
Sicherheit in der Mobilkommunikation

1 Mobilkommunikation und mehrseitige Sicherheit

- 1.1 Mobilkommunikation
- 1.2 Mehrseitige Sicherheit
- 1.3 Angreifermodell
- 1.4 Abgeleitete Sicherheitsmaßnahmen

2 Mobilkommunikation am Beispiel GSM

- 2.1 Allgemeines
- 2.2 Struktur von GSM
- 2.3 Datenbanken des GSM
- 2.4 Sicherheitsrelevante Prozeduren und Funktionen

2

Sicherheit in der Mobilkommunikation

3 Mobilitäts- und Verbindungsmanagement am Beispiel GSM

- 3.1 Location Management allgemein
- 3.2 Erstellbarkeit von Bewegungsprofilen allgemein
- 3.3 Location Update Prozeduren
- 3.4 Rufaufbau (Call Setup) im GSM
- 3.5 Erstellbarkeit von Bewegungsprofilen im GSM
- 3.6 Bekannte Angriffe auf GSM-Sicherheitsfunktionen
- 3.7 Zusammenfassung der Sicherheitsprobleme

4 Verfahren zum Schutz von Aufenthaltsinformation

- 4.1 Allgemeines
- 4.1 Systematik

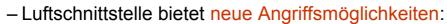
Sicherheit in der Mobilkommunikation

- 5 Methoden mit ausschließlichem Vertrauen in die Mobilstation
 - 5.1 Vermeidung von Lokalisierungsinformation
 - 5.2 Variable implizite Adressen
 - 5.3 Methode der Gruppenpseudonyme
- 6 Methoden mit zusätzlichem Vertrauen in einen eigenen ortsfesten Bereich
 - 6.1 Adreßumsetzungsmethode mit Verkleinerung der Broadcast-Gebiete
 - 6.2 Explizite Speicherung der Lokalisierungsinformation in einer Trusted Fixed Station
 - 6.3 Pseudonymumsetzung in einer vertrauenswürdigen Umgebung mit der Methode der temporären Pseudonyme
 - 6.4 Sicherheitsbetrachtungen

4

Sicherheit in der Mobilkommunikation

- 7 Methoden mit zusätzlichem Vertrauen in einen fremden ortsfesten Bereich
 - 7.1 Organisatorisches Vertrauen: Vertrauen in eine Trusted Third Party
 - 7.2 Methode der kooperierenden Chips
 - 7.3 Mobilkommunikationsmixe
- 8 Mobilität im Internet
 - 8.1 Mobile IP: Prinzip und Sicherheitsfunktionen
 - 8.2 Mobile IP und Schutz von Aufenthaltsorten
- 9 Zusammenfassung


Organisatorisches

- Lehrbeauftragter
 - Dr.-Ing. Hannes Federrath
 - E-Mail: federrath@inf.tu-dresden.de
- · Art der Lehrveranstaltung
 - Wahlpflichtlehrveranstaltung, 2 SWS Vorlesung
 - Zuordnung zur Vertiefungsrichtung «Technischer Datenschutz»
- · Erwünschte Vorkenntnisse
 - Grundlagen Rechnernetze/verteilte Systeme
 - Grundkenntnisse Datensicherheit/Kryptographie
- · Lehrveranstaltungsmaterial:
 - http://www.inf.tu-dresden.de/~hf2/mobil/
- · Form des Abschlusses:
 - Mündliche Prüfung oder Schein

6

Mobilkommunikation – Einführung

- Unterschiede Festnetz- und Mobilkommunikation
 - Teilnehmer bewegen sich
 - Bandbreite auf der Luftschnittstelle knapp
 - Luftschnittstelle störanfälliger als Leitungen des festen Netzes:
 - zeitweilige Diskonnektivität

• erleichterte Abhörmöglichkeit

Peilbarkeit

Mobilkommunikation – Einteilungsmöglichkeiten

1. Mobilitätsformen

- · Terminal Mobility:
 - Beispiel: Funktelefon
 - drahtlose Kommunikationsschnittstelle
 - mobiles Endgerät
- · Personal Mobility:
 - Beispiel: öffentliche Terminals
 - · Teilnehmer ist mobil
 - bewegungsunabhängige Adresse
 - · Endgerät ist nicht notwendigerweise mobil
- · Session Mobility:
 - «Einfrieren einer Session» und spätere Reaktivierung an einem anderen Ort oder/und Endgerät.

8

Mobilkommunikation – Einteilungsmöglichkeiten

2. Wellenbereiche

- Funkwellen (f = 100 MHz bis mehrere GHz)
- Lichtwellen (infrarot)
- Schallwellen (bisher ungebräuchlich)

3. Zellengröße

Pikozellen	d < 100 m
Mikrozellen	d < 1 km
– Makrozellen	d < 20 km
Hyperzellen	d < 60 km
Overlay-Zellen	d < 400 km

Weitere

- Punkt-zu-Punkt-Kommunikation, Broadcast (Pagerdienste)
- Analog, Digital
- Simplex, Duplex

Beispiele für mobile Netze

- Pagerdienste (Scall, TeLMI)
- Datendienste (Modacom)
- Sprachdienste = Massenmarkt
 - 1. Generation: analog
 - C-Netz, Cordless Telephone, AMPS
 - -2. Generation: digital
 - GSM, DCS-1800, DECT
 - 3. Generation: diensteintegrierend
 - UMTS/IMT-2000/FPLMTS

- Iridium, Inmarsat, Globalstar, Odyssey
- GPS (Global Positioning System)
- Internet (Mobile IP)

10

Sicherheitsanforderungen an mobile Systeme

- Bsp. f. Sicherheitsanforderungen: Cooke, Brewster (1992)
 - protection of user data
 - protection of signalling information, incl. location

- user authentication, equipment verification

- fraud prevention (correct billing)

Allgemein

- Schutz der Vertraulichkeit
- Schutz der Integrität
- Zurechenbarkeit
- Verfügbarkeit

 Mobiles Umfeld kann nicht als vertrauenswürdig vorausgesetzt werden

Vertraulichkeit, Integrität, Zurechenbarkeit, Verfügbarkeit

· Schutz der Inhaltsdaten («Worüber?») **Inhalte** – vor allen Instanzen außer den Kommunikationspartnern! Schutz der Verkehrsdaten («Wer mit wem?») Senden Möglichkeit zur anonymen und unbeobachtbaren Kommunikation **Empfangen** - auch gegenüber dem Netzbetreiber! Schutz des Aufenthaltsorts («Wo?») Ort - Schutzziel: Verhindern der Erstellbarkeit von Bewegungsprofilen · Schutz vor (Ver)-Fälschung Inhalte - Inhalte und Absender · Sende- und Empfangsnachweise **Absender** - Digitale Signaturen **Empfänger** · Sichere Abrechnungsverfahren - auch gegenüber dem Netzbetreiber! **Bezahlung** Anonymität und Unbeobachtbarkeit muß erhalten bleiben! Verfügbarkeit

Was ist zu schützen?

Kommunikationsgegenstand WAS?	Kommunikationsumstände WANN?, WO?, WER?				
Vertraulichkeit Inhalte	Anonymität Unbeobachtbarkeit Sender Ort				
	Empfänger				
Integrität	Zurechenbarkeit Rechtsverbindlichkeit				
Inhalte	Absender Bezahlung				
	Empfänger				

Juristisch: personenbezogene Daten

Maximal berücksichtigte Stärke des Angreifers

Schutz vor einem allmächtigen Angreifer ist unmöglich.

- Rollen des Angreifers (Außenstehender, Benutzer, Betreiber,
 Wartungsdienst, Produzent, Entwerfer ...), auch kombiniert
- -Verbreitung des Angreifers
- -Verhalten des Angreifers
 - · passiv / aktiv
 - beobachtend / verändernd (bzgl. seiner erlaubten Handlungen)
- -dumm / intelligent
 - · Rechenkapazität:
 - unbeschränkt: informationstheoretisch
 - beschränkt: komplexitätstheoretisch

14

Angreifermodell

Geld

Zeit

- · Aktive oder passive Rolle des Angreifers
 - Was kann der Angreifer maximal passiv beobachten?
 - Was kann der Angreifer maximal aktiv kontrollieren?
 - Was kann der Angreifer aktiv verändern?

Konkret:

- Angreifer außerhalb des Netzes (Outsider): nur passive (abhörend, beobachtend)
- Angreifer innerhalb den Netzes (Insider):
 passive und aktive (hier: Daten verändernde Angriffe)
- Generell: Insider und Outsider k\u00f6nnen Verf\u00fcgbarkeit auf der Funkschnittstelle st\u00f6ren

Angreifermodell

· Mächtigkeit des Angreifers

- Wieviel Rechenkapazität besitzt der Angreifer?
- Wieviel finanzielle Mittel besitzt der Angreifer?
- Wieviel Zeit besitzt der Angreifer?
- Welche Verbreitung hat der Angreifer? Oder spezieller: Welche Leitungen, Kanäle, Stationen kann der Angreifer beherrschen?

Konkrete Verbreitung

- Endgerät: sicher gegen Manipulation = Vertrauensbereich
- Netzkomponenten: sicher gegenüber Outsidern, unsicher gegenüber Insidern
- Funkschnittstelle: Peilbarkeit sendender Funkstationen (Insider und Outsider)

16

■ Sicherheitsmaßnahmen

	Vertr.	Integr.	Verf.
Ende-zu-Ende-Sicherung der Inhalte	X	Х	
zusätzliche Verschlüsselung der Signalisierdaten	X	X	(x)
Schutz vor Peil- und Ortbarkeit:Spread Spectrum	X		X
Schutz der Kommunikationsbeziehungen	x		
Schutz des Aufenthaltsortes / Datenschutzgerechte Verwaltung der Aufenthaltsorte	X		
Gegenseitige Authentikation der Teilnehmer, aber auch der Netzkomponenten untereinander		X	X
Organisatorische Aspekte: Befugnisse des Wartungsdienstes genau definieren	X	X	X
(Hersteller)-Unabhängigkeit der Netzkomponenten	X		X
Anonyme Netzbenutzung (Wertkarten)	X		
Mehrseitig sichere, ggf. anonyme Abrechnung	X	X	(x)


Mobilkommunikation am Beispiel GSM

- Ursprünglich: Groupe Spéciale Mobilé der ETSI


• Leistungsmerkmale des Global System for Mobile Communication

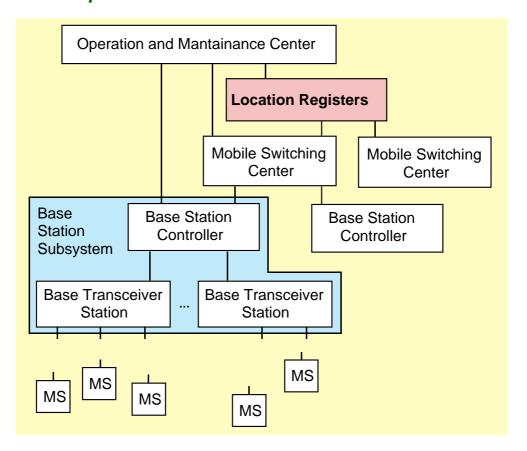
- hohe, auch internationale Mobilität
- hohe Erreichbarkeit unter einer (international) einheitlichen Rufnummer
- hohe Teilnehmerkapazität
- recht hohe Übertragungsqualität und -zuverlässigkeit durch effektive
 Fehlererkennungs- und -korrekturverfahren
- hoher Verfügbarkeitsgrad (Flächendeckung zwischen 60 und 90%)

als Massendienst geeignetes Kommunikationsmedium

- Dienstevielfalt
- Entwicklungsfähigkeit

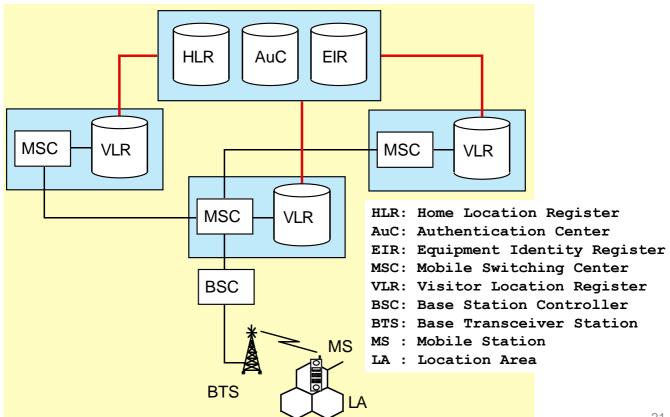
18

Mobilkommunikation am Beispiel GSM

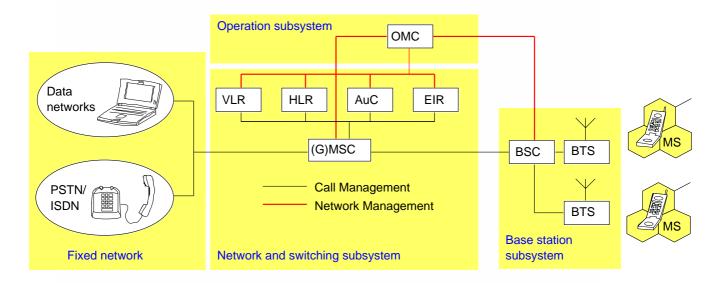

Ursprünglich: Groupe Spéciale Mobilé der ETSI

• Leistungsmerkmale des Global System for Mobile Communication

- eingebaute Sicherheitsmerkmale
 - Zugangskontrolldienste (PIN, Chipkarte)
 - · Authentikations- und Identifikationsdienste
 - Unterstützung von temporären Identifizierungsdaten (Pseudonymen)
 - · Abhörsicherheit für Outsider auf der Funkschnittstelle
- relativ niedriges Kostenniveau
- priorisierter Notrufdienst
- Ressourcenökonomie auf der Funkschnittstelle durch FDMA, TDMA,
 Sprachkodierung, Warteschlangentechniken, OACSU (Off Air Call Setup)

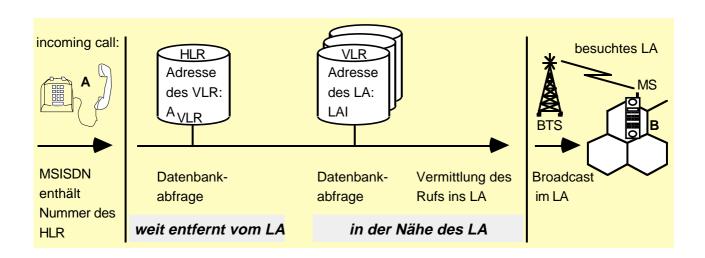

Struktur von GSM

· Architekturkonzept – die Erste


Struktur von GSM

· Logischer Netzaufbau

Struktur von GSM


· Architekturkonzept - die Zweite

22

Location Management im GSM

- Grundprinzip verteilte Speicherung
 - Verteilte Speicherung über Register
 - Home Location Register und Visitor Location Register
 - Netzbetreiber hat stets globale Sicht auf Daten
 - Bewegungsprofile sind erstellbar

Security deficits of existing mobile networks

- Example of security demands: Cooke, Brewster (1992)
 - protection of user data
 - protection of signaling information, incl. location
 - user authentication, equipment verification
 - fraud prevention (correct billing)
- Security deficits of GSM (selection)
 - Only symmetric cryptography (algorithms no officially published)
 - Weak protection of locations (against outsiders)
 - No protection against insider attacks (location, message content)
 - No end-to-end services (authentication, encryption)

Summary

- GSM provides protection against external attacks only.
- "...the designers of GSM did not aim at a level of security much higerthan that of the fixed trunk network." Mouly, Pautet (1992)

24

Datenbanken des GSM

• Home Location Register (HLR)

Semipermanente Daten

- IMSI (International Mobile Subscriber Identity): max. 15 Ziffern
 - Mobile Country Code (MCC, 262) + Mobile Network Code (MNC, 01/02) + Mobile Subscriber Identification Number (MSIN)
- MSISDN (Mobile Subscriber International ISDN Number): 15 Ziffern
 - Country Code (CC, 49) + National Destination Code (NDC, 171/172)
 + HLR-Nummer + Subscriber Number (SN)
- Bestandsdaten über den Subscriber (Name, Adresse, Kto.-Nr. etc.)
- gebuchtes Dienstprofil (Prioritäten, Anrufweiterleitung, Dienstrestriktionen, z.B. Roaming-Einschränkungen)

Datenbanken des GSM

Home Location Register (HLR)

HLR

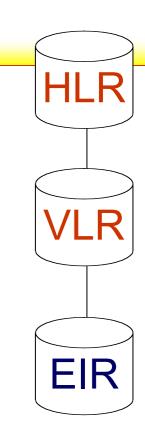
Temporäre Daten

- VLR-Adresse, MSC-Adresse
- MSRN (Mobile Subscriber Roaming Number): Aufenthaltsnummer
 - CC + NDC + VLR-Nummer
- Authentication Set, bestehend aus mehreren Authentication Triples:
 - RAND (128 Bit),
 - SRES (32 Bit),
 - Kc (64 Bit)
- Gebühren-Daten für die Weiterleitung an die Billing-Centres

26

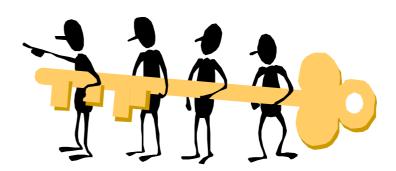
Datenbanken des GSM

• Home Location Register (HLR)



- IMSI, MSISDN
- TMSI (Temporary Mobile Subscriber Identity)
- MSRN
- LAI (Location Area Identification)
- MSC-Adresse, HLR-Adresse
- Daten zum gebuchten Dienstprofil
- Gebühren-Daten für die Weiterleitung an die Billing-Centers

Datenbanken des GSM


- Home Location Register (HLR)
- Visitor Location Register (VLR)
- Equipment Identity Register (EIR)
 - IMEI (International Mobile
 Station Equipment Identity): 15 Ziffern
 - = Seriennummer der Mobilstation
 - white-lists (zugelassene Endgeräte, nur verkürzte IMEI gespeichert)
 - **grey-lists** (fehlerhafte Endgeräte, die beobachtet werden)
 - black-lists (gesperrte)

28

Security functions of GSM

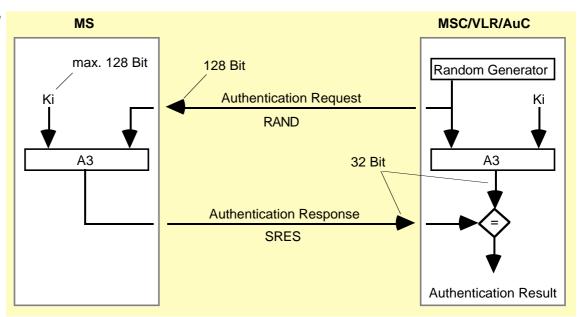
- Overview
 - Subscriber Identity Module (SIM, smart card)
 - · Admission control and crypto algorithms
 - Authentication (Mobile station → network)
 - Challenge-Response-Authentication (A3)
 - Pseudonymization of users on the air interface
 - Temporary Mobile Subscriber Identity (TMSI)
 - Link encryption on the air interface
 - · Generation of session key: A8
 - Encryption: A5

Subscriber Identity Module (SIM)

· Spezielle Chipkarte mit Rechenkapazität

Gespeicherte Daten:

- IMSI (interne Teilnehmerkennung)
- teilnehmerspezifischer symmetrischer Schlüssel Ki (Shared Secret Key)
- PIN (Personal Identification Number) für Zugangskontrolle
- -TMSI
- -LAI


Krypto-Algorithmen:

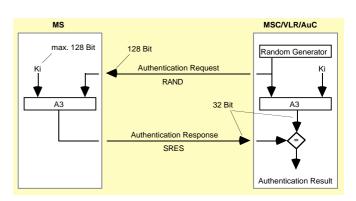
- Algorithmus A3 für Challenge-Response-Authentikationsverfahren
- Algorithmus A8 zur Generierung von Kc (Session Key)

Challenge-Response-Authentication

- When initialized by the mobile network?
 - Location Registration
 - Location Update when changing the VLR
 - Call Setup (both directions)
 - Short Message Service

Protocol

Challenge-Response-Authentication


- · Algorithm A3
 - Implemented on SIM card and in Authentication Center (AuC)
 - Cryptographic one way function A3:

SRES' = A3(Ki, RAND) (Ki: individual user key)

- Interfaces are standardized, cryptographic algorithm not standardized

• Specific algorithm can be selected by the network operator

- Authentication data (RAND, SRES) are requested from AuC by the visited MSC
- visited MSC: only compares SRES == SRES'
- visited MSC has to trust home network operator

Attacks – Telephone at the expense of others

- SIM cloning
 - Weakness of authentication algorithm
- Interception of authentication data
 - -Eavesdropping of internal communication links
- IMSI catcher
 - -Man-in-the-middle attack on the air interface

SIM cloning

Scope

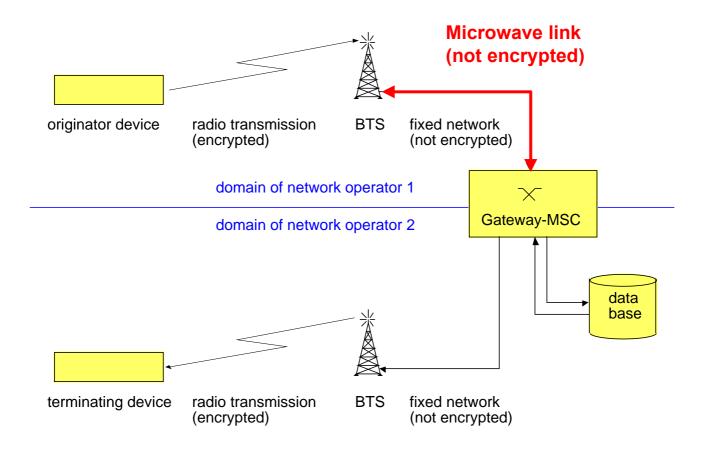
- Telephone at the expense of others
- Described by Marc Briceno (Smart Card Developers Association), Ian
 Goldberg and Dave Wagner (both University of California in Berkeley)
- http://www.isaac.cs.berkeley.edu/isaac/gsm.html
- Attack uses a weakness of algorithm COMP128, which implements A3/A8
- SIM card (incl. PIN) must be under control of the attacker for at least 8-12 hours

Effort

- Approx. 150.000 calculations to determine Ki (max. 128 bit)
- 6,25 calculations per second only, due to slow serial interface of SIM card

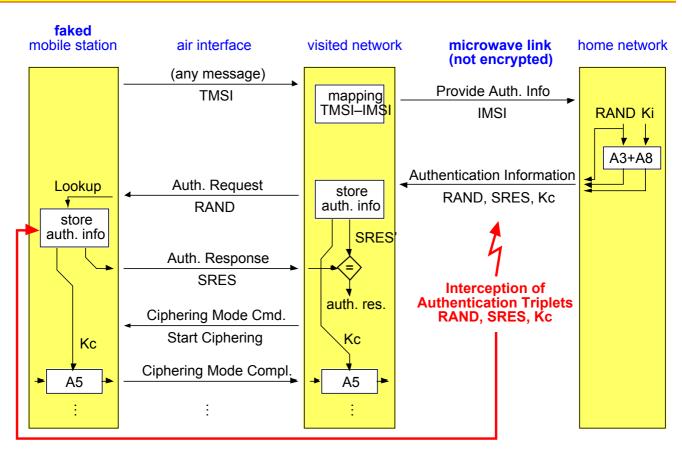
34

Interception of authentication data

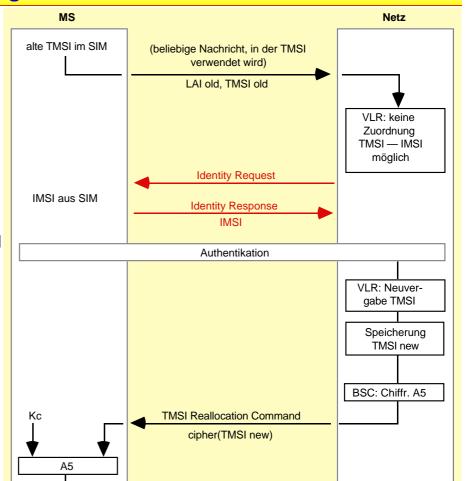

Scope

- Telephone at the expense of others
- Described by Ross Anderson (University of Cambridge)
- Eavesdropping of unencrypted internal transmission of authentication data (RAND, SRES) from AuC to visited MSC

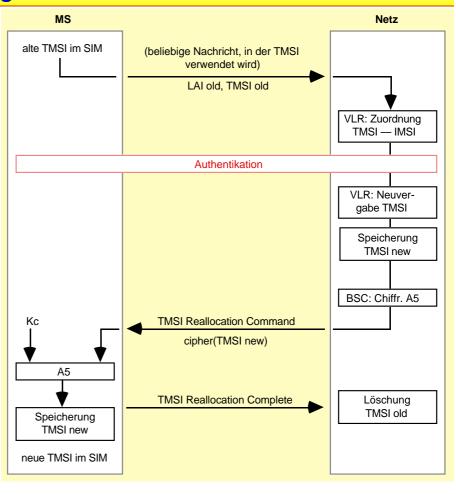
Weakness


- GSM standard only describes interfaces between network components.
- They forgot the demand for internal encryption.
- Microwave links are widely used for internal linkage of network components.

No encryption of internal links

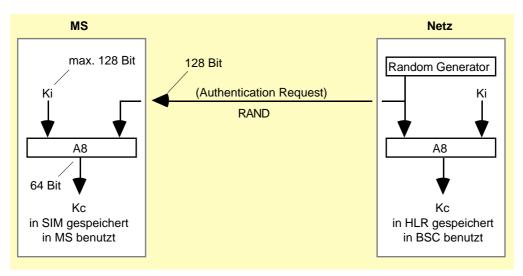

36

Interception of authentication data


Pseudonymisierung auf der Funkschnittstelle

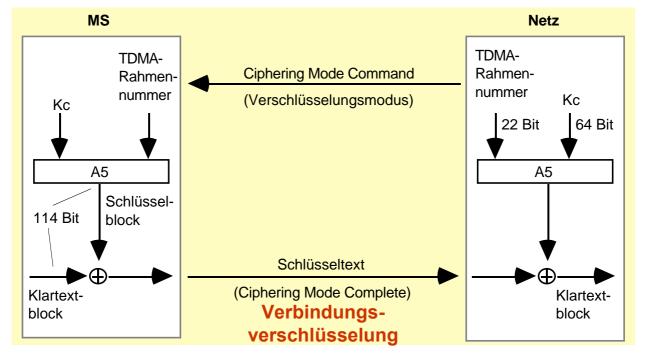
- TMSI (Temporary Mobile Subscriber Identity)
 - soll Verkettung von Teilnehmeraktionen verhindern
 - Algorithmus zur
 Generierung der TMSI
 legt Netzbetreiber fest
 - bei erster Meldung (oder nach Fehler) wird IMSI übertragen
- Neuvergabe einer TMSI bei unbekannter alter TMSI
 - Identity Request
 - ... kann jederzeit von Netz gesendet werden

Pseudonymisierung auf der Funkschnittstelle


- TMSI (Temporary Mobile Subscriber Identity)
 - soll Verkettung von Teilnehmeraktionen verhindern
 - Algorithmus zur
 Generierung der TMSI
 legt Netzbetreiber fest
 - bei erster Meldung (oder nach Fehler) wird IMSI übertragen

Verschlüsselung auf der Funkschnittstelle

Schlüsselgenerierung: Algorithmus A8


- auf SIM und im AuC untergebracht
- mit Ki parametrisierte Einwegfunktion
- nicht (europaweit, weltweit) standardisiert
- kann vom Netzbetreiber festgelegt werden
- Schnittstellen sind standardisiert
- Kombination A3/A8 bekannt als COMP128

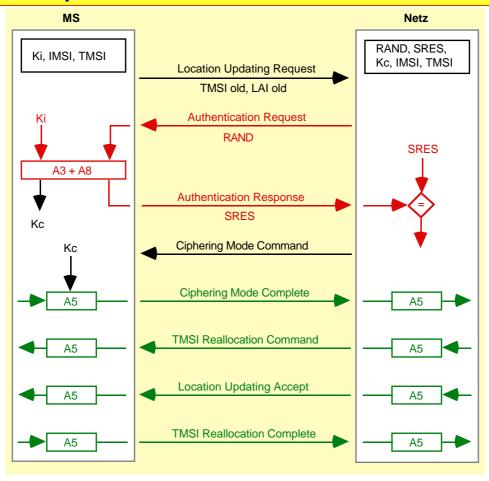
Verschlüsselung auf der Funkschnittstelle

Datenverschlüsselung: Algorithmus A5

- in der Mobilstation (nicht im SIM!) untergebracht
- europa- bzw. weltweit standardisiert
- schwächerer Algorithmus A5* oder A5/2 für bestimmte Staaten

Verschlüsselung auf der Funkschnittstelle

Ciphering Mode Command (GSM 04.08)


Informationselement	Länge in Bit
Protocol discriminator	
Transaction discriminator	16
Message type	
Ciphering mode setting	8

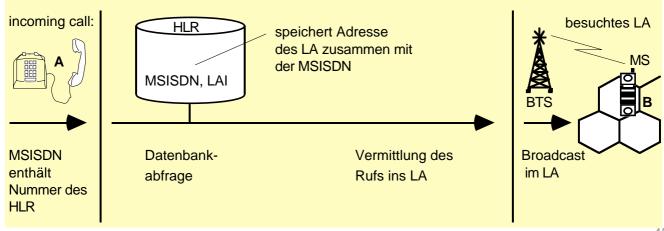
Cipher mode setting information element

8	7	6	5	4	3	2	1	
1	0	0	1	0	0	0	SC=0	No chiphering
	Ciph	mode s	et IEI	Spare	Spare	Spare	SC=1	Start ciphering

IMSI-Catcher MS **IMSI** Catcher network Note: The IMSI Scope Catcher sends its 'location area identity' - Identities of users of Location Upd. Request (TMSI) with a higher power than the genuine a certain radio cell **Identity Request** Eavesdropping of communications Identity Response (IMSI) knows identities – (Telephone at the Location Upd. Request (IMSI) expense of others) Authentication Request (RAND) Authentication Request (RAND) · Man-in-the-middle Authentication Response (SRES Authentication Response (SRES) attack (Masquerade) suppress Ciph. Mode Cmd. (Start Ciph.) Weakness ciphering No protection against Ciphering Mode Complete (Fault) malicious or faked Ciph. Mode Cmd. (No Ciphering) Ciph. Mode Cmd. (No Ciphering) network components TMSI Realloc. Cmd. (TMSI new) TMSI Realloc. Cmd. (TMSI new) Location Updating Accept Location Updating Accept TMSI Reallocation Complete TMSI Reallocation Complete

Zusammenspiel der Sicherheitsfunktionen

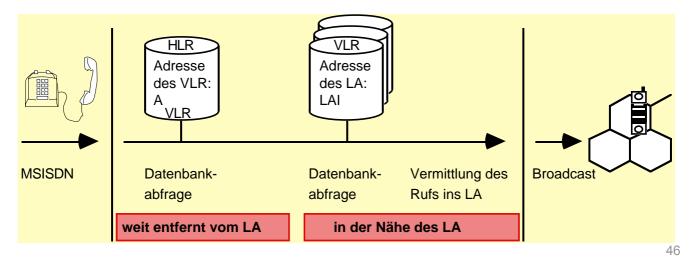
44


Location Management allgemein

Zentral

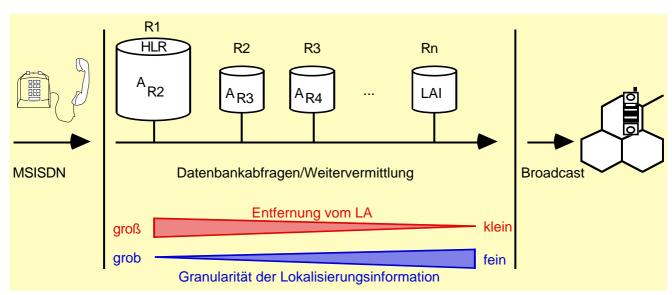
- Jede Aktualisierung, d.h. Wechsel des Location Area (LA), erfordert
 Kommunikation mit Home Location Register (HLR)
- Ineffizient bei großer Entfernung zwischen HLR und und aktuellem Aufenthaltsort bzw. hoher Location Update Rate (LUP-Rate)

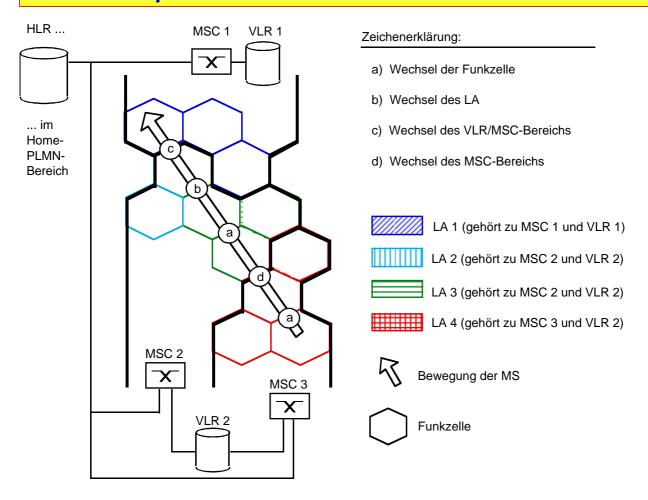
· Diese Form der Speicherung wird bei Mobile IP verwendet


- HLR entspricht dem Home Agent

Location Management allgemein

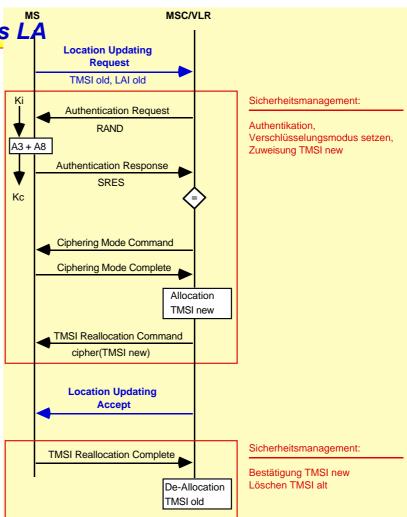
Zweistufig

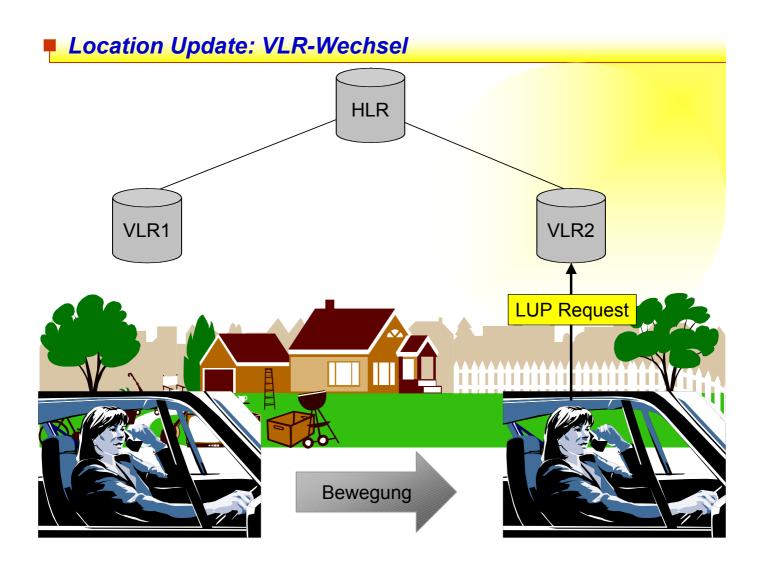

- Wechsel des LA wird dem Visitor Location Register (VLR) signalisiert
- Ein VLR bedient einen begrenzten geographischen Bereich (VLR-Area)
- Wechsel des VLR-Area wird dem HLR signalisiert
- Zweck: Reduzieren der Signalisierlast im Fernbereich
- Tradeoff: Verzögerung des Rufaufbaus (mobile terminated) durch zusätzliche Datenbankanfrage an VLR


Location Management allgemein

Mehrstufig

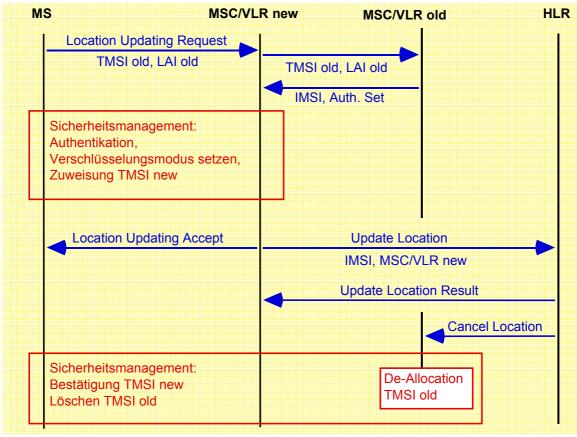
- Verallgemeinerung des mehrstufigen Falls
- Für Systeme der sogenannten 3. Generation vorgesehen (UMTS, FPLMTS, IMT-2000)
- Register sind nicht zwingend hierarchisch, z.B. bei »Forwarding«

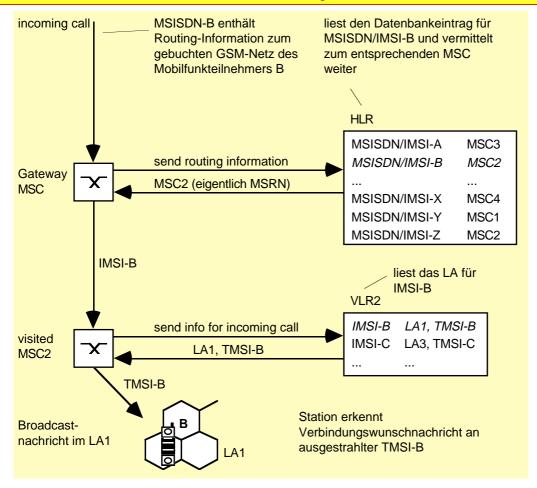

Location Update Situationen

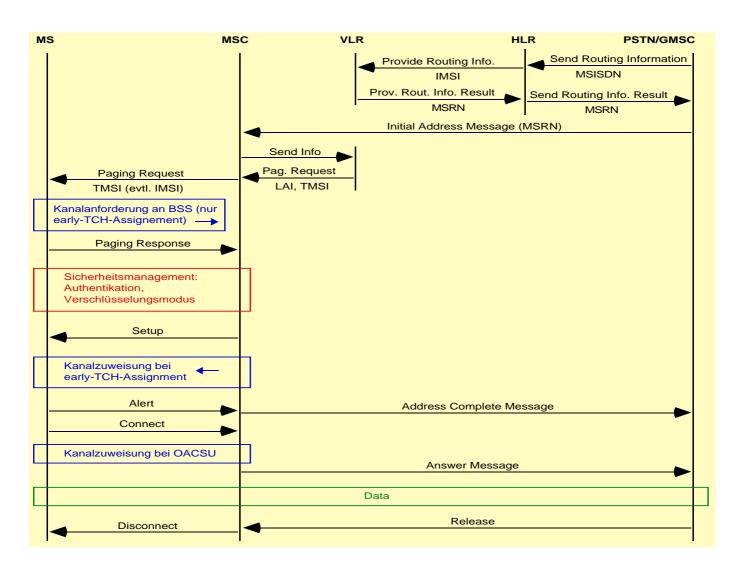


Location Update: neues LA

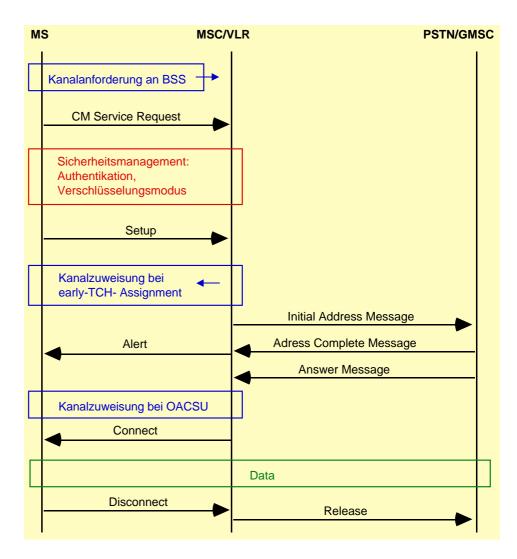
 Neues LA, aber altes VLR (TMSI bekannt)

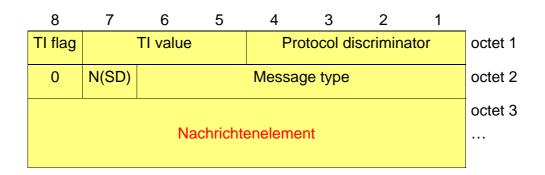

- Location UpdatingRequest (TMSI, LAI)_{old}
- SicherheitsImanagement
 - Authentication
 - · Ciphering Mode
 - TMSI Reallocation
- Location UpdatingAccept




Location Update: VLR-Wechsel

• Neues VLR (altes VLR erreichbar)


Mobile Terminated Call Setup im GSM



Mobile Originated Call Setup

Protokoll

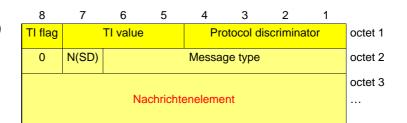
Nachrichtenaufbau GSM 04.08

Nachrichtenaufbau GSM 04.08

Protocol discriminator

<u>4 3 2 1</u>	<u>bit number</u>
0011	call control, packet-mode, connection control and call related SS msgs
0 1 0 1	mobility management messages
0 1 1 0	radio resources management messages
1001	short message service messages
1011	non call related SS messages
1111	reserved for tests procedures

All other values are reserved


• Transaction identifier (TI)

dient zur Unterscheidung paralleler Aktivitäten einer MS

- <u>8</u> <u>bit number = TI flag</u>
- 0 message sent from the originated TI side
- 1 message sent to the originated TI side

TI value

Zahl von 000...110 (bin:0...6) 111 reserviert

56

Message type

Identifiziert die Funktion der Nachricht

· 3 Klassen:

- radio ressources management
- mobility management
- call control

• N(SD)

- Sequenznummer bzw. Extension Bit

Message type (1)

Radio ressources management

```
8 7 6 5 4 3 2 1
                           bit number
0 0 1 1 1 - - - Channel establishment messages
                      ADDITIONAL ASSIGNMENT
           0 1 1
1 1 1
                           IMMEDIATE ASSIGNMENT
                         IMMEDIATE ASSIGNMENT EXTENDED IMMEDIATE ASSIGNMENT REJECT
           0 0 1
           0 1 0
0 0 1 1 0
           -- - Ciphering messages
                   CIPHERING MODE ASSIGNEMT
CIPHERING MODE COMPLETE
           0 1 0
0 0 1 0 1
           - - - Handover messages
                     ASSIGNEMT COMMAND
           1 1 0
                           ASSIGNEMT COMPLETE
                          ASSIGNMENT FAILURE
           0 1 1
                           HANDOVER COMMAND
                         HANDOVER COMPLETE
           1 0 0
                     HANDOVER FAILURE
PHYSICAL INFORMATION
           0 0 0
           1 0 1
0 0 0 0 1
           - - - Channel release messages
           101
                          CHANNEL RELEASE
           0 1 0
                           PARTIAL RELEASE
           1 1 1
                           PARTIAL RELEASE COMPLETE
0 0 1 0 0
           --- Paging messages
           0 0 1
                           PAGING REQUEST TYPE 1
           0 1 0
                          PAGING REQUEST TYPE 2
                    PAGING REQUEST TYPE 3
PAGING RESPONSE
           1 0 0
0 0 0 1 1
           -- - System information messages
                    SYSTEM INFORMATION TYPE 1
SYSTEM INFORMATION TYPE 2
SYSTEM INFORMATION TYPE 3
SYSTEM INFORMATION TYPE 4
SYSTEM INFORMATION TYPE 5
SYSTEM INFORMATION TYPE 5
           0 1 0
           1 0 0
                           SYSTEM INFORMATION TYPE 6
0 0 0 1 0
           - - - Miscellaneous messages
           0 0 0
                           CHANNEL MODE MODIFY
           0 1 0
                           RR-STATUS
                           CHANNEL MODE MODIFY ACKNOWLEDGE
           1 1 1
                       FREQUENCY REDEFINITION
           1 0 0
           1 0 1
                           MEASUREMENT REPORT
           1 1 0
                           CLASSMARK CHANGE
```

58

Message type (2)

- Mobility management
 - Bits 7 und 8 ("00") reserviert als extension bits
 - Bit 7:
 - nur mobile originated: "1", falls Sequenznummer gesendet wird

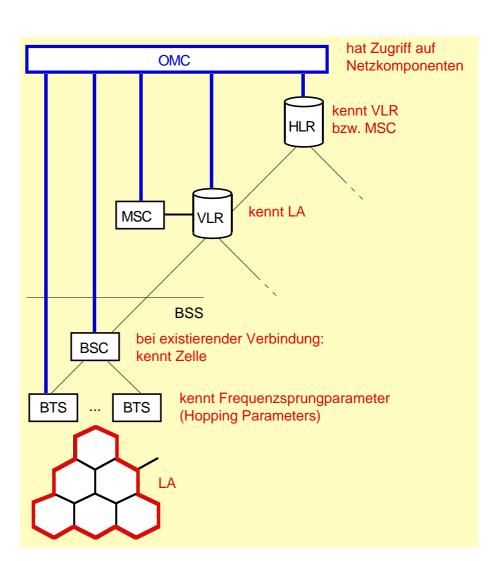
8	7	6	5	4	3	2	1	bit number
0	x	0	0	_	_	_	_	Registration messages
				0	0	0	1	IMSI DETACH INDICATION
				0	0	1	0	LOCATION UPDATING ACCEPT
				0	1	0	0	LOCATION UPDATING REJECT
				1	0	0	0	LOCATION UPDATING REQUEST
0	x	0	1	-	-	-	-	Security messages
				0	0	0	1	AUTHENTICATION REJECT
				0	0	1	0	AUTHENTICATION REQUEST
				0	1	0	0	AUTHENTICATION RESPONSE
				1	0	0	0	IDENTITY REQUEST
				1	0	0	1	IDENTITY RESPONSE
				1	0	1	0	TMSI REALLOCATION COMMAND
				1	0	1	1	TMSI REALLOCATION COMPLETE
0	x	1	0	-	-	-	-	Connection management messages
				0	0	0	1	CM SERVICE ACCEPT
				0	0	1	0	CM SERVICE REJECT
				0	1	0	0	CM SERVICE REQUEST
				1	0	0	0	CM REESTABLISHMENT REQUEST
0	x	1	1	-	-	-	-	Connection management messages
				0	0	0	1	MM STATUS

Message type (3)

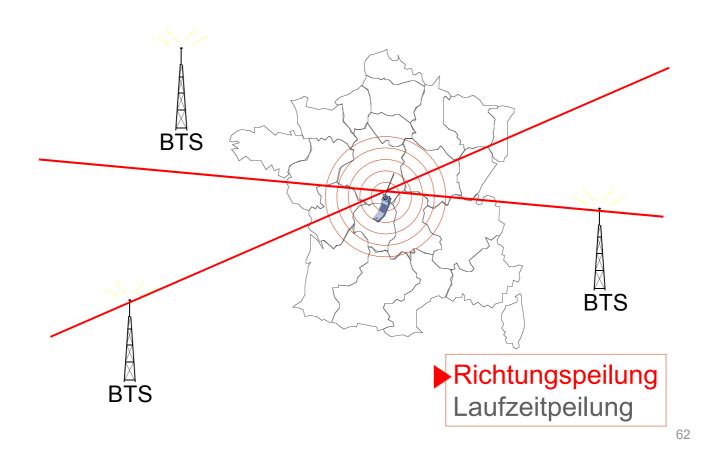
- · Call control
 - Bei nationalen Nachrichten folgt in den nächsten Oketts der eigentliche Nachrichtentyp
 - Bits 7 und 8 ("00") reserviertals extension bits
 - Bit 7:
 - nur mobile originated: "1", falls Sequenznummer gesendet wird

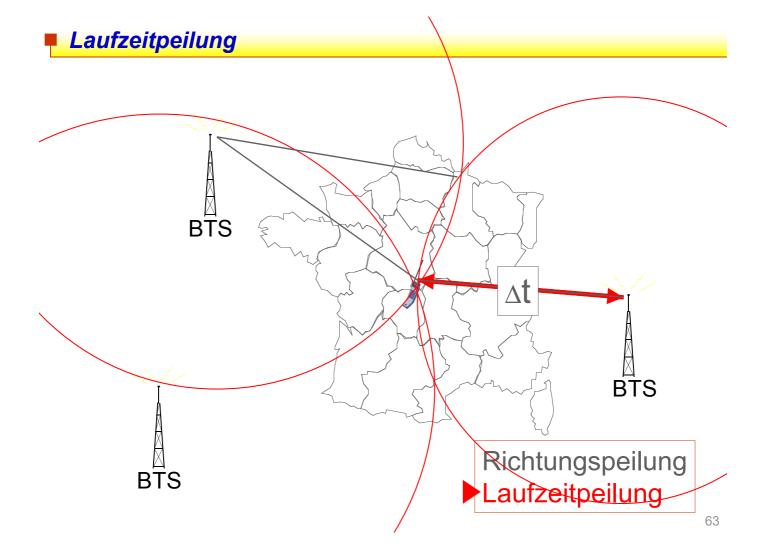
8	7	6	5	4	3	2	1	bit number
0	x	0	0	0	0	0	0	Escape to nationally
								specific message types
0	x	0	0					Call establishment messages
					0			ALERTING
				1	0	0	0	CALL CONFIRMED
					0			
				0	1	1	1	
					1			CONNECT ACKNOWLEDGE
				1	1	1	0	EMERGENCY SETUP
					0			PROGRESS
					1		-	SETUP
0	x	0	1	-	-	-	-	Call information phase
me	ess	saç	ges	3				
					1			MODIFY
					1	_		MODIFY COMPLETE
					0	_	_	MODIFY REJECTED
					0			USER INFORMATION
0	x	1	0					Call clearing messages
								DISCONNECT
					1			
				_	0	1	0	RELEASE COMPLETE
0	×	1	1			-	-	Miscellaneous messages
				_	0			CONGESTION CONTROL
					1	_	-	NOTIFY
					1			STATUS
					1			STATUS ENQUIRY
					1			START DTMF
					0			STOP DTMF
					0			STOP DTMF ACKNOWLEDGE
					1	_	-	START DTMF ACKNOWLEDGE
				0	1	1	1	START DTMF REJECT

60


Bewegungsprofile im GSM

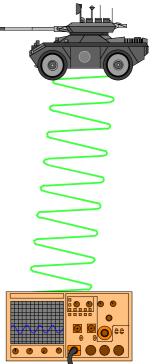
Möglich durch:


- Abfrage der gespeicherten Daten ("Fernwartung")
- 2. Peilung


Auswege:

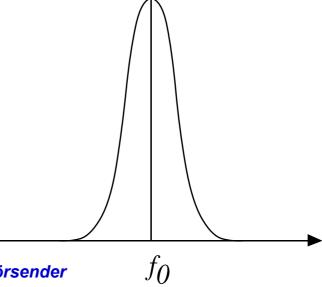
- Datenschutzfreundliches Location Management
- Direct Sequence Spread Spectrum

Richtungspeilung

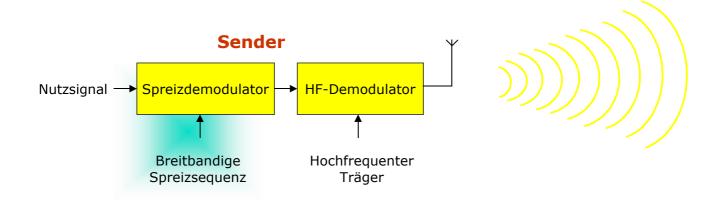


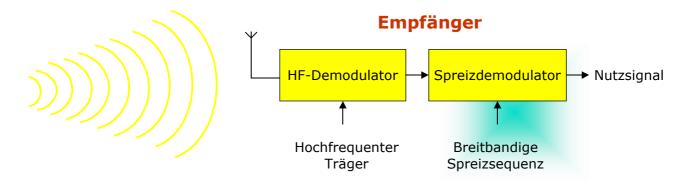
Spread Spectrum Systems

- Exkurs:
 - Funktechnik
 - insbesondere militärischer Bereich
- Funkkontakt zwischen verschiedenen militärischen Einheiten
 - Sendung auf einer bestimmten Frequenz f_0 mit einer bestimmten Bandbreite B

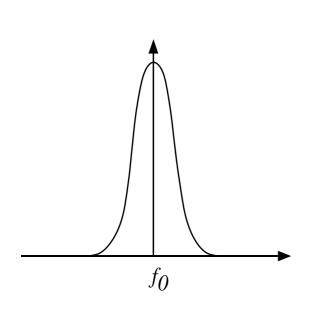

– deutliche Energiezunahme im Spektrum um f_{θ} herum

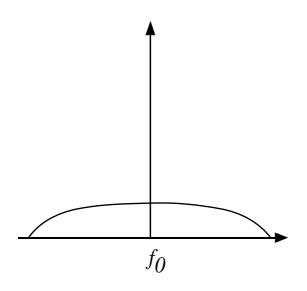
64


Schmalbandiges Senden


- Folgen:
- · Beobachtbarkeit des Sendens
 - Spektrumanalysator registriert Energiezunahme
- · Peilbarkeit des Senders
 - da die elektromagnetischen
 Wellen Richtungsinformation
 in sich tragen

 Gegner kann Kommunikation mit Störsender verhindern

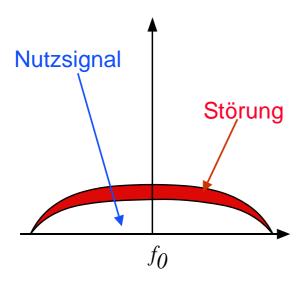

Übertragungsmodell beim Bandspreizverfahren


66

Spreizung

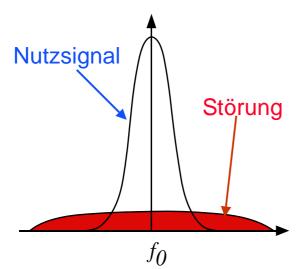
- Schmalbandiges Nutzsignal vor der Spreizung
- Modulation mit breitbandiger
 Spreizsequenz:
 - spezielle Funktionen (z.B. Walsh-Funktionen)
 - Pseudo-Noise-Sequence (PN-Code)

Spreizung



- Schmalbandiges Nutzsignal vor der Spreizung
- Modulation mit breitbandiger
 Spreizsequenz:
 - spezielle Funktionen (z.B. Walsh-Funktionen)
 - Pseudo-Noise-Sequence (PN-Code)
- Spektrale Spreizung
- Verteilung der Energie auf ein großes Frequenzspektrum

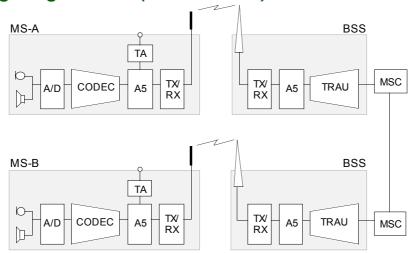
68


Despreizung

• gespreiztes Nutzsignal mit überlagerter Störung

Despreizung

 gespreiztes Nutzsignal mit überlagerter Störung

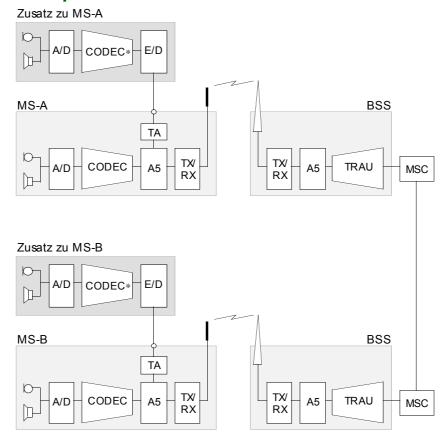


- · Spektrale Spreizung der Störung
- despreiztes Nutzsignal

70

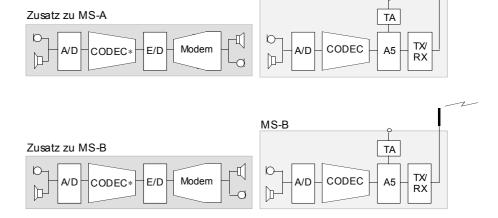
Fehlende Ende-zu-Ende-Dienste

- In GSM existieren keine bittransparenten Sprachkanäle
 - Sprache wird vor Verschlüsselung verlustbehaftet komprimiert
 - Keine Ende-zu-Ende-Verschlüsselung realisierbar
- Übertragungsweg im GSM (schematisch)

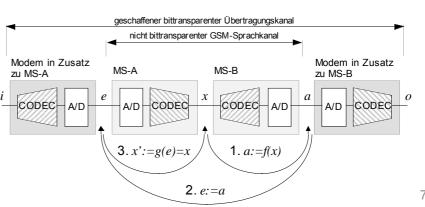


MS BSS A/D CODEC TA Mobile Station
Base Station Subsystem
Analog-Digital-Umsetzer
Sprachcodierbaustein
Terminal Adaption

A5 TX/RX TRAU MSC Verbindungsverschlüsselung Transmitter/Receiver Transcoder/Rate Adaption Unit Mobile Switching Centre

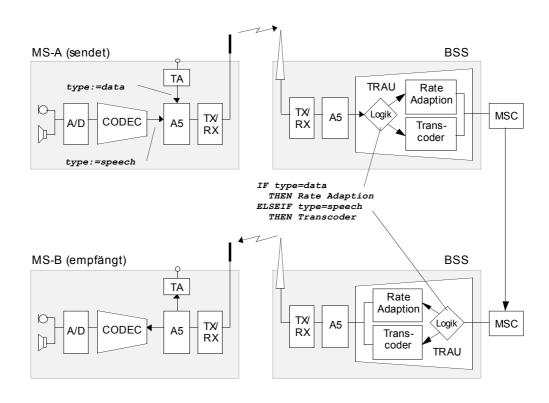

Optionen f.d. nachträgliche Realisierung von EzE-Diensten

· Nutzung des bittransparenten Datenkanals


Optionen f.d. nachträgliche Realisierung von EzE-Diensten

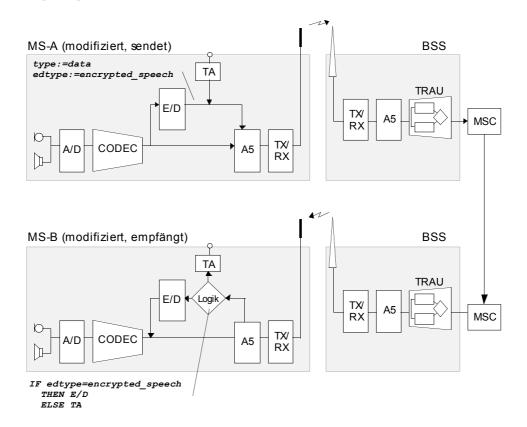
 Ergänzung des Signallaufs durch Modems

MS-A


 Kanalanpassung der Modems

72

Optionen f.d. nachträgliche Realisierung von EzE-Diensten


• Signalisierung des Datentyps (Sprache, Daten) im GSM (schematisch)

74

Optionen f.d. nachträgliche Realisierung von EzE-Diensten

· Sprachübertragung mit modifizierten Mobilstationen

Zusammenfassung der Sicherheitsprobleme

· Krtitk an GSM (I)

- Vertraulichkeit des Ortes nur gegen Outsider und dort noch sehr schwach
- Peilbarkeit von mobilen Stationen möglich
- keine bittransparenten Sprachkanäle vorhanden, deshalb keine Ende-zu-Ende-Verschlüsselung möglich.
- keine Ende-zu-Ende-Authentikation vorgesehen
- keine gegenseitige Authentikation vorgesehen
- Kryptoalgorithmen sind teilweise geheim gehalten
- Kryptoalgorithmen sind ausschließlich symmetrisch
- Schlüsselerzeugung und -verwaltung nicht unter Kontrolle der Teilnehmer

76

Zusammenfassung der Sicherheitsprobleme

- Krtitk an GSM (II)
 - keine anonyme Netzbenutzung möglich
 - Vertrauen in korrekte Abrechnung ist nötig
 - keine Erreichbarkeitsmanagementfunktionen vorhanden

Auswege

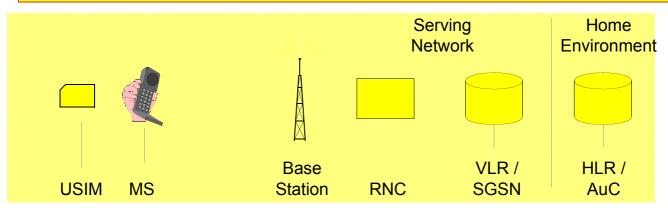
- Modifikation des Location Managements
- Verhinderung von Peilung und Ortung durch funktechnische, informationstechnische und kryptographische Maßnahmen
- Definition von Ende-zu-Ende-Diensten
- Unterstützung asymmetrischer Kryptographie

Universal mobile telecommunication system (UMTS)

· Security functions of UMTS ...

... have been »inspired« by GSM security functions

From GSM


- Subscriber identity confidentiality (TMSI)
- Subscriber authentication
- Radio interface encryption
- SIM card (now called USIM)
- Authentication of subscriber towards SIM by means of a PIN
- Delegation of authentication to visited network
- No need to adopt standardized authentication algorithms

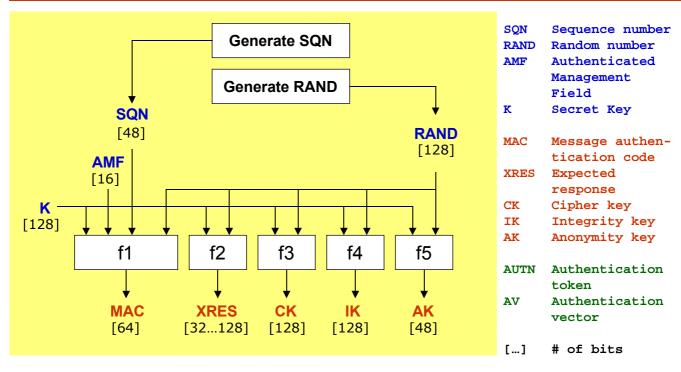
· Additional UMTS security features

- Enhanced UMTS authentication and key agreement mechanism
- Integrity protection of signaling information (prevents false-base-station attacks)
- New ciphering / key agreement / integrity protection algorithms
- ... and a few minor features

78

UMTS Security Architecture

USIM MS RNC VLR

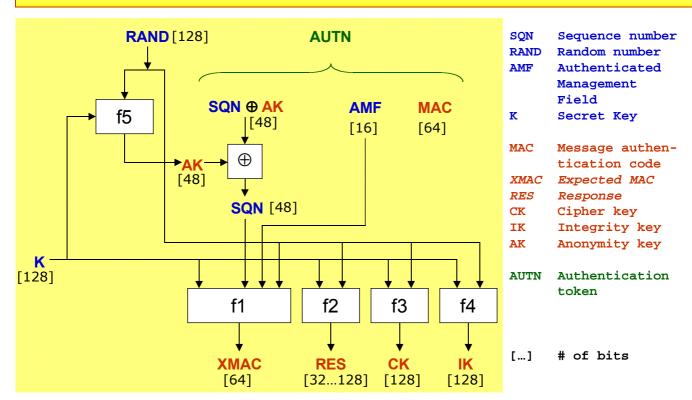

SGSN

HLR

AuC

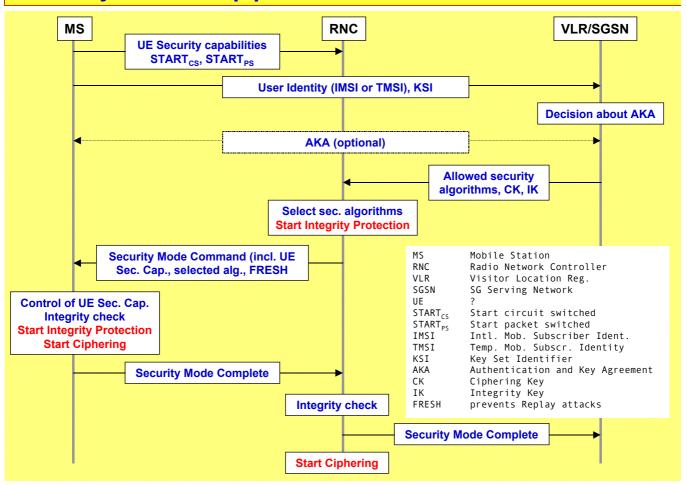
UMTS Subscriber Identity Module Mobile Station Radio Network Controller Visitor Location Reg. SG Serving Network Home Location Register Authentication Centre authentication key K, authentication function f1, f2 key generation function f3, f4, f5 sequence number management SQN

Generation of authentication vectors

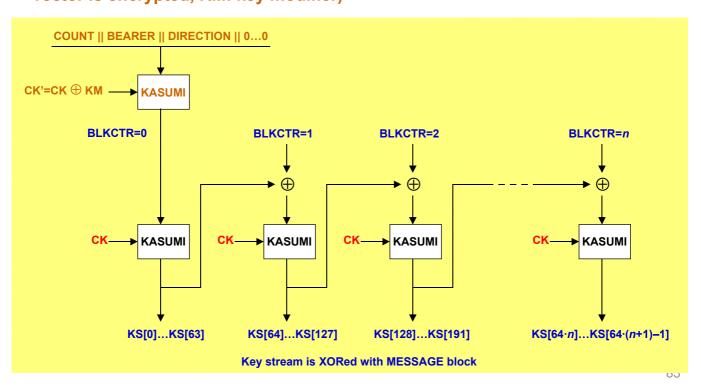


AUTN := SQN ⊕ AK || AMF || MAC

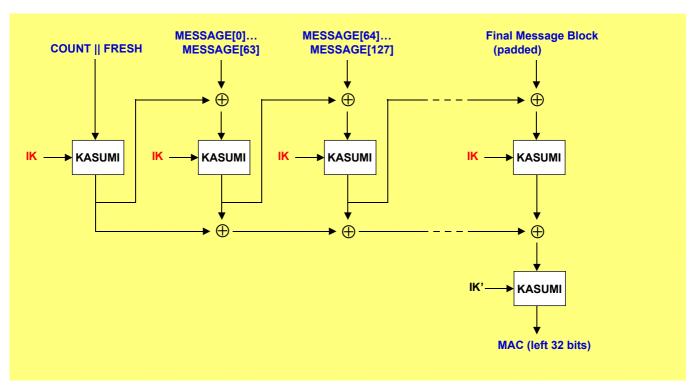
AV := RAND || XRES || CK || IK || AUTN


80

Authentication function in the USIM

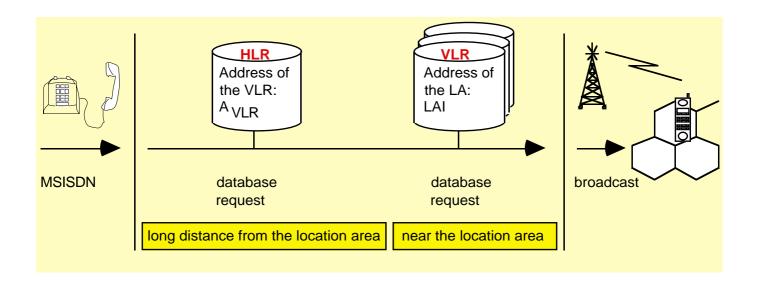

Verify MAC == XMAC

Security mode setup procedure

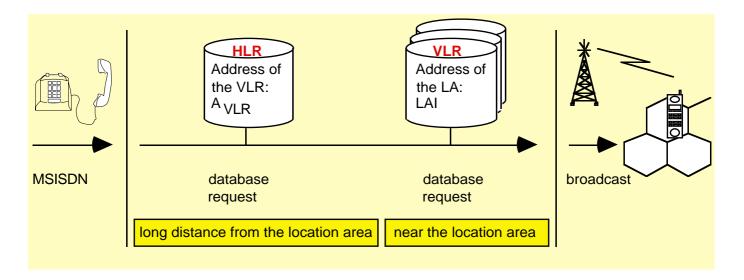

Cipher algorithm f8

- · Combination of Output Feedback mode (OFB) and counter mode
- First encryption under CK' prevents chosen plaintext attacks (initialization vector is encrypted, KM: key modifier)

Integrity algorithm f9


• ISO/IEC 9797-1 (MAC algorithm 2)

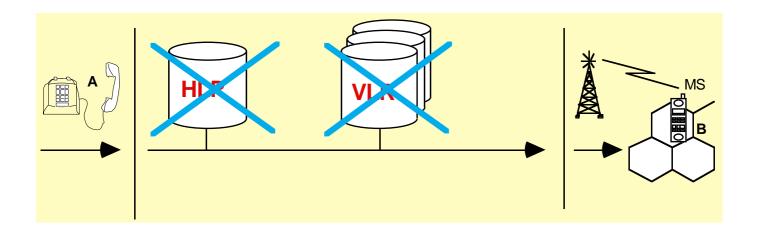
84


Protection of locations

- · Mobile user
 - whishes to be reachable at his current location.
 - He won't be localizable by outsiders and the network operator unless the explicitly gives his permission
- There is no mobile network that fulfills this demand.

Protection of locations

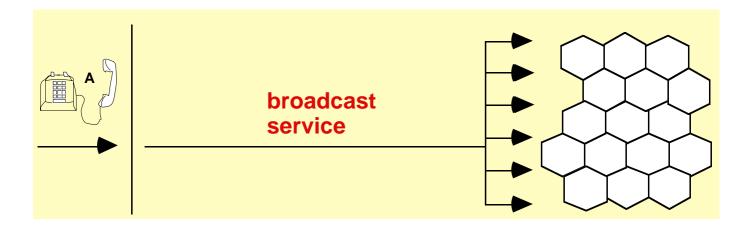
- GSM (Global System for Mobile Communication)
 - Distributed storage at location registers
 - Home Location Register (HLR)
 - Visitor Location Register (VLR)
 - Network operator has global view on location information
- · Tracking of mobile users is possible

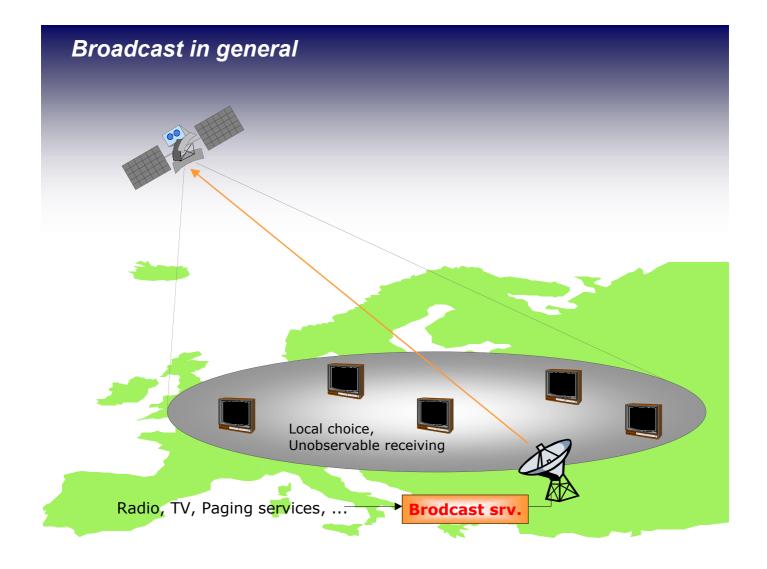


Systematic: Protection of locations

- A. Trust into the mobile station only
 - A.1 Broadcast method
 - A.2 Group pseudonyms
- B. Additional trust into a private fixed station
 - B.1 Trusted address translation and broadcast
 - B.2 Reduction of broadcast areas
 - B.3 Explicit trustworthy storage of locations
 - B.4 Temporary pseudonyms (TP method)
- C. Additional trust into a trusted third party
 - C.1 Trust Center
 - C.2 Co-operating chips
 - C.3 Mobile Communication-MIXing

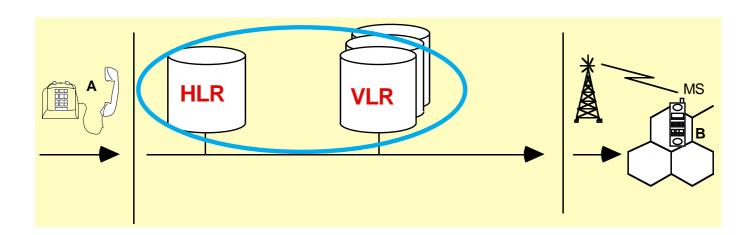
Overview: Broadcast


• No storage of locations and global paging of mobile users

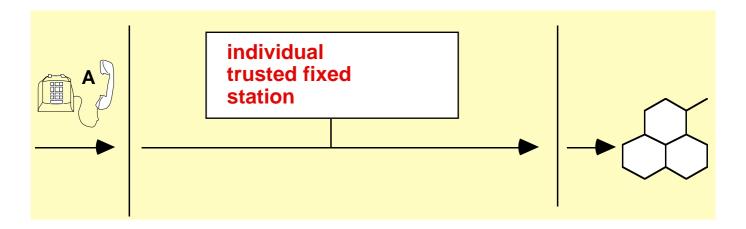

88

Overview: Broadcast

• No storage of locations and global paging of mobile users



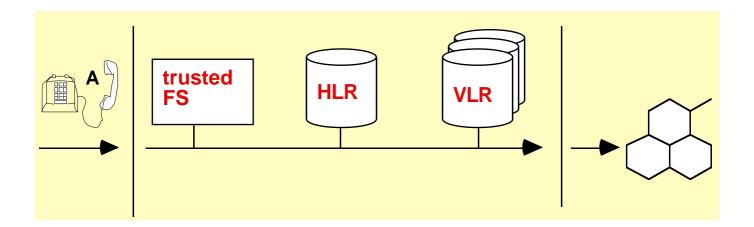
• Immense costs for bandwith ...


Overview : Trustworthy storage

• Replace databases by trusted devices in the fixed network

Overview : Trustworthy storage

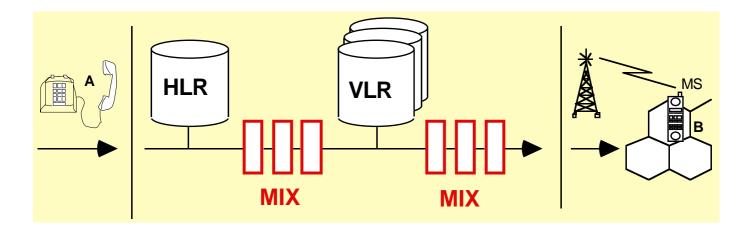
· Replace databases by trusted devices in the fixed network



- Every location updating needs communication with trusted station.
- Question: How can we reduce cost of location updating?

92

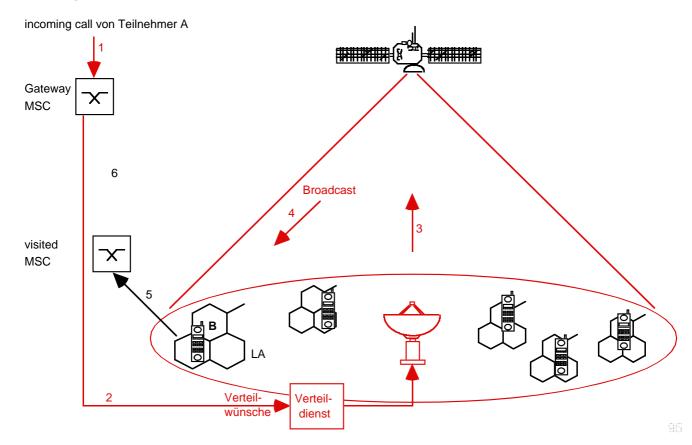
Overview : Trustworthy storage


• Tempory Pseudonyms (TP method)

Can we do this without a trusted fixed station?

Overview : Mobile Communication-MIXing

• Covered storage of location information



- · A MIX hides the communication relation between
 - HLR and VLR
 - VLR and location area

94

Broadcast-Ansatz

Beispiel

Schutz des Empfängers: Verteilung (Broadcast)

· Adressierung

- explizite Adressen: Routing

- implizite Adressen: Merkmal für Station des Adressaten

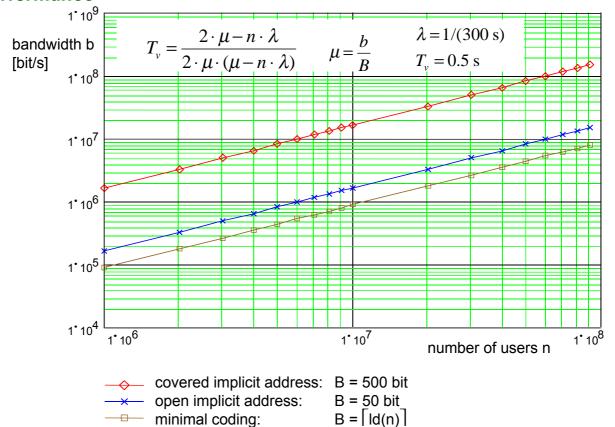
verdeckt: asymm. Konzelationssystem

• offen: Bsp. Zufallszahlengenerator

Beispiel

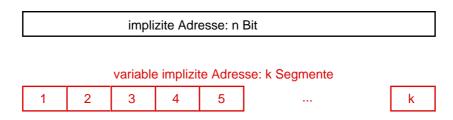
- Paging von Verbindungswünschen zu mobilen Teilnehmern
- Verzicht auf Speicherung von Aufenthaltsdaten

		Adreßverwaltung				
		öffentliche Adresse private Adresse				
implizite	verdeckt	sehr aufwendig, für	aufwendig			
Adres-		Kontaktaufnahme nötig				
sierung	offen	abzuraten	nach Kontaktaufnahme			
			ständig wechseln			


96

Implicit Addresses

- · First contact: covered implicit address CIA
 - Recipient publishes public encryption key ${\bf c}$
 - Sender creates CIA := c(R,S,M)
 - Redundancy R
 - Seed S of a pseudo-random generator PRG
 - Message M (optional)
 - Recipient decrypts all received messages with private key d
 - Finds correct **R** for own messages only
- · Following addressing: open implicit address OIA
 - $-OlA_{i+1} := PRG(i, seed)$ (i = 0,1,2,...)
 - Sender:
 - calculates next OIA
 - encrypts message (optional) M
 - Sends OIA, M
 - Receiver: Associative memory of all valid OIAs to recognize own messages


Broadcast method

Performance

Variable implizite Adressierung

- Ziel
 - Bandbreiteaufwand gegenüber reinem Broadcast reduzieren

- Vorgehen
 - Implizite Adresse P wird nicht mehr als Ganzes gesendet
 - vorher: length(P) = n
 - Zerlegen von P in k Segmente
 - jetzt: length(P_i) = I_i mit (i=1..k) und sum(I_i , i=1, k)=n
 - Broadcast der Segmente Schritt für Schritt:

99

98

Variable implizite Adressierung

• Broadcast der Segmente Schritt für Schritt:

10 LET C = alle Funkzellen des Versorgungsgebietes

20 LET k = Anzahl der Adreßsegmente

30 FOR i = 1 TO k DO

Broadcaste P_i in alle Funkzellen in C

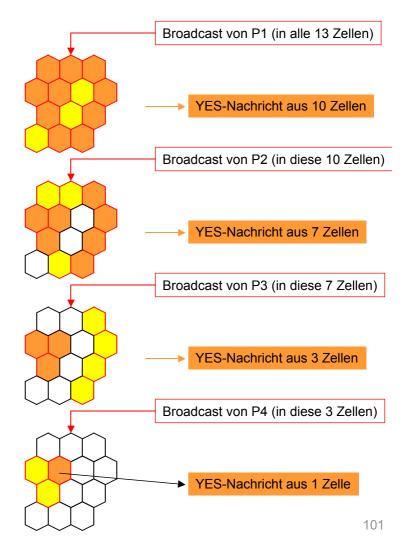
IF (Mobilstation besitzt ausgestrahltes P_i AND Mobilstation hat in allen vorangegangenen Schritten geantwortet)

THEN sende "YES"

ELSE sende nichts

LET C = alle Funkzellen mit mindestens einer "YES"-Antwort

IF number_of_elements(C) = 1 THEN GOTO 50


40 END FOR

// Zellseparation beendet

100

Variable implizite Adressierung

Beispiel

Variable implizite Adressierung

· Zellseparation mit Verkleinerung der Segmente

- Reduzieren der Broadcastschritte auf log2(n)

implizite Adresse: n Bit

variable implizite Adresse:Halbierung der Segmentgröße von Schritt zu Schritt

Segment 1 Segment 2 Seg 3 4 5 6

Anzahl antwortender Stationen halbert sich im Mittel von Schritt zu Schritt

Banbreitenersparnis von 25% pro Funkzelle (bei geograph. Gleichverteilung der MS)

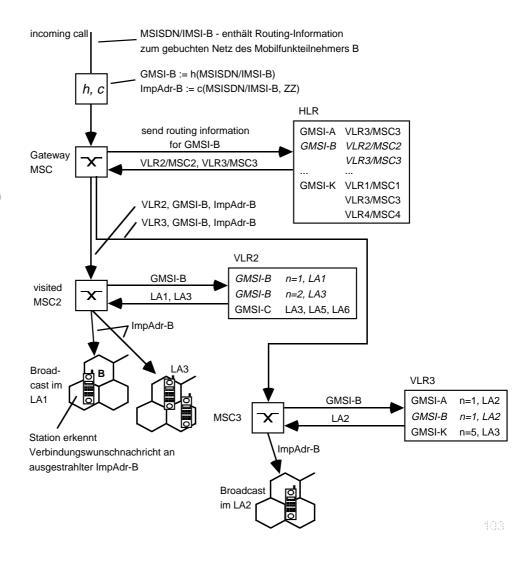
Algorithmus

- 10 LET C = alle Funkzellen des Versorgungsgebietes
- 20 LET r = n
- 30 WHILE (r>1 AND number_of_elements(C)>1) DO

Broadcaste die nächsten ceil(r/2) Bits von P in alle Funkzellen in C

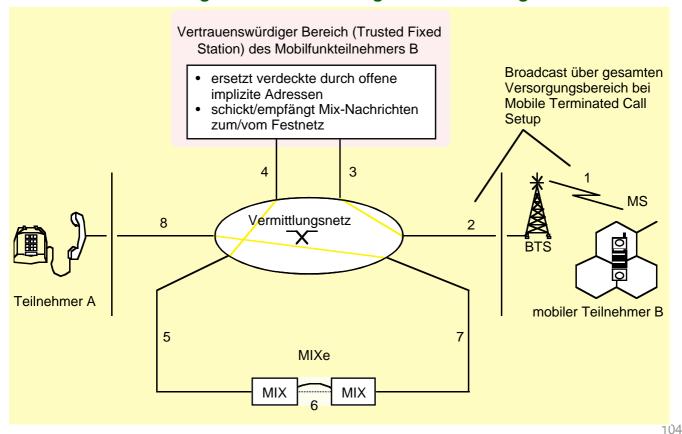
IF (Mobilstation besitzt ausgestrahlte Bits AND Mobilstation hat in allen vorangegangenen Schritten geantwortet) THEN sende "YES"

LET C = alle Funkzellen mit mindestens einer "YES"-Antwort

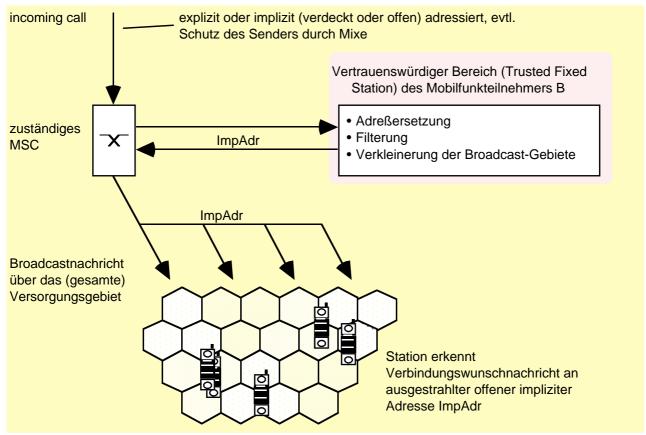

r := r - ceil(r/2)

- 40 END WHILE
- 50 Broadcaste die letzten r Bits von P
- 60 // Zellseparation beendet

102


Methode der Gruppenpseudonyme

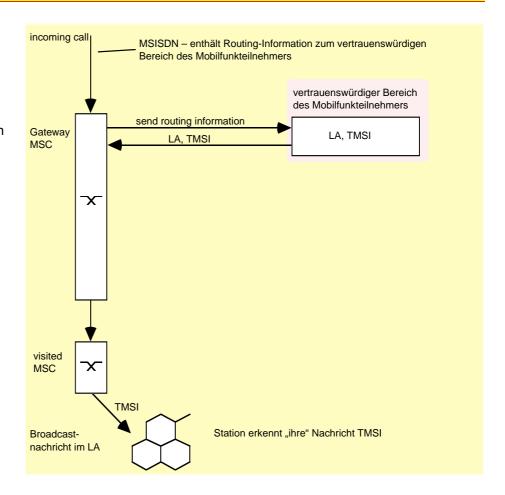
- Unschärfe
 ("Überdeckung")
 schafft Privacy
- starrer
 Zusammengang
 zwischen
 Gruppen pseudonym und
 Identität


Verwendung eines vertrauenswürdigen Bereichs

· ... Adreßumsetzung und Verkleinerung der Broadcastgebiete

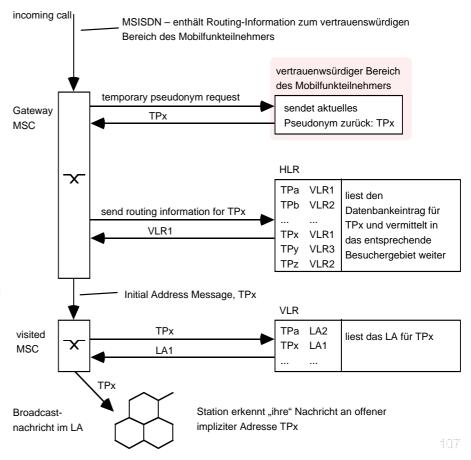
Verwendung eines vertrauenswürdigen Bereichs

• ... Adreßumsetzung und Verkleinerung der Broadcastgebiete (Forts.)



105

Verwendung eines vertrauenswürdigen Bereichs


... zum Speichern der Lokalisierungsinformation

- Jede Aktualisierung erfordert Kommunikation mit dem vertrauenswürdigen Bereich
- Vertrauenswürdiger
 Bereich übernimmt
 gesamtes netzseitiges
 Location Management

Verwendung eines vertrauenswürdigen Bereichs

- ... zur Adreßumsetzung (Temporäre Pseudonyme)
 - Location Management bleibt im Netz
 - Regelmäßiger Wechsel des Pseudonyms ist erforderlich
 - synchronisierte Uhren in MS und trusted FS
 - DB-Einträge verfallen nach bestimmter Zeit

Sicherheitsbetrachtungen ...

· Unberechtigte Abfrage der vertrauenswürdigen Umgebung

- führt zu Lokalisierung
- Erstellung von Bewegungsprofilen mit Granularität der Anrufhäufigkeit
- Ausweg: Logging der Zugriffe auf vertrauenswürdigen Bereich und Vergleich mit zugestellten Verbindungswünschen.

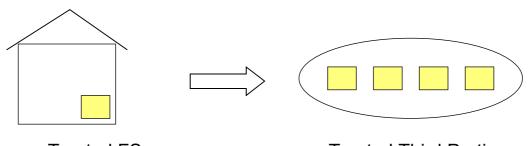
· Verwendung von Pseudonymen

- Funkschnittstelle: Implizite Adresse anstelle der TMSI
- Datenbankeinträge: Unverkettbarkeit mit Identität

Beobachtbarkeit der Kommunikationsbeziehungen

- Location Update explizite Speicherung: Kommunikationsbeziehung zwischen vertrauenswürdigem Bereich und MS führt zum Aufdecken des Orts
- aber: Location Update TP-Methode: keine Kommunikation zwischen vertrauenswürdigem Bereich und MS notwendig

108

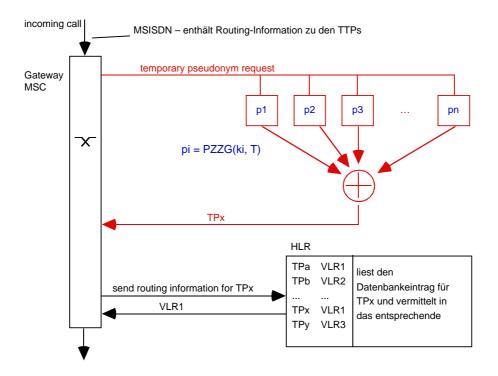

Vertrauen in einen fremden ortsfesten Bereich

Vertrauen in eine Trusted Third Party

 Abwandlung der Methoden die einen eigenen vertrauenswürdigen Bereich voraussetzen

Ersetze trusted FS durch TTPs

- unabhängige, frei wählbare vertrauenswürdige dritte Instanzen übernehmen Funktion
- Dezentralisierung möglich (z.B. Distributed Temporary Pseudonyms).

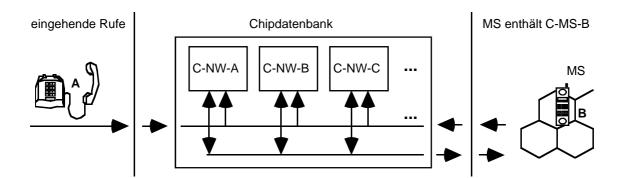

Trusted FS

Trusted Third Parties

■ Vertrauen in einen fremden ortsfesten Bereich

Distributed Temporary Pseudonyms

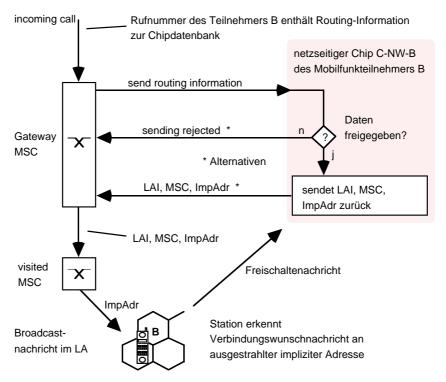
- Teilnehmer tauscht mit n TTPs symmetrische Schlüssel aus



110

Methode der kooperierenden Chips

· Architektur


- Vertrauen in physische Sicherheit der Chips
- Anonymität durch Broadcast auf der Chipdatenbank

Methode der kooperierenden Chips

· Call setup

– «Sperrmechanismus» — ein notwendiges Detail aller Verfahren mit vertrauenswürdiger Umgebung?

440

Aufwands- und Leistungsbetrachtungen

· Typische Leistungsparameter

- Bandbreite
- Verzögerungszeit
- Durchsatz
- Nachrichtenlängen
- versorgbare Teilnehmerzahl
- Kosten (LUP, Paging, ...)

Was wird benötigt?

- Zahlen zum Verkehrsverhalten
- Netzauslastung
- Leistungsparameter der Netzkomponenten
- Mobilitätsmodell

- Verkehrskapazität MSC (typ.): Biala 94
 - 300.000...600.000 Teilnehmer
 - 100.000 Busy Hour Call Attempts =28 Vermittlungsversuche pro sek

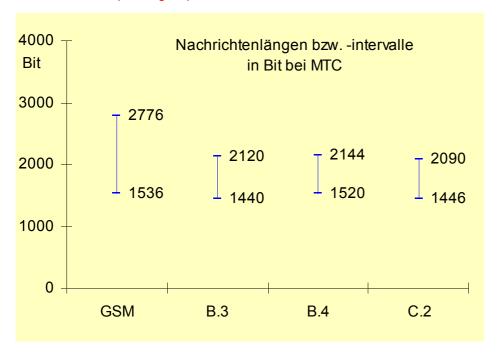
Ankunftsraten: Fuhrmann, Brass 94

- -MTC = 0.4 1/h (alle 2.5 h ein Anruf)
- LUP = 1...5 1/h (LUP=3 1/h bei 3Zellen pro LA, r=1 km, v=15 km/h)

· Verzögerungszeiten:

- Call Setup ISDN: <= 0,5 s</p>
- Call Setup GSM: <= 40,0 s (Off Air Call Setup), typ. <2,5 s
- LUP: <= 5 s (r = 1 km, 15 % Zellüberlappung (150 m), v <= 108 km/h)</p>

Performance: Message lengths on the air interface


Mobile Terminated Calls

GSM reference

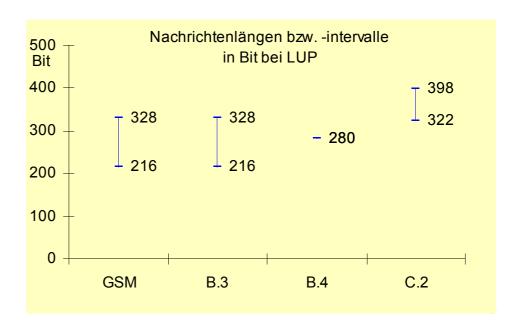
B.3 explicit trustworthy storage

B.4 TP method

C.2 cooperating chips

114

Performance: Message lengths on the air interface


Location Update

GSM reference

B.3 explicit trustworthy storage

B.4 TP method

C.2 cooperating chips

Mobilkommunikationsmixe

· Verfahren leistet

- Schutz des Aufenthaltsortes
- Unbeobachtbarkeit der Kommunikationsbeziehungen

Angreifermodell

- Angreifer ist in der Lage, gesamte Kommunikation im Netz abzuhören
 - auf allen Leitungen und Funkstrecken
 - darf alle Datenbankeinträge kennen

Idee

- Verzicht auf explizite Speicherung des Ortes in individuellem Vertrauensbereich
- «verdeckte» Speicherung in Datenbanken
- Verbergen der Kommunikationsbeziehung (Signalisierung) zwischen
 Datenbanken und Zielort durch Senden über Mixe

116

Mixe allgemein (Chaum 1981)

- Ziel
 - Verkettbarkeit ein- und ausgehender Nachrichten verhindern

· Verkettungsmerkmale

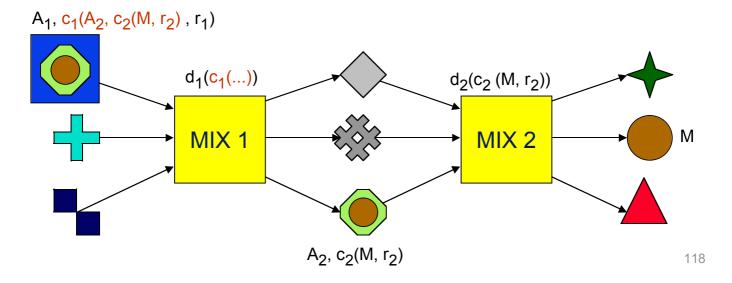
- Zeitliche Relation zwischen Ein- und Ausgabe einer Nachricht
- Kodierung der Nachrichten

Aufbau eines Mix

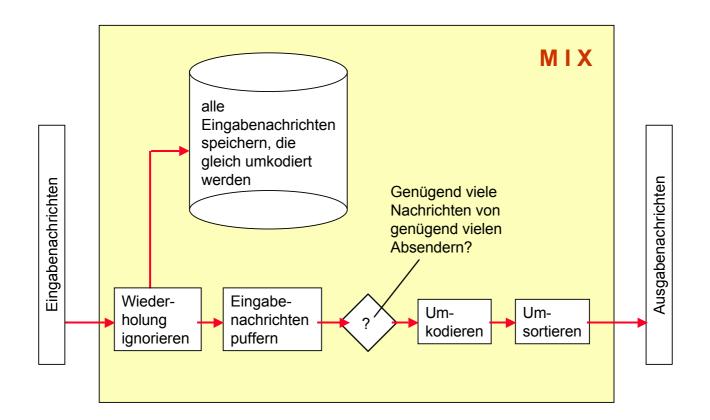
- Umkodierung basiert auf asymmetrischer Kryptographie:

 M_i Mix i einer Kaskade

ci öffentlicher Verschlüsselungsschlüssel


 d_i privater Entschlüsselungsschlüssel (kennt nur M_i)

MIX (Chaum 1981)

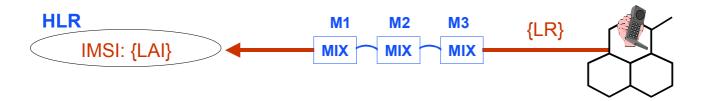

• Functions of a MIX:

- sample messages (process more than one msg to provide unlinkability)
- ignore duplicate messages (prevent uncovering of replayed messages)
- change coding (basically remove a layer of encryption)
- change order (out them out in a different order)

· A MIX hides the relation between incoming and outgoing message

Mixe allgemein (Chaum 1981)

Mobilkommunikationsmixe zentralisiert


- · Aufenthaltsortsregistrierung
 - 1. MS bildet «verdeckten» Aufenthaltsort

$$\{LAI\} := c_1(k_1, c_2(k_2, c_3(k_3, ImpAdr)))$$

2. MS sendet Aufenthaltsortsregistrierung (MS → Mixe → HLR)

$$\{LR\} := c_3(c_2(c_1(IMSI, \{LAI\})))$$

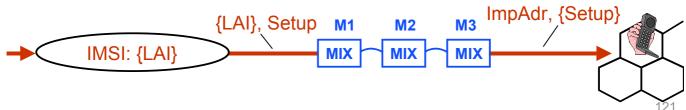
- M_i Mix i einer Kaskade
- ci öffentlicher Verschlüsselungsschlüssel
- d_i privater Entschlüsselungsschlüssel (kennt nur M_i)

120

Mobilkommunikationsmixe zentralisiert

- · Rufaufbau zum mobilen Teilnehmer
 - 1. Lesen des HLR-Datenbankeintrages

IMSI:
$$\{LAI\} = c_1(k_1, c_2(k_2, c_3(k_3, ImpAdr)))$$

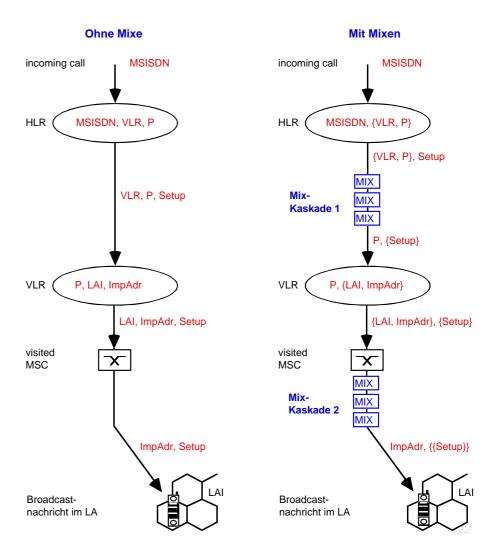

2. Absetzen der Verbindungswunschnachricht

3. In den Mixen wird {LAI} ent- und Setup verschlüsselt

$$\{\text{Setup}\} := k_3 (k_2 (k_1 (\text{Setup})))$$

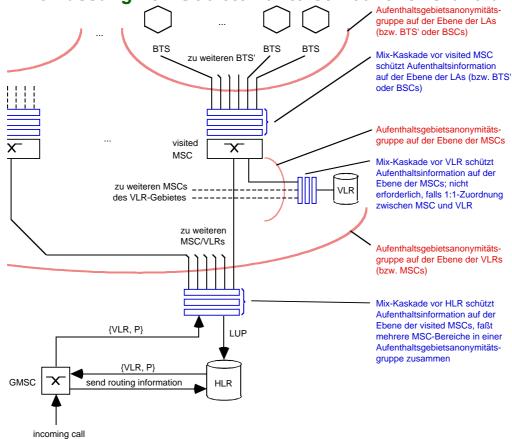
4. Im Aufenthaltsgebiet wird ausgestrahlt

ImpAdr, {Setup}

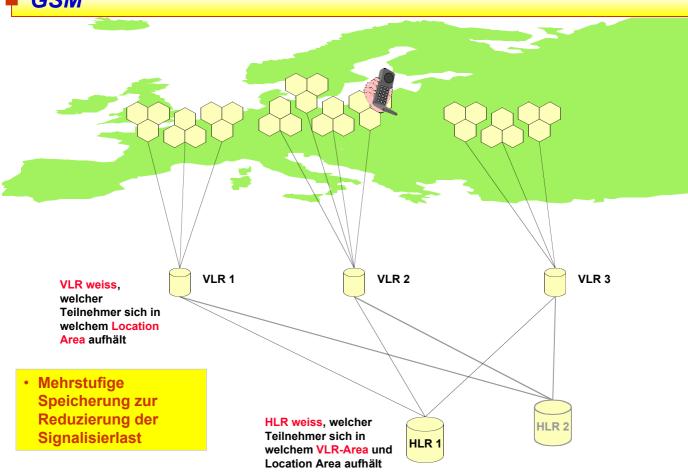


Mobilkommuni kationsmixe dezentralisiert

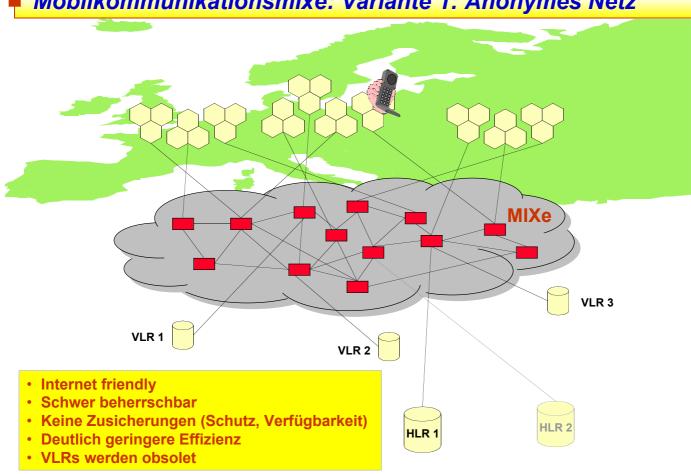
- Grundidee
 pseudonymes Location
 Management
 - Register:pseudonymeSpeicherung
 - Mix-Netz:


 Unverkettbarkeit der pseudonym
 gespeicherten

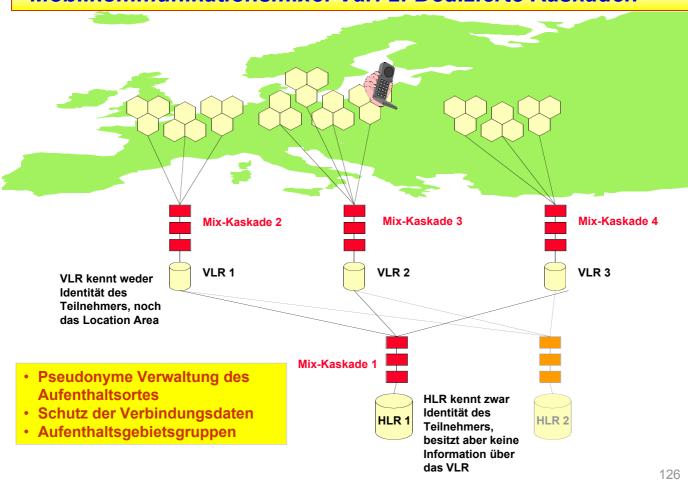
 Information
 - Aufenthaltsgebietsgr uppen:
 Zusammenfassung von Gebieten



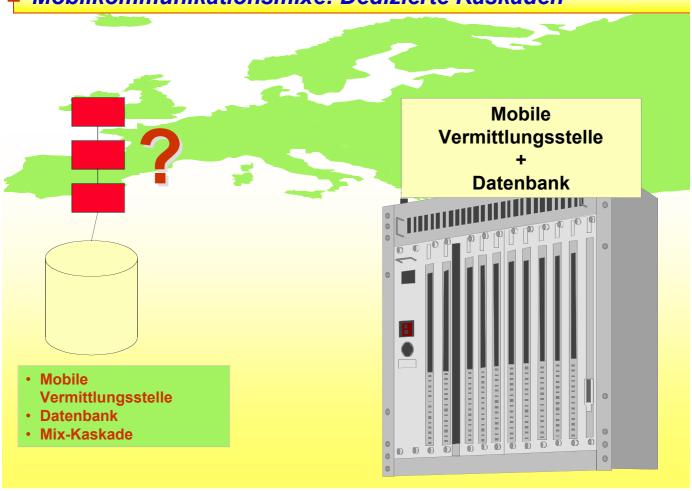
Aufenthaltsgebietsgruppen

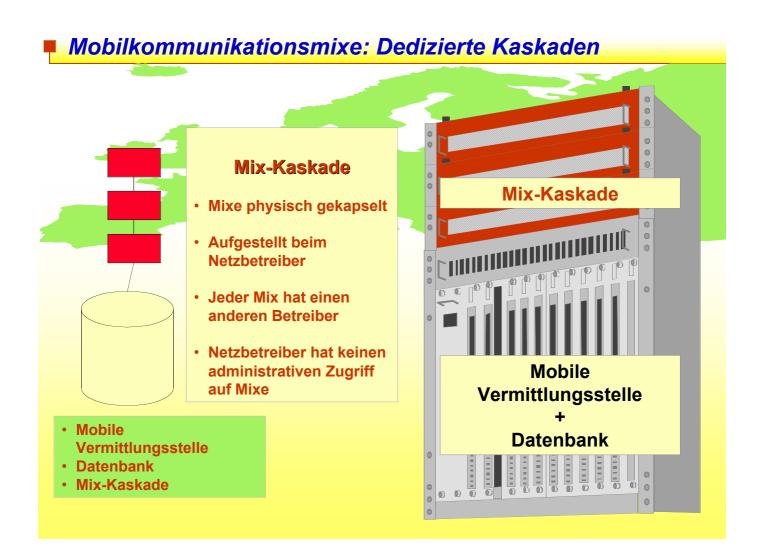

· Zusammenfassung von Gebieten unterschiedlicher Granularität

GSM



Mobilkommunikationsmixe: Variante 1: Anonymes Netz




124

Mobilkommunikationsmixe: Var. 2: Dedizierte Kaskaden

Authentisierung wie?

· Problem:

 Der besuchte Netzbetreiber soll feststellen können, daß ein Teilnehmer berechtigt ist, das Netz zu nutzen, ohne daß seine Identität aufgedeckt wird, denn das käme einer Lokalisierung gleich.

 Der Teilnehmer soll feststellen können, daß er über einen echten Netzbetreiber kommuniziert.

· Blindes Signaturverfahren

Gegenseitige Authentikation

VLR soll Berechtigung checken, darf aber Identiät von MS nicht erfahren. Blinde Signatur zur Auth. der MS

Verhinderung von Mißbrauch durch unberechtigte Teilnehmer,
 insbesondere damit der besuchte Netzbetreiber zu seinem Geld kommt

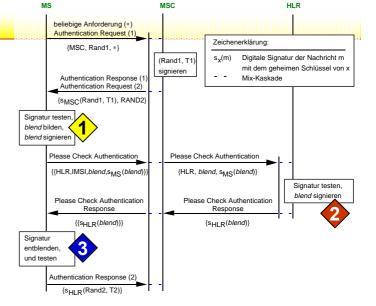
Authentikation im GSM:

- Besuchter Netzbetreiber bekommt Auth. Triplet und prüft SRES von der Mobilstation auf Gleichheit.
- Besuchter Netzbetreiber vertraut darauf, daß der Heimatnetzbetreiber vertrauenswürdig ist.

Protokoll für (gegenseitige) Authentikation

- Problem:
 VLR soll
 Berechtigung
 checken, darf
 aber Identiät von
 MS nicht
 erfahren.
- Blinde Signatur zur Auth. der MS

Blinde Signatur


Blenden:

$$blend := (Rand2, T2) \bullet z^{t_{HLR}} \bmod n$$

Signieren:

$$s_{HLR}(blend) = blend^{s_{HLR}} \mod n$$

Es gilt:

$$s_{HLR}(blend) = ((Rand2, T2) \bullet z^{t_{HLR}})^{s_{HLR}} \mod n$$

$$= (Rand2, T2)^{s_{HLR}} \bullet (z^{t_{HLR}})^{s_{HLR}} \mod n$$

$$= (Rand2, T2)^{s_{HLR}} \bullet z \mod n$$

Entblenden:

$$s_{\text{HLR}}(blend) \bullet z^{-1} = (Rand 2, T2)^{s_{\text{HLR}}} \bullet z \bullet z^{-1} \mod n$$

$$s_{\text{HLR}}(Rand 2, T2) = (Rand 2, T2)^{s_{\text{HLR}}} \mod n.$$

Abrechnung

· Heute:

- Ankommende Anrufe werden berechnet, wenn sich der mobile
 Teilnehmer im Ausland (bzw. einem Fremdnetz) aufhält.
- Unterschiedliche Tarifierung für abgehende Gespräche:
 - lokale Gespräche (vergleichbar mit Ortsgespräch)
 - · Gespräche innerhalb des eigenen Netzes
 - Gespräche in fremde Netze (Festnetz, Mobilnetze)

- Anonyme und unbeobachtbare digitale Zahlungssysteme (digitales Bargeld-Äquivalent)
- Digitale Briefmarken (vorbezahlt), Micro-Payments, Tick-Payments

132

Abrechnung

- Abgehende Rufe (von der MS zu einem beliebigen Teilnehmer)
 - Location Management Prozeduren sind nicht involviert
 - Trotzdem muß Aufenthaltsort geschützt bleiben
 - Vorausgesetzt wird ein vorhandenes anonymes Zahlungssystem
 - Teilnehmer T hat eine MS ohne ID und ein dig. Wallet

· Skizze:

- MS von T sucht ein Netz (passiver Vorgang)
- MS meldet Verbindungswunsch an (→ Zielrufnummer)
- Netz legt Kosten fest und meldet sie an T (← Kosten)
- T bzw. MS entscheidet und übermittelt Geldbetrag (→ Geld)
- Netz baut Verbindung zum Ziel auf

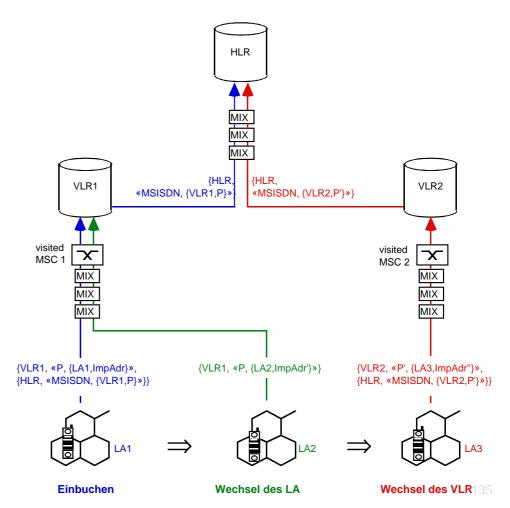
· Zu klären:

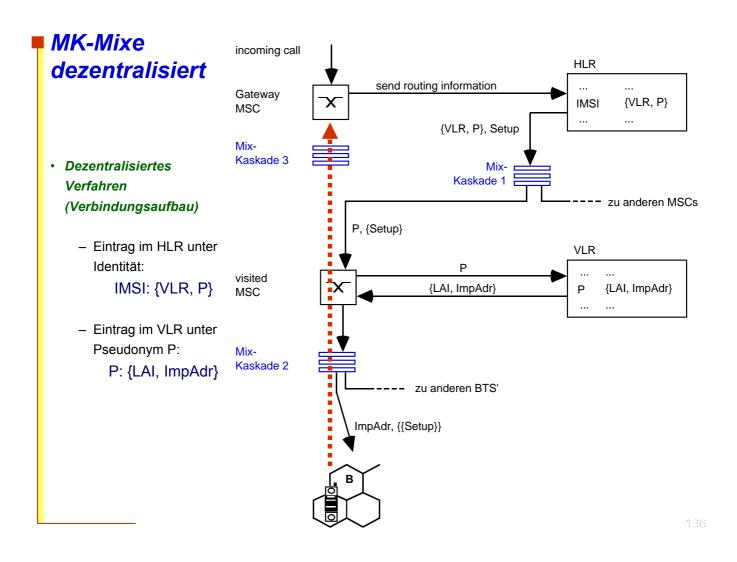
- Fehlertoleranz, fehlgeschlagene Verbindung (Ziel besetzt etc.)
- Tarifierung in Abhängigkeit der Gesprächsdauer
- Netz betrügt (kassiert Geld und verweigert Verbindungsaufbau)

Abrechnung

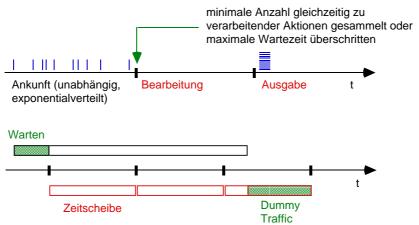
· Ankommende Rufe (zur MS)

- Wer bekommt Geld?
- Besuchter Netzbetreiber oder Heimatnetzbetreiber oder beide?


- Signalisierung zur MS
- Empfangene Signalisiernachricht enthält Geldforderung von Heimatnetz
- T erhält mit dem Authentication Request (2) die Forderung des besuchten Netzes
- T schickt mit der Please Check Authentication Nachricht den vom Heimatnetz geforderten Geldbetrag
- Heimatnetz antwortet mit Please Check Authentication Response nur bei Empfang des Geldes
- T schickt mit der Authentication Response (2) den vom besuchten Netz geforderten Betrag

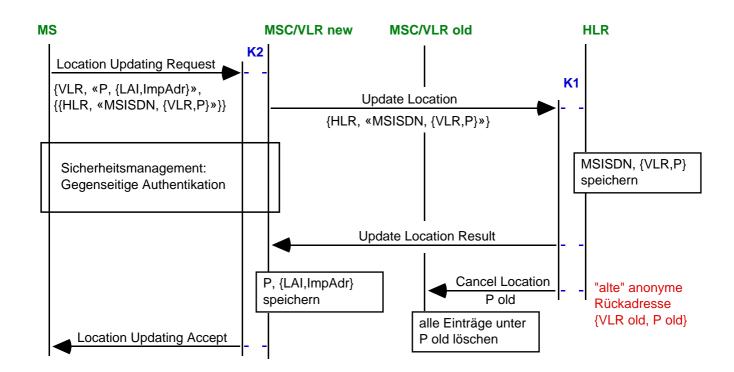

134

Location Management


Location
 Registration und
 Location Update

Mobilkommunikationsmixe

- Mixfunktion
 - Verkettbarkeit über Kodierung der Nachrichten durch Umkodieren (Kryptographie) und Umsortieren verhindert
 - Verkettbarkeit über zeitliche Korrelationen durch Sammeln von Nachrichten und schubweise Ausgabe verhindert
- Taktung (Zeitscheiben) und Dummy Traffic:
 - Zusammenfassung der Signalisiernachrichten mehrerer Teilnehmer


Mobilkommunikationsmixe

- Grenzen
 - Dummy Traffic nur eingeschränkt anwendbar
 - begrenzte Akkukapazität der Mobilstationen
 - Verkehrsaufkommen im Netz muß hoch genug sein, damit Schutz erreicht wird
 - einzelne, isolierte Aktion ist im Netz beobachtbar
 - Teilnehmer wartet zu lange auf Erbringen des Dienstes

138

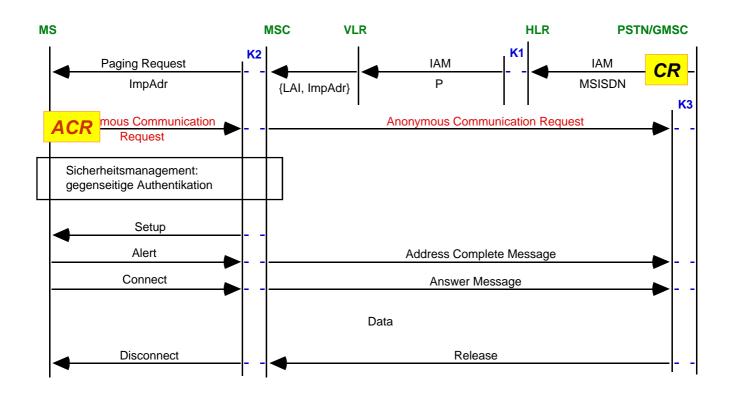
Location Update Protokoll

Mobile Terminated Call Setup Protokoll

· Communication Request geht ein beim HLR

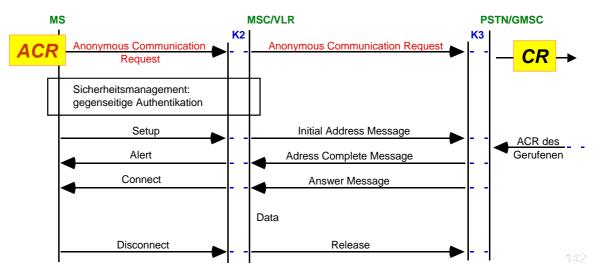
- mit Schutz des Rufenden: $CR = A_{GMSC}$, $c_{MS}(KZ_{init}, k_{AB})$
- ohne Schutz des Rufenden: $CR = A_{GMSC}$, ISDN-SN, $c_{MS}(k_{AB})$

Anonymous Communication Request


$$ACR = A_{25}, c_{25}(D_{25}, \dots c_{21}(D_{21}, m_{K3})\dots)$$
 mit $m_{K3} = A_{35}, c_{35}(D_{35}, \dots c_{31}(D_{31}, m_{Setup})\dots)$ mit $m_{Setup} = A_{GMSC}, ISDN-SN/KZ_T, Bv$ und $D_{i,j} = T, k_{i,j}$ mit $i=2\dots3, j=5\dots1$, Zeitscheibe: T

Kanalkennzeichen

 $KZ_T = f(T, k_{AB})$ mit Ende-zu-Ende-Verschlüsselungsschlüssel: k_{AB}


140

Mobile Terminated Call Setup Protokoll

Mobile Originated Call Setup Protokoll

•
$$ACR = A_{25}, c_{25}(D_{25}, \dots c_{21}(D_{21}, m_{K3})\dots)$$
 mit
$$m_{K3} = A_{35}, c_{35}(D_{35}, \dots c_{31}(D_{31}, m_{Setup})\dots)$$
 mit
$$m_{Setup} = CR, KZ_T, Bv \text{ mit}$$

$$CR = ISDN-SN, c_{ISDN-SN}(KZ_{init}, k_{AB}) \text{ und}$$

$$D_{i,j} = T, k_{i,j} \text{ mit } i=2\dots3, j=5\dots1$$

Leistungsfähigkeit

- · Verfahren leisten
 - alle: Schutz des Aufenthaltsortes
 - teilweise: Unbeobachtbarkeit der Kommunikationsbeziehungen
 - gegenüber Kommunikationspartner und Netzbetreiber
 - lokale Angreifer (Datenbanken, Insider)
 - globale Angreifer (alle Kommunikation ist überwachbar)

Hauptprobleme

- Kanalstruktur existierender Netze
 - Modifikation nötig, damit effizient realisierbar
- Effizienzverlust zwischen 1 und 10 % je nach Verfahren:
 - Bei maximaler Auslastung ist die versorgbare Teilnehmerzahl maximal 10% geringer.

Mobilkommunikationsmixe

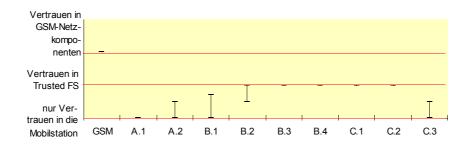
Nachrichtenlängen

 Nachrichtenlängen wachsen mindestens um das 1,2-fache (Rufaufbau) und sogar um das 6,8-fache (Aufenthaltsaktualisierung)

	GSM	Mobilkommunikationsmixe
Rufaufbau	17282968	36248008
Aufenthaltsaktualisierung	216328	22214502

Effizienz

- Effizienzmaß: Verhältnis der verfügbaren Verkehrskanäle bei den Mobilkommunikationsmixen und bei GSM
- Mobilitätsverhalten der Teilnehmer beeinflußt die Effizienz
- Effizienzverlust bezogen auf bedienbare Teilnehmerzahl ist ca. 10 % bei N_{I UP}=88 in 5 Sekunden (entspricht 20.000 Teilnehmern pro Zelle)
- · Problem: Kanalstruktur von GSM nicht flexibel genug

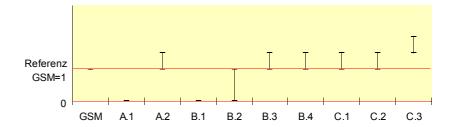

144

Komponenten der MK-Mixe

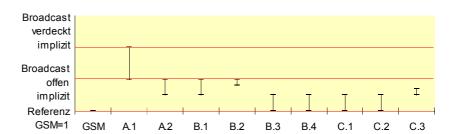
Komponente	Bedeutung						
Mixe	Schutz der Kommunikationsbeziehung zwischen Sender						
	und Empfänger einer Nachricht						
Anonyme Rückadressen	Unverkettbarkeit der Übermittlung der						
	Verbindungswunschnachrichten zwischen Registern						
Signatur der anonymen	Überprüfbarkeit, daß in einem Schub Rückadressen von						
Rückadresse beim HLR	genügend vielen Teilnehmern bearbeitet werden, d.h.						
	Verhindern eines (n-1)-Angriffs						
Pseudonym P	Verkettbarkeit des Adreßkennzeichens mit dem						
	Datenbankeintrag im Register (außer HLR, dort MSISDN)						
Symmetrische Schlüssel	Effizientes Umkodieren der mitgelieferten Informationen,						
ki,j in den anonymen	Etablieren eines symmetrischen Mix-Kanals bei Call Setup						
Rückadressen	und Location Update; Verwendung einer nicht						
	selbstsynchronisierenden Chiffre zur Verhinderung von						
	Replay-Angriffen						
Implizite Adresse ImpAdr	Adressierung der MS auf der Funkschnittstelle,						
	Wiedererkennung der anonymen Rückadresse, um						
	symmetrische Schlüssel <i>k</i> _{i,j} zu rekonstruieren						
Zeitstempel,	Verhindern des Replay alter (Mix-Eingabe)-Nachrichten						
Zeitscheibennummer T							
Kennzeichen Bv/Bl	Kennzeichen für Empfänger einer Nachricht, um						
	bedeutungsvolle von bedeutungslosen Nachrichten zu						
	unterscheiden						
Kanalkennzeichen KZŢ	Verbinden der unbeobachtbaren Mix-Kanäle von rufendem						
	und gerufenem Teilnehmer						
Funktion f(T, kAB)	Funktion zur Berechnung der Kanalkennzeichen						
Symmetrischer Schlüssel	Symmetrischer Sitzungsschlüssel der kommunizierenden						
<i>k</i> AB	Teilnehmer, Parameter zur Berechnung der						
	Kanalkennzeichen 145						

Vergleich der Verfahren: Vertrauen (qualitativ)

 Nötiges Vertrauen in einzelne Netzkomponenten bzgl. Vertraulichkeit des Aufenthaltsorts


GSM Referenzwerte

- A.1 Broadcast mit impliziter Adressierung
- A.2 Gruppenpseudonyme
- B.1 Adreßumsetzungsmethode
- B.2 Verkl. der Broadcastgebiete
- B.3 explizite vertrauensw.Speicherung
- B.4 TP-Methode
- C.1 Vertrauenswürdige Dritte
- C.2 Methode der kooperierenden Chips
- C.3 Mobilkommunikationsmixe


146

Vergleich der Verfahren: Bandbreite (qualitativ)

Location Update

· Call Setup

GSM Referenzwerte

- A.1 Broadcast mit impliziter Adressierung
- A.2 Gruppenpseudonyme
- B.1 Adreßumsetzungsmethode
- B.2 Verkl. der Broadcastgebiete
- B.3 explizite vertrauensw.Speicherung
- B.4 TP-Methode
- C.1 Vertrauenswürdige Dritte
- C.2 Methode der kooperierenden Chips
- C.3 Mobilkommunikationsmixe

Vergleich der Verfahren

Refere	nz A.1	A.2	B.1 – B.4 und C.1		C.2	C.3	
GSM	Broad-	Gruppen-			Koope-	Mobil-	Ī
	cast-	pseudo-	Speicherung in Trusted FS		rierende	komm	
	Methode	nyme	explizit	TP-Meth.	Chips	Mixe	l

Nötiges Vertrauen

Vertrauen in die Mobilstation	nötig	nötig	nötig	nötig	nötig	nötig
Vertrauen in einen ortsfesten Bereich	_	nicht nötig	nicht nötig	zusätzlich nötig	nötig	nicht nötig
Vert. in ein Datenschutz ga- rantierendes Kommunika- tionsnetz	_	nicht nötig	nicht nötig	nötig	nicht nötig	nötig
Vertrauen in Dritte (Trusted Third Party, TTP), entspricht C.1	nötig	nicht nötig	nicht nötig	möglich, entspricht dann C.1	nicht nötig	nicht nötig

148

Vergleich der Verfahren

Referen	z A.1	A.2	B.1 – B.4 und C.1		C.2	C.3
GSM	Broad-	Gruppen-	Vertrauenswürd.		Koope-	Mobil-
	cast-	pseudo-	Speicherung in		rierende	komm
			Trusted FS			
	Methode	nyme	explizit	TP-Meth.	Chips	Mixe

Signalisieraufwand

Funkschnitt- stelle MTC	Bezugs- punkt	sehr hoch	höher	etwa gleich	gering- füg. höher	etwa gleich	höher
Funkschnitt- stelle LUP	Bezugs- punkt	entfällt	höher	höher wg. Zen- tralität	gering- füg. höher	höher wg. Zen- tralität	höher
Bandbreiteauf- wand im Festnetz	Bezugs- punkt	geringer bzgl. Loc. Mgmt.	höher	hoch durch Zen- tralität	gering- füg. höher	hoch durch Zentr.	höher

Funktechnische Peilbarkeit und Ortbarkeit

Sendeverf. zum	Fre-	nötig, z.B. über Direct Sequence Spread Spectrum
Schutz vor Pei-	quency	
lung und Ortung	Hopping	

Vergleich der Verfahren

Referenz	A.1	A.2	B.1 – B.4 u	ınd C.1	C.2	C.3	Ì
GSM	Broad-	Gruppen-	Vertrauenswürd.		Koope-	Mobil-	ĺ
	cast-	pseudo-	Speicherung in		rierende	komm	Ì
			Trusted FS				l
	Methode	nyme	explizit	TP-Meth.	Chips	Mixe	Ì

Anordnung der Sicherheitsbereiche

zentral	quasizen- tral	entfällt		zentral		Zentral	beides ist
dezentral	wäre möglich		dezentral		dezentral		möglich
Diversität der Komponenten	wäre möglich	bedeu- tungslos	nicht not- wendig	notwendig bei Trusted FS		notwen- dig	notwen- dig im Mix-Netz

Dynamisierbarkeit der Sicherheitsbereiche

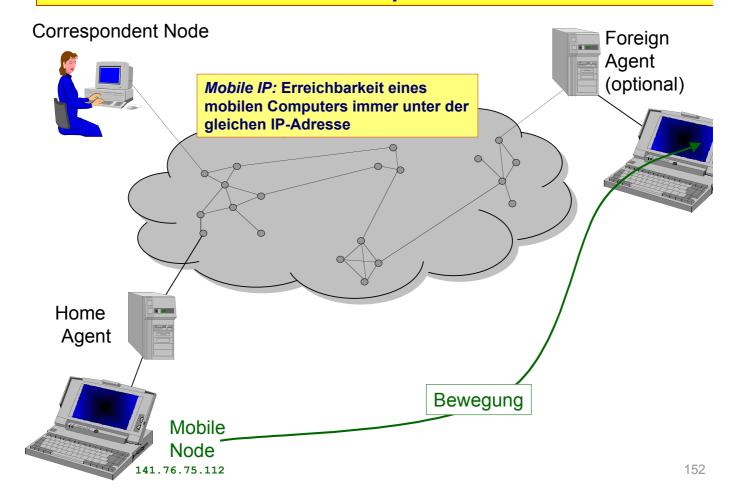
nur statisch möglich	HLR	entfällt	HLR	Trusted FS	C-NW C-MS	HLR, Mix- Kas- kaden
dynamisch möglich	nicht vor- handen, wäre aber möglich		nicht vor- handen, wäre aber möglich	ausweichen auf TTPs, entspricht dann C.1	nicht sinnvoll, wäre aber möglich	frei wähl- bare Mixe wären möglich

150

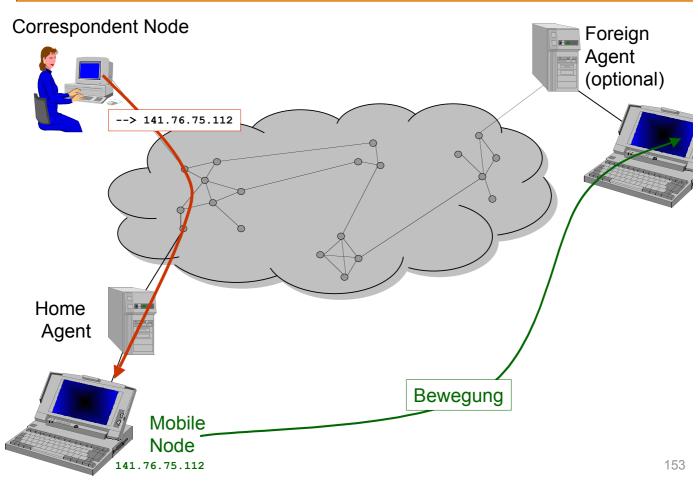
Vergleich der Verfahren

Refe	erenz A.1	1 A.2	B.1 – B.4 u	B.1 – B.4 und C.1		C.3
GSM	M Broad-	oad- Gruppen	 Vertrauens 	Vertrauenswürd.		Mobil-
	cast-	st- pseudo-	Speicherur	Speicherung in		komm
			Trusted FS	Trusted FS		
	Methode	ethode nyme	explizit	TP-Meth.	Chips	Mixe

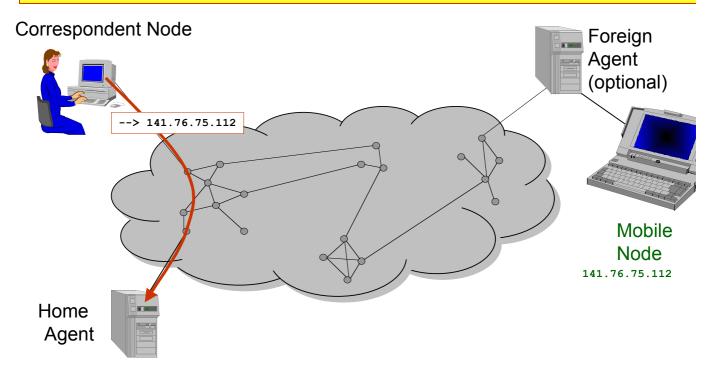
Mobilitätsmanagement


Schutz der Kommbez. beim Einbuchen	nicht vor- handen	entfällt	nicht nötig	zusätzlich nötig	nicht nötig	gewähr- leistet
Verkettung von Teilnehmer- aktionen	Teilneh- mer nicht anonym	nicht möglich	hoch	gering	gering	nicht möglich

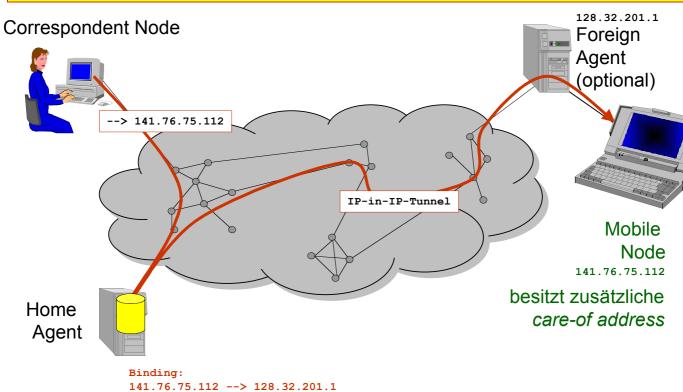
Verbindungsmanagement


Schutz der Kommbez. beim Signalisie- ren (Call Setup)	nicht vor- handen	nicht nötig	nicht nötig	zusätzlich nötig	zusätzlich nötig bis zum HLR	nötig	gewähr- leistet
Adressierungs- merkmal auf der Fu-schnittstelle	TMSI	implizite Adresse	implizite Adresse	TMSI o. implizite Adresse	PMSI, TMSI, i. Adr.	TMSI, PMSI, impl. Adr.	implizite Adresse
Schutz der Kommbez. während einer Verbindung	nicht vor- handen	nötig, z.B. über Mix-Netze					

151


■ Mobile Internet Protocol: Prinzip 1/4

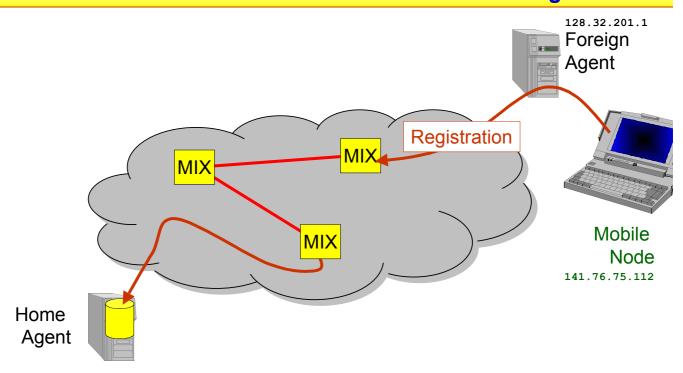
Mobile Internet Protocol: Prinzip 2/2



Mobile Internet Protocol: Prinzip 3/4

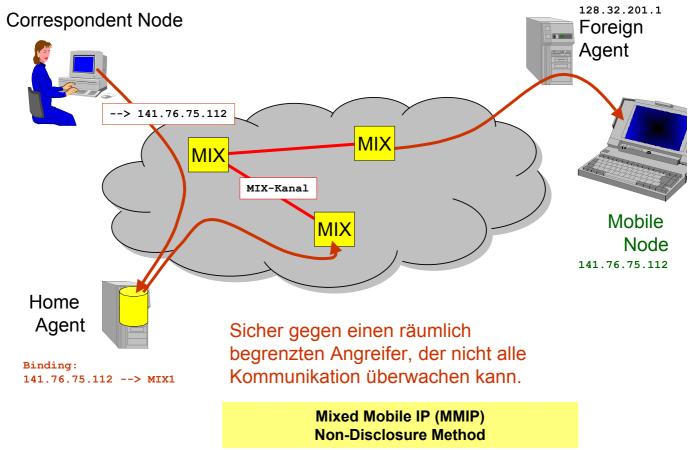
154

Mobile Internet Protocol: Prinzip 4/4



Mobile Internet Protocol: Sicherheitsfunktionen

	Mobile IPv4	Mobile IPv6		
Authentikation	√ shared secret zwischen Mobile Node und Home Agent	√ IPSec/IPv6 Authentication Header (AH)		
	MD 5 Fingerprint	MD 5, SHA-1		
Verschlüsselung	Ø	√ IPSec/IPv6 Encapsulated Security Payload (ESP)		
		DES/CBC		
Schutz vor	Ø	Ø		
Lokalisierung	Mixed Mobile IP Non-Disclosure Method			


156

■ Mobile Internet Protocol: Schutz vor Lokalisierung

Mixed Mobile IP (MMIP) Non-Disclosure Method

Mobile Internet Protocol: Schutz vor Lokalisierung

158

Politische Dimension solcher Konzepte

Freiheit

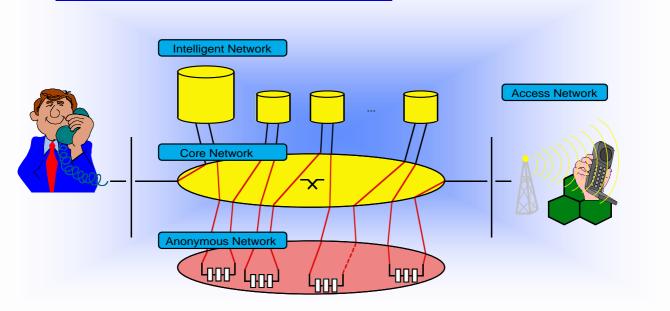
- Es gibt gesetzliche Grundlagen, die eine Bereitstellung pseudonymer und anonymer Dienstleistungen ausdrücklich erlauben und anregen.
- Empfehlungscharakter
- luKDG (TDDSG § 4(1))
- Kein Zwang ("soweit technisch möglich und zumutbar")

Regulierung

- Derzeit von der Politik nicht gewünscht
- TKG fordert die Speicherung der Kundendaten (Name, Adresse, ...), sogar bei vorbezahlten Systemen (Xtra-Card etc.)
- Überwachungsschnittstellen (TKG § 88), die dem Bedarfsträger die unbeobachtbare Überwachung erlauben

Gesetzliche Grundlagen sind keineswegs konsolidiert.

Technische Möglichkeiten des Schutzes und der legalen Überwachungsmöglichkeiten ausloten, jedoch möglichst kein vorauseilender Gehorsam


Security of mobile communication

Conclusion

- Protection of locations can be technically realized
- However, there is a demand for legal enforcement

More information

- http://www.inf.tu-dresden.de/~hf2/mobil/

