
VMM detection through samepage merging

Daniel Fernandez (soyfeliz@48bits.com)

Abstract

Virtual environments are commonly used in malware analysis. Several
techniques have been developed to detect and evade them in order to make
malware harder to analyze. Some VMMs take advantage of hardware
virtualization making them harder for malware to detect them. This paper
introduces a new method to detect VMMs including those based on hardware
virtualization.

Introduction

Behavioral differences exist between virtualized environments and real
hardware. These differences form the techniques used in VMM detection. VMMs
using hardware virtualization capabilities are harder to be detected because
fewer differences are exposed.

Some methods used to detect hardware virtualization based VMMs use timing
analysis over resources like caches and memory [1]. For example,
measurements can be made on memory access times with CPU cache enabled
and "disabled". Normally the VMM won't allow the cache to be disabled, so if
the results of both measures are similar it means we are inside a VM guest. The
method proposed here is similar, but is far simpler and can be done from ring3;
however, it has some limitations. Only few VMMs can be detected using this
method (tests were made only on VMware [2] and KVM [3]).

Same content sharing

In order to save memory, the OS provides a system to share page frames
known as COW (Copy on Write). The same physical memory is used across
different tasks, the pages are marked read-only and when a task tries a write,
the exception handler of the OS assigns a new page for that task.

The VMM periodically scans guests' memory and COW-shares all pages with
same content. The computational cost of this operation is too high to be used
in OS memory management, but is an attractive option for virtualization,
mostly when running multiple guests. The original idea seems to belong to
VMware [4]. Later, Linux introduced an implementation called KSM [5] (Kernel
Samepage Merging). It can be enabled and used in any recent version of KVM
(and maybe by other VMMs in the future).

mailto:soyfeliz@48bits.com

Detecting differences in memory access times

A big buffer can be prepared filling all pages with the same pattern and then a
measurement of the time needed to write the whole buffer is taken. The above
procedure is repeated, this time, waiting while the VMM merges the pages
before the write operation. Then the difference between both measurements is
calculated.

The following graph show the results of ten tests run in different environments:

According to the results, there is a considerable time difference when running
the tests inside and outside the VM. This is due penalties when breaking the
COW on the written pages. There are differences between results of the same
tests too, due to other factors like system load. An interesting case occurs with
OSX, where the difference is just 100%, being close to the results outside the
VM. Even in a test it reached 33%, making it a very difficult target to be
detected.

Looking at the graphs and not considering OSX results, a threshold of 150%
could be used to detect the VMM. Taking OSX results in consideration, I
decided to choose a threshold of the 98%. Even so there may be false
negatives on OSX and such a low threshold could cause false positives if certain
conditions are met.

Conclusion

 This method could be used in order to detect some kinds of VMMs, while is not
100% effective, it can be refined more. Heuristics could be used to adjust the
threshold and other parameters, based on extra information like the system
load. One problem is the amount of time needed before making the second
measurement, but for malware authors that would not be a limitation.

Resources

The program used to run the tests can be found
here: http://www.48bits.com/projects/smdetect.cpp

It can be compiled on Linux and Windows (minGW).

References

1. Thomas Ra etseder, Christopher Kruegel, and Engin Kirda: Detecting systemff
emulators. (2007)
2. Vmware Inc. http://www.vmware.com/ (2009)
3. KVM: Kernel Based Virtual Machine. http://www.linux-kvm.org/ (2009)
4. Carl A. Waldspurger: Content-based, transparent sharing of memory units.
(2004)
5. KSM - Linux Kernel Documentation.
http://www.kernel.org/doc/Documentation/vm/ksm.txt (2009)

http://www.48bits.com/projects/smdetect.cpp

