, issued immediately before DeviceIo
Control(), deserves some more attention. Because w2k_call.dll relies on the ser-
vices of a kernel-mode driver, this driver must somehow be brought into memory
before the first IOCTL transaction. Moreover, a device handle must be opened, iden-
tifying the target device to be accessed via DeviceIoControl(). To keep the DLL as
flexible as possible, I opted for a mixed model in which the caller can either take full
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BOOL WINAPI w2kSpyControl (DWORD dCode,

PVOID pInput,

DWORD dInput,

PVOID pOutput,

DWORD dOutput)

{

DWORD dInfo = 0;

BOOL  fOk   = FALSE;

SetLastError (ERROR_INVALID_PARAMETER);

if (((pInput  != NULL) || (!dInput )) &&

((pOutput != NULL) || (!dOutput)))

{

if (w2kSpyStartup (FALSE, NULL))

{

if (DeviceIoControl (ghDevice, dCode,

pInput,   dInput,

pOutput,  dOutput,

&dInfo,   NULL))

{

if (dInfo == dOutput)

{

SetLastError (ERROR_SUCCESS);

fOk = TRUE;

}

else

{

SetLastError (ERROR_DATATYPE_MISMATCH);

}

}

}

else

{

SetLastError (ERROR_GEN_FAILURE);

}

}

return fOk;

}



control of the loading/unloading and opening/closing of the spy device or rely on a
default mechanism, leaving the device management responsibilities to the DLL. This
automatism is quite simple: Loading the driver and opening the device is delayed
until the first IOCTL transaction is requested. As soon as the DLL is unloaded, it
automatically closes the device handle, but keeps the kernel-mode driver in memory.
The latter decision constitutes a defensive strategy. As long as the caller doesn’t sup-
ply any information as to how the driver should be handled, w2k_call.dll assumes
that other clients might use the driver as well, so it can’t unload the driver without
impairing the operation of the other applications. As explained in Chapter 4 in the
context of the memory spy application, the problem candidates are not the processes
that still have open handles to the spy device. The Windows 2000 service control
manager will delay the driver shutdown until all handles have been closed. The prob-
lem is that it won’t allow any new device handles to be opened.

A w2k_call.dll client application can control the state of the spy device by
means of the API function pair w2kSpyStartup() and w2kSpyCleanup(), shown in
Listing 6-19. Because these functions might be called concurrently in a multithread-
ing scenario, they use a critical-section object for serialization. Only one thread at a
time can load/open or close/unload the spy device. If, for example, two threads call
w2kSpyStartup() at approximately the same time, only one of them will be admitted
to open the device. The other one is suspended, and will find the device up and run-
ning after resuming execution.
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BOOL WINAPI w2kSpyLock (void)

{

BOOL fOk = FALSE;

if (gpcs != NULL)

{

EnterCriticalSection (gpcs);

fOk = TRUE;

}

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kSpyUnlock (void)

{

BOOL fOk = FALSE;

if (gpcs != NULL)

{

LeaveCriticalSection (gpcs);

fOk = TRUE;
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}

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kSpyStartup (BOOL      fUnload,

HINSTANCE hInstance)

{

HINSTANCE hInstance1;

SC_HANDLE hControl;

BOOL      fOk = FALSE;

w2kSpyLock ();

hInstance1 = (hInstance != NULL ? hInstance : ghInstance);

if ((ghDevice == INVALID_HANDLE_VALUE) &&

w2kFilePath (hInstance1, awSpyFile, awDriver, MAX_PATH)

&&

((hControl = w2kServiceLoad (awSpyDevice, awSpyDisplay,

awDriver, TRUE))

!= NULL))

{

ghDevice = CreateFile (awSpyPath,

GENERIC_READ    | GENERIC_WRITE,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

if ((ghDevice == INVALID_HANDLE_VALUE) && fUnload)

{

w2kServiceUnload (awSpyDevice, hControl);

}

else

{

w2kServiceDisconnect (hControl);

}

}

fOk = (ghDevice != INVALID_HANDLE_VALUE);

w2kSpyUnlock ();

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kSpyCleanup (BOOL fUnload)

{

(continued)
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BOOL fOk = FALSE;

w2kSpyLock ();

if (ghDevice != INVALID_HANDLE_VALUE)

{

CloseHandle (ghDevice);

ghDevice = INVALID_HANDLE_VALUE;

}

if (fUnload)

{

w2kService Unload (awSpyDevice, NULL);

}

w2kSpyUnlock ();

return fOk;

}

LISTING 6-19. The Spy Device Management Functions

TYPE-SPECIFIC CALL INTERFACE FUNCTIONS

The DeviceIoControl() calls and the spy device management automatism have 
now been stowed in a set of functions, with w2kSpyControl() constituting their main
entry point. The next step is to provide functions that perform SPY_IO_CALLs to the
spy device. Listing 6-20 shows the basic implementation of the user-mode side of the
kernel call interface, represented by the functions w2kCallExecute(), w2kCall(),
and w2kCallV(). Regarding its input arguments, the former is the user-mode equiva-
lent of SpyCallEx(), shown in Listing 6-3. In fact, the implementation of
w2kCallExecute() shows that it calls the spy device’s SPY_IO_CALL function via
w2kSpyControl() after ensuring that the input control block contains either a 
symbol name string or an entry point address. From Listing 6-12, we know that
SPY_IO_CALL is implemented by SpyOutputCall() (Listing 6-17), which in turn relies
on SpyModuleSymbolEx() and SpyCallEx().

BOOL WINAPI w2kCallExecute (PSPY_CALL_INPUT  psci,

PSPY_CALL_OUTPUT psco)

{

BOOL fOk = FALSE;

SetLastError (ERROR_INVALID_PARAMETER);

if (psco != NULL)

{

psco->uliResult.QuadPart = 0;
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if ((psci != NULL)

&&

((psci->pbSymbol    != NULL) ||

(psci->pEntryPoint != NULL)))

{

fOk = w2kSpyControl (SPY_IO_CALL,

psci, SPY_CALL_INPUT_,

psco, SPY_CALL_OUTPUT_);

}

}

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kCall (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

PVOID           pEntryPoint,

BOOL            fFastCall,

DWORD           dArgumentBytes,

PVOID           pArguments)

{

SPY_CALL_INPUT  sci;

SPY_CALL_OUTPUT sco;

BOOL            fOk = FALSE;

sci.fFastCall      = fFastCall;

sci.dArgumentBytes = dArgumentBytes;

sci.pArguments     = pArguments;

sci.pbSymbol       = pbSymbol;

sci.pEntryPoint    = pEntryPoint;

fOk = w2kCallExecute (&sci, &sco);

if (puliResult != NULL) *puliResult = sco.uliResult;

return fOk; 

}

// -----------------------------------------------------------------

BOOL WINAPI w2kCallV (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

BOOL            fFastCall,

DWORD           dArgumentBytes,

...)

{

return w2kCall (puliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1);

}

LISTING 6-20. The Basic Call Interface Functions



The SpyCall() and w2kCallV() functions in Listing 6-20 are the core functions
of the kernel call interface inside w2k_call.dll, serving as a basis for several more
specific functions. The main purpose of w2kCall() is to put the values of its argu-
ments into a SPY_CALL_INPUT structure before calling w2kCallExecute() and to
return the resulting ULARGE_INTEGER value. As explained earlier, not all bits of the
result must be valid, depending on the result type of the called kernel function.
w2kCallV() is a simple w2kCall() wrapper, featuring a variable argument list (hence
the trailing V in the function name). Because the argument list of w2kCall() is tai-
lored to the general case of kernel API invocations, it is overkill for many common
function types. The most common type is the __stdcall (or NTAPI) function that
returns an NTSTATUS value. In this case, the fFastCall argument is always FALSE and
only the lower half of the returned 64-bit ULARGE_INTEGER contains valid data.
Therefore, the w2kCallNT() function in Listing 6-21 does a much better job here.
Please note how w2kCallNT() handles errors reported by w2kCall(). If w2kCall()
returns FALSE, this means that w2kSpyControl() failed, indicating that the result of
the function call is invalid. In this case, it would be nonsense to retrieve the LowPart
value of the uliResult structure, because it contains unpredictable garbage. There-
fore, w2kCallNT() defaults to STATUS_IO_DEVICE_ERROR (0xC0000185). After all, the
caller must be prepared for return values other than STATUS_SUCCESS (0x00000000),
so reporting this error code appears to be a reasonable decision. Other kernel func-
tions that don’t return NTSTATUS codes require a much more cautious selection of
default return values in case of failure.

Listing 6-22 is a collection of five additional interface functions for __stdcall
API functions that return the basic data types BYTE, WORD, DWORD, DWORDLONG, and
PVOID. A trailing number in the function name indicates the number of significant
return value bits. w2kCallP() is equivalent to w2kCall32(), except that the 32-bit
return value is typecast to a pointer. It is not necessary to provide separate functions
for the signed versions of the basic data types or for pointers to various types, 
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NTSTATUS WINAPI w2kCallNT (PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, FALSE,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.LowPart

: STATUS_IO_DEVICE_ERROR);

}

LISTING 6-21. A Simplified Interface for NTAPI/NTSTATUS Function Types



because these smallish differences will be addressed by the automatic typecasting 
performed by the compiler. Note that all functions in Listing 6-22 expect a default
return value to be passed in as the first argument. This is necessary because the call
interface has no idea what value would be best to be returned if the call into kernel-
mode fails, so this responsibility is up to the caller.
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BYTE WINAPI w2kCall08 (BYTE  bDefault,

PBYTE pbSymbol,

BOOL  fFastCall,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? (BYTE) uliResult.LowPart

: bDefault);

}

// -----------------------------------------------------------------

WORD WINAPI w2kCall16 (WORD  wDefault,

PBYTE pbSymbol,

BOOL  fFastCall,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? (WORD) uliResult.LowPart

: wDefault);

}

// -----------------------------------------------------------------

DWORD WINAPI w2kCall32 (DWORD dDefault,

PBYTE pbSymbol,

BOOL  fFastCall,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

(continued)
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return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.LowPart

: dDefault);

}

// -----------------------------------------------------------------

QWORD WINAPI w2kCall64 (QWORD qDefault,

PBYTE pbSymbol,

BOOL  fFastCall,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.QuadPart

: qDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kCallP (PVOID pDefault,

PBYTE pbSymbol,

BOOL  fFastCall,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? (PVOID) uliResult.LowPart

: pDefault);

}

LISTING 6-22. More Interface Functions for Common Function Types

DATA-COPYING INTERFACE FUNCTIONS

Before we get to the more interesting task of defining substitutes for a couple of real
kernel API functions, some more lines of boilerplate code are required. I mentioned
earlier that the kernel call interface of the spy device can also handle public variables
exported by the kernel modules. In the description of Listing 6-2, where the



SpyCall() function was shown, I explained that a negative value for the argument
stack size, supplied via the dArgumentBytes member of the SPY_CALL_INPUT structure,
is interpreted as the one’s complement of the size of an exported variable. In this case,
SpyCall() doesn’t call the specified entry point, but copies the appropriate number of
bytes from this address to the result buffer. If dArgumentBytes is set to –1, yielding a
one’s complement of zero, the entry point address itself is copied to the buffer.

Listing 6-23 shows the data-copying functions exported by w2k_call.dll. This
function set closely corresponds to the set of call interface functions in Listing 6-22.
However, these functions require fewer input arguments. Copying the value of an
exported variable requires no more than the name of the variable—no input parame-
ters are required and no calling convention applies.
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BOOL WINAPI w2kCopy (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

PVOID           pEntryPoint,

DWORD           dBytes)

{

return w2kCall (puliResult, pbSymbol, pEntryPoint, FALSE,

0xFFFFFFFF - dBytes, NULL);

}

// -----------------------------------------------------------------

BYTE WINAPI w2kCopy08 (BYTE  bDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 1)

? (BYTE) uliResult.LowPart

: bDefault);

}

// -----------------------------------------------------------------

WORD WINAPI w2kCopy16 (WORD  wDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 2)

? (WORD) uliResult.LowPart

: wDefault);

}

// -----------------------------------------------------------------

(continued)
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DWORD WINAPI w2kCopy32 (DWORD dDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 4)

? uliResult.LowPart

: dDefault);

}

// -----------------------------------------------------------------

QWORD WINAPI w2kCopy64 (QWORD qDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 8)

? uliResult.QuadPart

: qDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kCopyP (PVOID pDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 4)

? (PVOID) uliResult.LowPart

: pDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kCopyEP (PVOID pDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 0)

? (PVOID) uliResult.LowPart

: pDefault);

}

LISTING 6-23. Data-Copying Interface Functions for the Basic Data Types



In Listing 6-23, w2kCopy() is the main workhorse, much like the w2kCall()
function in case of a function invocation. Again, w2k_call.dll provides separate
functions for the basic data types BYTE, WORD, DWORD, DWORDLONG, and PVOID, with
a trailing number in the function name indicating the number of significant return
value bits. w2kCopyP() returns a pointer value, and w2kCopyEP() handles the special
case of querying an entry point address. Calling w2kCopyEP() is equivalent to calling
the spy device’s SPY_IO_PE_SYMBOL function. Yes, this is redundant, but having two
alternative ways home is always better than none at all, isn’t it?

IMPLEMENTING KERNEL API THUNKS

Meanwhile, the basic framework for the simple and easy implementation of kernel
API function substitutes is available. I call these substitutes “thunks,” which is the
usual term in Windows lingo for a short piece of code that serves as a front-end to a
function implemented in a different part of the system. Another common term is
“proxy,” but it is too tightly associated with the Microsoft Component Object Model
(COM), so that using it here might be distracting. Let’s start with two very simple
Windows 2000 Memory Manager functions that have been my primary test objects
during the development of the w2k_call.dll module: MmGetPhysicalAddress()
and MmIsAddressValid(). Listing 6-24 shows how their thunks are implemented
with the help of w2kCall64() and w2kCall08(). To avoid confusion with the origi-
nal target functions, I am prefixing all thunk names with an underscore character.
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PHYSICAL_ADDRESS WINAPI

_MmGetPhysicalAddress (PVOID BaseAddress)

{

PHYSICAL_ADDRESS pa;

pa.QuadPart = w2kCall64 (0, “MmGetPhysicalAddress”, FALSE,

4, BaseAddress);

return pa;

}

// -----------------------------------------------------------------

BOOLEAN WINAPI

_MmIsAddressValid (PVOID VirtualAddress)

{

return w2kCall08 (FALSE, “MmIsAddressValid”, FALSE,

4, VirtualAddress);

}

LISTING 6-24. Sample Thunks for MmGetPhysicalAddress() and MmIsAddressValid()



MmGetPhysicalAddress() receives a 32-bit linear address and returns a 64-bit
PHYSICAL_ADDRESS structure, which is nothing but an alias for LARGE_INTEGER.
Therefore, the thunk code calls w2kCall64(), indicating that 4 bytes are passed in on
the argument stack, and putting the BaseAddress parameter on the list of arguments.
The default value, to be returned in case of a fatal IOCTL error, is zero, which is the
value that the original function returns on error. Because MmGetPhysicalAddress()
uses the __stdcall convention, fFastCall is set to FALSE. The implementation of the
MmIsAddressValid() thunk is similar, except that only the eight least significant bits
of the SpyCallEx() result, corresponding to a BOOLEAN data type, are returned. The
default return value is set to FALSE, which is a defensive choice. MmIsAddressValid()
is typically called immediately before a memory access to avoid a potential page fault.
Therefore, returning TRUE when the actual result of the function is indeterminable
because of an IOCTL error would increase the risk of a Blue Screen.

That was easy. Now let’s see how exported variables can be accessed in this
framework. In Listing 6-25, two thunks, _NtBuildNumber() and _KeService
DescriptorTable(), are shown. NtBuildNumber is exported by ntoskrnl.exe as a
16-bit WORD type, so the appropriate w2k_call.dll interface function is w2kCopy16().
The thunk returns zero in case of an error (if you can think of a more suitable value,
please let me know). The _KeServiceDescriptorTable() thunk is a bit different,
because the original KeServiceDescriptorTable address exported by ntoskrnl.exe
points to a structure that comprises more than 64 bits. In this case, the best of the avail-
able options is to return the address of the KeServiceDescriptorTable itself, rather
than reading an incomplete portion of the data it refers to. Therefore, the thunk makes
use of the w2kCopyEP() helper function included in Listing 6-23.

You can imagine how excited I was when I realized that these thunks actually
work! Then I thought: I’ll try calling some very-low-level functions—that bang directly
onto the hardware—that read and write I/O ports or the like. Fortunately, I had designed 
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WORD WINAPI

_NtBuildNumber (VOID)

{

return w2kCopy16 (0, “NtBuildNumber”);

}

// -----------------------------------------------------------------

PSERVICE_DESCRIPTOR_TABLE WINAPI

_KeServiceDescriptorTable (VOID)

{

return w2kCopyEP (NULL, “KeServiceDescriptorTable”);

}

LISTING 6-25. Sample Thunks for NtBuildNumber and KeServiceDescriptorTable



the SpyModuleSymbolEx() function in Listing 6-11 in a way that allows resolving
symbols in any system module, including kernel-mode drivers. My next task was to
call some functions exported by the Windows 2000 Hardware Abstraction Layer
(HAL). After scanning the list of symbols contained in the export section of hal.dll,
I decided to try two simple functions that are guaranteed to talk directly to the hard-
ware: HalMakeBeep() and HalQueryRealTimeClock(). The HalMakeBeep() function
reminded me of the old DOS days when it was possible to let the PC speaker squeak in
many creative ways by programming some of the hardware chips on the motherboard.
Actually, the implementation of HalMakeBeep() looks much like one of my old assem-
bly language programs from 1987 that was able to play long sequences of music,
given an array of tone pitches and durations. Operating the PC speaker involves pro-
gramming a timer and a parallel I/O (PIO) chip at the I/O addresses 0x0042, 0x0043,
and 0x0061, so HalMakeBeep() was an ideal candidate for a first test of a thunk to a
hardware-dependent function that would also guarantee immediate audible feedback.

Listing 6-26 shows the implementation of the _HalMakeBeep() thunk, an extra-
ordinarily simple piece of code thanks to the w2kCall08() helper function. Hal
MakeBeep() starts a beep tone on the speaker with the requested pitch. If the pitch
argument is set to zero, the beep is stopped. The function returns TRUE if the pitch
value is valid, that is, zero or greater than 18. Note that the symbol string specified in
the w2kCall08() call includes the name of the target module, which is hal.dll in
this case. In Listings 6-24 and 6-25, no module was specified, because the symbols
referenced there are exported by the default module ntoskrnl.exe.

Although HalMakeBeep() is a silly function, I was extremely happy to see the
_HalMakeBeep() thunk working. The PC speaker beeped on my request! And this
was Windows 2000, not DOS with this proof that a Win32 application can call a
HAL function that does direct hardware access. I ported my old beep sequencer
from DOS to Windows 2000, resulting in the code shown in Listing 6-27.
w2kBeep() issues a single tone of the specified pitch and duration. w2kBeepEx()
takes an array of pitch/duration values and plays them in sequence until coming
across a zero-duration value. Both functions are exported by w2k_call.dll. Maybe
you can use them to add musical background with a classic DOS feeling to your
Win32 applications.
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BOOLEAN WINAPI

_HalMakeBeep (DWORD Pitch)

{

return w2kCall08 (FALSE, “hal.dll!HalMakeBeep”, FALSE,

4, Pitch);

}

LISTING 6-26. Thunking Down to HalMakeBeep()



LISTING 6-27. A Simple Beep Sequencer

My next step was to try a more useful function, such as HalQueryRealTime
Clock(). I remember that accessing the on-board real-time clock in a DOS applica-
tion was at one time considered difficult. This involves reading and writing a couple
of hardware I/O ports. Listing 6-28 shows the thunks to HalQueryRealTimeClock()
and its sibling HalSetRealTimeClock(), along with the TIME_FIELDS structure on
which both functions operate. The TIME_FIELDS structure is defined in ntddk.h.
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BOOL WINAPI w2kBeep (DWORD dDuration,

DWORD dPitch)

{

BOOL fOk = TRUE;

if (!_HalMakeBeep (dPitch)) fOk = FALSE;

Sleep (dDuration);

if (!_HalMakeBeep (0     )) fOk = FALSE;

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kBeepEx (DWORD dData,

...)

{

PDWORD pdData;

BOOL   fOk = TRUE;

for (pdData = &dData; pdData [0]; pdData += 2)

{

if (!w2kBeep (pdData [0], pdData [1])) fOk = FALSE;

}

return fOk;

}

typedef struct _TIME_FIELDS

{

SHORT Year;

SHORT Month;

SHORT Day;

SHORT Hour;

SHORT Minute;

SHORT Second;

SHORT Milliseconds;

SHORT Weekday; // 0 = sunday

}
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TIME_FIELDS, *PTIME_FIELDS;

// -----------------------------------------------------------------

#define TIME_FIELDS_ \

sizeof (TIME_FIELDS)

VOID WINAPI

_HalQueryRealTimeClock (PTIME_FIELDS TimeFields)

{

w2kCallV (NULL, “hal.dll!HalQueryRealTimeClock”, FALSE,

4, TimeFields);

return;

}

// -----------------------------------------------------------------

VOID WINAPI

_HalSetRealTimeClock (PTIME_FIELDS TimeFields)

{

w2kCallV (NULL, “hal.dll!HalSetRealTimeClock”, FALSE,

4, TimeFields);

return;

}

LISTING 6-28. Thunks for HalQueryRealTimeClock() and HalSetRealTimeClock()

Listing 6-29 provides a typical application case of _HalQueryRealTime
Clock(), displaying the current date and time in a console window.

VOID WINAPI DisplayTime (void)

{

TIME_FIELDS tf;

_HalQueryRealTimeClock (&tf);

printf (L”\r\nDate/Time: %02hd-%02hd-%04hd %02hd:%02hd:%02hd\r\n”,

tf.Month, tf.Day,    tf.Year,

tf.Hour,  tf.Minute, tf.Second);

return;

}

LISTING 6-29. Displaying the Current Date and Time



Although it is great news that the kernel call interface works, it is also some-
what alarming. After all, we have been taught for years that Windows NT/2000 is a
secure operating system where an application can’t do anything it likes. The average
Win32 programmer was cut off from the hardware. A more experienced NT pro-
grammer at least knew how to call Native API functions via ntdll.dll. An NT
wizard was able to write kernel-mode drivers to do things that were not allowed in
user-mode. Now, with the DLL presented here, all Win32 programmers are able to
call arbitrary kernel functions just like any other Win32 API function. Is this a big
security hole in the Windows 2000 kernel? No—the only 100% secure system is one
that grants applications no access at all, which would be a useless system. As soon
as there is a way to interact with the system, the system becomes vulnerable. And as
soon as an operating system vendor allows third-party developers to add components
to the system, it is possible to smuggle a direct bridge into the kernel, such as the
w2k_spy.sys / w2k_call.dll pair. There is no such thing as a 100% secure system
as long as the system interacts with its environment.

DATA ACCESS SUPPORT FUNCTIONS

I have added several dozen kernel API thunks to w2k_call.dll. For example, the
entire set of string management functions exposed by the Windows 2000 runtime
library is made available by this DLL. However, as you experiment with these prede-
fined thunks or thunks that you have added yourself, you will find that calling kernel
API functions from user-mode is a bit different from calling ordinary Win32 func-
tions. The simplicity of the kernel call interface introduced here tends to obscure the
fact that the calling application is still a user-mode program with limited privileges.
For example, an application might call a kernel function that returns a pointer to a
UNICODE_STRING structure. Most likely, this will be a pointer into kernel-mode mem-
ory, which is invisible to the calling application. Any attempts to access the string
data will terminate the application with an exception, stating that the instruction at
an address tried to read from a forbidden address. To solve this problem I have added
support functions to w2k_call.dll that provide easy access to the most common
types of data involved in kernel API calls.

The w2kSpyRead() function in Listing 6-30 is a general-purpose function that
copies arbitrary memory data blocks to a caller-supplied buffer. It is based on the
IOCTL function SPY_IO_MEMORY_BLOCK offered by the w2k_spy.sys spy device,
briefly described in Chapter 4. Use this function to read the contents or individual
members of structures allocated in kernel memory. It is important to note that
w2kSpyRead() fails if the address range spanned by the memory block contains invalid
addresses. “Invalid” means that neither physical nor pagefile memory is associated
with this address. w2kSpyClone() is an enhanced version of w2kSpyRead() that auto-
matically allocates a properly sized buffer and copies the kernel data to this buffer.
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BOOL WINAPI w2kSpyRead (PVOID pBuffer,

PVOID pAddress,

DWORD dBytes)

{

SPY_MEMORY_BLOCK smb;

BOOL             fOk = FALSE;

if ((pBuffer != NULL) && (pAddress != NULL) && dBytes)

{

ZeroMemory (pBuffer, dBytes);

smb.pAddress = pAddress;

smb.dBytes   = dBytes;

fOk = w2kSpyControl (SPY_IO_MEMORY_BLOCK,

&smb,    SPY_MEMORY_BLOCK_,

pBuffer, dBytes);

}

return fOk;

}

// -----------------------------------------------------------------

PVOID WINAPI w2kSpyClone (PVOID pAddress,

DWORD dBytes)

{

PVOID pBuffer = NULL;

if ((pAddress != NULL) && dBytes &&

((pBuffer = w2kMemoryCreate (dBytes)) != NULL) &&

(!w2kSpyRead (pBuffer, pAddress, dBytes)))

{

pBuffer = w2kMemoryDestroy (pBuffer);

}

return pBuffer;

}

LISTING 6-30. General-Purpose Data Access Functions

Reading strings requires a bit more work. Please recall that the most common
string type used by kernel-mode components is the UNICODE_STRING structure, com-
prising a string buffer pointer and information about the buffer size and the number
of bytes currently occupied by the string. Reading a UNICODE_STRING is usually a
two-part task. First, the UNICODE_STRING structure must be copied to find out the size
and address of the string buffer. In a second step, the string data is read. To simplify
this common task, w2k_call.dll provides the function set contained in Listing 6-31.
w2kStringAnsi() and w2kStringUnicode() allocate and initialize empty
ANSI_STRING and UNICODE_STRING structures, respectively, including a string buffer



of the specified size. For reasons of simplicity, the string header and buffer are inte-
grated into a single memory block. These structures can be used as targets for string
copying, as demonstrated by w2kStringClone(). This function creates a faithful
copy of a UNICODE_STRING in user-mode memory. The MaximumLength of the copy is
usually equal to the original, except if the source string has inconsistent parameters.
For example, if the indicated MaximumLength is less than or equal to the value of 
the Length member, it is invalid and therefore is set to Length+2. However, the 
MaximumLength of the copy will never be smaller than the original MaximumLength.
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PANSI_STRING WINAPI w2kStringAnsi (DWORD dSize)

{

PANSI_STRING pasData = NULL;

if ((pasData = w2kMemoryCreate (ANSI_STRING_ + dSize))

!= NULL)

{

pasData->Length        = 0;

pasData->MaximumLength = (WORD) dSize;

pasData->Buffer        = PTR_ADD (pasData, ANSI_STRING_);

if (dSize) pasData->Buffer [0] = 0;

}

return pasData;

}

// -----------------------------------------------------------------

PUNICODE_STRING WINAPI w2kStringUnicode (DWORD dSize)

{

DWORD           dSize1  = dSize * WORD_;

PUNICODE_STRING pusData = NULL;

if ((pusData = w2kMemoryCreate (UNICODE_STRING_ + dSize1))

!= NULL)

{

pusData->Length        = 0;

pusData->MaximumLength = (WORD) dSize1;

pusData->Buffer        = PTR_ADD (pusData, UNICODE_STRING_);

if (dSize) pusData->Buffer [0] = 0;

}

return pusData;

}

// -----------------------------------------------------------------
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PUNICODE_STRING WINAPI w2kStringClone (PUNICODE_STRING pusSource)

{

DWORD           dSize;

UNICODE_STRING  usCopy;

PUNICODE_STRING pusData = NULL;

if (w2kSpyRead (&usCopy, pusSource, UNICODE_STRING_))

{

dSize = max (usCopy.Length + WORD_,

usCopy.MaximumLength) / WORD_;

if (((pusData = w2kStringUnicode (dSize)) != NULL) &&

usCopy.Length && (usCopy.Buffer != NULL))

{

if (w2kSpyRead (pusData->Buffer, usCopy.Buffer,

usCopy.Length))

{

pusData->Length = usCopy.Length;

pusData->Buffer  [usCopy.Length / WORD_] = 0;

}

else

{

pusData = w2kMemoryDestroy (pusData);

}

}

}

return pusData;

}

LISTING 6-31. String Management Functions

Another way of copying a kernel string down to the application memory space
is to use one of the kernel runtime functions. For example, you can use a combina-
tion of the _RtlInitUnicodeString() and _RtlCopyUnicodeString() thunks pro-
vided by w2k_call.dll to achieve a similar effect. However, calling
w2kStringClone() is usually easier, because this function automatically allocates the
memory required for the string copy.

ACCESSING NONEXPORTED SYMBOLS

What we have achieved so far is to enable an application to execute operations that
formerly were reserved to kernel-mode drivers. Can we enhance an application with
capabilities that not even a kernel-mode driver has? Can we call internal functions
that are neither documented nor exported? This sounds dangerous, but, as I will
show in this section, it is not as bad as it might seem, if handled with care.



LOOKING UP INTERNAL SYMBOLS

The kernel call interface described in the previous sections delegated the task of
looking up the addresses of exported symbols to the spy device, which has full
access to the PE images of the kernel modules residing in the upper half of the 
linear address space. However, if the function to be called or the global variable to
be accessed is not exported, the spy device has no chance to find out its address.
While writing this chapter and examining some disassembly listing emitted by the
Kernel Debugger, I frequently thought: “What a pity that they don’t export this
nifty function!” What made me especially angry was that the Kernel Debugger
showed me the exact function name, but my application code was absolutely
ignorant of it. Of course, I could have used my kernel call interface to jump
through the plain binary entry point of the function, but that’s not good program-
ming style. The next service pack might shift this entry point to a completely
different address.

I reasoned that if the Debugger can do it, my application also should be able
to do it. A sample DLL described in Chapter 1 put me on the right track. The
w2k_img.dll provides everything needed to look up the address of any symbol
defined by the Windows 2000 kernel modules, provided that the operating sys-
tem’s symbol files are properly installed. So I extended the w2k_call.dll by an
API function that first resolves an internal symbol to its linear address and then
uses w2kCall() to execute it. Of course, an analogous function is provided for
global variables.

Listing 6-32 shows the complete set of extended call interface functions.
Again, a separate convenience function is provided for each major function type,
corresponding to the functions in Listings 6-20 to 6-22. w2kXCall() is the main
workhorse. It calls the w2k_img.dll API function imgTableResolve() to retrieve
the address of the supplied symbol and, if successful, specifies it in a subsequent
invocation of w2kCall(). Because w2kCall() is supposed to call an address
instead of a symbol, a NULL pointer is passed in for its pbSymbol argument. The
pEntryPoint argument is set to the symbol address pie->pAddress just retrieved
from the symbol files. As explained in Chapter 1, w2k_img.dll is able to determine
the calling conventions of most internal functions, so the fFastCall argument 
can be set up automatically by testing the value of pie->dConvention for IMG_
CONVENTION_FASTCALL. The number of argument bytes and the pointer to the
arguments are forwarded as received from the caller. It would have been possible 
to retrieve the number of arguments from the symbol information as well, but this
works with __stdcall and __fastcall functions only. __cdecl symbols don’t
encode the argument stack size in their decoration.
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BOOL WINAPI w2kXCall (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

DWORD           dArgumentBytes,

PVOID           pArguments)

{

PIMG_TABLE pit;

PIMG_ENTRY pie;

BOOL       fOk = FALSE;

if (((pit = w2kSymbolsGlobal (NULL))         != NULL) &&

((pie = imgTableResolve (pit, pbSymbol)) != NULL) &&

(pie->pAddress != NULL))

{

fOk = w2kCall (puliResult, NULL, pie->pAddress,

pie->dConvention == IMG_CONVENTION_FASTCALL,

dArgumentBytes, pArguments);

}

else

{

if (puliResult != NULL) puliResult->QuadPart = 0;

}

return fOk;

}

// -----------------------------------------------------------------

BOOL WINAPI w2kXCallV (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

DWORD           dArgumentBytes,

...)

{

return w2kXCall (puliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1);

}

// -----------------------------------------------------------------

NTSTATUS WINAPI w2kXCallNT (PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.LowPart

: STATUS_IO_DEVICE_ERROR);

}

(continued)
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// -----------------------------------------------------------------

BYTE WINAPI w2kXCall08 (BYTE  bDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? (BYTE) uliResult.LowPart

: bDefault);

}

// -----------------------------------------------------------------

WORD WINAPI w2kXCall16 (WORD  wDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? (WORD) uliResult.LowPart

: wDefault);

}

// -----------------------------------------------------------------

DWORD WINAPI w2kXCall32 (DWORD dDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.LowPart

: dDefault);

}

// -----------------------------------------------------------------
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QWORD WINAPI w2kXCall64 (QWORD qDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult.QuadPart

: qDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kXCallP (PVOID pDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

...)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? (PVOID) uliResult.LowPart

: pDefault);

}

LISTING 6-32. The Extended Call Interface

Note in Listing 6-32 that w2kXCall() invokes w2kSymbolsGlobal() before
doing anything else. This function is included in Listing 6-33, along with some
helpers, and its purpose is to load the ntoskrnl.exe symbol as soon as the first
w2kXCall() is executed. The table is stored in the global PIMG_TABLE variable named
gpit, so subsequent calls can reuse it. With support of some helper functions,
w2kSymbolsLoad() returns one of the status codes listed in Table 6-2 via the optional
*pdStatus argument. To avoid jumping to an invalid address because of unmatched
symbol information, w2kSymbolsLoad() carefully checks the time stamp and check
sum of the symbol files against the corresponding fields in the memory-resident
image of the target module using the w2kPeCheck() API function (not reprinted) and
discards the symbol table if they don’t match exactly.
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PIMG_TABLE WINAPI w2kSymbolsLoad (PBYTE  pbModule,

PDWORD pdStatus)

{

PVOID      pBase;

DWORD      dStatus = W2K_SYMBOLS_UNDEFINED;

PIMG_TABLE pit     = NULL;

if ((pBase = imgModuleBaseA (pbModule)) == NULL)

{

dStatus = W2K_SYMBOLS_MODULE_NOT_FOUND;

}

else

{

if ((pit = imgTableLoadA (pbModule, pBase)) == NULL)

{

dStatus = W2K_SYMBOLS_LOAD_ERROR;

}

else

{

if (!w2kPeCheck (pbModule, pit->dTimeStamp,

pit->dCheckSum))

{

dStatus = W2K_SYMBOLS_CHECKSUM_ERROR;

pit     = imgMemoryDestroy (pit);

}

else

{

dStatus = W2K_SYMBOLS_OK;

}

}

}

if (pdStatus != NULL) *pdStatus = dStatus;

return pit;

}

// -----------------------------------------------------------------

PIMG_TABLE WINAPI w2kSymbolsGlobal (PDWORD pdStatus)

{

DWORD      dStatus = W2K_SYMBOLS_UNDEFINED;

PIMG_TABLE pit     = NULL;

w2kSpyLock ();

if ((gdStatus == W2K_SYMBOLS_OK) && (gpit == NULL))

{
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gpit = w2kSymbolsLoad (NULL, &gdStatus);

}

dStatus = gdStatus;

pit     = gpit;

w2kSpyUnlock ();

if (pdStatus != NULL) *pdStatus = dStatus;

return pit;

}

// -----------------------------------------------------------------

DWORD WINAPI w2kSymbolsStatus (VOID)

{

DWORD dStatus = W2K_SYMBOLS_UNDEFINED;

w2kSymbolsGlobal (&dStatus);

return dStatus;

}

// -----------------------------------------------------------------

VOID WINAPI w2kSymbolsReset (VOID)

{

w2kSpyLock ();

gpit     = imgMemoryDestroy (gpit);

gdStatus = W2K_SYMBOLS_OK;

w2kSpyUnlock ();

return;

}

LISTING 6-33. The Symbol Table Manager Functions

The w2kSymbolsStatus() and w2kSymbolsReset() functions at the bottom 
of Listing 6-33 are used to load and unload the symbol table on demand. w2kSymbols
Status() attempts to load the symbol table if it isn’t already present and returns its
status. If w2k_call.dll already tried to load the table without success, the function
simply returns the last error status (Table 6-2) unless the symbol table is reset by a
w2kSymbolsReset() call. The latter function also destroys the memory block occu-
pied by the symbol table, if any, forcing a complete symbol reload on the next request
that involves the ntoskrnl.exe symbol table.



TABLE 6-2. w2kSymbolsLoad() Status Codes

STATUS CODE DESCRIPTION

W2K_SYMBOLS_OK The module’s symbol table has been loaded

W2K_SYMBOLS_MODULE_ERROR The module is not resident in memory

W2K_SYMBOLS_LOAD_ERROR The module’s symbol files couldn’t be loaded

W2K_SYMBOLS_VERSION_ERROR The symbol files don’t match the resident 
module image

W2K_SYMBOLS_UNDEFINED The symbol table status is undefined

The w2kXCopy*() function set making up the extended copy interface is shown
in Listing 6-34, which corresponds to Listing 6-23 above. w2kXCopy() simply calls
w2kXCall() with a negative value for dArgumentBytes, and the remaining copy
functions are merely wrappers with simplified argument lists.
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BOOL WINAPI w2kXCopy (PULARGE_INTEGER puliResult,

PBYTE           pbSymbol,

DWORD           dBytes)

{

return w2kXCall (puliResult, pbSymbol,

0xFFFFFFFF - dBytes, NULL);

}

// -----------------------------------------------------------------

BYTE WINAPI w2kXCopy08 (BYTE  bDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 1)

? (BYTE) uliResult.LowPart

: bDefault);

}

// -----------------------------------------------------------------

WORD WINAPI w2kXCopy16 (WORD  wDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 2)

? (WORD) uliResult.LowPart

: wDefault);

}
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// -----------------------------------------------------------------

DWORD WINAPI w2kXCopy32 (DWORD dDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 4)

? uliResult.LowPart

: dDefault);

}

// -----------------------------------------------------------------

QWORD WINAPI w2kXCopy64 (QWORD qDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 8)

? uliResult.QuadPart

: qDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kXCopyP (PVOID pDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 4)

? (PVOID) uliResult.LowPart

: pDefault);

}

// -----------------------------------------------------------------

PVOID WINAPI w2kXCopyEP (PVOID pDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 0)

? (PVOID) uliResult.LowPart

: pDefault);

}

LISTING 6-34. The Extended Copy Interface



IMPLEMENTING KERNEL FUNCTION THUNKS

The same guidelines apply to the implementation of thunks for internal kernel func-
tions as for exported API functions, except that only functions inside ntoskrnl.exe
can be called. This restriction is imposed by the symbol table manager inside
w2k_call.dll, not by the call interface itself. To simplify matters, only the
ntoskrnl.exe symbol table is loaded, because this is the module where the most
interesting symbols are found (of course, w2k_call.dll could have been enhanced to
load multiple tables on request). Listing 6-35 comprises two sample thunks for inter-
nal functions of the Windows 2000 object manager that return information about
type objects (object types will be discussed in detail in Chapter 7).

Listing 6-36 shows three thunks for some very important internal data struc-
tures that will be used by the sample code in Chapter 7. Note that I have prefixed the
names of all thunks that use the extended kernel call interface with two underscores.
This is just a reminder that this function will work only with a proper set of symbol
files. If you install a service pack without also updating the symbol files, w2kSymbols
Load() will refuse to load any symbols and the thunks will fail and return default
values. On the other hand, the thunks with a single leading underscore should con-
tinue to work with unmatched symbol files, because they resolve symbols on the
basis of the memory-resident export tables of the new modules. However, they may
fail as well after an update if the updated modules fail to export all referenced API
functions or some argument lists have been changed.
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NTSTATUS WINAPI

__ObQueryTypeInfo (POBJECT_TYPE      ObjectType,

POBJECT_TYPE_INFO TypeInfo,

/* bytes     */ DWORD             TypeInfoLength,

/* init to 0 */ PDWORD            ReturnLength)

{

return w2kXCallNT (“ObQueryTypeInfo”,

16, ObjectType, TypeInfo, TypeInfoLength,

ReturnLength);

}

// -----------------------------------------------------------------

NTSTATUS WINAPI

__ObQueryTypeName (POBJECT                  Object,

POBJECT_NAME_INFORMATION NameString,

/* bytes */ DWORD                    NameStringLength,



LISTING 6-35. Sample Thunks for ObQueryTypeInfo() and ObQueryTypeName()
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PDWORD                   ReturnLength)

{

return w2kXCallNT (“ObQueryTypeName”,

16, Object, NameString, NameStringLength,

ReturnLength);

}

PERESOURCE WINAPI

__ObpRootDirectoryMutex (VOID)

{

return w2kXCopyP (NULL, “ObpRootDirectoryMutex”);

}

// -----------------------------------------------------------------

POBJECT_DIRECTORY WINAPI

__ObpRootDirectoryObject (VOID)

{

return w2kXCopyP (NULL, “ObpRootDirectoryObject”);

}

// -----------------------------------------------------------------

POBJECT_DIRECTORY WINAPI

__ObpTypeDirectoryObject (VOID)

{

return w2kXCopyP (NULL, “ObpTypeDirectoryObject”);

}

LISTING 6-36. Sample Thunks for Some Internal Variables

This should suffice for now. You may be a bit disappointed that I am not adding
sample code here to demonstrate the usage of the w2k_call.dll API functions. Don’t
worry—you will get your sample code in the next chapter.




