

 www.nusphere.com

Writing MySQL Scripts With Python's DB-API Interface
By Paul DuBois, NuSphere Corporation (October 2001)

TABLE OF CONTENTS

MySQLdb Installation

A Short DB-API Script

Writing the Script

Running the Script

A More Extensive DB-API
Script

Error Handling

Methods for Issuing
Queries

Portability Notes

Links

Appendix

About NuSphere

Python is one of the more popular Open Source programming lan-

guages, owing largely to its own native expressiveness as well as to

the variety of support modules that are available to extend its capa-

bilities. One of these modules is DB-API, which, as the name im-

plies, provides a database application programming interface. DB-

API is designed to be relatively independent of details specific to

any given database engine; this helps you write database-access

scripts that are portable between engines.

DB-API's design is similar to that used by Perl's DBI module, the

PHP PEAR DB class, and the Java JDBC interface. It uses a two-

level architecture in which the top level provides an abstract inter-

face that is similar for all supported database engines, and a lower

level consisting of drivers for specific engines that handle engine-

dependent details. This means, of course, that to use DB-API for

writing Python scripts, you must have a driver for your particular

database system. For the NuSphere products, DB-API provides da-

tabase access by means of the MySQLdb driver. This article begins

by discussing driver installation (in case you don't have MySQLdb),

then moves on to cover how to write DB-API scripts.

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 2 of 16

MySQLdb Installation

To write MySQL scripts that use DB-API, Python itself must be installed. That will almost cer-

tainly be true if you're using Unix, but is less likely for Windows. Installers for either platform can

be found on the Python web site (see the “Links” section at the end of this article).

Next, verify that your version of Python is 1.5.2 or later, and that the MySQLdb module is in-

stalled. You can check both of these requirements by running Python in interactive mode from

the command line prompt (something like % for Unix or C:\> for Windows):

% python
>>> import sys
>>> sys.version
'1.5.2 (#1, Aug 25 2000, 09:33:37) [GCC 2.96 20000731
(experimental)]'

>>> import MySQLdb

Assuming that you have a recent enough version of Python and that no error occurs when you

issue the import MySQLdb statement, you're ready to begin writing database-access scripts and

you can skip to the next section. However, if you get the following error, you need to obtain and

install MySQLdb first:

>>> import MySQLdb
Traceback (most recent call last):

 File "<stdin>", line 1, in ?

ImportError: No module named MySQLdb

To obtain MySQLdb, visit the “Links” section to see where to fetch a distribution appropriate for

your system. Precompiled binaries are available for several platforms (RedHat Linux, Debian

Linux, Windows), or you can install from source. If you use a binary distribution, install it using

your platform's usual package installation procedure. To build and install MySQLdb from source,

move into the top-level directory of the distribution and issue the following commands. (Under

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 3 of 16

Unix, it's likely that you'll need to run the second command as root so that the driver files can be

copied into your Python installation.)

% python setup.py build
% python setup.py install

If the setup.py script fails because it can't find the Distutils module, one additional prerequisite

you'll need to satisfy is to install Distutils. (MySQLdb supports Python 1.5.2 and up, but Distutils

is included with Python only as of version 1.6.) The “Links” section indicates where to obtain this

module. If you encounter other problems, check the README file included with the MySQLdb dis-

tribution.

A Short DB-API Script

Scripts that access MySQL through DB-API using MySQLdb generally perform the following

steps:

• Import the MySQLdb module

• Open a connection to the MySQL database server

• Issue queries and retrieve their results

• Close the server connection

The rest of this section presents a short DB-API script that illustrates the basic elements of

these steps. Later sections discuss specific aspects of script-writing in more detail.

Writing the Script

Use a text editor to create a file named server_version.py that contains the following script.

This script uses MySQLdb to interact with the MySQL database server, albeit in relatively rudi-

mentary fashion—all it does is ask the server for its version string:

server_version.py - retrieve and display database server
version

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 4 of 16

import MySQLdb

conn = MySQLdb.connect (host = "localhost",

 user = "testuser",

 passwd = "testpass",

 db = "test")

cursor = conn.cursor ()

cursor.execute ("SELECT VERSION()")

row = cursor.fetchone ()

print "server version:", row[0]

cursor.close ()

conn.close ()

The import statement tells Python that the script needs to use the code in the MySQLdb mod-

ule. This statement must precede any attempt to connect to the MySQL database server. Then

the connection is established by invoking the connect() method of the MySQLdb driver and

specifying the proper connection parameters. These include the hostname where the server is

running, the user name and password for your MySQL account, and the name of the database

you want to use. connect() argument list syntax varies among drivers; for MySQLdb, the argu-

ments are

allowed to be given in name = value format, which has the advantage that you can specify

them in any order. server_version.py makes a connection to the MySQL database server on

the local host to access the test database with a user name and password of testuser and

testpass:

conn = MySQLdb.connect (host = "localhost",

 user = "testuser",

 passwd = "testpass",

 db = "test")

If the connect() call is successful, it returns a connection object that serves as the basis for fur-

ther interaction with the MySQL database. If the call fails, an exception is raised.

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 5 of 16

(server_version.py doesn't handle the exception, so an error at this point terminates the script.

Error handling is covered later in this article.)

After the connection object has been obtained successfully, server_version.py invokes its cur-

sor() method to create a cursor object for processing queries. The script uses this cursor to is-

sue a SELECT VERSION() statement, which returns a string containing server version information:

cursor = conn.cursor ()

cursor.execute ("SELECT VERSION()")

row = cursor.fetchone ()

print "server version:", row[0]

cursor.close ()

The cursor object's execute() method sends the query to the server and fetchone() retrieves a

row as a tuple. For the query shown here, the tuple contains a single value, which the script

prints. (If no row is available, fetchone() actually will return the value None; server_version.py

blithely assumes that this won't happen, an assumption that you normally should not make. In

later examples, we'll handle this case.) Cursor objects can be used to issue multiple queries, but

server_version.py has no more need for cursor after getting the version string, so it closes it.

Finally, the script invokes the connection object's close() method to disconnect from the server:

conn.close ()

After that, conn becomes invalid and should not be used to access the server.

Running the Script

To execute the server_version.py script, invoke Python from the command line prompt and tell

it the script name. You should see a result something like this:

% python server_version.py
server version: 3.23.39-log

This indicates that the MySQL server version is 3.23.39, and the -log suffix tells us that query

logging is enabled. (If you have debugging enabled, you'll see a -debug suffix.)

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 6 of 16

It's possible to set up the script so that it can be run by name without invoking Python explicitly.

Under Unix, add an initial #! line to the script that specifies the full pathname of the Python in-

terpreter. This tells the system what program should execute the script. For example, if Python

lives at /usr/bin/python on your system, add the following as the first line of the script:

#! /usr/bin/python

Then use chmod to make the script executable, and you'll be able to run it directly:

% chmod +x server_version.py
% ./server_version.py

(The leading ./ tells your command interpreter explicitly that the script is located in your current

directory. Many Unix accounts are set up not to search the current directory when looking for

commands.)

Under Windows, the #! line is unnecessary (although it's harmless, so you need not remove it if

you write the script on a Unix system and then move it to a Windows box). Also, instead of using

chmod to make the script executable, open the Folder Options item in the Control Panel and

select its File Types tab. File Types allows you to set up an association for files that end with .py

to tell Windows to execute them with Python. Then you can invoke the script by name:

C:\> server_version.py

A More Extensive DB-API Script

server_version.py has a number of shortcomings. For example, it doesn't catch exceptions or

indicate what went wrong if an error occurs, and it doesn't allow for the possibility that the query

it runs may not return any results. This section shows how to address these issues using a more

elaborate script, animal.py, that uses a table containing animal names and categories:

CREATE TABLE animal

(

 name CHAR(40),

 category CHAR(40)

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 7 of 16

)

If you've read the PEAR DB article available at the NuSphere Tech Library, you may recognize

this table and some of the queries issued by animal.py; they were used in that article, too.

The animal.py script begins like this (including the #! line, should you intend to run the script on

a Unix system):

#! /usr/bin/python

animal.py - create animal table and

retrieve information from it

import sys

import MySQLdb

As with server_version.py, the script imports MySQLdb, but it also imports the sys module for

use in error handling. (animal.py uses sys.exit() to return 0 or 1 to indicate normal termination

or that an error occurred.)

Error Handling

After importing the requisite modules, animal.py establishes a connection to the server using

the connect() call. To allow for the possibility of connection failure (for example, so that you can

display the reason for the failure), it's necessary to catch exceptions. To handle exceptions in

Python, put your code in a try block and include an except block that contains the error-

handling code. The resulting connection sequence looks like this:

try:

 conn = MySQLdb.connect (host = "localhost",

 user = "testuser",

 passwd = "testpass",

 db = "test")

except MySQLdb.Error, e:

 print "Error %d: %s" % (e.args[0], e.args[1])

 sys.exit (1)

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 8 of 16

The except line names an exception class (MySQLdb.Error in this example) to obtain the data-

base-specific error information that MySQLdb can provide, as well as a variable (e) in which to

store the information. If an exception occurs, MySQLdb makes this information available in

e.args, a two-element tuple containing the numeric error code and a string describing the error.

The except block shown in the example prints both values and exits.

Any database-related statements can be placed in a similar try/except structure to trap and

report errors. However, for brevity, the following discussion doesn't show the exception-handling

code. (The complete text of animal.py is listed in the appendix.)

Methods for Issuing Queries

The next section of animal.py creates a cursor object and uses it to issue queries that set up

and populate the animal table:

cursor = conn.cursor ()

cursor.execute ("DROP TABLE IF EXISTS animal")

cursor.execute ("""

 CREATE TABLE animal

 (

 name CHAR(40),

 category CHAR(40)

)

 """)

cursor.execute ("""

 INSERT INTO animal (name, category)

 VALUES

 ('snake', 'reptile'),

 ('frog', 'amphibian'),

 ('tuna', 'fish'),

 ('racoon', 'mammal')

 """)

print "%d rows were inserted" % cursor.rowcount

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 9 of 16

Note that this code includes no error-checking. (Remember that it will be placed in a try block;

errors will trigger exceptions that are caught and handled in the corresponding except block,

which allows the main flow of the code to read more smoothly.) The queries perform the follow-

ing actions:

• Drop the animal table if it already exists, to begin with a clean slate.

• Create the animal table.

• Insert some data into the table and report the number of rows added.

Each query is issued by invoking the cursor object's execute() method. The first two queries

produce no result, but the third produces a count indicating the number of rows inserted. The

count is available in the cursor's rowcount attribute. (Some database interfaces provide this

count as the return value of the query-execution call, but that is not true for DB-API.)

The animal table is set up at this point, so we can issue SELECT queries to retrieve information

from it. As with the preceding statements, SELECT queries are issued using execute(). However,

unlike statements such as DROP or INSERT, SELECT queries generate a result set that you must

retrieve. That is, execute() only issues the query, it does not return the result set. You can use

fetchone() to get the rows one at a time, or fetchall() to get them all at once. animal.py uses

both approaches. Here's how to use fetchone() for row-at-a-time retrieval:

cursor.execute ("SELECT name, category FROM animal")

while (1):

 row = cursor.fetchone ()

 if row == None:

 break

 print "%s, %s" % (row[0], row[1])

print "%d rows were returned" % cursor.rowcount

fetchone() returns the next row of the result set as a tuple, or the value None if no more rows

are available. The loop checks for this and exits when the result set has been exhausted. For

each row returned, the tuple contains two values (that's how many columns the SELECT query

asked for), which animal.py prints. The print statement shown above accesses the individual

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 10 of 16

tuple elements. However, because they are used in order of occurrence within the tuple, the

print statement could just as well have been written like this:

print "%s, %s" % row

After displaying the query result, the script also prints the number of rows returned (available as

the value of the rowcount attribute).

fetchall() returns the entire result set all at once as a tuple of tuples, or as an empty tuple if

the result set is empty. To access the individual row tuples, iterate through the row set that

fetchall() returns:

cursor.execute ("SELECT name, category FROM animal")

rows = cursor.fetchall ()

for row in rows:

 print "%s, %s" % (row[0], row[1])

print "%d rows were returned" % cursor.rowcount

This code prints the row count by accessing rowcount, just as for the fetchone() loop. Another

way to determine the row count when you use fetchall() is by taking the length of the value

that it returns:

print "%d rows were returned" % len (rows)

The fetch loops shown thus far retrieve rows as tuples. It's also possible to fetch rows as dic-

tionaries, which allows column values to be accessed by name. The following code shows how

to do this. Note that dictionary access requires a different kind of cursor, so the example closes

the cursor and obtains a new one that uses a different cursor class:

cursor.close ()

cursor = conn.cursor (MySQLdb.cursors.DictCursor)

cursor.execute ("SELECT name, category FROM animal")

result_set = cursor.fetchall ()

for row in result_set:

 print "%s, %s" % (row["name"], row["category"])

print "%d rows were returned" % cursor.rowcount

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 11 of 16

MySQLdb supports a placeholder capability that allows you to bind data values to special mark-

ers within the query string. This provides an alternative to embedding the values directly into the

query. The placeholder mechanism handles adding quotes around data values, and it escapes

any special characters that occur within values. The following examples demonstrate an UPDATE

query that changes snake to turtle, first using literal values and then using placeholders. The

literal-value query looks like this:

cursor.execute ("""

 UPDATE animal SET name = 'turtle'

 WHERE name = 'snake'

 """)

print "%d rows were updated" % cursor.rowcount

If the values are stored in variables, you can issue the same query by using placeholders and

binding the appropriate values to them:

cur_name = "snake"

new_name = "turtle"

cursor.execute ("""

 UPDATE animal SET name = %s

 WHERE name = %s

 """, (new_name, cur_name))

print "%d rows were updated" % cursor.rowcount

Note the following points about the form of the preceding execute() call:

• The placeholder marker is %s; it should occur once per value to be inserted into the

query string.

• No quotes should be placed around the %s markers; MySQLdb supplies them for you as

necessary.

• Following the query string argument to execute(), provide a tuple containing the values

to be bound to the placeholders, in the order they should appear within the string. If you

have only a single value x, specify it as (x,) to indicate a single-element tuple.

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 12 of 16

After issuing the queries, animal.py closes the cursor, disconnects from the server, and exits:

cursor.close ()

conn.close ()

sys.exit (0)

Portability Notes

If you want to port a MySQLdb-based DB-API script for use with a different database, the follow-

ing things may cause problems. Sources of non-portability occur anywhere that the driver name

might be used. These include:

• The import statement that imports the driver module. This must be changed to import a

different driver.

• The connect() call that connects to the database server. The connect() method is

accessed through the name of the driver modules, so the driver name needs to be

changed. In addition, the connect() argument syntax may vary between drivers.

• Exception handling. The exception class named on except statements is referenced

through the driver name.

Another type of non-portability that does not involve the driver name concerns the use of place-

holders. The DB-API specification allows for several placeholder syntaxes, and some drivers

use a syntax that differs from the one supported by MySQLdb.

Links

• Andy Dustman, author of the MySQLdb module, has a site at:

http://dustman.net/andy/python/

That site is the best place to read the MySQLdb documentation and FAQ online. It also

has links to Debian and Windows binary distributions. To get source code or Linux

RPMs, visit the MySQLdb SourceForge repository at:

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 13 of 16

http://sourceforge.net/projects/mysql-python

• The Python web site has installers for the Python language processor, should you be

running on a system that doesn't already have it installed:

http://www.python.org/

• If your version of Python doesn't include it, the Distutils distribution that is needed for

building and installing MySQLdb from source can be obtained at:

http://www.python.org/sigs/distutils-sig/download.html

• The database SIG (special interest group) area on the Python web site contains

additional DB-API information:

http://www.python.org/sigs/db-sig/

• The animal table used by the animal.py script is also used in the PEAR DB article at the

NuSphere Tech Library:

http://www.nusphere.com/products/tech_library.htm

You might find it instructive to compare that article with this one to see where DB-API

and PEAR DB are similar or different in their approaches to database access.

Appendix

The full source code for the animal.py script is shown here:

#!/usr/bin/python

animal.py - create animal table and

retrieve information from it

import sys

import MySQLdb

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 14 of 16

connect to the MySQL server

try:

 conn = MySQLdb.connect (host = "localhost",

 user = "testuser",

 passwd = "testpass",

 db = "test")

except MySQLdb.Error, e:

 print "Error %d: %s" % (e.args[0], e.args[1])

 sys.exit (1)

create the animal table and populate it

try:

 cursor = conn.cursor ()

 cursor.execute ("DROP TABLE IF EXISTS animal")

 cursor.execute ("""

 CREATE TABLE animal

 (

 name CHAR(40),

 category CHAR(40)

)

 """)

 cursor.execute ("""

 INSERT INTO animal (name, category)

 VALUES

 ('snake', 'reptile'),

 ('frog', 'amphibian'),

 ('tuna', 'fish'),

 ('racoon', 'mammal')

 """)

 print "%d rows were inserted" % cursor.rowcount

perform a fetch loop using fetchone()

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 15 of 16

 cursor.execute ("SELECT name, category FROM animal")

 while (1):

 row = cursor.fetchone ()

 if row == None:

 break

 print "%s, %s" % (row[0], row[1])

 print "%d rows were returned" % cursor.rowcount

perform a fetch loop using fetchall()

 cursor.execute ("SELECT name, category FROM animal")

 rows = cursor.fetchall ()

 for row in rows:

 print "%s, %s" % (row[0], row[1])

 print "%d rows were returned" % cursor.rowcount

issue a query that includes data values literally in

the query string, then do same thing using placeholders

 cursor.execute ("""

 UPDATE animal SET name = 'turtle'

 WHERE name = 'snake'

 """)

 print "%d rows were updated" % cursor.rowcount

 cur_name = "snake"

 new_name = "turtle"

 cursor.execute ("""

 UPDATE animal SET name = %s

 WHERE name = %s

 """, (new_name, cur_name))

 print "%d rows were updated" % cursor.rowcount

create a dictionary cursor so that column values

can be accessed by name rather than by position

 Writing MySQL Scripts Using Python’s DB-API Interface

 NuSphere Corporation – www.nusphere.com 16 of 16

 cursor.close ()

 cursor = conn.cursor (MySQLdb.cursors.DictCursor)

 cursor.execute ("SELECT name, category FROM animal")

 result_set = cursor.fetchall ()

 for row in result_set:

 print "%s, %s" % (row["name"], row["category"])

 print "%d rows were returned" % cursor.rowcount

 cursor.close ()

except MySQLdb.Error, e:

 print "Error %d: %s" % (e.args[0], e.args[1])

 sys.exit (1)

conn.close ()

sys.exit (0)

About NuSphere Corporation

NuSphere delivers the first Internet Application Platform (IAP) based on open source compo-

nents, providing an integrated foundation that allows companies to deploy reliable, cost-

effective, enterprise-class applications across Windows, UNIX and Linux environments.

NuSphere® Advantage is an integrated software suite that pairs the reliability and cost-

effectiveness of PHP, Apache, Perl and open source databases with new technology for build-

ing business-critical web applications and web services. Based in Bedford, Mass., the com-

pany's commercial software services include technical support, consulting and training. For

more information, visit www.nusphere.com or call +1-781-280-4600.

NuSphere is a registered trademark in Australia, Norway, Hong Kong, Switzerland, and the European Community; NuSphere and PHPEd are
trademarks of NuSphere Corporation in the U.S. and other countries. Any other trademarks or service marks contained herein are the property
of their respective owners.

MySQL AB distributes the MySQL database pursuant to the applicable GNU General Public License that is available as of the date of this
publication at http://www.fsf.org/licenses/gpl.txt and all of the terms and disclaimers contained therein. NuSphere Corporation is not affiliated
with MySQL AB. The products and services of NuSphere Corporation are not sponsored or endorsed by MYSQL AB.

	Writing MySQL Scripts With Python's DB-API Interface
	MySQLdb Installation
	A Short DB-API Script
	Writing the Script
	Running the Script
	A More Extensive DB-API Script
	Error Handling
	Methods for Issuing Queries
	Portability Notes
	Links
	Appendix
	About NuSphere Corporation

