
Secure programming with the OpenSSL API http://www-106.ibm.com/developerworks/linux/library/l-openssl.ht...

1 of 1 30-07-2004 10:12

Contents:
What is SSL?

What is OpenSSL?

What you will need

Headers and initialization

Setting up an unsecured
connection

Setting up a secure
connection

Error detection

Get started

Resources

About the author

Rate this article

Related content:
Network programming with
the Twisted framework, Part
4

Programming Linux
sockets, Part 1

Programming Linux
sockets, Part 2

Communications
Programming Concepts:
Sockets

Introduction to cryptography

Understanding Sockets in
Unix, NT, and Java

Subscriptions:
dW newsletters

dW Subscription
(CDs and downloads)

Secure programming with the OpenSSL
API
Create basic secure and unsecure connections
Level: Intermediate

Kenneth Ballard (kenneth.ballard@ptk.org)
Freelance programmer
22 Jul 2004

Learning how to use the API for OpenSSL -- the best-known open library for
secure communication -- can be intimidating, because the documentation is
incomplete. Fill in the gaps, and tame the API, with the tips in this article. After
setting up a basic connection, see how to use OpenSSL's BIO library to set up
both a secured and unsecured connection. And learn a bit about error detection
as well.

The documentation to the OpenSSL API is a little vague. Not many tutorials on the use
of OpenSSL exist either, so getting it to work in applications can be a little troublesome
for beginners. So how can you implement a basic secure connection using OpenSSL?
This guide will help to solve that problem.

Part of the problem with learning how to implement OpenSSL is the fact that the
documentation is not complete. An incomplete API documentation normally keeps
developers from using the API, which normally spells doom for it. Yet OpenSSL is still
around and going strong. Why?

OpenSSL is the best-known open library for secure communication. A Google search
for "SSL library" returns OpenSSL at the top of the list. It started life in 1998 being
derived from the SSLeay library developed by Eric Young and Tim Hudson. Other SSL
toolkits include GNU TLS, distributed under the GNU General Public License, and
Mozilla Network Security Services (NSS) (see Resources later in this article for
additional information).

So what makes OpenSSL better than GNU TLS, Mozilla NSS, or any other library?
Licensing is one issue (see Resources). In addition, GNS TLS (thus far) supports only
TLS v1.0 and SSL v3.0 protocols, and not much more.

Mozilla NSS is distributed under both the Mozilla Public License and the GNU GPL,
allowing the developer to pick. But Mozilla NSS is larger than OpenSSL and requires
other external libraries to build the library, whereas OpenSSL is entirely self-contained.
And like OpenSSL, much of the NSS API is not documented. Mozilla NSS has PKCS #11
support, which is used for cryptographic tokens, such as Smart Cards. OpenSSL lacks
this support.

Prerequisites
To get the most out of this article, you should:

Be proficient in C programming
Be familiar with Internet communication and writing Internet-enabled
applications

A familiarity with SSL is not absolutely required, as a short explanation of SSL will be given later; however, look in the
Resources section if you want to find links to articles discussing SSL in detail. A knowledge of cryptography is a plus
as well, but not required.

What is SSL?
SSL is an acronym that stands for Secure Sockets Layer. It is the standard behind secure communication on the
Internet, integrating data cryptography into the protocol. The data is encrypted before it even leaves your computer, and
is decrypted only once it reaches its intended destination. Certificates and cryptographic algorithms are behind how it
all works, and with OpenSSL, you have the opportunity to play around with both.

In theory, if the encrypted data were intercepted or eavesdropped before reaching its destination, there is no hope of
cracking that data. But as computers become ever faster as each year passes, and new advances in cryptanalysis
are made, the chance of cracking the cryptography protocols used in SSL is starting to increase.


