
SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes∗

Arvind Seshadri Mark Luk Ning Qu Adrian Perrig
CyLab/CMU CyLab/CMU CyLab/CMU CyLab/CMU

Pittsburgh, PA, USA Pittsburgh, PA, USA Pittsburgh, PA, USA Pittsburgh, PA, USA
arvinds@cs.cmu.edu mluk@ece.cmu.edu quning@cmu.edu perrig@cmu.edu

ABSTRACT
We propose SecVisor, a tiny hypervisor that ensures code integrity
for commodity OS kernels. In particular, SecVisor ensures that
only approved code can execute in kernel mode over the entire sys-
tem lifetime. This protects the kernel against code injection attacks,
such as kernel rootkits. SecVisor can achieve this property even
against an attacker who controls everything but the CPU, the mem-
ory controller, and system memory. Further, SecVisor the attacker
could have the knowledge of zero-day kernel exploits.

Our design goals for SecVisor are small code size, small external
interface, and ease of porting OS kernels. We rely on memory virtu-
alization to build SecVisor and implement two versions, one using
software memory virtualization and the other using CPU-supported
memory virtualization. The code sizes of the runtime portions of
these versions measure 1739 and 1112 lines, respectively. The size
of the external interface for both versions of SecVisor is 2 hyper-
calls. We also port the Linux kernel version 2.6.20 to execute on
SecVisor. This requires us to add 12 lines of code to the kernel and
delete 81 lines, out of a total of approximately 4.3 million lines of
code.

Categories and Subject Descriptors:Software, Operating Sys-
tems, Security and Protection, Security Kernels.

General Terms: Security.

Keywords: Hypervisor, Code Attestation, Code Integrity, Prevent-
ing Code Injection Attacks, Memory Virtualization.

∗This research was supported in part by CyLab at Carnegie Mel-
lon under grant DAAD19-02-1-0389 from the Army Research Of-
fice, and grant CCF-0424422 from the National Science Founda-
tion, and equipment donations from AMD and KDDI. Arvind Se-
shadri’s attendance at SOSP 2007 is supported by a student travel
scholarship from the National Science Foundation. The views and
conclusions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either express or implied, of AMD, ARO, CMU,
KDDI, NSF, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

1. INTRODUCTION
Computing platforms are encompassing an ever-growing range

of applications, supporting an ever-growing range of hardware, and
providing tremendous functionality. Consequently, the complexity
of OS kernels is steadily increasing, resulting in kernel code sizes
of 4.3 million lines of code for Linux 2.6 and 40 million lines of
code for Windows XP [25].

The increased complexity of OS kernels unfortunately also in-
creases the number of security vulnerabilities. This is compounded
by the fact that, despite many efforts to make OS kernels modular,
most kernels in common use today are monolithic in their design. A
compromise of any part of a monolithic kernel can potentially com-
promise the entire kernel. Since the kernel occupies a privileged
position in the software stack of a computer system, compromising
it gives an attacker complete control over the system.

In view of the importance of the security of the kernel to the se-
curity of a system, securing currently existing kernels is of critical
importance. In other words, it is preferable to propose approaches
that do not mandate large-scale design changes to existing kernels
or call for building new ones. In this paper, we take a first step
in that direction, by describing SecVisor, which prevents an adver-
sary from either modifying existing code in a kernel or executing
injected code with kernel privilege, over the lifetime of the com-
puter system. In other words, SecVisor provides a lifetime guar-
antee of the integrity of the code executing with kernel privilege.
We can achieve this guarantee even in the presence of an attacker
with complete control over the computer system except the CPU,
memory controller, and system memory.

SecVisor uses hardware memory protections to ensure that only
code approved by it can execute with kernel privilege. It further en-
sures that the approved code currently in memory cannot be modi-
fied by any entity other than itself. SecVisor provides the user the
flexibility of supplying their desired approval policy.

SecVisor prevents numerous attacks against current kernels. For
example, there are at least three ways in which an attacker can inject
code into a kernel. First, the attacker can misuse the modulariza-
tion support that is part of many current kernels. Modularization
support allows privileged users to add code to the running kernel.
An attacker can employ a privilege escalation attack to attain suf-
ficient privileges to load a module into the kernel. Second, the
attacker can locally or remotely exploit software vulnerabilities in
the kernel code. For example, the attacker can inject code by ex-
ploiting a kernel-level buffer overrun. The NIST National Vulnera-
bility Database shows that the Linux Kernel and Windows XP SP2
were found to have 81 and 31 such vulnerabilities, respectively, in
the year 2006. Third, DMA-capable peripheral devices can corrupt
kernel memory via DMA writes. A sample attack that uses Firewire
peripherals was demonstrated by Becher et al. [3].

SecVisor is a tiny hypervisor that virtualizes the physical mem-
ory. This allows it to set CPU-based memory protections over ker-
nel memory, that are independent of any protections set by the ker-
nel. SecVisor uses the IO Memory Management Unit (IOMMU) to
protect approved code from Direct Memory Access (DMA) writes.
Also, SecVisor virtualizes the CPU’s Memory Management Unit
(MMU) and the IOMMU ensuring that it can intercept and check
every modification to MMU and IOMMU state.

We have three design goals for SecVisor: (1) small code size to
facilitate formal verification and manual audit, (2) limited exter-
nal interface to reduce the attack surface, and (3) minimal kernel
changes to facilitate porting commodity kernels.

We have implemented SecVisor on a system with an AMD CPU,
and ported the Linux kernel to SecVisor. To reduce the complex-
ity of SecVisor, our implementation uses AMD’s Secure Virtual
Machine (SVM) technology to virtualize the physical memory, the
MMU, and the IOMMU. Using CPU-based virtualization support
does not limit the deployability of SecVisor since such support is
now widely available on both Intel and AMD CPUs. We use the
Device Exclusion Vector (DEV) protections of the SVM technol-
ogy to protect kernel memory from DMA-writes by peripherals [1].

The rest of this paper is organized as follows. The next sec-
tion discusses our assumptions and adversary model. Section 3
describes the design of SecVisor by stating the security properties
required and describing how those properties can be achieved. In
Section 4 we give a brief description of the x86 architecture and
SVM technology. Section 5 describes how we realize SecVisor us-
ing AMD’s SVM technology. We show how we port the Linux ker-
nel to SecVisor in Section 6. We present our evaluation of SecVisor
in Section 7. Section 8 discusses the limitations and future imple-
mentation directions of SecVisor. Section 9 discusses related work
and Section 10 concludes.

2. ASSUMPTIONS AND THREAT MODEL
In this section we state our assumptions and describe our threat

model.

2.1 Assumptions
We assume that the CPU of the computer on which SecVisor runs

provides support for virtualization similar to AMD’s SVM technol-
ogy or Intel’s LaGrande Technology (LT) [1, 10]. Also, the com-
puter system has a single CPU and the kernel whose code segment
SecVisor protects does not use self-modifying code. In Section 8
we discuss how these two assumptions could be relaxed. For the
x86 architecture, the kernel executes in 32-bit mode. We also as-
sume that SecVisor does not have any vulnerabilities. Given that
the code size of SecVisor and its external interface are small, it
could be possible to formally verify or manually audit SecVisor to
rule out known classes of vulnerabilities.

2.2 Threat Model
We consider an attacker who controls everything in the com-

puter system but the CPU, the memory controller, and memory.
This trusted computing base (TCB) is minimal for the architecture
which is used by most computing devices today: thevon Neumann
architecture (also called astored-program computer) [22]. Exam-
ples of attacks the attacker can perform are: arbitrarily modify all
memory contents, inject malicious code into the system firmware
(also called the BIOS on x86 systems), perform malicious DMA
writes to memory using peripherals, and insert malicious peripher-
als into the system. Also, the attacker might be aware of zero-day
vulnerabilities in the kernel and application software on the system.
The attacker can attempt to use these vulnerabilities to locally or re-

motely exploit the system. For the x86 architecture, we assume that
the System Management Mode (SMM) handler is not malicious. In
Section 8 we describe how this assumption can be relaxed.

3. SecVisor DESIGN
In this section, we discuss the design of SecVisor. We start off by

describing the challenges involved. Then, we state the properties
that need to be achieved in order to guarantee that only SecVisor
approved code can execute in kernel mode. Finally, we describe
how SecVisor uses a combination of hardware memory protections,
and controlled entries and exits from kernel mode to achieve the
required properties. This section presents the conceptual design of
SecVisor that is independent of any CPU architecture or OS kernel.
In Section 5 we describe how we realize an implementation of this
conceptual design on the x86 architecture.

3.1 Challenges
We now discuss the challenges we face in designing anenforce-

ment agent that provides the guarantee of kernel code integrity over
the lifetime of the system, under the assumption that our Trusted
Computing Base (TCB) consists of the CPU, the memory con-
troller, and the memory. The very first question we face is: where
in the software stack of the system should the enforcement agent
execute? The enforcement agent needs to be isolated from the
kernel so that it can guarantee kernel code integrity even in the
face of attacks against the kernel. Based on our TCB assumption,
we can only rely on CPU-based protections to provide this isola-
tion. CPU-based protections are based on the notion of privilege
whereby more privileged software can modify both its own protec-
tions and those of less privileged software. Therefore, the enforce-
ment agent must execute at a higher CPU privilege level than that
of the kernel. We now describe how we design and build such an
enforcement agent as a tiny hypervisor called SecVisor. SecVisor
uses the virtualization features built into commodity CPUs and ex-
ecutes at the privilege level of a Virtual Machine Monitor (VMM).

The next issue that arises is to ensure the code integrity of the
kernel. SecVisor addresses this issue by ensuring that, when exe-
cuting at the privilege level of the kernel (hereafter called thekernel
mode), the CPU refuses to execute any code that is not approved by
the enforcement agent. In other words, SecVisor does not prevent
code from getting added to the kernel; only that the CPU will refuse
to execute unauthorized code. For example, the attacker could ex-
ploit a kernel-level buffer overflow to inject code into the kernel’s
data segment. But the CPU will not execute the injected code since
it is not approved by SecVisor. An additional requirement is that
SecVisor approved code should not be modifiable by any entity
on the computer system other than those in SecVisor’s TCB and
by SecVisor. In order to implement these requirements, SecVisor
needs to inform the CPU which code is authorized for execution in
kernel mode and also protect the authorized code from modifica-
tions. The CPU-based protections provide a natural way to address
this. SecVisor sets the CPU-based protections over kernel memory
so that only code approved by it is executable in kernel mode. The
protections also ensure that the approved code can only be modified
by SecVisor and its TCB.

All CPUs support at least one other privilege level (other than the
kernel mode and VMM privilege level), calleduser mode, at which
user programs execute. Given that a CPU will switch between user
and kernel mode execution via control transfers, SecVisor needs to
prevent the attacker from modifying the expected control flow of
these control transfers to execute arbitrary code with kernel priv-
ilege. This requires two checks. First, SecVisor needs to ensure
that the targets of all control transfers that switch the CPU to kernel

mode lie within approved code. Without this, the attacker could
execute arbitrary code with kernel privilege by modifying the tar-
gets of control transfers that enter kernel mode. Second, the control
transfers that exit kernel mode to enter user mode must modify the
privilege level of the CPU to that of user mode. Otherwise, the
attacker could execute user programs with kernel privilege.

3.2 Required Properties for Approved Code
Execution

We start designing SecVisor by casting our requirements into
required properties. Our first requirement is that the CPU only ex-
ecute SecVisor approved code in kernel mode. Given that the CPU
enters kernel mode from user mode, performs some processing in
kernel mode, and exits kernel mode back to user mode, provides
the following three properties:

• P1: Every entry into kernel mode (where an entry into kernel
mode occurs at the instant the privilege of the CPU changes
to kernel mode) should set the CPU’s Instruction Pointer (IP)
to an instruction within approved kernel code.

• P2: After an entry into kernel mode places the IP within ap-
proved code, the IP should continue to point to approved ker-
nel code until the CPU exits kernel mode.

• P3: Every exit from kernel mode (where we define an exit
from kernel mode as a control transfer that sets the IP to an
address in user memory) should set the privilege level of the
CPU to user mode.

Our second requirement is that the approved code should only
be modifiable by SecVisor and the entities on SecVisor’s TCB. As-
suming that main memory can only be modified by code executing
on the CPU or through Direct Memory Access (DMA) writes by
peripheral devices, this requirement can be stated as:

• P4: Memory containing approved code should not be modi-
fiable by any code executing on the CPU, but SecVisor, or by
any peripheral device.

SecVisor uses hardware memory protections to achieve P2 and
P4, as we describe next. Section 3.4 discusses how we achieve P1
by ensuring whenever the CPU transitions to kernel mode it will
start executing approved code, and P3 by intercepting and checking
all kernel exits.

3.3 Using Hardware Memory Protections
The Memory Management Unit (MMU) and the IO Memory

Management Unit (IOMMU) of the CPU enforce hardware mem-
ory protections. Then SecVisor must control all modifications to
the MMU and IOMMU state. Since SecVisor executes at the priv-
ilege level of a VMM, the most natural way to protect the MMU
and IOMMU is to virtualize them. This enables SecVisor to inter-
cept and check all modifications to MMU and IOMMU state. We
use CPU-based virtualization rather than software virtualization to
keep the code size of SecVisor small and to minimize changes re-
quired to port an OS to run on SecVisor.

SecVisor uses page tables as the basis of its MMU-based mem-
ory protections. We choose page tables, rather than other MMU-
based protection schemes such as segmentation, because page ta-
bles are supported by a large number of CPU architectures. Using
page table-based protection requires SecVisor to protect the page
tables. There are two ways to achieve this. One, SecVisor can keep
the page tables in its own address space and allow the kernel to read

and modify them via safe function calls. Two, SecVisor can virtu-
alize physical memory. Virtualizing physical memory causes the
addresses sent on the memory bus to be different from the physical
addresses seen by the kernel. Hence, SecVisor needs to maintain
page tables that translate the kernel’s physical addresses to the ac-
tual physical addresses seen on the memory bus. These page tables
can be kept in SecVisor’s address space since the kernel is unaware
of the virtualization of physical memory.

The choice of which of the above two methods to use illustrates
the classic trade-off between performance on one hand and security
and portability on the other. Using a function call interface is likely
to be fast since there is no synchronization overhead (the kernel di-
rectly writes to the page tables). But it increases the size of SecVi-
sor’s kernel interface which creates a security risk. It also requires
modifications to the kernel’s page table handling code which in-
creases the amount of effort required to port a new kernel to SecVi-
sor. On the other hand, virtualizing physical memory is likely to
be slower due to the synchronization overhead. But it is certainly
better for security and ease of portability of the kernel (the kernel’s
page table handling need not be modified). Since our focus in this
paper is on security and ease of portability we choose to virtualize
physical memory. Henceforth, we will call the page table used by
SecVisor to virtualize physical memory theProtection Page Table.

Shared address space configuration. In using the Protection
Page Table to set protections over kernel memory, SecVisor has
to consider how the kernel and user memories are mapped into ad-
dress spaces. In most commodity OSes today, the kernel and user
memories share the same address space. Such a shared address
space configuration could enable an attacker to modify the control
flow of the kernel to execute user code with kernel privilege. To
prevent this attack, SecVisor sets the Protection Page Table so that
user memory is not executable when the CPU is in kernel mode.
On the other hand, it is clear that user memory has to be executable
when the CPU is in user mode. Then, SecVisor has to intercept
all transitions between kernel and user mode to modify the user
memory execute permissions in the Protection Page Table. SecVi-
sor uses the execute permissions themselves to intercept these tran-
sitions. It sets execute permissions in the Protection Page Table
only for the memory of the mode that is currently executing. Then,
all inter-mode transitions cause protection violations, which inform
SecVisor of an attempted mode change via a CPU exception. Fig-
ure 1 illustrates how SecVisor manages user memory permissions.

Given that SecVisor switches execute permissions on kernel en-
try and exit, a natural question arises: how are the execute permis-
sions set initially? At system startup, the kernel executes before
user programs. Therefore, the SecVisor initializes the Protection
Page Table so that (part of) the kernel memory is executable.

W ⊕ X protections. On each kernel mode transition, SecVisor
sets execute permissions in the Protection Page Table to achieve
property P2 by allowing only approved code to be executable. Then,
the CPU will generate an exception on every attempt to execute un-
approved code in kernel mode. When SecVisor receives such an
exception, it terminates the OS. SecVisor also marks the approved
code pages read-only in the Protection Page Table. This prevents
any code executing on the CPU (except SecVisor) from modify-
ing approved code pages, thereby satisfying part of property P4.
Figure 1 shows the Protection Page Table protections over kernel
memory for kernel mode execution. In kernel mode, the pages of
kernel memory will be either writable or executable, but never both.
This type of memory protection is calledW ⊕ X protection.

DMA write protections. SecVisor uses the DMA write protection
functionality of the IOMMU to protect approved code pages from

replacements

User Memory

Kernel Code

Kernel Data

RWX

R

RW

User Mode Kernel Mode

RW

RX

RW

Figure 1: Memory protections in the Protection Page Table for
user and kernel modes. R, W, and X stand for read, write, and
execute permissions, respectively. In case the kernel’s permis-
sions differ from those in the Protection Page Table, the actual
permissions will be the more restrictive of the two. For exam-
ple, it is likely that the kernel will mark its data segment to be
read-only in user mode. Then, in user mode, the actual permis-
sions over the kernel data segment would be R instead of the
RW shown in the figure.

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

����
����
����

����
����
����

CPU

MMU

IOMMU

MC

D1

D2

Peripheral Bus

Memory Bus

Main Memory

Figure 2: System-level overview of memory protections used
by SecVisor. MC is the memory controller, D1 and D2 are pe-
ripheral devices. The MMU enforces memory protections for
accesses from the CPU while the IOMMU enforces DMA write
protections.

being modified by DMA writes. These protections along with the
read-only protections set in the Protection Page Table ensure that
property P4 is satisfied. Figure 2 shows a system-level overview of
the different hardware memory protections used by SecVisor.

3.4 Managing Kernel Entries and Exits
We now discuss how SecVisor ensures that kernel mode entries

and exits satisfy properties P1 and P3.

Kernel mode entries. SecVisor ensures that all control transfers
through which the CPU enters kernel mode will set the IP to an
address within the approved code. This requires SecVisor to know
the target of every possible control transfer through which the CPU
can enter kernel mode. The key observation that allows us to find
the target of every possible control transfer to kernel mode is that
CPUs only allow the kernel code to be entered via entry points
designated by the kernel. This prevents user programs from trig-
gering arbitrary control flows in kernel code by entering at arbi-
trary points. The kernel informs the CPU about the permitted entry

points by writing the addresses of such entry points in CPU reg-
isters and data structures like the interrupt vector table (IVT). We
call them theentry pointers. Then, SecVisor only has to ensure that
all entry pointers contain addresses of instructions within approved
code to achieve property P1.

To find all the entry pointers, we need to find all the CPU data
structures that can contain entry pointers. By design, every CPU
architecture has a set of control transfer events that trigger CPU
execution privilege changes. Each such control transfer event has
an associated entry pointer in some CPU data structure. Therefore,
our strategy to find all the entry pointers is to first create the exhaus-
tive entry list of all control transfer events that can transfer control
to kernel mode. The entry list can be created from the architec-
ture specification of the CPU. Next, for each event in the entry list
we find the corresponding CPU data structure which holds its en-
try pointer. In this manner, we obtain the list of all the CPU data
structures which can hold the entry pointers.

SecVisor virtualizes the entry pointers and only permits the ker-
nel to operate on the virtualized copies. This allows SecVisor to
intercept and check all modifications to the entry pointers. This vir-
tualization can be performed in two ways. SecVisor can provide the
kernel with safe function calls through which the kernel can read
and modify the entry pointers. The other alternative is for SecVi-
sor to maintain shadow copies of the entry pointers for use by the
CPU, and keep the shadow copies synchronized with the kernel’s
entry pointers. As with virtualizing physical memory, the choice
between these two alternatives is a trade-off of performance versus
security and portability. We prefer the shadowing method because
it reduces the size of SecVisor’s kernel interface and also reduces
the number of changes required to port a kernel to SecVisor.

Kernel mode exits. All legitimate methods that exit kernel mode
will transfer control to code in user memory. If on each entry to ker-
nel mode the CPU will start executing approved code, i.e., property
P1 is satisfied, it is fairly direct to ensure that exits from kernel
mode will set the CPU privilege to that of user mode (property P3).

Recall from Figure 1 that SecVisor marks kernel memory non-
executable in user mode. If property P1 is satisfied, all kernel mode
entries will try to execute code in kernel memory, which will be
intercepted by SecVisor via a CPU exception. As part of handling
this exception, SecVisor will mark all user memory non-executable.
Then, any exit from kernel mode will cause a protection violation
leading to an exception. As part of handling this exception, SecVi-
sor sets the privilege level of the CPU to user mode.

4. BACKGROUND
Before we present the details of SecVisor’s implementation, in

this section we first give a high-level overview of the memory pro-
tection mechanisms of an x86 CPU. Then, we describe the virtual-
ization technology, by AMD called Secure Virtual Machine (SVM)
extensions, which is present in recent AMD x86 CPUs. Recent
CPUs from Intel also feature virtualization support. We use the
SVM extensions to virtualize the MMU, the IOMMU, and the en-
try pointers to implement SecVisor. Finally, we list the different
x86 control transfer events that can be used to enter and exit kernel
mode and the entry pointers they use. Readers who are familiar
with this material may wish to skip directly to Section 5.

4.1 Overview of x86 Memory Protections
This section gives a brief overview of the two memory protection

mechanisms in the x86 CPU: segmentation and paging.
Segment-based protections define four privilege levels called rings,

when the CPU executes in 32-bit mode. Ring 0 is the most priv-

ileged level while Ring 3 is the least privileged. The current ex-
ecution privilege level of the CPU is stored in the CPL register.
The CPL register is architecturally invisible, but the VMCB has a
CPL field that the host can use to indicate what privilege level the
guest should execute at after avmrun. Segment-based protections
divide up the memory into variable size regions called segments.
Each segment of memory has a descriptor associated with it. This
descriptor contains various attributes of the segment such as the
segment base address, the segment size, and the segment access
control permissions. The descriptors are stored in two tables called
the Global Descriptor Table (GDT) and the Local Descriptor Table
(LDT). The CPU has two registers called thegdtr andldtr that
contain the addresses of the GDT and LDT, respectively.1 Software
can refer to descriptors in the GDT and LDT by storing their indices
in the CPU’ssegment registers. There are six segment registers:
cs, ds, es, fs, gs, andss. Of these thecs segment register
holds the index of the descriptor of the code segment that the CPU
is currently executing from. Theds, es, fs, andgs segment
registers hold indices of descriptors of data segments while thess

segment register holds the index of the stack segment’s descriptor.
Page-based protections divide the virtual address space of the

CPU into pages of fixed size. The page tables are used to set the
access permissions of each page. Per-page execute permissions
are supported by the CPU only when the Physical Address Exten-
sions (PAE) paging mode is used. The CPU has a set of registers
called the Control Registers which allow software to control vari-
ous aspects of the MMU. In particular, the control registercr0 has
two bits calledcr0.pe andcr0.pg that allow software to turn the
MMU on/off, and turn paging on/off, respectively. The control reg-
istercr3 holds the physical address of the page tables, whilecr4

has thecr4.pae bit which turns PAE mode on/off.

4.2 Overview of AMD’s SVM extensions
SVM separates the CPU execution into two modes called guest

mode and host mode. The VMM (also referred to as host) executes
in host mode while all the virtual machines (VM) (also referred
to as guests) execute in guest mode. The host and guest modes
have separate address spaces. Software executing in both modes
can execute in any of the four privilege levels that are supported
by x86 CPUs. For example, under SVM, it is possible for both the
guest OS and the VMM to execute at the highest CPU privilege
level. Figure 3 shows one possible execution configuration of the
host and guest modes when using SVM extensions.

Each guest has a data structure called the Virtual Machine Con-
trol Block (VMCB) associated with it, which contains the execution
state of the guest. To execute a guest, the VMM calls thevmrun in-
struction with the VMCB as the argument. The CPU then loads the
execution state of the guest from the VMCB and begins executing
the guest. Once started, the CPU continues to execute the guest
until an event occurs which has been intercepted by the VMM. On
hitting an intercept, the CPU suspends the execution of the guest,
stores the guest’s execution state in the VMCB, and exits to the
host. The host then executes until it resumes a guest usingvmrun.

ASID support. SVM adds Address Space Identifier (ASID) bits
to the Translation Lookaside Buffer (TLB) entries in order to allow
the CPU to distinguish between the TLB entries of the different
address spaces (the host and guests) that can co-exist due to virtu-
alization. Tagging the TLB entries with the ASID eliminates the
need for the host to flush the TLB when switching address spaces.

1This is a slight simplification. Theldtr actually stores the selec-
tor of the LDT descriptor in the GDT. The LDT descriptor in the
GDT contains the LDT’s base address.

CPU

Guest Host

OS VMM

Apps Ring 3

Ring 2

Ring 1

Ring 0

Figure 3: A VMM and one guest VM executing on a CPU with
SVM extensions. Both the VMM and the guest VM have ac-
cess to all four x86 CPU privilege levels. Within the guest VM,
the OS executes at the highest CPU privilege level, while user
applications execute at the lowest CPU privilege level.

Intercepts. Intercepts allow the host to intercept various CPU
events that occur during execution in guest mode. The host indi-
cates which events in the guest it wants to intercept by setting bits
in the VMCB. Through intercepts, the host mode in SVM has a
greater control of the CPU than the guest mode because the host can
control what operations the guests are allowed to perform. SVM
defines four kinds of intercepts: instruction intercepts, interrupt and
exception intercepts, IO intercepts, and MSR intercepts. Instruc-
tion intercepts allow the host to intercept the execution of various
instructions. Interrupts and exceptions delivered to the guest are in-
tercepted by means of the interrupt and exception intercepts. SVM
has a mechanism calledevent injection that allows the host to pass
the intercepted interrupts and exceptions to the guest. To inject an
interrupt or exception into the guest, the host fills in the event injec-
tion field of the VMCB with details of the interrupt or exception,
such as the vector number.

IO intercepts are used by the host to intercept reads and writes of
x86 IO ports by the guest. Finally, MSR intercepts allow the host
to intercept guest reads and writes to the Model Specific Registers
(MSR) within an x86 CPU. The MSRs are special configuration
registers that allow software control of various aspects of the CPU
such as turning on or off different CPU features.

Device Exclusion Vectors (DEV). SVM provides support for a
limited IOMMU by modifying the memory controller to add DMA
read and write protection support for physical memory on a per
page basis. This protection is enabled through the use of Device
Exclusion Vectors (DEV), which are bit vectors with one bit for
each 4 Kbyte physical page. If the bit corresponding to a physical
page is set to 1, the memory controller disallows any DMA reads
from or DMA writes to that page.

The DEV mechanism is controlled through a set of configura-
tion registers which are mapped to the Peripheral Component In-
terconnect (PCI) Configuration Space. Software can read and write
registers in the PCI Configuration Space using two I/O ports called
the Configuration Address Port and the Configuration Data Port.
Software writes the address of the register it wants to access to the
Configuration Address Port and reads or writes the register by read-
ing or writing the Configuration Data Port.

Nested page tables (NPT).Since the host virtualizes physical
memory, a guest’s view of its physical address space could be dif-
ferent from the actual layout of the CPU’s physical address space.
Therefore, the host needs to translate the guest’s physical addresses
to the CPU’s physical addresses (also called the host physical ad-
dresses). SVM provides nested page tables (NPT) for this purpose.
Put another way, the NPT provide hardware-supported physical

VA
PT GPA NPT

PA

Figure 4: Operation of the nested page tables. VA is the vir-
tual address space, PT are the kernel’s page tables, GPA is the
guest’s physical address space, NPT are the nested page tables,
and PA is the CPU’s physical address space.

memory virtualization. The NPT is maintained by the host; the
kernel maintains its own page tables to translates virtual addresses
to guest physical addresses. This two step translation from virtual
to host physical addresses is illustrated in Figure 4. Note that the
NPT is used only when the CPU is executing in guest mode. When
executing in host mode, the CPU will use the page tables of the
host since the host executes in its own address space.

Accesses to physical memory pages are subjected to permission
checks in both the NPT and kernel page tables. In particular, a page
is writable only if it is marked writable both in the kernel page table
and in the NPT. Similarly, the contents of a page are executable
only if the page is marked executable in both the kernel page tables
and in the NPT. The CPU generates a Nested Page Fault exception
and exits back to the host on any NPT protection violation.

The NPT mechanism also provides separate copies of the all con-
trol registers for the host and the guest, exceptcr2. In the rest of
this paper, we will refer to the guest and host copies of the con-
trol registers by prefixing the name of the register with a “guest_”
and “host_” respectively. For example,guest_cr0 will refer to
the guest’s copy ofcr0 when nested paging is used. The guest con-
trol registers control the MMU configuration for address translation
between virtual and guest physical addresses and the host control
registers control guest physical to host physical address translation.

Late launch. Late launch is a capability of SVM that allows the
CPU to execute an arbitrary piece of code in isolation from all en-
tities on the system, but the CPU, the memory controller, and the
memory. A late launch can be invoked at any time during the op-
eration of the system. If the system has a Trusted Platform Module
(TPM) chip, late launch also allows an external verifier to verify
that the execution of the code on the system was untampered.

4.3 Control Transfer Events on the x86
In this section, we give an overview of the control transfer events

on the x86 platform that perform inter-ring switches. We also men-
tion the CPU registers and data structures that hold the correspond-
ing entry pointers.

An x86 CPU assumes that control transfers between rings always
originate at a lower privilege ring. In other words, a lower privilege
ring calls a higher privilege ring, whichreturns to the lower priv-
ilege ring. Then,exit list of events that can cause the CPU to exit
kernel mode contains thereturn family of instructions of the x86:
ret, iret, sysexit, andsysret [2].

The entry list consists of the hardware interrupts and the excep-
tions, and the instructions in thecall family: jmp, call, sysen-

ter, int (software interrupt), andsyscall [2]. The entry point-
ers for hardware interrupts and exceptions, and software interrupts
are located in the interrupt descriptor table (IDT). The CPU has a
register called theidtr which holds the address of the IDT. We
now briefly describe the remaining instructions in the entry list: the
jmp, call, sysenter, andsyscall.

jmp and call. The x86 architecture does not allow thecall and
jmp instructions to directly specify a higher privilege code segment
as the target. Instead, the instruction must use acall gate, a task
gate, or a task descriptor. The kernel is expected to set up these
gates with the addresses of acceptable entry points. The CPU then
ensures that thejmp and thecall instructions can transfer control
only to entry points permitted by the kernel. The task gates and the
call gates can reside in the GDT or the LDT. Task descriptors can
only reside in the GDT. Therefore, the entry pointers for thejmp

and thecall instructions exist in the GDT and the LDT.

sysenter and syscall.Sysenter andsyscall are special instruc-
tions that decrease the latency of system calls. The entry pointers
for thesysenter and thesyscall instructions are in MSRs.

The sysenter instruction uses the MSRsmsr_sysenter_cs
andmsr_sysenter_eip for its entry pointer. When a user mode
program executes thesysenter instruction, the CPU loads the
cs segment register and the IP from themsr_sysenter_cs and
msr_sysenter_eip respectively. Thesyscall instruction was
recently introduced as replacement forsysenter. The use of this
instruction is enabled by setting theefer.sce bit of the MSR
efer. It uses themsr_star for its entry pointer. On the execu-
tion of thesyscall instruction, the CPU loadscs and the IP with
bits 47-32 and bits 31-0 of thestar respectively.

5. IMPLEMENTATION USING AMD SVM
In this section, we discuss how we realize the SecVisor design

described in Section 3 on a system that has an AMD CPU with
SVM extensions. We first describe how SecVisor protects its own
memory. Then we talk about physical memory virtualization in
SecVisor. After that, we discuss the DEV mechanism virtualization
and finally, how SecVisor handles kernel entry and exit.

5.1 Allocating and Protecting SecVisor Mem-
ory

SecVisor executes in SVM host mode. This ensures that it exe-
cutes at a higher CPU privilege level than the kernel and allows it to
intercept events in the guest to virtualize the MMU, the IOMMU,
and physical memory. Also, using the host mode gives SecVisor its
own address space, which simplifies protection of SecVisor’s mem-
ory. SecVisor ensures that its physical memory pages are never
mapped into the Protection Page Table. Since the Protection Page
Table is maintained by SecVisor it is simple to check that the above
condition holds. Also, SecVisor protects its physical pages against
DMA writes by devices.

The question of which physical pages SecVisor should allocate
for its own use requires consideration. The main issue here is that
of handling DMA correctly. In a system with SecVisor, all DMA
transfers are set up by the kernel and use physical addresses to spec-
ify the source and destination. Since SecVisor virtualizes physical
memory, the guest physical addresses which the kernel uses can
be different from the host physical addresses seen on the memory
bus. Therefore, guest physical addresses that the kernel uses to
set up DMA transfers need to be translated to host physical ad-
dresses for DMA transfers to work correctly. The ideal solution
to this problem is to use an IOMMU that will translate the guest
physical addresses used by a device during DMA to host physical
addresses. SecVisor only needs to ensure that the IOMMU has the
correct Protection Page Table. However, SVM currently does not
provide such an IOMMU facility. In the absence of hardware sup-
port, SecVisor could intercept all DMA transfer setup performed
by the kernel in order to translate between guest and host physical
addresses. However, intercepting DMA transfer setup is not sim-

ple. It depends heavily on the design of the kernel as it requires the
kernel to call SecVisor as part of each DMA transfer setup. Hence
we prefer not to use this method, given our desire to reduce the size
of SecVisor’s kernel interface and minimize the changes required
to port the kernel.

Instead, SecVisor circumvents the whole issue of translating ad-
dresses for DMA by making sure that the guest to host physical
address mapping is an identity map. To achieve the identity map-
ping, SecVisor allocates its physical memory starting from the top
of the installed RAM.2 The kernel can use all memory from address
zero to the start of SecVisor’s physical memory. SecVisor also in-
forms the kernel of the reduced physical memory available to it by
passing a command line parameter at kernel boot.

5.2 Virtualizing the MMU and Memory
We now discuss how SecVisor virtualizes the MMU and physical

memory to set page-table-based memory protections. The details
depend on whether we use a software or a hardware method to vir-
tualize physical memory. The software virtualization uses shadow
page tables (SPT) as the Protection Page Table, and the hardware
virtualization uses the SVM NPT. Even though the NPT offers bet-
ter performance, we implement SPT support in SecVisor because
current x86 CPUs from AMD do not have support NPT. According
to AMD, suitable CPUs should be available in Fall 2007.

Hardware memory virtualization. SVM’s nested paging facil-
ity provides a second set of page tables (the NPT) that translate
guest physical addresses to host physical addresses (Figure 4).The
NPT is very well suited for setting page-table-based protections
both from a performance and security perspective.

First of all, the design of SVM ensures that access permissions
of a physical page are the more restrictive of those in the kernel’s
page tables and the NPT. Therefore, SecVisor uses the NPT to set
its memory protections, without any reference to the kernel’s page
tables. Then, SecVisor only needs to protect the NPT, which it
accomplishes by allocating physical pages from its own memory
for the NPT. Since SecVisor’s physical pages are never accessible
to the guest and they are protected against DMA writes, the NPT is
inaccessible to everything but SecVisor and SecVisor’s TCB.

Secondly, the nested paging facility eliminates the need for SecVi-
sor to intercept kernel writes to the MMU state. It provides the
guest and host with their own copies of the Control Registers, which
control MMU state. Since SecVisor only uses the NPT to set its
protections, it can allow the kernel (guest) to freely modify the
guest control registers. Put another way, with nested paging, SecVi-
sor can virtualize the MMU without intercepting kernel writes to
the control registers. Also, since the contents of the NPT are com-
pletely independent from those of the kernel’s page tables there is
no need for SecVisor to update the NPT when the kernel makes
changes to the kernel’s page tables. Clearly, both of these result in
better performance and decrease the code size of SecVisor.

The only drawback of using the NPT is that the kernel needs to
pass guest physical addresses rather than virtual addresses in its re-
quests to SecVisor to change memory permissions. However, this
requirement for address translation is unlikely to be a performance
bottleneck since this is not a frequent event (modification of mem-
ory permissions only needs to be done when kernel modules are
loaded or unloaded). Also, passing guest physical addresses does
not require any modifications to the Linux kernel since it already
has functions to translate between virtual and physical addresses.

2The addresses at the top of RAM are used by the ACPI code.
SecVisor allocates its space starting from just below the ACPI re-
gion.

User Memory

Kernel Code

Kernel Data

RWX

R

RWX

User Mode Kernel Mode

RW

RX

RW

Figure 5: NPT based memory protections for user and kernel
modes. R, W, and X stand for read, write, and execute permis-
sions, respectively.

As mentioned in Section 3.3, there are two tasks that SecVisor
accomplishes via page-table-based protections. One, it sets W⊕

X protections over kernel memory when executing in kernel mode.
Two, it modifies the execute permissions of user and kernel mem-
ory depending on whether the CPU executes in kernel or user mode.
Both tasks are easily accomplished using the NPT.

To set the W⊕ X protections, SecVisor maintains a list of guest
physical pages that contain approved code. The kernel can request
modifications to this list. Any requests to add new entries in the list
must be approved by the approval policy. When executing in kernel
mode, SecVisor clears the no-execute (NX) permission bit only for
the NPT entries of guest physical pages in the list (Figure 5).

Modifying execute permissions over user and kernel memory re-
quires SecVisor to know which guest physical pages contain the
kernel’s data segment and which are user pages. SecVisor could
maintain a list of guest physical pages that belong to the kernel’s
data segment similar to that for the kernel code. However, adopt-
ing this design is likely to degrade performance since the pages
frequently move between the kernel data segment and user space.
Therefore, we adopt a different design.

When the CPU executes in user mode, SecVisor marks all guest
physical pages except those containing approved code executable
in the NPT. Note that this does not open an avenue for attacks that
could execute kernel data segments in kernel mode since property
P1 guarantees that all control transfers to kernel mode will set the IP
to an address within approved code, and SecVisor satisfies property
P1 using a different mechanism than the NPT (by ensuring that the
entry pointers all point to approved code). Note that SecVisor still
makes the approved kernel code non-executable during user mode
execution so that all transitions from user mode to kernel mode can
be easily intercepted via nested page faults.

To make switching between user mode and kernel mode effi-
cient, both in terms of latency and code size, SecVisor maintains
two NPTs, one for address translations during user mode execution
and the other for address translations during kernel mode execu-
tion. These two NPTs set different permissions on user and kernel
memory as Figure 5 shows. The synchronization costs of maintain-
ing two NPTs are not high since the NPTs need to be modified only
when kernel code is changed.

On each transition from user mode to kernel mode or vice versa,
SecVisor changes thehost_cr3 register in the VMCB to point to
the NPT of the mode that is going to execute next. In order to avoid
flushing the TLB as part of these transitions, SecVisor associates
the two NPTs with different ASIDs. The drawback of doing this

is increased TLB pressure due to the fact that the translation for
the same virtual address could exist in the TLB under two differ-
ent ASIDs. We use this optimization under the assumption that the
performance benefits of not having to flush the TLB on every tran-
sition from user to kernel should be greater than the performance
degradation due to the increased TLB pressure.

Software memory virtualization. We now describe SecVisor’s
software memory virtualization technique based on shadow page
tables (SPT). A SPT virtualizes memory by maintaining the map-
ping between virtual and host physical addresses. Therefore, the
SPT needs to be kept synchronized with the kernel’s page tables.
Using an SPT-based approach incurs both a code size increase and
performance penalty compared to a NPT-based implementation.

The SPT implementation in SecVisor uses a single SPT for both
user and kernel mode execution. As with the NPT, SecVisor pro-
tects the SPT by allocating physical pages for it from SecVisor’s
memory. SecVisor keeps the SPT synchronized with the current
kernel page table. Having a single SPT increases the cost of tran-
sitions between the user and kernel modes since execute permis-
sions over user and kernel mode have to be modified on each tran-
sition. In spite of this, we do not use an SPT each for user and
kernel mode due to fact that SPTs need to modified far more fre-
quently than NPTs. Unlike the NPTs which only need to modified
on changes to kernel code, the SPT needs to modified whenever the
kernel makes modifications to its current page table (for example,
on a page fault) or when it makes another page table current (as
part of a context switch). Having to synchronize two SPTs with
the kernel’s page table would double the number of memory writes
needed for the frequently used SPT synchronization operation.

Like the NPT, SecVisor performs two operations on the SPT:
set W⊕ X protections over kernel memory and modify execute
permissions over user and kernel memory on each mode transition.
Figure 6 shows how SecVisor sets protections in the SPT for user
and kernel mode execution. It can be seen that when executing in
kernel mode, SecVisor sets W⊕X protections over kernel memory.
One point to note is that when SecVisor uses shadow paging, the
SPT are the only page tables used by the CPU. Therefore, (unlike
the NPT) the permissions that SecVisor sets in the SPT must be the
more restrictive of the its own permissions and those of the kernel.

SecVisor needs to modify execute permissions of user and kernel
memory so that all mode transitions cause page faults. To minimize
the overhead of modifying the execute permissions on each transi-
tion between user and kernel modes, SecVisor uses the NX bits in
the page table entries in the second level of the page table hierarchy
(the first level entries do not have NX bits). This optimization al-
lows SecVisor to switch execute permissions by changing the NX
bits in only 4 page tables.3

Figure 7 shows the different guest operations that SecVisor needs
to intercept in order to synchronize the SPT with the kernel’s page
tables. Thecr3 register holds the pointer to the page tables. There-
fore, the kernel will write tocr3 when it wants to use a new page
table. SecVisor intercepts this write and copies the new kernel page
table into the SPT. Theinvlpg instruction is used to invalidate a
single TLB entry. When the kernel modifies an existing page table
entry it must invalidate the corresponding TLB entry. Intercepting
the execution ofinvlpg enables SecVisor to synchronize the SPT
with modified kernel page table entry. Finally, when the kernel cre-
ates a new entry in its page tables, and attempts to use it, it will
cause a page fault since the corresponding entry will not exist in

3Modifying NX permissions of the approved code pages alone does
seem to benefit performance due to the extra state that has to be
maintained to do this.

User Memory

Kernel Code

Kernel Data

RWX

NA

NA

User Mode Kernel Mode

RW

RX

RW

Figure 6: SPT based memory protections for user and kernel
modes. R, W, and X stand for read, write, and execute permis-
sions, respectively. NA stands for Not Accessible. The permis-
sions shown correspond to are the more restrictive of those set
by the kernel and by SecVisor.

Kernel PT ops

Use new PT Modify PT

Write cr3 Modify entry Create new entry

Executeinvlpg PF

Figure 7: Design of SecVisor SPT synchronization code. Each
non-leaf node indicates an operation that the kernel can per-
form on its page tables. The leaf nodes indicate the guest event
that SecVisor must intercept to learn of the corresponding ker-
nel operation. PT and PF stand for Page Table and Page Fault
respectively.

the SPT. SecVisor handles suchshadow page faults to synchronize
the SPT by copying the newly created kernel page table entry.

The current SPT synchronization code of SecVisor uses a very
simple design that trades off performance for security and ease of
porting a kernel. For example, the synchronization code does not
try to aggressively batch the synchronization of the SPT in order to
amortize synchronization costs. On the other hand, we do not need
to make any modifications to the kernel’s page table handling code.

SecVisor also needs to virtualize the MMU in order to control
modifications to MMU state. SecVisor intercepts writes to thecr0

andcr4 registers for this purpose. Thepe andpg bits in cr0 turn
the MMU on/off and paging on/off respectively. Since SecVisor
uses hardware memory protections, it is not desirable to allow the
guest software to either turn off the MMU or paging. Thecr4
register contains thepae bit which turns PAE mode on and off.
Setting execute permissions over memory pages (using the NX bit)
requires the CPU to use PAE mode paging, and therefore, it is not
desirable for guest software to clear this bit.

5.3 Virtualizing the DEV Mechanism
As we mentioned in Section 4, SVM has the DEV mechanism to

control DMA access to physical pages of memory. Guest software
and devices need to be prevented from modifying both the DEV bit
vector and the DEV configuration registers in the PCI configura-

tion space. SecVisor protects the DEV bit vector in the same man-
ner it protects the SPT and the NPT: by allocating physical pages
for the bit vector from its own memory. By design, the memory
controller blocks all accesses from devices to the DEV PCI config-
uration space. SecVisor protects the DEV configuration registers
against writes by guest software by virtualization.

The I/O intercept mechanism of SVM provides a convenient way
for SecVisor to virtualize the DEV configuration registers. SecVi-
sor intercepts all writes to the Configuration Data Port. The I/O
intercept handler in SecVisor blocks any write to the DEV config-
uration registers. It figures out the target of the write by looking
at the the address in the Configuration Address Port. If the write
is going to any other PCI configuration register the I/O intercept
handler performs the write on behalf of the guest software.

5.4 Kernel Mode Entry and Exit
We now describe how SecVisor achieves properties P1 and P3

on the x86 architecture. Property P3 requires that all kernel mode
exits set the privilege level of the CPU to that of user mode. In case
of Linux executing on a x86 CPU this user programs execute in
Ring 3. Then, on kernel exit SecVisor must set the privilege level
of the CPU to Ring 3. As we already pointed out in Section 3.4,
as far as all kernel entries set IP to approved code (property P1),
all kernel mode exits will cause a protection exception. As part of
handling this exception SecVisor sets the CPL field of the VMCB
to 3, thereby ensuring that when the guest resumes execution, the
CPU will execute in Ring 3.

SecVisor ensures that all CPU entries into kernel mode will sat-
isfy property P1 (IP will point to approved code at entry) by check-
ing that all entry pointers point to approved code. From Section 4.3,
we see that the entry pointers all exist in the GDT, the LDT, the
IDT, and some MSRs (forsyscall andsysenter). Then, from
Section 3.4, we need to maintain shadow copies of the three tables
and the relevant MSRs to satisfy property P1. In the rest of this
section, we describe how SecVisor maintains the shadow copies of
the different entry pointers on the x86.

Maintaining shadow copies of the MSRs is simple since SVM
provides facilities for intercepting read and write to each MSR.
SecVisor sets bits in the VMCB to intercept writes to the MSRs
msr_sysenter_cs, msr_sysenter_ip, and themsr_star. The
intercepts enable SecVisor to check whether the entry pointers the
kernel writes to these MSRs point to approved code.

Shadowing the GDT, LDT, and IDT is somewhat more involved
since our goal is to check and protect not only the CPU pointers
to the GDT, LDT, and IDT (thegdtr, ldtr, andidtr) but also
the contents of the tables themselves. While SVM provides facil-
ities to intercept writes to thegdtr, ldtr, andidtr, the tables
themselves exist in memory and need to be virtualized by software
means. In what follows, we first discuss how SecVisor synchro-
nizes the shadow copies of these tables with their kernel counter-
parts. Then, we tackle the issue of protecting the shadow tables.

To deal with the synchronization issue, we observe that the shadow
copies of these tables only need to control execution in user mode
since property P1 deals with transition from user mode to kernel
mode. In other words, during kernel mode execution the CPU can
use the kernel’s GDT, LDT, and IDT. This observation enables two
simplifications. One, SecVisor does not need to intercept writes
to thegdtr, ldtr, andidtr since these registers should be le-
gitimately written only in kernel mode. SecVisor only needs to
modify these registers before allowing user mode to execute. This
it does by changing the corresponding values in the VMCB as part
of handling a kernel to user mode transition. Two, we can imple-
ment alazy synchronization scheme to maintain shadow copies of

the GDT, LDT, and IDT. This lazy synchronization scheme only
synchronizes the shadow tables as part of handling the protection
exception that signals a transition from kernel to user mode. Since
all legitimate modifications to these tables can only occur in ker-
nel mode, the lazy synchronization allows SecVisor to batch all its
updates to the shadow copies. As part of the synchronization, the
exception handler checks that all entry pointers in the shadow GDT,
LDT, and IDT point to approved code.

From the description of our lazy synchronization scheme and
from the description of the manner in which SecVisor handles ker-
nel exits, it can be seen that a circular dependency exists: the lazy
synchronization requires each exit from kernel mode to cause an
exception so that the entry pointers in shadow GDT, LDT, and IDT
can be checked (property P1), and ensuring that an exception will
occur on kernel mode exit requires that the shadow GDT, LDT, and
IDT contain valid entry pointers (property P1)! We break this cir-
cular dependency by setting up initial condition. We note that at
system startup the kernel executes before user programs. SecVi-
sor sets protections at system startup that make all user memory
non-executable. Thereby, the first exit from kernel mode will ax-
iomatically cause a CPU exception.

We now take up the issue of write-protecting the shadow tables.
Note that, due to our lazy synchronization scheme, the shadow ta-
bles only need to be protected from being written to when the CPU
executes in user mode. The simplest way to do this seems to be to
not map the shadow tables into the guest’s address space at all (like
we do for the SPT and the NPT). However, not mapping the shadow
tables into the guest’s address space increases the code size and
complexity of SecVisor and also decreases performance. The pre-
ceding claim can be justified by the observation that if the shadow
tables are not mapped into the guest’s virtual address space then
SecVisor will have to simulate every one of the many CPU events
in user space that access these tables. For example, hardware inter-
rupts require the CPU to read the address of the interrupt handler
from the IDT. If the IDT is not mapped into the guest’s virtual ad-
dress space, the CPU will generate a page fault. SecVisor could
intercept this page fault to learn of the occurrence of the interrupt.
Then, it would have simulate the delivery of the interrupt to the
guest. Clearly, complexity and code size of SecVisor.

To simplify the design of SecVisor, we decided to keep the shadow
tables mapped in the guest’s virtual address space. SecVisor needs
a contiguous range of virtual addresses in the guest’s virtual ad-
dress space in order to perform the this mapping. When the ker-
nel boots, SecVisor requests it to permanently allocate 256 Kbytes
of contiguous virtual addresses within kernel memory for holding
the shadow tables and to statically map this range of addresses of
a contiguous range of guest physical addresses. In the discussion
that follows, we call this region theshadow table area. SecVisor
maintains the shadow GDT, LDT, and IDT in shadow table area
and write-protects this area to prevent writes in the CPU executes
in user mode. The exact method SecVisor uses to write-protect the
shadow table area depends upon whether it uses shadow paging or
nested paging to virtualize physical memory.

Shadow Page Tables.With shadow paging, the method is straight-
forward: SecVisor sets up read-only mappings in the SPT entries
that map the virtual address of the shadow table area to host phys-
ical addresses. Recall from Section 5.1 that the guest to host phys-
ical address mapping is the identity map. Therefore, SecVisor fills
the address field of the SPT mapping the virtual addresses of the
shadow table area with the guest physical addresses allocated by
the kernel at boot. Note also that the virtual and guest physical ad-
dresses of the shadow table area do not change during the system
lifetime. Therefore, the SPT entries need to be set only once.

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

gdtr

ldtr

idtr

KPT NPT

HP

Physical Memory

GPVirtual

SLDT

SGDT

SIDT

Figure 8: Sequence of address translations required to get to
the shadow GDT, LDT, and IDT (SGDT, SLDT, and SIDT
in the figure) using the virtual addresses stored in thegdtr,
ldtr, and idtr. KPT and NPT are the kernel and nested page
tables respectively. HP refers to host physical address space
and GP to guest physical address space.

Nested Page Tables. When using nested paging, SecVisor can-
not set the read-only permissions for the virtual addresses of the
shadow table area only in the NPT. This is because, as shown in
Figure 8, the NPT permissions only operate on the guest physical
addresses. It is the kernel’s page table that translates the virtual
addresses of the shadow table area into guest physical addresses.
Therefore, setting permissions in the NPT alone could allow the at-
tacker to modify the kernel’s page table to map the virtual addresses
of the shadow table area to different guest physical addresses that
are writable from user mode. To prevent this attack, SecVisor must
check that the kernel’s page table entries that translate the virtual
addresses of the shadow table area contain the guest physical ad-
dresses allocated to shadow table area by the kernel at boot. Then,
it must protect the kernel’s page table from being modified when
the CPU executes in user mode.

To protect the kernel’s page table, observe that the CPU accesses
the kernel’s page tables using guest physical addresses. Then, the
kernel’s page table could be protected from writes by guest user
mode software by simply removing the write permissions in the
NPT for the guest physical addresses of the kernel’s page tables.
Also, the DEV bit vector needs to protect the physical pages that
contain the kernel’s page table from DMA writes. Adopting this
approach requires that the NPT used for user mode execution and
the DEV bit vector be modified on each context switch since each
user process will have a different page table. Also, the TLB will
need to be flushed. Modifying the DEV bit vector requires that
the bit vector cache in the memory controller be invalidated. This
invalidation requires software to set a bit in the DEV configuration
registers and monitor the bit until it is cleared by the hardware. The
clearing of the bit indicates that the hardware has invalidated the
DEV bit vector cache. For performance, we would like to avoid
performing several memory writes to the NPT, a TLB flush, and a
DEV bit vector modification in SecVisor on each context switch.

Alternately, we could copy the kernel’s page table into the shadow
table area. Since the shadow table area exists at the same guest
physical address, and hence host physical address, for the entire
lifetime of the system both the NPT and DEV bit vector protec-
tions need to be set only once. However, this solution also requires
several memory writes since the kernel’s page table can be large.

However, SecVisor need not copy the entire kernel page table.
To understand why this is true, observe that a page table describes
a function between virtual and physical addresses. Therefore, it can
map a given virtual address to exactly one physical address.4 Then
SecVisor only needs to protect those page tables in all levels of the

4Note that the split-TLB attack [26] does not apply here since only
the data TLB will be used.

page table hierarchy of the kernel’s page table whose entries trans-
late the virtual addresses of the shadow table area to guest physical
addresses. This greatly reduces the amount of data that needs to be
copied into the shadow table area.

In summary, to protect the kernel’s page tables, SecVisor copies
the relevant page tables in all levels of the page table hierarchy into
the shadow table area. The guest physical addresses of the shadow
table area are marked read-only in the NPT and the host physical
pages of the shadow table area are protected from DMA writes.
SecVisor also modifies the guest’scr3 for user mode execution
to point to the top-level page table in the shadow table area and
modifies the pointers in the page table entries at all levels of the
page table hierarchy to reflect the copy. Only a few (often just one)
pointers per level of the page table hierarchy need to be modified.

Now that it is guaranteed that the kernel’s page table will map
the virtual addresses of the shadow table area to the guest physical
addresses allocated by the kernel at boot, and the guest physical ad-
dresses of the shadow table area are marked read-only in the NPT,
and the host physical pages of the shadow table area are protected
against DMA writes, the shadow GDT, LDT, and IDT cannot be
modified during user mode execution. Recall that SecVisor’s lazy
synchronization code sets thegdtr, ldtr, andidtr to the vir-
tual addresses of the shadow tables. This means that the CPU uses
the shadow tables, which hold correct entry pointers, during user
mode execution. This along with the fact that the MSRs used by
syscall and sysenter also contain correct entry pointers, en-
sures that property P1 is satisfied.

6. PORTING THE LINUX KERNEL
In this section we discuss how we port the Linux kernel to SecVi-

sor, by illustrating how SecVisor handles the two kinds of code that
can be loaded into kernel memory: the main Linux kernel which is
loaded at bootstrap, and the kernel modules which are dynamically
loaded and unloaded during the lifetime of the system.

6.1 Main kernel
The main kernel makes calls to the Basic Input and Output Sys-

tem (BIOS) as part of its initialization. Since the BIOS executes
in Ring 0, SecVisor would have approve the BIOS code. However,
approving the BIOS code is not simple because of the diversity and
complexity of the BIOS subsystem. For example, some BIOS only
map a part of the Flash chip containing the BIOS image into the
physical address space of the CPU. Others map their code into sev-
eral different regions of physical memory whose locations might
differ from system to system. Approving the BIOS could add con-
siderably to the code size and complexity of SecVisor.

Fortunately, the Linux kernel is designed so that after its initial-
ization, it does not make any more calls to the BIOS. Even more
conveniently, the main kernel’s code is divided into two parts: the
bootstrap part which contains all the calls to the BIOS and the run-
time. In view of this, all we need to do is launch SecVisor after
the bootstrap finishes execution and SecVisor does not have to deal
with the BIOS at all!5 Note that this does not weaken the security
guarantee offered by SecVisor since the bootstrap code is never
used by the kernel again. In fact, the memory used by the bootstrap
code is reclaimed by the runtime.

Figure 9 shows the normal bootstrap sequence of Linux. The
bootloader loads the kernel into memory and jumps to the kernel’s

5This is not the whole story. A System Management Interrupt
(SMI) still invokes the BIOS. However, SVM provides a way to
invoke the System Management Mode (SMM) handler under the
control of the host. A description of how we can use this feature of
SVM to safely handle SMI is given in Section 8.

Setup

Setup

Decompress

Decompress

Kernel

Kernel

Kernel

KernelSecVisor

Linux bootstrap

Linux bootstrap with SecVisor

Figure 9: Modifying Linux’s bootstrap. decompress_kernel in-
vokes SecVisor usingskinit.

bootstrap code. The kernel’s bootstrap code consists of two parts: a
setup function and adecompress_kernel function. Thesetup
function executes first and initializes the hardware with calls to the
BIOS. It then jumps to thedecompress_kernel function, which
performs further hardware initialization, decompresses the runtime,
and jumps to start address of the runtime.

We modify this boot sequence to makedecompress_kernel
invoke SecVisor via theskinit instruction (the bootloader loads
SecVisor into memory along with the kernel) as shown in Fig-
ure 9. The late launch feature ofskinit ensures that SecVisor
will now execute untampered by any entity on the system.de-

compress_kernel also passes the start and end addresses of the
run-time’s code segment as parameters to SecVisor. SecVisor then
performs its initialization and passes the runtime image to the ap-
proval policy for approval. We use an approval policy based on a
whitelist of cryptographic hashes in our implementation. Our ap-
proval policy computes a SHA-1 [13] hash of the kernel runtime
and checks if the hash exists in the whitelist. If the approval policy
approves the runtime, SecVisor creates a VMCB whose CPU state
is set to the state of the CPU at the time when the runtime starts
executing during a normal bootstrap. Finally, SecVisor sets mem-
ory protections over the runtime code, and transfers control to the
runtime using thevmrun instruction.

We need to address a few additional issues in the above imple-
mentation. One is the issue of validating the start and end addresses
of the main kernel code image passed by thedecompress_kernel

function. This can be simply handled by noting that if the start
and end addresses passed to SecVisor are different from their cor-
rect values, then the main kernel code image should differ from its
expected value, and should be rejected by the approval policy.

The second issue is that it is impossible, under the W⊕ X pro-
tection scheme, to set suitable protections for pages that contain
both code and data. To address this issue, we modify the kernel
linker script to ensure that start addresses of all data segments of
the runtime are page aligned.

6.2 Kernel modules
The main issue with modules is that the module loading code

in the kernel relocates the module executable to link it with the
kernel. The module image will look different after the relocation
than before. Since the load address of a module can vary each
time it is loaded and can vary between systems, it is impractical to
create an approval policy to deal with all possible load addresses of
all possible modules on every system. It is also not safe to approve
the module code image before relocation by the kernel. Now the
kernel will modify the module code image after approval and it is
difficult to verify that the kernel’s writes are not malicious.

Our solution to the above conundrum is to have SecVisor per-
form the relocation after subjecting the module to approval by the

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Init Region

Runtime Region

.init.text

.text, .exit.text

Empty

Empty

Figure 10: Layout of different modules sections in memory. In
the figure we assume that the Init Region and Runtime Region
are both one page in size. Both regions start at page aligned
addresses and there is empty space between the end of the code
and the end of the page.

approval policy. The kernel informs SecVisor of the virtual ad-
dresses from which the module will execute. Thus, the kernel does
not get to write to the module code after its approval. Also, as we
show in Section 7, the increase in SecVisor’s code size due to the
relocation code is small.

Kernel modules can be loaded and unloaded dynamically. There-
fore, SecVisor needs to set protections over module code on a mod-
ule load and remove these protections on a module unload. We
describe next how SecVisor handles module loads and unloads.

Module loading. Linux kernel module files on disk are relocat-
able object files in the Executable and Linkable Format (ELF) for-
mat. All module code is contained in three ELF sections:.text,
.init.text, and.exit.text. From the kernel source code, we
find that it puts.init.text in one memory region and.text
and.exit.text contiguously in another memory region. For the
purposes of this description, we call the first memory region the
init region and the second memory region theruntime region. Fig-
ure 10 shows how the module code is laid out. The figure shows
the two regions as being contiguous in memory but this need not
always be true. Finally, the kernel relocates the module code using
the addresses of the two regions as inputs.

We modify the control flow of the kernel’s module loading code
in the functionload_module, so that it invokes SecVisor via a hy-
percall, after copying the module’s code into the init and runtime
regions. The arguments to the hypercall are the start and end ad-
dresses of the init and runtime regions (virtual addresses in shadow
paging, and virtual and guest physical addresses in nested paging).
On receiving the hypercall, SecVisor first calls the approval policy
to check the module code. As with the main kernel any incorrect
arguments to the hypercall will cause the approval check to fail. If
the check passes, SecVisor relocates the module based on the argu-
ments of the hypercall. Finally, SecVisor fills the empty space in
the init and runtime regions withno-op instructions, sets memory
protections over the two regions and returns.

Module unloading. Unloading a module allows the kernel to re-
claim the memory used. We modify thefree_module function in
the kernel to invoke SecVisor via a hypercall. SecVisor makes the
pages occupied by the code pages of the module writable by the
CPU and peripheral devices and removes their execute permission.
This prevents any further execution of the module code.

7. EVALUATION
In this section we evaluate our SecVisor prototype using two

metrics: compliance with design requirements and performance.

Debug
Initialization Header Files Runtime

SPT NPT Code Declarations SPT NPT SHA-1 Module Reloc

Lines of code 469
C 538 C 599

376 922
C 1236 C 609

294 81
Asm 130 Asm 130 Asm 46 Asm 46

Table 1: Lines of code in SecVisor. SPT and NPT stand for the shadowpaging based and nested paging based implementations
respectively. For parts of the code that are a mix of C and assembly, we report the counts separately.

7.1 Design Requirements Compliance
As we mentioned in Section 1 we have three design goals for

SecVisor: (1) small code size, (2) minimal kernel interface, and (3)
ease of porting OS kernels. The first two goals aid in achieving
better security, and the third goal simplifies deployment. We now
discuss how our prototype complies with our design goals.

Code size. We use D.A. Wheeler’ssloc program to count the
number of lines of source code in our SecVisor prototype. The re-
sults are presented in Table 1. For the purpose of measurement, we
divide SecVisor’s code into four parts. The initialization code ini-
tializes the CPU state and SecVisor’s runtime state after SecVisor
is invoked by thedecompress_kernel function using theskinit
instruction. The memory occupied by this code is made available
for use by the kernel once the SecVisor runtime code gains con-
trol. The debug code provides aprintf function, which is not
required on a production system. The C language header files have
both declarations, and code in the form of preprocessor macros and
functions. Finally, the runtime code is responsible for providing the
guarantee of approved code execution in kernel mode. We report
the code sizes for shadow paging and nested paging implementa-
tions separately. Also shown in Table 1 are the code sizes of the
SHA-1 function SecVisor uses for its approval policy, and the ELF
relocation code for the kernel modules.

As can be observed from Table 1, the total size of the nested pag-
ing implementation of SecVisor is 3526 lines of C and assembler
code. Of this, the security-sensitive runtime code and the header
files measure 2328 lines. When the declarations (which mainly
consist of various constants and largestruct declarations) in the
header files are removed from the previous count, the code size
comes out to 1406 lines. For the shadow paging implementation,
the total code size is 4092 lines of C and assembler code, with the
security-sensitive runtime code and header files measuring 2955
lines. Upon removing the declarations from the count we are left
with 2033 lines of code. These code sizes should put SecVisor
within the reach of formal verification and manual audit techniques.

Kernel interface. SecVisor’s interface to the kernel consists of
only 2 hypercalls. The first hypercall is used by the kernel to re-
quest changes to its code (such as loading and unloading modules),
while the second hypercall is used by the kernel during its initializa-
tion to pass the virtual and guest physical addresses of the shadow
table area. The hypercall interface is small which reduces the attack
surface available to the attacker through the kernel. Also, the pa-
rameters passed in each hypercall are well-defined, making it pos-
sible for SecVisor to ensure the validity of these arguments.

Effort required to port a kernel. SecVisor’s design makes very
few assumptions about the kernel which it protects. We now enu-
merate the changes we had to make to the Linux kernel to port it to
SecVisor. Then we point out the kernel specific assumptions that
SecVisor makes and discuss how those assumptions affect the effort
required to port a new kernel.

We made three changes to the Linux kernel version 2.6.20 to
port it to SecVisor. First, thedecompress_kernel function in-

vokes SecVisor using theskinit instruction instead of jumping
to the decompressed kernel. Second, during its initialization, the
kernel passes the addresses of the shadow table area to SecVisor
using a hypercall. Finally, we changed the control flow of the
load_module and thefree_module function. As part of changing
the control flow of these functions, we removed the ELF relocation
code from theload_module function and added hypercalls to both
functions. In all, the three changes added a total of 12 lines of code
to the kernel and deleted 81.

SecVisor makes three assumptions about the kernel it protects.
First, it assumes that the user and kernel mode share address spaces.
If a kernel design uses separate address spaces for user and kernel
modes, then the design of the shadow paging and nested paging
code in SecVisor would need to be adapted. However, the changes
are relatively small since we would only need to maintain separate
page tables for user mode and kernel mode, and handle the page
faults that arise when the kernel tries to access user memory. Sec-
ond, SecVisor assumes that the kernel’s binary does not have pages
that contain both code and data. Even if a kernel binary does not
satisfy this requirement, it should be relatively easy to fix by appro-
priately modifying the linking of the kernel. Third, in order to not
deal with the BIOS, SecVisor requires that the kernel not make any
BIOS calls after its initialization. Kernels that do not satisfy this
assumption will be relatively difficult to port of SecVisor without
adding support in SecVisor for dealing with the BIOS.

7.2 Performance Measurements
We now report the performance of the SPT-based SecVisor im-

plementation and compare it to Xen and the Linux kernel. We can-
not evaluate the NPT version of SecVisor on real hardware since
suitable CPUs are not available at this time. While we have im-
plemented and tested the NPT version of SecVisor using AMD’s
SimNow simulator, we do not report performance measurements
since SimNow is not a cycle accurate simulator.

Experiment setup. Our experimental platform is the HP Com-
paq dc5750 Microtower PC. This PC uses an AMD Athlon64 X2
dual-core CPU running at 2200 MHz, and has 2 GB RAM. SecVi-
sor allocates 1536 MB of RAM to the kernel in our experiments.
The PC runs the i386 version of the Fedora Core 6 Linux distribu-
tion. We use the uniprocessor version of Linux kernel 2.6.20 and
uniprocessor Xen 3.0.4 in our experiments. All our Xen experi-
ments execute in dom0. For our experiments, we use both kernel
microbenchmarks and application benchmarks.

lmbench microbenchmarks. We use thelmbench benchmarking
suite to measure overheads of different kernel operations when us-
ing SecVisor. SecVisor adds overhead to kernel operations in three
ways: (1) by modifying execute permissions in the SPT on each
transition between user and kernel mode, (2) by synchronizing the
SPT with the kernel’s page table, and (3) by shadowing the GDT,
LDT, and IDT. We use a subset of the process, memory, and context
switch microbenchmarks fromlmbench to study these overheads.

Table 2 shows the results of our experiments. TheNull Call

shows the overhead of a round trip between user and kernel mode

perlbench bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar xalancbmk
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
un

tim
e

(N
or

m
al

iz
ed

 to
 n

at
iv

e
Li

nu
x,

 lo
w

er
 is

 b
et

te
r)

1.08
0.99

1.09
1.00

1.93

1.16
1.10

0.99
1.07

1.00
1.06

0.99
1.06

1.00
1.06

0.98
1.07

1.00
1.07

0.99
1.08

1.00
1.08

0.99

SecVisor
Xen

Figure 11: SPECint 2006 performance comparison between SecVisor and Xen, relative to native Linux.

Host Null Call Fork Exec Prot Fault PF
Linux (UP) 0.10 139 410 0.248 1.71
Xen (UP) 0.17 415 1047 0.565 3.71
SecVisor 25.6 2274 6203 27.3 35.1

Table 2: Execution times oflmbench process and memory mi-
crobenchmarks. All times are in µs. We use the uniprocessor
(UP) version of Xen and Linux in our experiments. PF stands
for page fault.

and back, i.e., it shows the overhead of (1) and (3) above. The
Prot Fault indicates the time taken by the kernel to process a
write access violation. The overhead is quite close to that ofNull

Call since it also only involves a round trip from user to kernel
mode and back, from the perspective of SecVisor. The overhead
of Page Fault is higher than that ofProt Fault since handling
a page fault requires a round trip from user mode to kernel mode
and back, in which the kernel updates its page table, followed by a
round trip from user mode to SecVisor and back, in which SecVisor
synchronizes the SPT with the kernel’s page table. TheFork and
Exec microbenchmarks incur all three sources of overhead.

Source Null Call Fork Exec Prot Fault PF
SPT 0.10 1275 3043 2.289 14.6
SPT + Perm 21.8 2148 5816 22.5 32.9

Table 3: Split up of the SecVisor overheads in thelmbench pro-
cess and memory microbenchmarks. All times are inµs. PF
stands for Page Fault, SPT for shadow page tables, Perm for
modifying execute permissions on user and kernel memory.

In order to obtain an understanding of how much each of the
three sources of overhead contribute to the overall overhead, we
conduct further experiments. For these experiments, we implement
two additional versions of SecVisor: one that only virtualizes phys-
ical memory using the SPT, and the other that modifies the execute
permissions of user and kernel memory in addition to virtualizing
physical memory. The intuition behind implementing these addi-

tional versions is that they allow us to obtain the individual over-
heads of the three sources.

Table 3 shows our results. From comparing the first and second
rows of this table it is clear that modifying the execute permissions
for user and kernel memory drastically increases the overhead in
all benchmarks. Also, by comparing the last row of Table 3 with
the last row of Table 2 is it obvious that shadowing the GDT, LDT,
and IDT is a much lower overhead operation than modifying the
execute permissions.

The above observations enable us to intelligently speculate about
the performance of the NPT version of SecVisor. Obviously, the
physical memory virtualization overhead will be lower when using
the NPT as compared to the SPT. Also, in our NPT implementa-
tion, we maintain separate NPTs for user mode and kernel mode,
which eliminates the need to modify the execute permissions. This
optimization should ensure better numbers in the second row of Ta-
ble 3. The overhead of shadowing the GDT, LDT, and IDT should
remain the same. In view of the above, we expect the NPT version
of SecVisor to perform much better than the SPT version.

Host 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K
Linux (UP) 0.56 0.64 3.19 1.48 12.9
Xen (UP) 2.61 2.42 5.16 4.07 17.1
SecVisor 54.3 52.7 53.6 63.3 75.8

Table 4: Execution times of lmbench context switch mi-
crobenchmarks. All times are in µs. We use the uniprocessor
(UP) version of Xen and Linux in our experiments.

Table 4 shows the results of runninglmbench context switch mi-
crobenchmarks. The context switch incurs the overhead of all three
sources, leading to significant slowdown in SecVisor compared to
the native Linux kernel and Xen.

Application benchmarks. We hypothesize that when SecVisor is
used, the overhead of an application will be directly proportional
to both the number of times the application calls the kernel and the
rate of change of the application’s working set. Kernel calls and re-
turns will impose the overhead of switching execute permissions in

kernel Build Kernel Unzip Postmark
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
un

tim
e

(N
or

m
al

iz
ed

 to
 n

at
iv

e
Li

nu
x,

 lo
w

er
 is

 b
et

te
r)

2.19

1.11

1.40

1.14

1.86

1.00

SecVisor
Xen

Figure 12: Application performance comparison between
SecVisor and Xen, relative to native Linux.

the SPT and shadowing the GDT, LDT, and IDT, while a change of
the working set will impose the overhead of SPT synchronization.
Based on our hypothesis, compute-bound applications that have a
stable working set throughout their lifetime will have the lowest
overhead. On the other hand, I/O bound applications with highly
variable working sets will be the pathological cases.

To test our hypothesis, we execute both compute-bound and I/O
bound applications with SecVisor. For our compute-bound appli-
cations we choose benchmarks from the SPECint 2006 suite. Our
I/O bound applications consist of the gcc benchmark from SPECint
2006, the Linux kernel compile, unzipping and untarring the Linux
kernel sources, and Postmark.

In the Linux kernel compile, we compile the sources of the ker-
nel version 2.6.20 by executing “make” in the top-level source di-
rectory. For unzipping and untarring the kernel source we execute
“tar xfvz” on the source tarball of the version 2.6.20 of the Linux
kernel. For Postmark, we choose 20000 files, 100000 transactions,
and 100 subdirectories, and all other parameters are set at their de-
fault values. For comparison purposes, we also execute SPECint
2006 and each of these applications on the native Linux kernel and
on Xen. We run each of these applications five times on each of the
Linux kernel, Xen, and SecVisor.

Our results are presented in Figure 11 and Figure 12. The results
are in line with our predictions: the compute-bound SPEC bench-
marks have a low overhead while the gcc SPEC benchmark, ker-
nel compile, and Postmark which are I/O bound and have rapidly
changing working sets have the highest overheads.

8. LIMITATIONS AND FUTURE WORK
We now discuss the limitations of SecVisor, our future imple-

mentation plans, and two additional applications where SecVisor
could be used.

8.1 Limitations
SecVisor guarantees integrity of the code that executes in kernel

mode, but not the integrity of the control flow. Consequently, a
“return-to-libc” style attack within the kernel is possible, where an
attacker can cause areturn instruction in the kernel code to pass
control to a kernel function of its choosing by overwriting the return
address stored on the stack. Another attack that manipulates the
control flow of a program is described by Shacham. This attack

constructs arbitrary instruction sequences by adequately combining
existing instruction sequences [20]. However, such attacks can be
mitigated by combining SecVisor with techniques that guarantee
control flow integrity [6,15].

Besides manipulating the control flow to perform attacks, the
attacker could also modify kernel data in order to indirectly influ-
ence the control flow within kernel code. For example, the attacker
could change the predicate of a conditional. Attacks of this kind
are discussed by Chen et al. in the context of user applications [4].

8.2 Future Implementation
In this section we present our planned extensions to the current

SecVisor prototype. The extensions are presented in the order in
which we hope to implement them.

Multi-CPU support. With the trend towards multi-core CPUs, it
becomes necessary for SecVisor to support multiple CPUs. Imple-
menting this support requires SecVisor to intercept the attempt by
the kernel’s initialization code to switch from uniprocessor to mul-
tiprocessor operation. Also, SecVisor needs to implement locking
primitives to synchronize access to its global data. Finally, SecVi-
sor needs to set up CPU data structures such as the GDT, IDT, and
VMCB for each CPU in the system.

On a multi-CPU AMD x86 system, one CPU is elected as the
bootstrap processor (BSP) each time the system is powered up. All
other CPUs become application processors (AP). Theskinit in-
struction can only be executed by the BSP. All the APs must be put
into a halted state by the code that invokesskinit. The APs will
remain in the halted state until they are woken up by code executing
on the BSP using an interprocessor interrupt (IPI).

Thedecompress_kernel function starts SecVisor by invoking
skinit. SecVisor then executes on the BSP, and starts the kernel’s
runtime by executing thevmrun instruction. The kernel’s runtime
initially executes on the BSP. Sometime during its initialization,
the kernel switches to multiprocessor mode by waking up all the
APs via an IPI. SecVisor can intercept the kernel’s attempt to send
this IPI, and perform the wake up on its own. Then it can set up
a VMCB for each AP, and execute thevmrun instruction on each
of them. This causes all the APs to begin executing the kernel’s
runtime, thereby simulating the effect of the kernel’s IPI.

SecVisor’s locking primitives can be simple since the amount
of global state in SecVisor is small. We plan to usespinlocks as
SecVisor’s locking primitive.

Handling SMI. The System Management Mode (SMM) is a spe-
cial operating mode of an x86 CPU that is entered when the CPU
receives a System Management Interrupt (SMI). SMM is designed
to be transparent to all software executing on the system. It is nor-
mally used by the BIOS to perform power management tasks or to
fix hardware bugs. For example, closing the lid of a laptop gener-
ates an SMI that causes the SMM handler in the BIOS (in conjunc-
tion with the OS) to suspend the laptop.

The SMM handler executes at the highest CPU privilege (kernel
or VMM privilege, depending on whether SVM is enabled) so that
it can perform its tasks transparently to the rest of the system. This
is not desirable from SecVisor’s point of view since it now has to
trust the BIOS code. However, SVM provides a way to address
this issue. SecVisor can intercept the SMI andcontainerize the
SMM handler so that the SMM handler executes as a VM under
SecVisor’s control. Then SecVisor can prevent the SMM handler
from modifying CPU and memory state that are critical for security.
We expect that this restriction will not affect the execution of the
SMM handler since SecVisor will only prevent the SMM handler
from modifying memory pages of SecVisor and those of the kernel
code, the MSRs containing entry pointers, and the DEV mechanism

configuration registers. Another option is to use a BIOS without
SMM code, such as the open source LinuxBIOS [16].

Self-modifying code. SecVisor can detect the use of self-modifying
code in a kernel through write faults. When such a write fault oc-
curs SecVisor can perform the write on behalf of the kernel. SecVi-
sor then calls the approval policy to approve the modification to the
kernel code. Approving the write requires determining if the write
is genuine or was initiated by an attacker. The difficulty can be
somewhat mitigated, if the approval policy is aware of the reason
for the code alteration. For example, a kernel might fix compiler
or CPU bug by modifying its code at bootstrap. Since the list of
such bugs is well known, the approval policy can check if the mod-
ification being performed to the kernel code is a bug fix. However,
supporting self-modifying code is likely to complicate the approval
policy of SecVisor.

Porting to Intel TXT and Windows XP. Intel’s Trusted Execu-
tion Technology (TXT) is a CPU-based virtualization and security
technology present in recent CPUs from Intel [11]. It provides fa-
cilities that are semantically similar to those of AMD SVM. There-
fore it should be possible to port SecVisor to systems with TXT
support. We also plan to port the Windows XP kernel to SecVisor.

8.3 Additional Applications
Protecting user programs. SecVisor should be naturally appli-
cable to protecting the code of user programs as well. Preventing
code injection attacks against user programs should help mitigate
the threat from several current generation worms that use code in-
jection as their method of attack. Also, it can prevent attackers from
creating bots by exploiting vulnerabilities in user programs to inject
the bot code. However, the overhead of providing user code protec-
tion in SecVisor is likely to be higher than that of protecting kernel
code since allocation of user memory pages between code and data
changes more often (for example, on every context switch).

Kernel code attestation. SecVisor can implement an approval
policy for kernel code attestation. Such an approval policy can
compute and store cryptographic hashes of all code that is loaded
into kernel memory from the time the kernel is started. The attes-
tation offered by SecVisor does not suffer from a time-of-check-to-
time-of-use (TOCTTOU) problem since SecVisor will not permit
kernel code to be modified without re-hashing the new code.

9. RELATED WORK
In this section, we survey proposed techniques for ensuring ker-

nel code integrity, small virtual machine monitors, and kernel rootkit
detection.

9.1 Kernel Code Integrity Protection
The standard approach followed by all mainstream OSes to en-

sure kernel code integrity is through standard access control mech-
anisms, such as file system protections (to prevent unauthorized
alterations of kernel and module binaries, and configuration files)
and kernel-enforced restrictions on module loading. Unfortunately,
these approaches cannot protect against kernel vulnerabilities.

The IBM 4758 secure coprocessor provides special hardware
support for a “ratchet” mechanism, which locks OS memory and
loaded modules after the ratchet mechanism has been incremented
[7, 21]. The 4758 hardware support offers a high level of security
thanks to the hardware-enforced mechanism, but is inflexible since
it prevents exchanging components, which would not be applicable
to mainstream OSes. Moreover, their mechanism requires a cus-
tomized OS, so it would not be applicable to legacy OSes.

Program Shepherding attempts to provide code integrity and con-
trol flow integrity for application programs [15]. It uses a dynamic
optimization framework to check that every control transfer in the
program satisfies the specified security policy and also checks the
origin to the program’s executable code. SecVisor can be used
to protect the dynamic optimization framework used by Program
Shepherding, thereby achieving stronger security guarantees.

Livewire is a host-based Intrusion Detection System (IDS) built
into a VMM [9]. It detects intrusions by observing the state of
the kernel executing in a VM. To prevent an attacker from injecting
malicious code into the kernel to manipulate its state, Livewire uses
the VMM to make the kernel code segments read-only. However,
since Livewire does not address properties P1 and P3, there is no
guarantee that the CPU will not execute code outside the kernel’s
code segments in kernel mode.

Recently, Criswell et al. have proposed the Secure Virtual Ar-
chitecture (SVA), which uses programming language techniques to
provide memory safety and control-flow integrity for commodity
kernels [6]. Analogous with Program Shepherding, SVA can be
combined with SecVisor to achieve stronger security guarantees by
using SecVisor to protect SVA’s runtime environment.

9.2 Small Virtual Machine Monitors
Several researchers proposed to build small VMMs [8, 14, 17].

The aim of these VMMs is to minimize code size until it is small
enough for formal verification or manual audit. Such VMMs could
be adopted to provide properties similar to SecVisor.

However, in addressing the problem of kernel code integrity, the
security properties of SecVisor will be better than those of VMMs.
The code size of SecVisor will still be smaller for two reasons. One,
SecVisor only virtualizes the MMU, the IOMMU, and the physical
memory whereas a VMM has to virtualize the entire system. Two,
unlike a VMM, SecVisor does not need to support multiple Virtual
Machines (VM). This reduces the code size by eliminating certain
features such as context switching, scheduling, and interrupt han-
dling. Also, the memory, MMU and IOMMU virtualization code of
SecVisor will be smaller than the corresponding code in a VMM.
In addition to code size, the size of SecVisor’s external interface
will also be smaller than that of VMM (for example, VMMs need
to provide interfaces for administering VMs).

9.3 Kernel Rootkit Detection
Various techniques have been proposed to detect malicious code

in the OS kernel (also called rootkits). As far as we are aware,
SecVisor is the only technique that provides the stronger property
of preventing code injection attacks against OS kernels. Rootkit de-
tection techniques can be classified into two categories: software-
based and hardware-based. Attacks exist against both hardware and
software-based rootkit detection techniques.

Software-based kernel rootkit detection. Rootkit detection tech-
niques that rely on the integrity of one or more parts of the kernel
can be defeated by an attacker that compromises the parts of the
kernel whose integrity is relied on by the rootkit detector [5,12,23].
Even rootkit detectors that do not rely on the integrity of any soft-
ware executing on a machine can be defeated by placing the rootkit
in the OS’s data segment or heap whose integrity is difficult to
check since it is not practical to determine in advance what the
“known good” value of dynamic segments of memory [19] will be.
Rootkit detection techniques that rely on differences in file system
scans cannot detect rootkits that do not modify the file system [24].

Hardware-based rootkit detection. Hardware-based rootkit de-
tection techniques work by attaching specialized peripheral devices
to a system. These devices check the integrity of one or more

regions of the kernel memory to detect the presence of malicious
code. Recently, Rutkowska demonstrated a generic attack against
hardware-based rootkit detectors that relies on the dichotomy of the
CPU’s view of physical memory and the devices’ view of physical
memory [18]. We mention a generic version of the same attack
against CoPilot in our work on Pioneer.

10. CONCLUSION
With the general observation that the number of security vul-

nerabilities increases exponentially with complexity and size, it is
no surprise that critical vulnerabilities are frequently discovered in
mainstream kernels.

In this context, we pursue the research challenge of what is the
minimal change we can introduce to significantly enhance the se-
curity of legacy OSes?

Leveraging the features of new generations of CPUs, we design
SecVisor, a tiny hypervisor that protects the code integrity of legacy
OSes during the system lifetime, and ensures that only approved
code can execute in kernel mode. SecVisor protects the legacy OS
against a variety of well-known and upcoming attacks, including
code injection through buffer overruns, kernel-level rootkits, and
malicious devices with DMA access. So far, the majority of ap-
proaches to secure OSes follow adetection approach, which detects
and mitigates attacks. SecVisor follows a more efficient approach,
which is toprevent a large class of attacks altogether.

While SecVisor does not prevent against control-flow attacks, it
can be combined with approaches that do provide additional protec-
tions. Moreover, SecVisor will ensure code integrity and memory
protection for such additional security mechanisms.

11. ACKNOWLEDGEMENTS
We gratefully acknowledge the help provided by AMD in donat-

ing suitable hardware and providing technical support. We would
also like to thank our shepherd Richard Draves, as well as Benjamin
Serebrin, Leendert van Doorn, Elsie Wahlig, and the anonymous
reviewers for their help and feedback.

12. REFERENCES
[1] Advanced Micro Devices.AMD64 Architecture

Programmer’s Manual Volume 2: System Programming, 3.12
edition, September 2006.

[2] Advanced Micro Devices.AMD64 Architecture
Programmer’s Manual Volume 3: General-Purpose and
System Instructions, 3.12 edition, September 2006.

[3] M. Becher, M. Dornseif, and C.N. Klein. FireWire all your
memory are belong to us. InProceedings of CanSecWest,
2005.

[4] S. Chen, J. Xu, E.C. Sezer, P. Gauriar, and R.K. Iyer.
Non-control-data attacks are realistic threats. InProceedings
of the 14th USENIX Security Symposium, pages 177–192,
August 2005.

[5] A. Chuvakin. Ups and downs of UNIX/Linux host-based
security solutions.;login: The Magazine of USENIX and
SAGE, 28(2), April 2003.

[6] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure
virtual architecture: A safe execution environment for
commodity operating systems. InProceedings of ACM
Symposium on Operating Systems Principles, Oct 2007.

[7] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn,
S.W. Smith, and S. Weingart. Building the IBM 4758 Secure
Coprocessor.IEEE Computer, 34(10):57–66, 2001.

[8] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. InIn Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[9] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proc. Network and Distributed Systems Security Symposium,
February 2003.

[10] Intel Corp.LaGrande Technology Architectural Overview,
September 2003.

[11] Intel Corporation. Trusted eXecution Technology –
preliminary architecture specification and enabling
considerations. Document number 31516803, November
2006.

[12] K. J. Jones. Loadable Kernel Modules.;login: The Magazine
of USENIX and SAGE, 26(7), November 2001.

[13] P. Jones. RFC3174: US Secure Hash Algorithm 1 (SHA-1).
http://www.faqs.org/rfcs/rfc3174.html, September
2001.

[14] K. Kaneda. Tiny virtual machine monitor.
http://www.yl.is.s.u-tokyo.ac.jp/~kaneda/tvmm/.

[15] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. InProceedings of the
11th USENIX Security Symposium, August 2002.

[16] R. Minnich, J. Hendricks, and D. Webster. The Linux BIOS.
In Proceedings of the 4th Annual Linux Showcase and
Conference, Oct 2000.

[17] R. Russell. Lguest: The simple x86 hypervisor.
http://lguest.ozlabs.org/.

[18] J. Rutkowska. Beyond the CPU: Defeating hardware based
RAM acquisition. InProceedings of BlackHat DC 2007, Feb
2007.

[19] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. InProceedings of
ACM Symposium on Operating Systems Principles (SOSP),
pages 1–15, October 2005.

[20] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer and
Communications Security, Oct 2007.

[21] S.W. Smith and S.H. Weingart. Building a high-performance,
programmable secure coprocessor.Computer Networks
(Special Issue on Computer Network Security), 31:831–960,
1999.

[22] J. von Neumann. First draft of a report on the EDVAC. In
B. Randall, editor,The origins of digital computers: selected
papers, pages 383–392. 1982.

[23] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, and
D. Ladd. AskStrider: What has changed on my machine
lately? Technical Report MSR-TR-2004-03, Microsoft
Research, 2004.

[24] Y. Wang, B. Vo, R. Roussev, C. Verbowski, and A. Johnson.
Strider GhostBuster: Why it’s a bad idea for stealth software
to hide files. Technical Report MSR-TR-2004-71, Microsoft
Research, 2004.

[25] D.A. Wheeler. Counting source lines of code SLOC.
http://www.dwheeler.com/sloc/.

[26] G. Wurster, P. van Oorschot, and A. Somayaji. A generic
attack on checksumming-based software tamper resistance.
In Proceedings of IEEE Symposium on Security and Privacy,
May 2005.

