
There is hardly anything more fascinating in the internals of Windows 2000 than
the world of its objects. If the memory space of an operating system is viewed as

the surface of a planet, the objects are the creatures living on it. Several types of
objects exist—small and large ones, simple and complex ones—and they interact in
various ways. Windows 2000 features a clever, well-structured object management
mechanism that is almost completely undocumented. This chapter attempts to give
you a small insight into this huge, complex universe. Unfortunately, this part of
Windows 2000 is one of the best-kept secrets of Microsoft, and many questions must
be left unanswered here. However, I hope that this chapter will serve as a starting
point for others, helping them to go “where no man has gone before.”

WINDOWS 2000 OBJECT STRUCTURES

The companion CD of this book contains a large header file named w2k_def.h in
the \src\common\include directory that makes the heart of a Windows 2000 system
programmer throb with joy. It is a large collection of constant and type definitions,
resulting from years of Windows NT/2000 spelunking. The w2k_def.h file is
designed to be included in Win32 applications as well as kernel-mode drivers, using
conditional compilation to account for their different build environments. For
example, Win32 applications can’t make use of the ntdef.h and ntddk.h files that
contain most of the kernel data type definitions. Therefore, w2k_def.h includes all
#define’s and typedef’s found in the Device Documentation Kit (DDK) header
files that are required in the definitions of the undocumented items. To avoid
redefinition errors in a kernel-mode driver build, these definitions are put into an
#ifdef _USER_MODE_ clause, so they are ignored by the compiler if the _USER_MODE_
symbol is not defined. This means that you must put a #define _USER_MODE_ line

395

C H A P T E R 7

Windows 2000
Object
Management

into your source code before including w2k_def.h to enable the processing of the
DDK definitions in a Win32 application or DLL build. The #else clause of the
#ifdef _USER_MODE_ construct contains a small number of definitions that are miss-
ing from the Windows 2000 DDK header files, such as the SECURITY_DESCRIPTOR
and SECURITY_DESCRIPTOR_CONTROL types.

BASIC OBJECT CATEGORIES

Although objects are clearly the gist of the Windows 2000 operating system, you will
find remarkably little information about their inner structure in the DDK. Out of the
21 Ob*() object manager API functions exported by ntoskrnl.exe, only 6 are listed
in the DDK documentation. API functions that receive pointers to objects as argu-
ments usually define these pointers as simple PVOID types. If you search the main DDK
header files ntdef.h and ntddk.h for occurrences of type definitions that somehow
are related to objects, you won’t find much useful information. Some important object
data types are defined as placeholders only. For example, the OBJECT_TYPE structure
appears as typedef struct _OBJECT_TYPE *POBJECT_TYPE; just to keep the compiler
happy, without revealing anything useful about its internals.

Whenever you come across an object pointer, you should view it as a linear
address that divides a memory-resident structure into two parts: an object header
and an object body. The object pointer doesn’t point to the base address of the
object itself, but to its body section that immediately follows the header. Therefore,
the header parts of an object must be accessed by applying negative offsets to the
object pointer. The internals of the object body are completely dependent on the type
of object and may vary considerably. The most simple object is the event object with
its 16-byte body. Among the most complex ones are thread and process objects,
which are several hundred bytes. Basically, the object body types can be sorted into
the following three main categories:

1. Dispatcher objects reside on the lowest system level and share a
common data structure called DISPATCHER_HEADER (Listing 7-1) at the
beginning of their object bodies. This header contains an object type ID
and the length of the object body in 32-bit DWORD units. The names of
all dispatcher object structures start with a K for “kernel.” The presence
of a DISPATCHER_HEADER makes an object “waitable.” This means
that the object can be passed to the synchronization functions
KeWaitForSingleObject() and KeWaitForMultipleObjects(),
which are the ones the Win32 API functions WaitForSingleObject()
and WaitForMultipleObjects() are built upon.

396 WINDOWS 2000 OBJECT MANAGEMENT

LISTING 7-1. Definition of the DISPATCHER_HEADER

2. I/O system data structures are higher-level objects whose body starts
with a SHORT member specifying an object type ID. Usually, this ID is
followed by another SHORT or WORD member indicating the object body
size in 8-bit BYTE units. However, not all objects of this category follow
this guideline.

3. Other objects—some objects fit into neither of the above categories.

Note that the type IDs of dispatcher objects and I/O system data structures—
named I/O objects from now on—are assigned independently and hence overlap.
Table 7-1 lists the dispatcher object types of which I’m currently aware. Some of the
structures in the “C Structure” column are defined in the DDK header file ntddk.h.
Unfortunately, the most interesting ones, such as KPROCESS and KTHREAD, are miss-
ing. Don’t worry, however—these special object types will be discussed in detail later
in this chapter. All undocumented structures whose internals are at least partially
known to me are included in the header file w2k_def.h on the companion CD, as
well as in Appendix C of this book.

TABLE 7-1. Summary of Dispatcher Objects

ID TYPE C STRUCTURE DEFINITION

0 DISP_TYPE_NOTIFICATION_EVENT KEVENT ntddk.h

1 DISP_TYPE_SYNCHRONIZATION_EVENT KEVENT ntddk.h

2 DISP_TYPE_MUTANT KMUTANT, KMUTEX ntddk.h

3 DISP_TYPE_PROCESS KPROCESS w2k_def.h

4 DISP_TYPE_QUEUE KQUEUE w2k_def.h

WINDOWS 2000 OBJECT STRUCTURES 397

typedef struct _DISPATCHER_HEADER
{

/*000*/ BYTE Type; // DISP_TYPE_*

/*001*/ BYTE Absolute;

/*002*/ BYTE Size; // number of DWORDs

/*003*/ BYTE Inserted;

/*004*/ LONG SignalState;

/*008*/ LIST_ENTRY WaitListHead;

/*010*/ }

DISPATCHER_HEADER,

* PDISPATCHER_HEADER,

**PPDISPATCHER_HEADER;

(continued)

TABLE 7-1. (continued)

ID TYPE C STRUCTURE DEFINITION

5 DISP_TYPE_SEMAPHORE KSEMAPHORE ntddk.h

6 DISP_TYPE_THREAD KTHREAD w2k_def.h

8 DISP_TYPE_NOTIFICATION_TIMER KTIMER ntddk.h

9 DISP_TYPE_SYNCHRONIZATION_TIMER KTIMER ntddk.h

Table 7-2 summarizes the I/O objects I have identified so far. Only the first 13
IDs are defined in ntddk.h. Again, some of the structures in the “C Structure” col-
umn can be looked up in the DDK. Some of the remaining ones are included in
w2k_def.h and in Appendix C of this book.

TABLE 7-2. Summary of I/O Objects

ID TYPE C STRUCTURE DEFINITION

1 IO_TYPE_ADAPTER ADAPTER_OBJECT

2 IO_TYPE_CONTROLLER CONTROLLER_OBJECT ntddk.h

3 IO_TYPE_DEVICE DEVICE_OBJECT ntddk.h

4 IO_TYPE_DRIVER DRIVER_OBJECT ntddk.h

5 IO_TYPE_FILE FILE_OBJECT ntddk.h

6 IO_TYPE_IRP IRP ntddk.h

7 IO_TYPE_MASTER_ADAPTER

8 IO_TYPE_OPEN_PACKET

9 IO_TYPE_TIMER IO_TIMER w2k_def.h

10 IO_TYPE_VPB VPB ntddk.h

11 IO_TYPE_ERROR_LOG IO_ERROR_LOG_ENTRY w2k_def.h

12 IO_TYPE_ERROR_MESSAGE IO_ERROR_LOG_MESSAGE ntddk.h

13 IO_TYPE_DEVICE_OBJECT_ EXTENSION DEVOBJ_EXTENSION ntddk.h

18 IO_TYPE_APC KAPC ntddk.h

19 IO_TYPE_DPC KDPC ntddk.h

20 IO_TYPE_DEVICE_QUEUE KDEVICE_QUEUE ntddk.h

21 IO_TYPE_EVENT_PAIR KEVENT_PAIR w2k_def.h

22 IO_TYPE_INTERRUPT KINTERRUPT

23 IO_TYPE_PROFILE KPROFILE

398 WINDOWS 2000 OBJECT MANAGEMENT

THE OBJECT HEADER

The body of an object can assume any form suitable for the creator of the object. The
Windows 2000 object manager doesn’t impose any restrictions on the size and struc-
ture of the object body. Contrary to this, there is much less freedom with the header
portion of an object. Figure 7-1 shows the memory layout of a full-featured object,
with the maximum number of header fields. Every object features at least a basic
OBJECT_HEADER structure, immediately preceding the object body, plus up to four
optional structures that supply additional information about the object. As already
noted, an object pointer always refers to the object body, not to the header, so the
header fields are accessed via negative offsets relative to the object pointer. The basic
header contains information about the availability and location of additional header
fields, which are stacked up on the OBJECT_HEADER structure in the order shown in
Figure 7-1, if present. However, this sequence isn’t mandatory, and your programs
should never rely on it. The information in the OBJECT_HEADER is sufficient to locate
all header fields regardless of their order, as will be shown in a moment. The only
exception is the OBJECT_CREATOR_INFO structure that always precedes the
OBJECT_HEADER immediately if it is included.

WINDOWS 2000 OBJECT STRUCTURES 399

OBJECT_QUOTA_CHARGES 0x10 Bytes

 OBJECT_HANDLE_DB 0x08 Bytes

 OBJECT_NAME 0x10 Bytes

 OBJECT_CREATOR_INFO 0x10 Bytes

 OBJECT_HEADER 0x18 Bytes

POBJECT

OBJECT

FIGURE 7-1. Memory Layout of an Object

Listing 7-2 shows the definition of the OBJECT_HEADER structure. Its members
serve the following purposes:

• The PointerCount member indicates how many active pointer
references to this object currently exist. This value is similar to the
reference count maintained by Component Object Model (COM)
objects. The ntoskrnl.exe API functions ObfReferenceObject(),
ObReferenceObjectByHandle(), ObReferenceObjectByName(), and
ObReferenceObjectByPointer() increment the PointerCount, and
ObfDereferenceObject() and ObDereferenceObject() decrement it.

• The HandleCount member indicates how many open handles currently
refer to this object.

400 WINDOWS 2000 OBJECT MANAGEMENT

#define OB_FLAG_CREATE_INFO 0x01 // has OBJECT_CREATE_INFO

#define OB_FLAG_KERNEL_MODE 0x02 // created by kernel

#define OB_FLAG_CREATOR_INFO 0x04 // has OBJECT_CREATOR_INFO

#define OB_FLAG_EXCLUSIVE 0x08 // OBJ_EXCLUSIVE

#define OB_FLAG_PERMANENT 0x10 // OBJ_PERMANENT

#define OB_FLAG_SECURITY 0x20 // has security descriptor

#define OB_FLAG_SINGLE_PROCESS 0x40 // no HandleDBList

typedef struct _OBJECT_HEADER

{

/*000*/ DWORD PointerCount; // number of references

/*004*/ DWORD HandleCount; // number of open handles

/*008*/ POBJECT_TYPE ObjectType;

/*00C*/ BYTE NameOffset; // -> OBJECT_NAME

/*00D*/ BYTE HandleDBOffset; // -> OBJECT_HANDLE_DB

/*00E*/ BYTE QuotaChargesOffset; // -> OBJECT_QUOTA_CHARGES

/*00F*/ BYTE ObjectFlags; // OB_FLAG_*

/*010*/ union

{ // OB_FLAG_CREATE_INFO ? ObjectCreateInfo : QuotaBlock

/*010*/ PQUOTA_BLOCK QuotaBlock;

/*010*/ POBJECT_CREATE_INFO ObjectCreateInfo;

/*014*/ };

/*014*/ PSECURITY_DESCRIPTOR SecurityDescriptor;

/*018*/ }

OBJECT_HEADER,

* POBJECT_HEADER,

**PPOBJECT_HEADER;

LISTING 7-2. The OBJECT_HEADER Structure

• The ObjectType member points to an OBJECT_TYPE structure (described
later) representing the type object that has been used in the creation of
this object.

• The NameOffset specifies the number of bytes to be subtracted from the
OBJECT_HEADER address to locate the object header’s OBJECT_NAME portion.
If zero, this structure is not available.

• The HandleDBOffset specifies the number of bytes to be subtracted from
the OBJECT_HEADER address to locate the object header’s
OBJECT_HANDLE_DB portion. If zero, this structure is not available.

• The QuotaChargesOffset specifies the number of bytes to be subtracted
from the OBJECT_HEADER address to locate the object header’s
OBJECT_QUOTA_CHARGES portion. If zero, this structure is not available.

• The ObjectFlags specify various binary properties of an object, as listed
in the top section of Listing 7-2. If the OB_FLAG_CREATOR_INFO bit is set,
the object header includes an OBJECT_CREATOR_INFO structure that
immediately precedes the OBJECT_HEADER. In Windows NT/2000 Native
API Reference, Gary Nebbett mentions these flags with slightly different
names in his description of the SystemObjectInformation class of the
ZwQuerySystemInformation() function (Nebbett 2000, p. 24), as shown
in Table 7-3.

• The QuotaBlock and ObjectCreateInfo members are mutually exclusive.
If the ObjectFlags member has the OB_FLAG_CREATE_INFO flag set, this
member contains a pointer to the OBJECT_CREATE_INFO structure
(described later) used in the creation of this object. Otherwise, it points to
a QUOTA_BLOCK that provides information about the usage of the paged
and nonpaged memory pools. Many objects have their QuotaBlock
pointer set to the internal PspDefaultQuotaBlock structure. The value of
this union can be NULL.

• The SecurityDescriptor member points to a SECURITY_DESCRIPTOR
structure if the OB_FLAG_SECURITY bit of the ObjectFlags is set.
Otherwise, its value is NULL.

In the above list, several structures have been mentioned that weren’t discussed
in detail so far. Each of them will be introduced now, starting with the four optional
header parts shown in Figure 7-1.

WINDOWS 2000 OBJECT STRUCTURES 401

TABLE 7-3. Comparison of ObjectFlags Interpretations

SCHREIBER VALUE NEBBETT

OB_FLAG_CREATE_INFO 0x01 N/A

OB_FLAG_KERNEL_MODE 0x02 KERNEL_MODE

OB_FLAG_CREATOR_INFO 0x04 CREATOR_INFO

OB_FLAG_EXCLUSIVE 0x08 EXCLUSIVE

OB_FLAG_PERMANENT 0x10 PERMANENT

OB_FLAG_SECURITY 0x20 DEFAULT_SECURITY_QUOTA

OB_FLAG_SINGLE_PROCESS 0x40 SINGLE_HANDLE_ENTRY

THE OBJECT CREATOR INFORMATION

The OBJECT_HEADER of an object is immediately preceded by an OBJECT_CREATOR_INFO
structure if the OB_FLAG_CREATOR_INFO bit of its ObjectFlags member is set. The
definition of this optional header part is shown in Listing 7-3. The ObjectList mem-
ber is a node within a doubly linked list (cf. Listing 2-7 in Chapter 2) that connects
objects of the same type to each other. As usual, this list is circular. The list head
where the object list originates and ends is located within the OBJECT_TYPE structure
that represents the common type object of the list members. By default, only Port
and WaitablePort objects include OBJECT_CREATOR_INFO data in their headers. The
SystemObjectInformation class of the ZwQuerySystemInformation() API function
uses the ObjectList to return complete lists of currently allocated objects, grouped
by object type. Gary Nebbett points out in Windows NT/2000 Native API Reference
that “[...] this information class is only available if FLG_MAINTAIN_OBJECT_TYPELIST
was set in the NtGlobalFlags at boot time” (Nebbett 2000, p. 25).

402 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _OBJECT_CREATOR_INFO

{

/*000*/ LIST_ENTRY ObjectList; // OBJECT_CREATOR_INFO

/*008*/ HANDLE UniqueProcessId;

/*00C*/ WORD Reserved1;

/*00E*/ WORD Reserved2;

/*010*/ }

OBJECT_CREATOR_INFO,

* POBJECT_CREATOR_INFO,

**PPOBJECT_CREATOR_INFO;

LISTING 7-3. The OBJECT_CREATOR_INFO Structure

The UniqueProcessId is the zero-based numeric ID of the process that created
the object. Although defined as a HANDLE, this member is not a handle in the usual
sense. It might be described more accurately as an opaque 32-bit unsigned integer.
Actually, the Win32 GetCurrentProcessId() API function returns these HANDLE
values as DWORD types.

THE OBJECT NAME

If the NameOffset member of the OBJECT_HEADER is nonzero, it specifies the inverse
offset of an OBJECT_NAME structure with respect to the base address of the
OBJECT_HEADER. Typical values are 0x10 or 0x20, depending on the presence of an
OBJECT_CREATOR_INFO header part. Listing 7-4 shows the definition of the
OBJECT_NAME structure. The Name member is a UNICODE_STRING whose Buffer
member points to the name string, which is usually not part of the memory block
containing the object. Not all named objects use an OBJECT_NAME structure in the
header to store the name. For example, some objects rely on a QueryNameProcedure()
provided by their associated OBJECT_TYPE.

If the Directory member is not NULL, it points to the directory object repre-
senting the layer in the system’s object hierarchy where this object is located. Like
files in a file system, Windows 2000 objects are kept in a hierarchically structured
tree consisting of directory and leaf objects. More details about the OBJECT_
DIRECTORY structure follow in a moment.

WINDOWS 2000 OBJECT STRUCTURES 403

typedef struct _OBJECT_NAME

{

/*000*/ POBJECT_DIRECTORY Directory;

/*004*/ UNICODE_STRING Name;

/*00C*/ DWORD Reserved;

/*010*/ }

OBJECT_NAME,

* POBJECT_NAME,

**PPOBJECT_NAME;

LISTING 7-4. The OBJECT_NAME Structure

THE OBJECT HANDLE DATABASE

Some objects maintain process-specific handle counts stored in a so-called “handle
database.” If this is the case, the HandleDBOffset member of the OBJECT_HEADER
contains a nonzero value. Just like the NameOffset described above, this is an offset
to be subtracted from the base address of the OBJECT_HEADER to locate this header

part. The OBJECT_HANDLE_DB structure is defined in Listing 7-5. If the OB_FLAG_
SINGLE_PROCESS flag is set in the ObjectFlags, the Process member of the union
at the beginning of this structure is valid and points to a process object. If more
that one process holds handles to the object, the OB_FLAG_SINGLE_PROCESS
flag is cleared, and the HandleDBList member becomes valid, pointing to an
OBJECT_HANDLE_DB_LIST that constitutes an array of OBJECT_HANDLE_DB structures,
preceded by a count value.

404 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _OBJECT_HANDLE_DB

{

/*000*/ union

{

/*000*/ struct _EPROCESS *Process;

/*000*/ struct _OBJECT_HANDLE_DB_LIST *HandleDBList;

/*004*/ };

/*004*/ DWORD HandleCount;

/*008*/ }

OBJECT_HANDLE_DB,

* POBJECT_HANDLE_DB,

**PPOBJECT_HANDLE_DB;

#define OBJECT_HANDLE_DB_ \

sizeof (OBJECT_HANDLE_DB)

// ---

typedef struct _OBJECT_HANDLE_DB_LIST

{

/*000*/ DWORD Count;

/*004*/ OBJECT_HANDLE_DB Entries [];

/*???*/ }

OBJECT_HANDLE_DB_LIST,

* POBJECT_HANDLE_DB_LIST,

**PPOBJECT_HANDLE_DB_LIST;

#define OBJECT_HANDLE_DB_LIST_ \

sizeof (OBJECT_HANDLE_DB_LIST)

LISTING 7-5. The OBJECT_HANDLE_DB Structure

RESOURCE CHARGES AND QUOTAS

If a process opens a handle to an object, the process must “pay” for usage of system
resources caused by this operation. The paid dues are referred to as charges, and the

upper limit a process may spend for resources is termed the quota. In the glossary of
the DDK documentation (Microsoft, 2000F), Microsoft defines the “quota” term in
the following way:

QUOTA

A per-process limit on the use of system resources.

For each process, Windows NT®/Windows® 2000 sets limits on certain system resources the

process’s threads can use, including quotas for paging-file, paged-pool, and nonpaged-pool

usage, etc. For example, the Memory Manager “charges quota” against the process as its

threads use page-file, paged-pool, or nonpaged-pool memory; it also updates these values

when threads release memory. (Windows 2000 DDK \ Kernel-Mode Drivers \ Design Guide \
Kernel-Mode Glossary \ Q \ quota)

By default, an object’s OBJECT_TYPE determines the charges to be applied for
paged/nonpaged pool usage and security. However, this default can be overridden by
adding an OBJECT_QUOTA_CHARGES structure to the object header. The location of this
data relative to the OBJECT_HEADER base address is specified by the QuotaChargesOffset
member of the OBJECT_HEADER as an inverse offset, as usual. Listing 7-6 shows the struc-
ture definition. The usages of the paged and nonpaged pools are charged separately. If
the object requires security, an additional SecurityCharge is added to the paged-pool
usage. The default security charge is 0x800.

If the OB_FLAG_CREATE_INFO bit of the ObjectFlags in the OBJECT_HEADER is
zero, the QuotaBlock member points to a QUOTA_BLOCK structure (Listing 7-7) that
contains statistical information about the current resource usage of the object.

WINDOWS 2000 OBJECT STRUCTURES 405

#define OB_SECURITY_CHARGE 0x00000800

typedef struct _OBJECT_QUOTA_CHARGES

{

/*000*/ DWORD PagedPoolCharge;

/*004*/ DWORD NonPagedPoolCharge;

/*008*/ DWORD SecurityCharge;

/*00C*/ DWORD Reserved;

/*010*/ }

OBJECT_QUOTA_CHARGES,

* POBJECT_QUOTA_CHARGES,

**PPOBJECT_QUOTA_CHARGES;

LISTING 7-6. The OBJECT_QUOTA_CHARGES Structure

406 WINDOWS 2000 OBJECT MANAGEMENT

LISTING 7-7. The QUOTA_BLOCK Structure

OBJECT DIRECTORIES

As already noted in the discussion of the OBJECT_NAME header part, the Windows
2000 object manager keeps individual objects in a tree of OBJECT_DIRECTORY struc-
tures, also known as “directory objects.” An OBJECT_DIRECTORY is just another fancy
type of object, with an ordinary OBJECT_HEADER and everything a real object needs.
The Windows 2000 object directory management is quite tricky. As Listing 7-8
shows, the OBJECT_DIRECTORY is basically a hash table with 37 entries. This unusual
size has probably been chosen because it is a prime number. Each table entry can
hold a pointer to an OBJECT_DIRECTORY_ENTRY whose Object member refers to an
object. When a new object is created, the object manager computes a hash value in
the range 0 to 36 from the object name and creates an OBJECT_DIRECTORY_ENTRY. If
the target slot of the hash table is empty, this slot is set up to point to the new direc-
tory entry. If the slot is already in use, the new entry is inserted into a singly-linked
list of entries originating from the target slot, using the NextEntry members of the
involved OBJECT_DIRECTORY_ENTRY structures. To represent hierarchical object rela-
tionships, object directories can be nested in a straightforward way by simply adding
an OBJECT_DIRECTORY_ENTRY with an Object member that points to a subordinate
directory object.

To optimize the access to frequently used objects, the object manager applies a
simple most recently used (MRU) algorithm. Whenever an object has successfully been
retrieved, it is put in front of the linked list of entries that are assigned to the same
hash table slot. Moreover, a pointer to the updated list is kept in the CurrentEntry
member of the OBJECT_DIRECTORY. The CurrentEntryValid flag indicates whether
the CurrentEntry pointer is valid. Access to the system’s global object directory is
synchronized by means of an ERESOURCE lock called ObpRootDirectoryMutex. This
lock is neither documented nor exported.

typedef struct _QUOTA_BLOCK

{

/*000*/ DWORD Flags;

/*004*/ DWORD ChargeCount;

/*008*/ DWORD PeakPoolUsage [2]; // NonPagedPool, PagedPool

/*010*/ DWORD PoolUsage [2]; // NonPagedPool, PagedPool

/*018*/ DWORD PoolQuota [2]; // NonPagedPool, PagedPool

/*020*/ }

QUOTA_BLOCK,

* PQUOTA_BLOCK,

**PPQUOTA_BLOCK;

LISTING 7-8. The OBJECT_DIRECTORY and OBJECT_DIRECTORY_ENTRY Structures

OBJECT TYPES

The above object header part descriptions have frequently referred to “type objects”
or OBJECT_TYPE structures, so it is now time to introduce these. Formally, a type
object is nothing but a special kind of object, such as an event, device, or process, and
as such has an OBJECT_HEADER and potentially some of the optional header substruc-
tures. The only difference is that type objects are related in a special way to other
objects. A type object is sort of a “master object” that defines common properties of
objects of the same kind, and optionally keeps all of its subordinate objects in a dou-
bly-linked list, as explained earlier in the description of the OBJECT_CREATOR_INFO
structure. Therefore, type objects are frequently referred to as “object types” to
emphasize that they are more than just ordinary objects.

The body of a type object consists of an OBJECT_TYPE structure with an embed-
ded OBJECT_TYPE_INITIALIZER, both of which are shown in Listing 7-9. The latter
is used during object creation via ObCreateObject() to build a proper object header.
For example, the MaintainHandleCount and MaintainTypeList members are used

WINDOWS 2000 OBJECT STRUCTURES 407

typedef struct _OBJECT_DIRECTORY_ENTRY

{

/*000*/ struct _OBJECT_DIRECTORY_ENTRY *NextEntry;

/*004*/ POBJECT Object;

/*008*/ }

OBJECT_DIRECTORY_ENTRY,

* POBJECT_DIRECTORY_ENTRY,

**PPOBJECT_DIRECTORY_ENTRY;

// ---

#define OBJECT_HASH_TABLE_SIZE 37

typedef struct _OBJECT_DIRECTORY

{

/*000*/ POBJECT_DIRECTORY_ENTRY HashTable [OBJECT_HASH_TABLE_SIZE];

/*094*/ POBJECT_DIRECTORY_ENTRY CurrentEntry;

/*098*/ BOOLEAN CurrentEntryValid;

/*099*/ BYTE Reserved1;

/*09A*/ WORD Reserved2;

/*09C*/ DWORD Reserved3;

/*0A0*/ }

OBJECT_DIRECTORY,

* POBJECT_DIRECTORY,

**PPOBJECT_DIRECTORY;

408 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _OBJECT_TYPE_INITIALIZER

{

/*000*/ WORD Length; //0x004C

/*002*/ BOOLEAN UseDefaultObject;//OBJECT_TYPE.DefaultObject

/*003*/ BOOLEAN Reserved1;

/*004*/ DWORD InvalidAttributes;

/*008*/ GENERIC_MAPPING GenericMapping;

/*018*/ ACCESS_MASK ValidAccessMask;

/*01C*/ BOOLEAN SecurityRequired;

/*01D*/ BOOLEAN MaintainHandleCount; // OBJECT_HANDLE_DB

/*01E*/ BOOLEAN MaintainTypeList; // OBJECT_CREATOR_INFO

/*01F*/ BYTE Reserved2;

/*020*/ BOOL PagedPool;

/*024*/ DWORD DefaultPagedPoolCharge;

/*028*/ DWORD DefaultNonPagedPoolCharge;

/*02C*/ NTPROC DumpProcedure;

/*030*/ NTPROC OpenProcedure;

/*034*/ NTPROC CloseProcedure;

/*038*/ NTPROC DeleteProcedure;

/*03C*/ NTPROC_VOID ParseProcedure;

/*040*/ NTPROC_VOID SecurityProcedure; // SeDefaultObjectMethod

/*044*/ NTPROC_VOID QueryNameProcedure;

/*048*/ NTPROC_BOOLEAN OkayToCloseProcedure;

/*04C*/ }

OBJECT_TYPE_INITIALIZER,

* POBJECT_TYPE_INITIALIZER,

**PPOBJECT_TYPE_INITIALIZER;

// ---

typedef struct _OBJECT_TYPE

{

/*000*/ ERESOURCE Lock;

/*038*/ LIST_ENTRY ObjectListHead; // OBJECT_CREATOR_INFO

/*040*/ UNICODE_STRING ObjectTypeName; // see above

/*048*/ union

{

/*048*/ PVOID DefaultObject; // ObpDefaultObject

/*048*/ DWORD Code; // File: 5C, WaitablePort: A0

};

/*04C*/ DWORD ObjectTypeIndex; // OB_TYPE_INDEX_*

/*050*/ DWORD ObjectCount;

/*054*/ DWORD HandleCount;

/*058*/ DWORD PeakObjectCount;

/*05C*/ DWORD PeakHandleCount;

/*060*/ OBJECT_TYPE_INITIALIZER ObjectTypeInitializer;

/*0AC*/ DWORD ObjectTypeTag; // OB_TYPE_TAG_*

/*0B0*/ }

LISTING 7-9. The OBJECT_TYPE and OBJECT_TYPE_INITIALIZER Structures

by the internal ntoskrnl.exe function ObpAllocateObject() to decide whether all
newly created objects will comprise OBJECT_HANDLE_DB and OBJECT_CREATOR_INFO
header parts, respectively. Setting the MaintainTypeList flag has the nice side effect
that the objects of this type will be tied to each other in a doubly linked list, originating
from and ending at the ObjectListHead member of the OBJECT_TYPE. The
OBJECT_TYPE_INITIALIZER also provides the default quota charges (mentioned earlier
in the discussion of the OBJECT_QUOTA_CHARGES header component) via its Default-
PagedPoolCharge and DefaultNonPagedPoolCharge members.

Because type objects/object types are essential building blocks of the Windows
2000 object universe, ntoskrnl.exe stores them in named variables, making it easy to
verify the type of an object by simply comparing the ObjectType member of its
OBJECT_HEADER to the stored type object in question. Type objects are unique—the sys-
tem never creates more than one type object for each kind of object. Table 7-4 summa-
rizes the type objects maintained by Windows 2000. The information in the various
columns has the following meaning:

WINDOWS 2000 OBJECT STRUCTURES 409

OBJECT_TYPE,

* POBJECT_TYPE,

**PPOBJECT_TYPE;

(continued)

TABLE 7-4. Available Object Types

INDEX TAG NAME C STRUCTURE PUBLIC SYMBOL

1 “ObjT” “Type” OBJECT_TYPE No ObpTypeObjectType

2 “Dire” “Directory” OBJECT_DIRECTORY No ObpDirectoryObjectType

3 “Symb” “SymbolicLink” No ObpSymbolicLinkObjectType

4 “Toke” “Token” TOKEN No SepTokenObjectType

5 “Proc” “Process” EPROCESS Yes PsProcessType

6 “Thre” “Thread” ETHREAD Yes PsThreadType

7 “Job “ “Job” Yes PsJobType

8 “Even” “Event” KEVENT Yes ExEventObjectType

9 “Even” “EventPair” KEVENT_PAIR No ExEventPairObjectType

10 “Muta” “Mutant” KMUTANT No ExMutantObjectType

11 “Call” “Callback” CALLBACK_OBJECT No ExCallbackObjectType

• The “Index” column specifies the value of the ObjectTypeIndex member
of the OBJECT_TYPE structure.

• The “Tag” is the 32-bit identifier stored in the ObjectTypeTag member of
the OBJECT_TYPE structure. Windows 2000 tags are typically binary values
generated by concatenation of four ANSI characters. During debugging,
these characters can easily be identified in a hex dump listing. Testing the
ObjectTypeTag value is the easiest way to verify that a given type object is
of the expected kind. When allocating memory for an object, Windows
2000 also uses this value—logically OR’ed with 0x80000000—to tag the
new memory block.

• The “Name” column states the object name, as it is specified by the type
object’s OBJECT_NAME header component. It is obvious that the type tag is
generated from the object name by truncating it to four characters,
appending spaces if the name is shorter.

• “C Structure” is the name of the object body structure associated with the
object type. Some of them are documented in the DDK and some in the

410 WINDOWS 2000 OBJECT MANAGEMENT

TABLE 7-4. (continued)

INDEX TAG NAME C STRUCTURE PUBLIC SYMBOL

12 “Sema” “Semaphore” KSEMAPHORE Yes ExSemaphoreObjectType

13 “Time” “Timer” ETIMER No ExTimerObjectType

14 “Prof” “Profile” KPROFILE No ExProfileObjectType

15 “Wind” “WindowStation” Yes ExWindowStationObjectType

16 “Desk” “Desktop” Yes ExDesktopObjectType

17 “Sect” “Section” Yes MmSectionObjectType

18 “Key” “Key” No CmpKeyObjectType

19 “Port” “Port” Yes LpcPortObjectType

20 “Wait” “WaitablePort” No LpcWaitablePortObjectType

21 “Adap” “Adapter” ADAPTER_OBJECT Yes IoAdapterObjectType

22 “Cont” “Controller” CONTROLLER_OBJECT No IoControllerObjectType

23 “Devi” “Device” DEVICE_OBJECT Yes IoDeviceObjectType

24 “Driv” “Driver” DRIVER_OBJECT Yes IoDriverObjectType

25 “IoCo” “IoCompletion”IO_COMPLETION No IoCompletionObjectType

26 “File” “File” FILE_OBJECT Yes IoFileObjectType

27 “WmiG”“WmiGuid” GUID No WmipGuidObjectType

w2k_def.h header file on the CD provided with this book. If no name is
present, the structure is currently unknown or unidentified.

• The “Symbol” column indicates the name of the pointer variable that
refers to the type object. If the “Public” column contains “yes,” the
variable is exported and can be accessed by kernel-mode drivers or
applications that link to the kernel via the w2k_call.dll library presented
in Chapter 6.

The “Index” column requires further explanation. The value shown here is
taken from the ObjectTypeIndex member of the corresponding OBJECT_TYPE struc-
ture. This value is not a predefined type ID as are the DISP_TYPE_* and IO_TYPE_*
constants used by dispatcher and I/O objects (see Tables 7-1 and 7-2). It merely
reflects the order in which the system created these type objects. Therefore, you
should never use the ObjectTypeIndex to identify the type of an object. It is safer to
use the ObjectTypeTag instead, which is certainly more stable across future operat-
ing system versions.

OBJECT HANDLES

Whereas a kernel-mode driver can directly contact an object by querying a pointer to
its object body, a user-mode application cannot. When it calls one of the API func-
tions that open an object, it receives back a handle that must be used in subsequent
operations on the object. Although Windows 2000 applies the “handle” metaphor to
a variety of things that are not necessarily related, there is a construct that can be
called the handle in the strictest sense. This pure form of a handle is a process-spe-
cific 16-bit number that is usually a multiple of four and constitutes an index into a
handle table maintained by the kernel for each process. The main HANDLE_TABLE
structure is shown at the end Listing 7-10. This table points to a HANDLE_LAYER1
structure that consists of pointers to HANDLE_LAYER2 structures, which in turn are
composed of HANDLE_LAYER3 pointers. Finally, the third indirection layer contains
pointers to the actual handle table entries, represented by HANDLE_ENTRY structures.

WINDOWS 2000 OBJECT STRUCTURES 411

// HANDLE BIT-FIELDS

// ————————-

// 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

// F E D C B A 9 8 7 6 5 4 3 2 1 0 F E D C B A 9 8 7 6 5 4 3 2 1 0

// ___

// |x|x|x|x|x|x|a|a|a|a|a|a|a|a|b|b|b|b|b|b|b|b|c|c|c|c|c|c|c|c|y|y|

(continued)

412 WINDOWS 2000 OBJECT MANAGEMENT

// | not used | HANDLE_LAYER1 | HANDLE_LAYER2 | HANDLE_LAYER3 |tag|

#define HANDLE_LAYER_SIZE 0x00000100

// ---

#define HANDLE_ATTRIBUTE_INHERIT 0x00000002

#define HANDLE_ATTRIBUTE_MASK 0x00000007

#define HANDLE_OBJECT_MASK 0xFFFFFFF8

typedef struct _HANDLE_ENTRY // cf. OBJECT_HANDLE_INFORMATION

{

/*000*/ union

{

/*000*/ DWORD HandleAttributes;// HANDLE_ATTRIBUTE_MASK

/*000*/ POBJECT_HEADER ObjectHeader; // HANDLE_OBJECT_MASK

/*004*/ };

/*004*/ union

{

/*004*/ ACCESS_MASK GrantedAccess; // if used entry

/*004*/ DWORD NextEntry; // if free entry

/*008*/ };

/*008*/ }

HANDLE_ENTRY,

* PHANDLE_ENTRY,

**PPHANDLE_ENTRY;

// ---

typedef struct _HANDLE_LAYER3

{

/*000*/ HANDLE_ENTRY Entries [HANDLE_LAYER_SIZE]; // bits 2 to 9

/*800*/ }

HANDLE_LAYER3,

* PHANDLE_LAYER3,

**PPHANDLE_LAYER3;

// ---

typedef struct _HANDLE_LAYER2

{

/*000*/ PHANDLE_LAYER3 Layer3 [HANDLE_LAYER_SIZE]; // bits 10 to 17

/*400*/ }

HANDLE_LAYER2,

* PHANDLE_LAYER2,

**PPHANDLE_LAYER2;

// ---

LISTING 7-10. Handle Tables, Layers, and Entries

This three-layered addressing mechanism is a clever trick to be able to dynami-
cally increase or decrease the storage needed for handle entries with minimum effort
while also minimizing waste of memory. Because each handle table layer takes up to
256 pointers, a process can theoretically open 256 * 256 * 256, or 16,777,216
handles. With each handle entry consuming 8 bytes, the required maximum storage
amounts to 128 MB. However, because a process rarely needs that many handles, it
would be an immense waste of space to allocate the complete handle table from the
start. The three-layered approach used by Windows 2000 starts out with the mini-
mum set of a single subtable per layer. Not counting the HANDLE_TABLE itself, the
required storage is 256 * 4 + 256 * 4 + 256 * 8, or 4,096 bytes. The initial han-
dle table material fits exactly into a single physical memory page.

To look up the HANDLE_ENTRY of a HANDLE, the system divides the 32-bit value
of the handle into three 8-bit fragments, discarding bits #0 and #1, as well as the top-
most six bits. Given these three fragments, the handle resolution mechanism proceeds
as follows:

WINDOWS 2000 OBJECT STRUCTURES 413

typedef struct _HANDLE_LAYER1

{

/*000*/ PHANDLE_LAYER2 Layer2 [HANDLE_LAYER_SIZE]; // bits 18 to 25

/*400*/ }

HANDLE_LAYER1,

* PHANDLE_LAYER1,

**PPHANDLE_LAYER1;

// ---

typedef struct _HANDLE_TABLE

{

/*000*/ DWORD Reserved;

/*004*/ DWORD HandleCount;

/*008*/ PHANDLE_LAYER1 Layer1;

/*00C*/ struct _EPROCESS *Process; // passed to PsChargePoolQuota ()

/*010*/ HANDLE UniqueProcessId;

/*014*/ DWORD NextEntry;

/*018*/ DWORD TotalEntries;

/*01C*/ ERESOURCE HandleTableLock;

/*054*/ LIST_ENTRY HandleTableList;

/*05C*/ KEVENT Event;

/*06C*/ }

HANDLE_TABLE,

* PHANDLE_TABLE,

**PPHANDLE_TABLE;

1. Bits #18 to #25 of the HANDLE are used as an index into the Layer2 array
of the HANDLE_LAYER1 block referred to by the Layer1 member of the
HANDLE_TABLE.

2. Bits #10 to #17 of the HANDLE are used as an index into the Layer3 array
of the HANDLE_LAYER2 block retrieved in the previous step.

3. Bits #2 to #9 of the HANDLE are used as an index into the Entries array of
the HANDLE_LAYER3 block retrieved in the previous step.

4. The HANDLE_ENTRY retrieved in the previous step provides a pointer to the
OBJECT_HEADER (see Listing 7-2) of the object associated to the HANDLE.

If this sounds confusing, Figure 7-2 may clarify what occurs in this situation.
Actually, Figure 7-2 is remarkably similar in structure to Figure 4-3 in Chapter 4,
where the i386 CPU’s linear-to-physical address translation is depicted. Both algo-
rithms break an input value into three fragments, with two of them used as offsets
into two hierarchically arranged indirection layers and the third one selecting an
entry from the target layer. Note that the layered handle table model is new to
Windows 2000. Windows NT 4.0 provided a single-layered table that had to be
expanded if the currently opened handles didn’t fit into the memory block currently
allocated for the handle table (cf. Custer 1993, Solomon 1998).

414 WINDOWS 2000 OBJECT MANAGEMENT

31 25 18 17 10 9 2 0

HANDLE
Not

Used
Not

Used
x zy

HANDLE_TABLE HANDLE_LAYER1 HANDLE_LAYER2 HANDLE_LAYER3

Layer1

Layer2 [x]

Layer3 [y]

POBJECT_HEADER

Entry [z]

FIGURE 7-2. HANDLE to OBJECT_HEADER Resolution

Because each process has its own handle table, the kernel must somehow keep
track of the currently allocated tables. Therefore, ntoskrnl.exe maintains a
LIST_ENTRY variable named HandleTableListHead that is the root of a doubly linked
list of HANDLE_TABLE structures, chained together by means of their HandleTableList
members. When following their Flink or Blink pointers, you must always subtract
the HandleTableList member offset 0x54 to get to the base address of the surround-
ing HANDLE_TABLE structure. The owning process of each table can easily be deter-
mined by consulting its UniqueProcessId member. The first HANDLE_TABLE in
the list is usually owned by the System process (ID=8), followed by the table of the
System Idle Process (ID=0). The latter HANDLE_TABLE is also reachable by an inter-
nal variable referred to as ObpKernelHandleTable.

When accessing handle tables, the system uses a couple of synchronization
objects to preserve data integrity in multithreaded handle access scenarios. The
entire handle table list is locked by means of the global HandleTableListLock
inside ntoskrnl.exe, which is an ERESOURCE structure. This type of synchron-
ization object allows exclusive or shared locks, acquired with the help of the
ExAcquireResourceExclusiveLite() and ExAcquireResourceSharedLite()
API functions, respectively. The lock is released by calling ExReleaseResourceLite().
After locking the handle table list for exclusive access, you are guaranteed that the
system will not change any list entries until the lock is released. Each HANDLE_TABLE
in the list entry has its own ERESOURCE lock, termed HandleTableLock in Listing
7-10. ntoskrnl.exe provides the internal functions ExLockHandleTableExclusive()
and ExLockHandleTableShared() to acquire this ERESOURCE, and ExUnlockHandle
TableShared() to release it (no matter whether the lock is exclusive or shared, even
though the name suggests that it is good for shared locks only). These functions are
simply wrappers around ExAcquireResourceExclusiveLite(), ExAcquireResource
SharedLite(), and ExReleaseResourceLite(), taking a pointer to a HANDLE_TABLE
and passing over its HandleTableLock.

Unfortunately, all essential functions and global variables used by the kernel’s
handle manager are not only undocumented, but also inaccessible because they are
not exported by the ntoskrnl.exe module. Although it is certainly possible to look up
objects by their handles using the kernel call interface proposed in Chapter 6 and the
scheme outlined in Figure 7-2, I don’t recommend doing so. One reason is that this
code would deliberately give up compatibility with Windows NT 4.0 because of the
radical handle table design change. Another reason is that the kernel provides a luxu-
rious function that returns the contents of all handle tables owned by the currently
active processes. This function is NtQuerySystemInformation(), and the information
class required to obtain the handle information is SystemHandleInformation (16).
Please refer to Schreiber (1999) or Nebbett (2000) for extensive details on how to
issue this API call. The SystemHandleInformation data are obtained from the internal
function ExpGetHandleInformation() that relies on ObGetHandleInformation().
The latter in turn calls ExSnapShotHandleTables(), where the handle table list

WINDOWS 2000 OBJECT STRUCTURES 415

enumeration is ultimately performed. ExSnapShotHandleTables() expects a pointer
to a callback function that is called for each HANDLE_ENTRY referring to an object.
ObGetHandleInformation() uses the internal ObpCaptureHandleInformation() call-
back function to fill the caller’s buffer with an array of structures containing informa-
tion about each handle currently maintained by the system.

PROCESS AND THREAD OBJECTS

Probably the most interesting and complex inhabitants of the Windows 2000 object
world are the process and thread objects. These are usually the top-level entities a soft-
ware developer must deal with. A kernel-mode component always runs in the context
of a thread, and this thread is often part of a user process. Therefore, it is quite natural
that process and thread objects are object types that frequently are explored in debug-
ging situations. The Windows 2000 Kernel Debugger accounts for this requirement by
providing the “bang” commands !processfields and !threadfields, exported
by the debugger extension kdextx86.dll. Both commands output a simple list of
name/offset pairs describing the members of the EPROCESS and ETHREAD structures,
respectively (cf. Examples 1-1 and 1-2 in Chapter 1). These object structures are
undocumented, so these debugger commands are currently the only official source of
information about them.

Unfortunately, the !processfields output (cf. Example 1-1) starts with a
member named Pcb that refers to a substructure comprising 0x6C bytes, because the
next member ExitStatus is located at this offset. Pcb is a KPROCESS structure that is
completely undocumented. This arrangement is interesting: Obviously, a process
is represented by a smaller kernel object embedded in a larger executive object. This
nesting scheme reappears with the thread object. The debugger’s !threadfields
command (cf. Example 1-2) reveals a Tcb member of no less than 0x1B0 bytes at the
beginning of the ETHREAD structure. This is a KTHREAD structure, representing another
kernel object inside an executive object.

Although it is helpful that the Kernel Debugger provides symbolic informa-
tion about the executive’s process and thread objects, the plain member names do
not necessarily provide enough cues to identify the members’ data types. Moreover,
the opacity of the Pcb and Tcb members makes it quite difficult to understand the
nature of these objects. In a disassembly listing generated by the Kernel Debugger,
you will frequently see instructions referencing data within the confines of these
opaque members. The used offsets are completely useless without information
about the name and type of the referenced data. Therefore, I have collected infor-
mation from various sources plus results of my investigation, to figure out what

416 WINDOWS 2000 OBJECT MANAGEMENT

WINDOWS 2000 OBJECT STRUCTURES 417

typedef struct _KPROCESS

{

/*000*/ DISPATCHER_HEADER Header; // DO_TYPE_PROCESS (0x1B)

/*010*/ LIST_ENTRY ProfileListHead;

/*018*/ DWORD DirectoryTableBase;

/*01C*/ DWORD PageTableBase;

/*020*/ KGDTENTRY LdtDescriptor;

/*028*/ KIDTENTRY Int21Descriptor;

/*030*/ WORD IopmOffset;

/*032*/ BYTE Iopl;

/*033*/ BOOLEAN VdmFlag;

/*034*/ DWORD ActiveProcessors;

/*038*/ DWORD KernelTime; // ticks

/*03C*/ DWORD UserTime; // ticks

/*040*/ LIST_ENTRY ReadyListHead;

/*048*/ LIST_ENTRY SwapListEntry;

/*050*/ LIST_ENTRY ThreadListHead; // KTHREAD.ThreadListEntry

/*058*/ PVOID ProcessLock;

/*05C*/ KAFFINITY Affinity;

/*060*/ WORD StackCount;

/*062*/ BYTE BasePriority;

/*063*/ BYTE ThreadQuantum;

/*064*/ BOOLEAN AutoAlignment;

/*065*/ BYTE State;

/*066*/ BYTE ThreadSeed;

/*067*/ BOOLEAN DisableBoost;

/*068*/ DWORD d68;

/*06C*/ }

KPROCESS,

* PKPROCESS,

**PPKPROCESS;

these objects look like. Part one of the results is shown in Listings 7-11 and 7-12,
defining the KPROCESS and KTHREAD structures, respectively. The DISPATCHER_HEADER
at the beginning of both objects qualifies processes and threads as dispatcher
objects, which in turn means they can be waited for using KeWaitForSingleObject()
and KeWaitForMultipleObjects(). A thread object becomes signaled after execu-
tion of the thread has ceased, and a process object enters the signaled state after all
of its threads have terminated. This is nothing new for Win32 programmers—it is
quite common to wait for termination of a process spawned by another process by
means of the Win32 API function WaitForSingleObject(). However, now you
finally know why waiting for processes and threads is possible in the first place.

LISTING 7-11. The KPROCESS Object Structure

418 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _KTHREAD

{

/*000*/ DISPATCHER_HEADER Header; // DO_TYPE_THREAD (0x6C)

/*010*/ LIST_ENTRY MutantListHead;

/*018*/ PVOID InitialStack;

/*01C*/ PVOID StackLimit;

/*020*/ struct _TEB *Teb;

/*024*/ PVOID TlsArray;

/*028*/ PVOID KernelStack;

/*02C*/ BOOLEAN DebugActive;

/*02D*/ BYTE State; // THREAD_STATE_*

/*02E*/ BOOLEAN Alerted;

/*02F*/ BYTE bReserved01;

/*030*/ BYTE Iopl;

/*031*/ BYTE NpxState;

/*032*/ BYTE Saturation;

/*033*/ BYTE Priority;

/*034*/ KAPC_STATE ApcState;

/*04C*/ DWORD ContextSwitches;

/*050*/ DWORD WaitStatus;

/*054*/ BYTE WaitIrql;

/*055*/ BYTE WaitMode;

/*056*/ BYTE WaitNext;

/*057*/ BYTE WaitReason;

/*058*/ PLIST_ENTRY WaitBlockList;

/*05C*/ LIST_ENTRY WaitListEntry;

/*064*/ DWORD WaitTime;

/*068*/ BYTE BasePriority;

/*069*/ BYTE DecrementCount;

/*06A*/ BYTE PriorityDecrement;

/*06B*/ BYTE Quantum;

/*06C*/ KWAIT_BLOCK WaitBlock [4];

/*0CC*/ DWORD LegoData;

/*0D0*/ DWORD KernelApcDisable;

/*0D4*/ KAFFINITY UserAffinity;

/*0D8*/ BOOLEAN SystemAffinityActive;

/*0D9*/ BYTE Pad [3];

/*0DC*/ PSERVICE_DESCRIPTOR_TABLE pServiceDescriptorTable;

/*0E0*/ PVOID Queue;

/*0E4*/ PVOID ApcQueueLock;

/*0E8*/ KTIMER Timer;

/*110*/ LIST_ENTRY QueueListEntry;

/*118*/ KAFFINITY Affinity;

/*11C*/ BOOLEAN Preempted;

/*11D*/ BOOLEAN ProcessReadyQueue;

/*11E*/ BOOLEAN KernelStackResident;

/*11F*/ BYTE NextProcessor;

/*120*/ PVOID CallbackStack;

LISTING 7-12. The KTHREAD Object Structure

A KPROCESS links to its threads via its ThreadListHead member, which is the
starting and ending point of a doubly linked list of KTHREAD objects. The list nodes of
the threads are represented by their ThreadListEntry members. As usual with
LIST_ENTRY nodes, the base address of the surrounding object is computed by sub-
tracting the offset of the LIST_ENTRY member from its address, because the Flink
and Blink members always point to the next LIST_ENTRY inside the list, not to the
owner of the list node. This makes it possible to interlink objects in multiple lists
without any interference.

In Listings 7-11 and 7-12, as well as in the following listings, you see occasional
members with names consisting of a lower-case letter and a three-digit hexadecimal
number. These are members whose identity and purpose is currently unknown to me.
The leading character reflects the supposed member type (e.g., d for DWORD or p for
PVOID), and the numeric trailer specifies the member’s offset from the beginning of
the structure.

WINDOWS 2000 OBJECT STRUCTURES 419

/*124*/ struct _WIN32_THREAD *Win32Thread;

/*128*/ PVOID TrapFrame;

/*12C*/ PKAPC_STATE ApcStatePointer;

/*130*/ PVOID p130;

/*134*/ BOOLEAN EnableStackSwap;

/*135*/ BOOLEAN LargeStack;

/*136*/ BYTE ResourceIndex;

/*137*/ KPROCESSOR_MODE PreviousMode;

/*138*/ DWORD KernelTime; // ticks

/*13C*/ DWORD UserTime; // ticks

/*140*/ KAPC_STATE SavedApcState;

/*157*/ BYTE bReserved02;

/*158*/ BOOLEAN Alertable;

/*159*/ BYTE ApcStateIndex;

/*15A*/ BOOLEAN ApcQueueable;

/*15B*/ BOOLEAN AutoAlignment;

/*15C*/ PVOID StackBase;

/*160*/ KAPC SuspendApc;

/*190*/ KSEMAPHORE SuspendSemaphore;

/*1A4*/ LIST_ENTRY ThreadListEntry; // see KPROCESS

/*1AC*/ BYTE FreezeCount;

/*1AD*/ BYTE SuspendCount;

/*1AE*/ BYTE IdealProcessor;

/*1AF*/ BOOLEAN DisableBoost;

/*1B0*/ }

KTHREAD,

* PKTHREAD,

**PPKTHREAD;

The EPROCESS and ETHREAD executive objects surrounding the KPROCESS and
KTHREAD dispatcher objects are shown in Listings 7-13 and 7-14. These structures
contain several unidentified members that hopefully will be analyzed soon by others,
maybe encouraged by the material in this book. However, the most important and
most frequently referenced members are included, and at least it is known what
information is missing.

420 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _EPROCESS

{

/*000*/ KPROCESS Pcb;

/*06C*/ NTSTATUS ExitStatus;

/*070*/ KEVENT LockEvent;

/*080*/ DWORD LockCount;

/*084*/ DWORD d084;

/*088*/ LARGE_INTEGER CreateTime;

/*090*/ LARGE_INTEGER ExitTime;

/*098*/ PVOID LockOwner;

/*09C*/ DWORD UniqueProcessId;

/*0A0*/ LIST_ENTRY ActiveProcessLinks;

/*0A8*/ DWORD QuotaPeakPoolUsage [2]; // NP, P

/*0B0*/ DWORD QuotaPoolUsage [2]; // NP, P

/*0B8*/ DWORD PagefileUsage;

/*0BC*/ DWORD CommitCharge;

/*0C0*/ DWORD PeakPagefileUsage;

/*0C4*/ DWORD PeakVirtualSize;

/*0C8*/ LARGE_INTEGER VirtualSize;

/*0D0*/ MMSUPPORT Vm;

/*100*/ DWORD d100;

/*104*/ DWORD d104;

/*108*/ DWORD d108;

/*10C*/ DWORD d10C;

/*110*/ DWORD d110;

/*114*/ DWORD d114;

/*118*/ DWORD d118;

/*11C*/ DWORD d11C;

/*120*/ PVOID DebugPort;

/*124*/ PVOID ExceptionPort;

/*128*/ PHANDLE_TABLE ObjectTable;

/*12C*/ PVOID Token;

/*130*/ FAST_MUTEX WorkingSetLock;

/*150*/ DWORD WorkingSetPage;

/*154*/ BOOLEAN ProcessOutswapEnabled;

/*155*/ BOOLEAN ProcessOutswapped;

/*156*/ BOOLEAN AddressSpaceInitialized;

/*157*/ BOOLEAN AddressSpaceDeleted;

/*158*/ FAST_MUTEX AddressCreationLock;

/*178*/ KSPIN_LOCK HyperSpaceLock;

/*17C*/ DWORD ForkInProgress;

/*180*/ WORD VmOperation;

/*182*/ BOOLEAN ForkWasSuccessful;

/*183*/ BYTE MmAgressiveWsTrimMask;

/*184*/ DWORD VmOperationEvent;

/*188*/ HARDWARE_PTE PageDirectoryPte;

/*18C*/ DWORD LastFaultCount;

/*190*/ DWORD ModifiedPageCount;

/*194*/ PVOID VadRoot;

/*198*/ PVOID VadHint;

/*19C*/ PVOID CloneRoot;

/*1A0*/ DWORD NumberOfPrivatePages;

/*1A4*/ DWORD NumberOfLockedPages;

/*1A8*/ WORD NextPageColor;

/*1AA*/ BOOLEAN ExitProcessCalled;

/*1AB*/ BOOLEAN CreateProcessReported;

/*1AC*/ HANDLE SectionHandle;

/*1B0*/ struct _PEB *Peb;

/*1B4*/ PVOID SectionBaseAddress;

/*1B8*/ PQUOTA_BLOCK QuotaBlock;

/*1BC*/ NTSTATUS LastThreadExitStatus;

/*1C0*/ DWORD WorkingSetWatch;

/*1C4*/ HANDLE Win32WindowStation;

/*1C8*/ DWORD InheritedFromUniqueProcessId;

/*1CC*/ ACCESS_MASK GrantedAccess;

/*1D0*/ DWORD DefaultHardErrorProcessing; // HEM_*

/*1D4*/ DWORD LdtInformation;

/*1D8*/ PVOID VadFreeHint;

/*1DC*/ DWORD VdmObjects;

/*1E0*/ PVOID DeviceMap; // 0x24 bytes

/*1E4*/ DWORD SessionId;

/*1E8*/ DWORD d1E8;

/*1EC*/ DWORD d1EC;

/*1F0*/ DWORD d1F0;

/*1F4*/ DWORD d1F4;

/*1F8*/ DWORD d1F8;

/*1FC*/ BYTE ImageFileName [16];

/*20C*/ DWORD VmTrimFaultValue;

/*210*/ BYTE SetTimerResolution;

/*211*/ BYTE PriorityClass;

/*212*/ union

{

struct

{

/*212*/ BYTE SubSystemMinorVersion;

/*213*/ BYTE SubSystemMajorVersion;

};

struct

{

/*212*/ WORD SubSystemVersion;

};

WINDOWS 2000 OBJECT STRUCTURES 421

(continued)

LISTING 7-13. The EPROCESS Object Structure

422 WINDOWS 2000 OBJECT MANAGEMENT

};

/*214*/ struct _WIN32_PROCESS *Win32Process;

/*218*/ DWORD d218;

/*21C*/ DWORD d21C;

/*220*/ DWORD d220;

/*224*/ DWORD d224;

/*228*/ DWORD d228;

/*22C*/ DWORD d22C;

/*230*/ PVOID Wow64;

/*234*/ DWORD d234;

/*238*/ IO_COUNTERS IoCounters;

/*268*/ DWORD d268;

/*26C*/ DWORD d26C;

/*270*/ DWORD d270;

/*274*/ DWORD d274;

/*278*/ DWORD d278;

/*27C*/ DWORD d27C;

/*280*/ DWORD d280;

/*284*/ DWORD d284;

/*288*/ }

EPROCESS,

* PEPROCESS,

**PPEPROCESS;

typedef struct _ETHREAD

{

/*000*/ KTHREAD Tcb;

/*1B0*/ LARGE_INTEGER CreateTime;

/*1B8*/ union

{

/*1B8*/ LARGE_INTEGER ExitTime;

/*1B8*/ LIST_ENTRY LpcReplyChain;

};

/*1C0*/ union

{

/*1C0*/ NTSTATUS ExitStatus;

/*1C0*/ DWORD OfsChain;

};

WINDOWS 2000 OBJECT STRUCTURES 423

/*1C4*/ LIST_ENTRY PostBlockList;

/*1CC*/ LIST_ENTRY TerminationPortList;

/*1D4*/ PVOID ActiveTimerListLock;

/*1D8*/ LIST_ENTRY ActiveTimerListHead;

/*1E0*/ CLIENT_ID Cid;

/*1E8*/ KSEMAPHORE LpcReplySemaphore;

/*1FC*/ DWORD LpcReplyMessage;

/*200*/ DWORD LpcReplyMessageId;

/*204*/ DWORD PerformanceCountLow;

/*208*/ DWORD ImpersonationInfo;

/*20C*/ LIST_ENTRY IrpList;

/*214*/ PVOID TopLevelIrp;

/*218*/ PVOID DeviceToVerify;

/*21C*/ DWORD ReadClusterSize;

/*220*/ BOOLEAN ForwardClusterOnly;

/*221*/ BOOLEAN DisablePageFaultClustering;

/*222*/ BOOLEAN DeadThread;

/*223*/ BOOLEAN Reserved;

/*224*/ BOOL HasTerminated;

/*228*/ ACCESS_MASK GrantedAccess;

/*22C*/ PEPROCESS ThreadsProcess;

/*230*/ PVOID StartAddress;

/*234*/ union

{

/*234*/ PVOID Win32StartAddress;

/*234*/ DWORD LpcReceivedMessageId;

};

/*238*/ BOOLEAN LpcExitThreadCalled;

/*239*/ BOOLEAN HardErrorsAreDisabled;

/*23A*/ BOOLEAN LpcReceivedMsgIdValid;

/*23B*/ BOOLEAN ActiveImpersonationInfo;

/*23C*/ DWORD PerformanceCountHigh;

/*240*/ DWORD d240;

/*244*/ DWORD d244;

/*248*/ }

ETHREAD,

* PETHREAD,

**PPETHREAD;

LISTING 7-14. The ETHREAD Object Structure

It is apparent that both the EPROCESS and ETHREAD object structures contain
additional members after the ones listed by the !processfields and !threadfields
debugger commands. You may wonder how I dare to claim that. Well, there are two
principal ways to find out details about undocumented object structure members.
One is to observe how system functions operating on objects access their members;
the other one is to examine how objects are created and initialized. The latter
approach yields the size of an object. The basic object creation function inside
ntoskrnl.exe is ObCreateObject(). It allocates the memory for the object header
and body and initializes common object parameters. However, ObCreateObject() is
absolutely ignorant about the type of object it creates, so the caller must specify the
number of bytes required for the object body. Hence, the problem of finding out the
size of an object boils down to finding an ObCreateObject() call for this object type.
Process objects are created by the Native API function NtCreateProcess(), which
lets PspCreateProcess() do the dirty work. Inside this function, an ObCreateObject()
call can be found that requests an object body size of 0x288 bytes. That’s why Listing
7-13 contains a couple of unidentified trailing members until a final offset of 0x288 is
reached. The situation is similar for the ETHREAD structure. The NtCreateThread()
API function calls PspCreateThread(), which in turn calls ObCreateObject(),
requesting 0x248 bytes.

The list of currently running processes is formed by interlinking the
ActiveProcessLinks member of the EPROCESS structure. The head of this list is
stored in the internal global variable PsActiveProcessHead, and the associated
FAST_MUTEX synchronization object is named PspActiveProcessMutex. Unfortu-
nately, the PsActiveProcessHead variable is not exported by ntoskrnl.exe, but
PsInitialSystemProcess is, pointing to the EPROCESS structure of the System
process with the process ID 8. Following the Blink of its ActiveProcessLinks list
entry leads us directly to the PsActiveProcessHead. Basically, the linkage of
processes and threads is structured as shown in Figure 7-3. Figure 7-3 is overly sim-
plified because the illustrated process list contains only two items. In a real-world
scenario, the list will be much longer. (While I am writing this paragraph, my task
manager reports 36 processes!) To keep the picture as simple as possible, only the
thread list of one process is shown, assuming that this process has two active threads.

Listings 7-12 and 7-13 suggest that there must be a third process and thread
object layer above the kernel and executive layers, indicated by pointers to
WIN32_PROCESS and WIN32_THREAD structures inside EPROCESS and KTHREAD. These
undocumented structures constitute the process and thread representations of the
Win32 subsystem. Although the purposes of some of their members are quite obvi-
ous, they still contain too many unidentified holes to be included here. This is another
area of future research.

424 WINDOWS 2000 OBJECT MANAGEMENT

FIGURE 7-3. Process and Thread Object Lists

THREAD AND PROCESS CONTEXTS

While the system executes code, the execution always takes place in the context of
a thread that is part of some process. In several situations, the system has to look
up thread- or process-specific information from the current context. Therefore, the
system always keeps a pointer to the current thread in the Kernel’s Processor Control
Block (KPRCB). This structure, defined in ntddk.h, is shown in Listing 7-15.

WINDOWS 2000 OBJECT STRUCTURES 425

KTHREAD

ThreadListEntry
Flink
Blink

ETHREAD

KTHREAD

ThreadListEntry
Flink
Blink

ETHREAD

KPROCESS

ThreadListHead
Flink
Blink

EPROCESS

ActiveProcessLinks
Flink
Blink

KPROCESS

ThreadListHead
Flink
Blink

EPROCESS

ActiveProcessLinks
Flink
Blink

PsActiveProcessHead
Flink
Blink

typedef struct _KPRCB // base address 0xFFDFF120

{

/*000*/ WORD MinorVersion;

/*002*/ WORD MajorVersion;

/*004*/ struct _KTHREAD *CurrentThread;

/*008*/ struct _KTHREAD *NextThread;

/*00C*/ struct _KTHREAD *IdleThread;

/*010*/ CHAR Number;

/*011*/ CHAR Reserved;

(continued)

LISTING 7-15. The Kernel’s Processor Control Block (KPRCB)

The KPRCB structure is found at linear address 0xFFDFF120, and a pointer to it
is stored in the Prcb member of the Kernel’s Processor Control Region (KPCR), also
defined in ntddk.h (Listing 7-16) and located at address 0xFFDFF000. As explained
in Chapter 4, this essential data area is readily accessible in kernel-mode via the FS
segment; that is, reading from address FS:0 is equivalent to reading from linear
address DS:0xFFDFF000. At address 0xFFDFF13C, immediately following the KPRCB,
the system keeps low-level CPU information in a CONTEXT structure (Listing 7-17).

426 WINDOWS 2000 OBJECT MANAGEMENT

/*012*/ WORD BuildType;/*014*/ KAFFINITY SetMember;

/*018*/ struct _RESTART_BLOCK *RestartBlock;

/*01C*/ }

KPRCB,

* PKPRCB,

**PPKPRCB;

typedef struct _KPCR // base address 0xFFDFF000

{

/*000*/ NT_TIB NtTib;

/*01C*/ struct _KPCR *SelfPcr;

/*020*/ PKPRCB Prcb;

/*024*/ KIRQL Irql;

/*028*/ DWORD IRR;

/*02C*/ DWORD IrrActive;

/*030*/ DWORD IDR;

/*034*/ DWORD Reserved2;

/*038*/ struct _KIDTENTRY *IDT;

/*03C*/ struct _KGDTENTRY *GDT;

/*040*/ struct _KTSS *TSS;

/*044*/ WORD MajorVersion;

/*046*/ WORD MinorVersion;

/*048*/ KAFFINITY SetMember;

/*04C*/ DWORD StallScaleFactor;

/*050*/ BYTE DebugActive;

/*051*/ BYTE Number;

/*054*/ }

KPCR,

* PKPCR,

**PPKPCR;

LISTING 7-16. The Kernel’s Processor Control Region (KPCR)

WINDOWS 2000 OBJECT STRUCTURES 427

#define SIZE_OF_80387_REGISTERS 80

typedef struct _FLOATING_SAVE_AREA // base address 0xFFDFF158

{

/*000*/ DWORD ControlWord;

/*004*/ DWORD StatusWord;

/*008*/ DWORD TagWord;

/*00C*/ DWORD ErrorOffset;

/*010*/ DWORD ErrorSelector;

/*014*/ DWORD DataOffset;

/*018*/ DWORD DataSelector;

/*01C*/ BYTE RegisterArea [SIZE_OF_80387_REGISTERS];

/*06C*/ DWORD Cr0NpxState;

/*070*/ }

FLOATING_SAVE_AREA,

* PFLOATING_SAVE_AREA,

**PPFLOATING_SAVE_AREA;

// ---

#define MAXIMUM_SUPPORTED_EXTENSION 512

typedef struct _CONTEXT // base address 0xFFDFF13C

{

/*000*/ DWORD ContextFlags;

/*004*/ DWORD Dr0;

/*008*/ DWORD Dr1;

/*00C*/ DWORD Dr2;

/*010*/ DWORD Dr3;

/*014*/ DWORD Dr6;

/*018*/ DWORD Dr7;

/*01C*/ FLOATING_SAVE_AREA FloatSave;

/*08C*/ DWORD SegGs;

/*090*/ DWORD SegFs;

/*094*/ DWORD SegEs;

/*098*/ DWORD SegDs;

/*09C*/ DWORD Edi;

/*0A0*/ DWORD Esi;

/*0A4*/ DWORD Ebx;

/*0A8*/ DWORD Edx;

/*0AC*/ DWORD Ecx;

/*0B0*/ DWORD Eax;

/*0B4*/ DWORD Ebp;

/*0B8*/ DWORD Eip;

/*0BC*/ DWORD SegCs;

/*0C0*/ DWORD EFlags;

/*0C4*/ DWORD Esp;

/*0C8*/ DWORD SegSs;

/*0CC*/ BYTE ExtendedRegisters [MAXIMUM_SUPPORTED_EXTENSION];

/*2CC*/ }

CONTEXT,

* PCONTEXT,

**PPCONTEXT;

LISTING 7-17. The CPU’s CONTEXT and FLOATING_SAVE_AREA

According to Listing 7-15, the KPRCB contains three KTHREAD pointers at the offsets
0x004, 0x008, and 0x00C:

1. CurrentThread points to the KTHREAD object of the thread that is currently
executing. This member is accessed very frequently by the kernel code.

2. NextThread points to the KTHREAD object of the thread scheduled to run
after the next context switch.

3. IdleThread points to the KTHREAD object of an idle thread that performs
background tasks while no other threads are ready to run. The system
provides a dedicated idle thread for each installed CPU. On a single-
processor machine, the idle thread object is named P0BootThread and is
the only thread in the thread list of the PsIdleProcess object.

Because the first member of an ETHREAD is a KTHREAD, a KTHREAD pointer always
points to an ETHREAD as well, and vice versa. This means that KTHREAD and ETHREAD can
be typecast interchangeably. The same is true for KPROCESS and EPROCESS pointers.

Because the Windows 2000 kernel maps the linear address 0xFFDFF000 to
address 0x00000000 of the CPU’s FS segment in kernel-mode, the system always finds
the current KPCR, KPRCB, and CONTEXT data at the addresses FS:0x0, FS:0x120, and
FS:13C. When you are disassembling kernel code in a debugger, you will frequently
see the system retrieve a pointer from FS:0x124, which is obviously the current
thread object. Example 7-1 lists the output of the Kernel Debugger if the command
u PsGetCurrentProcessId is issued, instructing the debugger to unassemble
10 lines of code, starting at the address of the symbol PsGetCurrentProcessId.
The implementation of the PsGetCurrentProcessId() function simply retrieves the
KTHREAD/ETHREAD of the current thread and returns the value of the member at offset
0x1E0, which happens to be the UniqueProcess ID of the CLIENT_ID Cid member of
the ETHREAD, according to Listing 7-14. PsGetCurrentThreadId() is almost identical,
except that it retrieves the UniqueThread ID at offset 0x1E4. By the way, the CLIENT_ID
structure has been introduced in Chapter 2, Listing 2-8.

428 WINDOWS 2000 OBJECT MANAGEMENT

kd> u PsGetCurrentProcessId

u PsGetCurrentProcessId

ntoskrnl!PsGetCurrentProcessId:

8045252a 64a124010000 mov eax,fs:[00000124]

80452530 8b80e0010000 mov eax,[eax+0x1e0]

WINDOWS 2000 OBJECT STRUCTURES 429

80452536 c3 ret

80452537 cc int 3

ntoskrnl!PsGetCurrentThreadId:

80452538 64a124010000 mov eax,fs:[00000124]

8045253e 8b80e4010000 mov eax,[eax+0x1e4]

80452544 c3 ret

80452545 cc int 3

EXAMPLE 7-1. Retrieving Process and Thread IDs

Sometimes, the system needs a pointer to the process object that owns the current
thread. This address can be looked up quite easily by reading the Process member of
the ApcState substructure inside the current KTHREAD.

THREAD AND PROCESS ENVIRONMENT BLOCKS

You may wonder about the purpose of the Teb and Peb members inside the KTHREAD and
EPROCESS structures. The Teb, points to a Thread Environment Block (TEB), outlined
in Listing 7-18. The first part of the TEB the Thread Information Block (NT_TIB), is
defined in the Platform Software Development Kit (SDK) and DDK header files winnt.h
and ntddk.h, respectively. The remaining members are undocumented. Windows 2000
maintains a TEB structure for each thread object in the system. In the address space
of the current process, the TEBs of its threads are mapped to the linear addresses
0x7FFDE000, 0x7FFDD000, 0x7FFDC000, and so on, always stepping down one 4-KB
page per thread. As noted in Chapter 4, the TEB of the current thread is also accessible
via the FS segment in user-mode. Many ntdll.dll functions access the current TEB by
reading the value at address FS:0x18, which is the Self member of the embedded
NT_TIB. This member always provides the linear address of the surrounding TEB
within the 4-GB address space of the current process.

// typedef struct _NT_TIB // see winnt.h / ntddk.h

// {

// /*000*/ struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;

// /*004*/ PVOID StackBase;

// /*008*/ PVOID StackLimit;

// /*00C*/ PVOID SubSystemTib;

// /*010*/ union (continued)

430 WINDOWS 2000 OBJECT MANAGEMENT

// {

// /*010*/ PVOID FiberData;

// /*010*/ ULONG Version;

// };

// /*014*/ PVOID ArbitraryUserPointer;

// /*018*/ struct _NT_TIB *Self;

// /*01C*/ }

// NT_TIB,

// * PNT_TIB,

// **PPNT_TIB;

// ---

typedef struct _TEB // base addresses 0x7FFDE000, 0x7FFDD000, ...

{

/*000*/ NT_TIB Tib;

/*01C*/ PVOID EnvironmentPointer;

/*020*/ CLIENT_ID Cid;

/*028*/ HANDLE RpcHandle;

/*02C*/ PPVOID ThreadLocalStorage;

/*030*/ PPEB Peb;

/*034*/ DWORD LastErrorValue;

/*038*/ }

TEB,

* PTEB,

**PPTEB;

LISTING 7-18. The Thread Environment Block (TEB)

Just as each thread has its own TEB, each process has an associated PEB or
Process Environment Block. The PEB is much more complex than the TEB, as List-
ing 7-19 demonstrates. It contains various pointers to subordinate structures that refer
to more subordinate structures, and most of them are undocumented. Listing 7-19
includes raw sketches of some of them, using tentative names and leaving much to be
desired. The PEB is located at linear address 0x7FFDF000, that is, in the first 4-KB page
following the TEB stack of the process. The system can easily access the PEB by simply
referencing the Peb member of the current thread’s TEB.

typedef struct _MODULE_HEADER

{

/*000*/ DWORD d000;

/*004*/ DWORD d004;

/*008*/ LIST_ENTRY List1;

/*010*/ LIST_ENTRY List2;

WINDOWS 2000 OBJECT STRUCTURES 431

/*018*/ LIST_ENTRY List3;

/*020*/ }

MODULE_HEADER,

* PMODULE_HEADER,

**PPMODULE_HEADER;

// ---

typedef struct _PROCESS_MODULE_INFO

{

/*000*/ DWORD Size; // 0x24

/*004*/ MODULE_HEADER ModuleHeader;

/*024*/ }

PROCESS_MODULE_INFO,

* PPROCESS_MODULE_INFO,

**PPPROCESS_MODULE_INFO;

// ---

// see RtlCreateProcessParameters()

typedef struct _PROCESS_PARAMETERS

{

/*000*/ DWORD Allocated;

/*004*/ DWORD Size;

/*008*/ DWORD Flags; // bit 0: all pointers normalized

/*00C*/ DWORD Reserved1;

/*010*/ LONG Console;

/*014*/ DWORD ProcessGroup;

/*018*/ HANDLE StdInput;

/*01C*/ HANDLE StdOutput;

/*020*/ HANDLE StdError;

/*024*/ UNICODE_STRING WorkingDirectoryName;

/*02C*/ HANDLE WorkingDirectoryHandle;

/*030*/ UNICODE_STRING SearchPath;

/*038*/ UNICODE_STRING ImagePath;

/*040*/ UNICODE_STRING CommandLine;

/*048*/ PWORD Environment;

/*04C*/ DWORD X;

/*050*/ DWORD Y;

/*054*/ DWORD XSize;

/*058*/ DWORD YSize;

/*05C*/ DWORD XCountChars;

/*060*/ DWORD YCountChars;

/*064*/ DWORD FillAttribute;

/*068*/ DWORD Flags2;

/*06C*/ WORD ShowWindow;

/*06E*/ WORD Reserved2;

/*070*/ UNICODE_STRING Title;

/*078*/ UNICODE_STRING Desktop;

/*080*/ UNICODE_STRING Reserved3;

(continued)

432 WINDOWS 2000 OBJECT MANAGEMENT

/*088*/ UNICODE_STRING Reserved4;

/*090*/ }

PROCESS_PARAMETERS,

* PPROCESS_PARAMETERS,

**PPPROCESS_PARAMETERS;

// ---

typedef struct _SYSTEM_STRINGS

{

/*000*/ UNICODE_STRING SystemRoot; // d:\WINNT

/*008*/ UNICODE_STRING System32Root; // d:\WINNT\System32

/*010*/ UNICODE_STRING BaseNamedObjects; // \BaseNamedObjects

/*018*/ }

SYSTEM_STRINGS,

* PSYSTEM_STRINGS,

**PPSYSTEM_STRINGS;

// ---

typedef struct _TEXT_INFO

{

/*000*/ PVOID Reserved;

/*004*/ PSYSTEM_STRINGS SystemStrings;

/*008*/ }

TEXT_INFO,

* PTEXT_INFO,

**PPTEXT_INFO;

// ---

typedef struct _PEB // base address 0x7FFDF000

{

/*000*/ BOOLEAN InheritedAddressSpace;

/*001*/ BOOLEAN ReadImageFileExecOptions;

/*002*/ BOOLEAN BeingDebugged;

/*003*/ BYTE b003;

/*004*/ DWORD d004;

/*008*/ PVOID SectionBaseAddress;

/*00C*/ PPROCESS_MODULE_INFO ProcessModuleInfo;

/*010*/ PPROCESS_PARAMETERS ProcessParameters;

/*014*/ DWORD SubSystemData;

/*018*/ HANDLE ProcessHeap;

/*01C*/ PCRITICAL_SECTION FastPebLock;

/*020*/ PVOID AcquireFastPebLock; // function

/*024*/ PVOID ReleaseFastPebLock; // function

/*028*/ DWORD d028;

/*02C*/ PPVOID User32Dispatch; // function

/*030*/ DWORD d030;

WINDOWS 2000 OBJECT STRUCTURES 433

/*034*/ DWORD d034;

/*038*/ DWORD d038;

/*03C*/ DWORD TlsBitMapSize; // number of bits

/*040*/ PRTL_BITMAP TlsBitMap; // ntdll!TlsBitMap

/*044*/ DWORD TlsBitMapData [2]; // 64 bits

/*04C*/ PVOID p04C;

/*050*/ PVOID p050;

/*054*/ PTEXT_INFO TextInfo;

/*058*/ PVOID InitAnsiCodePageData;

/*05C*/ PVOID InitOemCodePageData;

/*060*/ PVOID InitUnicodeCaseTableData;

/*064*/ DWORD KeNumberProcessors;

/*068*/ DWORD NtGlobalFlag;

/*06C*/ DWORD d6C;

/*070*/ LARGE_INTEGER MmCriticalSectionTimeout;

/*078*/ DWORD MmHeapSegmentReserve;

/*07C*/ DWORD MmHeapSegmentCommit;

/*080*/ DWORD MmHeapDeCommitTotalFreeThreshold;

/*084*/ DWORD MmHeapDeCommitFreeBlockThreshold;

/*088*/ DWORD NumberOfHeaps;

/*08C*/ DWORD AvailableHeaps; // 16, *2 if exhausted

/*090*/ PHANDLE ProcessHeapsListBuffer;

/*094*/ DWORD d094;

/*098*/ DWORD d098;

/*09C*/ DWORD d09C;

/*0A0*/ PCRITICAL_SECTION LoaderLock;

/*0A4*/ DWORD NtMajorVersion;

/*0A8*/ DWORD NtMinorVersion;

/*0AC*/ WORD NtBuildNumber;

/*0AE*/ WORD CmNtCSDVersion;

/*0B0*/ DWORD PlatformId;

/*0B4*/ DWORD Subsystem;

/*0B8*/ DWORD MajorSubsystemVersion;

/*0BC*/ DWORD MinorSubsystemVersion;

/*0C0*/ KAFFINITY AffinityMask;

/*0C4*/ DWORD ad0C4 [35];

/*150*/ PVOID p150;

/*154*/ DWORD ad154 [32];

/*1D4*/ HANDLE Win32WindowStation;

/*1D8*/ DWORD d1D8;

/*1DC*/ DWORD d1DC;

/*1E0*/ PWORD CSDVersion;

/*1E4*/ DWORD d1E4;

/*1E8*/ }

PEB,

* PPEB,

**PPPEB;

LISTING 7-19. The Process Environment Block (PEB)

ACCESSING LIVE SYSTEM OBJECTS

The preceding sections have provided a lot of theoretical information. As a practical
example to illustrate object management in the most useful form, I thought of writing
a kernel object browser. This would show how objects are arranged hierarchically
and how some of their properties can be retrieved. Unfortunately, ntoskrnl.exe fails
to export several key structures and functions required in an object browser applica-
tion. This means that not even a kernel-mode driver has access to them—they are
reserved for internal system use. On the other hand, Chapter 6 introduced a mecha-
nism that allows access to nonexported data and code by evaluating the Windows
2000 symbol files, so the object browser seemed to be an ideal test case to check out
the practical suitability of this approach. The symbolic call interface from Chapter 6
passed this test, so I have included the sample application w2k_obj.exe with full
source code on the companion CD in the directory tree \src\w2k_obj. However, the
most interesting parts of the code are not buried inside w2k_obj.c. The hard work is
really done by the w2k_call.dll library introduced in Chapter 6. Hence, many of
the subsequent code snippets are pulled from w2k_call.c.

ENUMERATING OBJECT DIRECTORY ENTRIES

You probably know the small objdir.exe utility in the Windows 2000 DDK, in the
\ntddk\bin directory. objdir.exe retrieves object directory information via the undoc-
umented Native API function NtQueryDirectoryObject() exported by ntdll.dll.
Contrary to this, my object browser w2k_obj.exe bangs directly at the object directory
and its leaf objects. This sounds rather scary, but actually it isn’t. The best proof is that
w2k_obj.exe works on both Windows 2000 and Windows NT 4.0 without a single
line of version-dependent code. Admittedly, there are a couple of subtle differences in
the object structures of both operating system versions, but the basic model has
remained the same. Providing a sample application that works directly on the raw
object structures rather than using higher-level API functions is an illustrative means to
verify whether the structures shown in the preceding sections are accurate.

The most important thing to do before accessing global system data structures
is to lock them. Otherwise it might happen that the system alters the data in the con-
text of a concurrent thread, so the application unexpectedly reads invalid data or
reaches into the void. Windows 2000 provides a large set of locks for the numerous
internal data items it maintains. The problem with these locks is that they are usually
not exported. Although a kernel-mode driver can do all sorts of things forbidden in
user-mode, it can’t safely access nonexported data structures. However, the extended
kernel call interface discussed in Chapter 6 and implemented by the w2k_call.dll
sample library can make the impossible possible by looking up the addresses of inter-
nal symbols from the operating system’s symbol files. This DLL exports the following
three object manager data thunks that allow access to the kernel’s object directory:

434 WINDOWS 2000 OBJECT MANAGEMENT

1. __ObpRootDirectoryMutex() returns the address of the ERESOURCE lock
that synchronizes access to the object directory as a whole.

2. __ObpRootDirectoryObject() returns a pointer to the OBJECT_DIRECTORY
structure representing the root node of the object directory.

3. __ObpTypeDirectoryObject() returns a pointer to the OBJECT_DIRECTORY
structure representing the \ObjectTypes subdirectory node of the object
directory.

An application must be extremely cautious when it works with pointers to kernel
objects, especially after acquiring a global lock. If the lock isn’t properly released, the
system might be left in a handcuffed state, unable to perform even the simplest tasks.

Although the root directory lock is named ObpRootDirectoryMutex, it isn’t
really a mutex in the strict sense of the word. It is an ERESOURCE rather than a KMUTEX,
and as such must be acquired with the help of the ExAcquireResourceExclusiveLite()
or ExAcquireResourceSharedLite() API functions. The “Lite” suffix is important—
never use the siblings ExAcquireResourceExclusive() or ExAcquireResourcShared()
on Windows 2000 or NT4 ERESOURCE locks. This structure has been revised quite a
bit since Windows NT 3.x, and the latter pair of functions works only with the
old-style ERESOURCE type, included in w2k_def.h as ERESOURCE_OLD (see also
Appendix C). The counterpart of the ExAcquireResource*Lite() functions is
named ExReleaseResourceLite() and should be carefully distinguished from its
old-style sibling ExReleaseResource().

The basic approach of my object browser is to lock the object directory, take a
snapshot of all nodes found in its hierarchic structure, and display the snapshot data
after releasing the directory lock. This procedure guarantees the least interference
with the system, and the application can take as much time as it needs to display
the data without overusing the system. Taking a faithful snapshot of the directory
requires very intimate knowledge of the system’s object structures, so this application
is a great test case for the reliability of the object information I have supplied above.
This job can be subdivided into the following two basic tasks:

1. Copying the structure of the object directory tree. This involves copying
and interlinking several OBJECT_DIRECTORY structures, each one
representing an individual nonleaf node.

2. Copying the contents of the object directory tree. This means copying the
OBJECT_HEADER and its related structures of each leaf node in the tree.

The w2kDirectoryOpen() function shown in Listing 7-20 performs the first task.
It locks the directory and enumerates all children of the supplied OBJECT_DIRECTORY.
To capture the entire object tree, this function must be called recursively for each

ACCESSING LIVE SYSTEM OBJECTS 435

directory entry that is itself an OBJECT_DIRECTORY. Please recall that each object direc-
tory node consists of a hash table that can accommodate a maximum of 37 entries.
Each hash table slot can in turn refer to an arbitrary number of entries by putting
them into a linked list. Therefore, enumeration of directory entries requires two nested
loops: The outer one scans all 37 hash table slots for non-NULL entries, and the inner
one walks down the linked lists. This is about all the w2kDirectoryOpen() function
does. The resulting data is structurally equivalent to the original model, except that
all pointers refer to memory blocks reachable in user-mode. The basic copying including
automatic memory allocation is performed by the powerful w2kSpyClone() function,
also exported by w2k_call.dll (see Listing 6-30). The w2kDirectoryClose() function in
Listing 7-20 undoes the work done by w2kDirectoryOpen(), simply deallocating all
cloned memory blocks.

436 WINDOWS 2000 OBJECT MANAGEMENT

POBJECT_DIRECTORY WINAPI

w2kDirectoryOpen (POBJECT_DIRECTORY pDir)

{

DWORD i;

PERESOURCE pLock;

PPOBJECT_DIRECTORY_ENTRY ppEntry;

POBJECT_DIRECTORY pDir1 = NULL;

if (((pLock = __ObpRootDirectoryMutex ()) != NULL) &&

_ExAcquireResourceExclusiveLite (pLock, TRUE))

{

if ((pDir1 = w2kSpyClone (pDir, OBJECT_DIRECTORY_)) != NULL)

{

for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)

{

ppEntry = pDir1->HashTable + i;

while (*ppEntry != NULL)

{

if ((*ppEntry =

w2kSpyClone (*ppEntry,

OBJECT_DIRECTORY_ENTRY_))

!= NULL)

{

(*ppEntry)->Object =

w2kObjectOpen ((*ppEntry)->Object);

ppEntry = &(*ppEntry)->NextEntry;

}

}

}

}

ACCESSING LIVE SYSTEM OBJECTS 437

_ExReleaseResourceLite (pLock);

}

return pDir1;

}

// ---

POBJECT_DIRECTORY WINAPI

w2kDirectoryClose (POBJECT_DIRECTORY pDir)

{

POBJECT_DIRECTORY_ENTRY pEntry, pEntry1;

DWORD i;

if (pDir != NULL)

{

for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)

{

for (pEntry = pDir->HashTable [i];

pEntry != NULL;

pEntry = pEntry1)

{

pEntry1 = pEntry->NextEntry;

w2kObjectClose (pEntry->Object);

w2kMemoryDestroy (pEntry);

}

}

w2kMemoryDestroy (pDir);

}

return NULL;

}

LISTING 7-20. The w2kDirectoryOpen() and w2kDirectoryClose() API Functions

A closer look at Listing 7-20 reveals that w2kDirectoryOpen() and
w2kDirectoryClose() call the functions w2kObjectOpen() and w2kObjectClose(),
respectively. w2kObjectOpen() takes care of part two of the directory copying proce-
dure: It clones leaf objects. It doesn’t produce complete object copies, because this
would require identifying each object type and copying the appropriate number of
bytes from the object body. w2kObjectOpen() copies the entire header portion of an
object, including most of its subordinate structures, and builds a fake object body
that contains pointers to the real object body and to various parts of the object
header copy. Listing 7-21 shows the data structures built and initialized by
w2kObjectOpen(). W2K_OBJECT_FRAME is a monolithic data block that comprises
the object header copy and the fake object body. The latter is represented by the
W2K_OBJECT structure, which is just a collection of pointers to members of

W2K_OBJECT_FRAME. w2kObjectOpen() allocates memory for the W2K_OBJECT_FRAME
structure, initializes it with data from the original object, and returns a pointer to the
object frame’s Object member. If you recall the foregoing description of object bodies
and headers, it becomes apparent that the W2K_OBJECT_FRAME mimics the structure of
a real object. That is, it has all header fields the original object has, and an application
can access them in the same way that the system accesses its objects in kernel-mode
memory, using the offsets and flags in the OBJECT_HEADER.

438 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _W2K_OBJECT

{

POBJECT pObject;

POBJECT_HEADER pHeader;

POBJECT_CREATOR_INFO pCreatorInfo;

POBJECT_NAME pName;

POBJECT_HANDLE_DB pHandleDB;

POBJECT_QUOTA_CHARGES pQuotaCharges;

POBJECT_TYPE pType;

PQUOTA_BLOCK pQuotaBlock;

POBJECT_CREATE_INFO pCreateInfo;

PWORD pwName;

PWORD pwType;

}

W2K_OBJECT, *PW2K_OBJECT, **PPW2K_OBJECT;

#define W2K_OBJECT_ sizeof (W2K_OBJECT)

// ---

typedef struct _W2K_OBJECT_FRAME

{

OBJECT_QUOTA_CHARGES QuotaCharges;

OBJECT_HANDLE_DB HandleDB;

OBJECT_NAME Name;

OBJECT_CREATOR_INFO CreatorInfo;

OBJECT_HEADER Header;

W2K_OBJECT Object;

OBJECT_TYPE Type;

QUOTA_BLOCK QuotaBlock;

OBJECT_CREATE_INFO CreateInfo;

WORD Buffer [];

}

W2K_OBJECT_FRAME, *PW2K_OBJECT_FRAME, **PPW2K_OBJECT_FRAME;

#define W2K_OBJECT_FRAME_ sizeof (W2K_OBJECT_FRAME)

#define W2K_OBJECT_FRAME__(_n) (W2K_OBJECT_FRAME_ + ((_n) * WORD_))

LISTING 7-21. Object Clone Structures

I don’t want to go into the details of w2kObjectOpen() and all of its subordinate
functions. For illustrative purposes, the three-part set of functions shown in Listing 7-22
should suffice. w2kObjectHeader() creates a copy of an object’s OBJECT_HEADER,
and w2kObjectCreatorInfo() and w2kObjectName() copy the OBJECT_CREATOR_INFO
and OBJECT_NAME header parts, if present. Again, w2kSpyClone() is the main work-
horse. For more examples of this kind, please refer to the w2k_call.c source file on
the accompanying CD.

ACCESSING LIVE SYSTEM OBJECTS 439

#define BACK(_p,_d) ((PVOID) (((PBYTE) (_p)) - (_d)))

// ---

POBJECT_HEADER WINAPI

w2kObjectHeader (POBJECT pObject)

{

DWORD dOffset = OBJECT_HEADER_;

POBJECT_HEADER pHeader = NULL;

if (pObject != NULL)

{

pHeader = w2kSpyClone (BACK (pObject, dOffset),

dOffset);

}

return pHeader;

}

// ---

POBJECT_CREATOR_INFO WINAPI

w2kObjectCreatorInfo (POBJECT_HEADER pHeader,

POBJECT pObject)

{

DWORD dOffset;

POBJECT_CREATOR_INFO pCreatorInfo = NULL;

if ((pHeader != NULL) && (pObject != NULL) &&

(pHeader->ObjectFlags & OB_FLAG_CREATOR_INFO))

{

dOffset = OBJECT_CREATOR_INFO_ + OBJECT_HEADER_;

pCreatorInfo = w2kSpyClone (BACK (pObject, dOffset),

OBJECT_CREATOR_INFO_);

}

return pCreatorInfo;

}

(continued)

440 WINDOWS 2000 OBJECT MANAGEMENT

// ---

POBJECT_NAME WINAPI

w2kObjectName (POBJECT_HEADER pHeader,

POBJECT pObject)

{

DWORD dOffset;

POBJECT_NAME pName = NULL;

if ((pHeader != NULL) && (pObject != NULL) &&

(dOffset = pHeader->NameOffset))

{

dOffset += OBJECT_HEADER_;

pName = w2kSpyClone (BACK (pObject, dOffset),

OBJECT_NAME_);

}

return pName;

}

LISTING 7-22. Object Cloning Helper Functions

The bottom line of the story is that w2kDirectoryOpen() takes a pointer to a
live OBJECT_DIRECTORY node and returns a copy that contains W2K_OBJECT pointers
where the original directory stores its object body pointers. The object browser
application calls this API function repeatedly, once for each directory layer it dis-
plays. Listing 7-23 is a heavily edited version of the browser code, stripped down
to its bare essentials. The original code found in w2k_obj.c contains many distract-
ing extras that would have obscured the basic functional layout. The top-level
function is named DisplayObjects(). It requests the object root pointer from
w2k_call.dll via __ObpRootDirectoryObject() and forwards it to DisplayOject(),
which displays the type and name of the object and calls itself recursively if the object
is an OBJECT_DIRECTORY. For each nesting level, DisplayObject() adds a line inden-
tation of three spaces. I have added the functions in Listing 7-23 to w2k_obj.c on the
companion CD under the section header “POOR MAN’S OBJECT BROWSER.”
However, this code is not called anywhere, although it does work.

VOID WINAPI _DisplayObject (PW2K_OBJECT pObject,

DWORD dLevel)

{

POBJECT_DIRECTORY pDir;

POBJECT_DIRECTORY_ENTRY pEntry;

DWORD i;

ACCESSING LIVE SYSTEM OBJECTS 441

for (i = 0; i < dLevel; i++) printf (L" ");

_printf (L"%+.-16s%s\r\n", pObject->pwType, pObject->pwName);

if ((!lstrcmp (pObject->pwType, L"Directory")) &&

((pDir = w2kDirectoryOpen (pObject->pObject)) != NULL))

{

for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)

{

for (pEntry = pDir->HashTable [i];

pEntry != NULL;

pEntry = pEntry->NextEntry)

{

_DisplayObject (pEntry->Object, dLevel+1);

}

}

w2kDirectoryClose (pDir);

}

return;

}

// ---

VOID WINAPI _DisplayObjects (VOID)

{

PW2K_OBJECT pObject;

if ((pObject = w2kObjectOpen (__ObpRootDirectoryObject ()))

!= NULL)

{

_DisplayObject (pObject, 0);

w2kObjectClose (pObject);

}

return;

}

LISTING 7-23. A Very Simple Object Browser

In Example 7-2, I have compiled some characteristic parts of an object directory
listing generated by the code in Listing 7-23. For example, the \BaseNamedObjects
subdirectory comprises named objects that are typically shared between processes
and can be opened by name. The \ObjectTypes subdirectory contains all 27
OBJECT_TYPE type objects (cf. Listing 7-9) supported by the system, as listed
in Table 7-4.

442 WINDOWS 2000 OBJECT MANAGEMENT

Directory.......\

Directory.......ArcName

SymbolicLink....multi(0)disk(0)rdisk(0)

SymbolicLink....multi(0)disk(0)rdisk(1)

SymbolicLink....multi(0)disk(0)rdisk(1)partition(1)

SymbolicLink....multi(0)disk(0)rdisk(0)partition(1)

SymbolicLink....multi(0)disk(0)fdisk(0)

SymbolicLink....multi(0)disk(0)rdisk(0)partition(2)

Device..........Ntfs

Port............SeLsaCommandPort

Key.............REGISTRY

Port............XactSrvLpcPort

Port............DbgUiApiPort

Directory.......NLS

Section.........NlsSectionCP874

Section.........NlsSectionCP950

Section.........NlsSectionCP20290

Section.........NlsSectionCP1255c_1255.nls

...

Directory.......BaseNamedObjects

Section.........DfSharedHeapE445BB

Section.........DFMap0-14765686

Mutant..........ZonesCacheCounterMutex

Section.........DFMap0-14364447

Event...........WINMGMT_COREDLL_UNLOADED

Mutant..........MCICDA_DeviceCritSec_19

Event...........AgentToWkssvcEvent

Event...........userenv: Machine Group Policy has been applied

SymbolicLink....Local

Section.........DFMap0-15555297

Section.........DfSharedHeapED2256

Section.........DfSharedHeapE8F975

Section.........DFMap0-15232696

Section.........DFMap0-15170325

Event...........Shell_NotificationCallbacksOutstanding

Section.........DFMap0-14364985

Event...........SETTermEvent

Event...........winlogon: User GPO Event 112121

...

Directory.......ObjectTypes

Type............Directory

Type............Mutant

Type............Thread

Type............Controller

Type............Profile

Type............Event

Type............Type

Type............Section

ACCESSING LIVE SYSTEM OBJECTS 443

Type............EventPair

Type............SymbolicLink

Type............Desktop

Type............Timer

Type............File

Type............WindowStation

Type............Driver

Type............WmiGuid

Type............Device

Type............Token

Type............IoCompletion

Type............Process

Type............Adapter

Type............Key

Type............Job

Type............WaitablePort

Type............Port

Type............Callback

Type............Semaphore

Directory.......Security

Event...........TRKWKS_EVENT

WaitablePort....TRKWKS_PORT

Event...........LSA_AUTHENTICATION_INITIALIZED

Event...........NetworkProviderLoad

...

EXAMPLE 7-2. Excerpts from an Object Directory

The full-featured object browser code inside w2k_obj.exe not only displays the
directory tree in a more pleasing visual form, but also allows display of additional
object features and filtering of object types. Example 7-3 shows the various options
offered by the w2k_obj.exe command line.

// w2k_obj.exe

// SBS Windows 2000 Object Browser V1.00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Usage: w2k_obj [+-atf] [<type>] [<#>|-1] [/root] [/types]

+a -a : show/hide object addresses (default: -a)

+t -t : show/hide object type names (default: -t)

+f -f : show/hide object flags (default: -f)

(continued)

444 WINDOWS 2000 OBJECT MANAGEMENT

<type> : show <type> objects only (default: *)

<#> : show <#> directory levels (default: -1)

-1 : show all directory levels

/root : show ObpRootDirectoryObject tree

/types : show ObpTypeDirectoryObject tree

Example: w2k_obj +atf *port 2 /root

This command displays all Port and WaitablePort objects,

starting in the root and scanning two directory levels.

Each line includes address, type, and flag information.

EXAMPLE 7-3. The Command Help of w2k_obj.exe

In Example 7-4, I have issued the sample command w2k_obj +atf *port 2 /root

mentioned in the help screen. It restricts the output to Port and WaitablePort objects
by applying the type filter expression *port and includes object body addresses,
type names, and flags for each entry. The display is limited to two subordinate
directory layers.

Root directory contents: (2 levels shown)

————————————

8149CDD0 Directory_____ <32> \

> |_ E26A0540 Port__________ <24> SeLsaCommandPort

> |_ E130CC20 Port__________ <24> XactSrvLpcPort

> |_ E13E2380 Port__________ <24> DbgUiApiPort

> |_ E13E4BA0 Port__________ <26> SeRmCommandPort

> |_ E26A9D20 Port__________ <24> LsaAuthenticationPort

> |_ E13E4CA0 Port__________ <24> DbgSsApiPort

> |_ E13E3260 Port__________ <24> SmApiPort

> |_ E2707680 Port__________ <24> ErrorLogPort

|_ 81499B70 Directory_____ <32> \ArcName

|_ 812FDB60 Directory_____ <10> \NLS

|_ 814940B0 Directory_____ <32> \Driver

|_ 81490B30 Directory_____ <32> \WmiGuid

|_ 81499A90 Directory_____ <32> \Device

| |_ 814AEA90 Directory_____ <32> \Device\DmControl

| |_ 814AE4F0 Directory_____ <32> \Device\HarddiskDmVolumes

| |_ 8148BE50 Directory_____ <32> \Device\Ide

| |_ 814AB3D0 Directory_____ <32> \Device\Harddisk0

| |_ 814852F0 Directory_____ <32> \Device\Harddisk1

| |_ 814A9F50 Directory_____ <22> \Device\WinDfs

ACCESSING LIVE SYSTEM OBJECTS 445

| _ 814AB030 Directory_____ <32> \Device\Scsi

|_ 81319030 Directory_____ <30> \Windows

> | |_ E2615520 Port__________ <24> SbApiPort

> | |_ E260E1A0 Port__________ <24> ApiPort

| _ 812FC810 Directory_____ <32> \Windows\WindowStations

|_ 81319150 Directory_____ <30> \RPC Control

> | |_ E26B6A20 Port__________ <24> tapsrvlpc

> | |_ E3228440 Port__________ <24> OLE3c

> | |_ E269F360 Port__________ <24> spoolss

> | |_ E269B6E0 Port__________ <24> OLE2

> | |_ E2C96C60 Port__________ <24> OLE3f

> | |_ E1306BC0 Port__________ <24> OLE3> | |_ E269BD20 Port__________ <24>

LRPC0000021c.00000001

> | |_ E276D520 Port__________ <24> OLE5

> | |_ E2699D40 Port__________ <24> OLE6

> | |_ E2697C00 Port__________ <24> OLE7

> | |_ E26F0AE0 Port__________ <24> ntsvcs

> | |_ E26B6B20 Port__________ <24> policyagent

> | |_ E2814CA0 Port__________ <24> OLEa

> | |_ E29DC3C0 Port__________ <24> OLEb

> | |_ E304C8A0 Port__________ <24> OLE40

> | |_ E3165660 Port__________ <24> OLE41

> | |_ E26979A0 Port__________ <24> epmapper

> | |_ E13069A0 Port__________ <24> senssvc

> | _ E2C8D040 Port__________ <24> OLE42

|_ 812FD030 Directory_____ <30> \BaseNamedObjects

| _ 812FDF50 Directory_____ <30> \BaseNamedObjects\Restricted

|_ 8149CBD0 Directory_____ <32> \??

|_ 814B5030 Directory_____ <32> \FileSystem

|_ 8149CCB0 Directory_____ <32> \ObjectTypes

|_ 81499C50 Directory_____ <32> \Security

> | _ 8121EB20 WaitablePort__ <24> TRKWKS_PORT

|_ 8149B2D0 Directory_____ <32> \Callback

_ 81446E90 Directory_____ <30> \KnownDlls

54 objects

EXAMPLE 7-4. Output of the Command w2k_obj +atf *port 2 /root

Note that Directory objects are always included in the list, even though the
type name pattern doesn’t match them. Otherwise, it would be unclear to which node
in the directory hierarchy the matching objects are assigned. The > characters in the
first display column act as visual cues that distinguish the objects with a matching
object type from the additional Directory objects.

446 WINDOWS 2000 OBJECT MANAGEMENT

WHERE DO WE GO FROM HERE?

So much could still be said about Windows 2000 internals. But the number of
words fitting into a reasonably sized book is limited, so it must end somewhere.
The seven chapters of this book were tough reading, but maybe it was thrilling as
well. If you are now seeing Windows 2000 with different eyes, I have reached my
goal. If you are a programming or debugging tool developer, the programming and
interfacing techniques in this book will help you add value to your products that
none of the competitive tools can currently offer. If you are developing other kinds
of software for Windows 2000, the understanding of the inner system dynamics
imparted by this book will help you writing more efficient code that optimally
exploits the features of your operating system. I also would like this book to spur
the inquiring minds of developers everywhere, kicking off an avalanche of research
that unveils the mysteries that still surround most parts of the Windows 2000
kernel. I never believed that treating the operating system as a black box was a
good programming paradigm—and I still don’t believe it.

