
 Software keyloggers are very famous tool which are often used to harvest con�dential information. One of the
 main reasons for this rapid growth of keyloggers is the possibility for unprivileged programs running in user space to

eavesdrop and monitor all the keystrokes typed by the users of a system. Implementation and Distribution of these type of
keyloggers are very easy because of the ability to run in unprivileged mode. But, at the same time, allows one to understand and
model their behavior in detail. Taking bene�t of this characteristic, we propose a new detection technique that simulates crafted
keystroke sequences in input and observes the behavior of the keylogger in output to unambiguously identify it among all the
running processes. We have prototyped our technique as an unprivileged application, hence matching the same ease of
deployment of a keylogger executing in unprivileged mode.

RESEARCH PAPER

Medical Science

Engineering Volume - 5 | Issue - 1 | Jan Special Issue - 2015 | ISSN - 2249-555X

Analysis and Implementation of Decipherments of
KeyLogger

KEYWORDS

53 X INDIAN JOURNAL OF APPLIED RESEARCH

ABSTRACT

Keylogger Detection, AntiKeylogger, Security, Detection of Keylogger

Prof. Vivek K. ShahParth Mananbhai Patel

I. INTRODUCTION
Key loggers are implanted on a machine to intentionally
monitor the user activity by logging keystrokes and
eventually delivering them to a third party. While they are
seldom used for legitimate purposes (e.g., surveil-
lance/parental monitoring infrastructures), key loggers are
often maliciously exploited by attackers to steal con�dential
information.

II.LITERATURE SURVEY
Different works deal with the detection of key loggers. The
simplest approach is to rely on signatures, i.e. �ngerprints of
a compiled executable. Many commercial anti-malware [22,
18] adopt this strategy as �rst detection routine; even if
augmented by some heuristics to detect 0-day samples,
Christodorescu and Jha [4] show that code obfuscation is a
sound strategy to elude detection. In the case of user-space
key loggers we do not even need to obfuscate the code. The
complexity of these key loggers is so low that little modi�ca-
tions to the source code are trivial. While ours is the �rst
technique to solely rely on unprivileged mechanisms, several
approaches have been recently proposed to detect privacy-
breaching malware, including key loggers.

One popular technique that deals with malware in general is
taint analysis. It basically tries to track how the data is
accessed by different processes by tracking the propagation
of the tainted data. However, Slowinska and Bos [23] show
how this technique is prone to a plethora of false positives if
applied to privacy-breaching software. Moreover, Cavallaro
et al. [24], show that the process of designing a malware to
elude taint analysis is a practical task. Furthermore, all these
approaches require a privileged execution environment and
thus are not applicable to our setting. A black-box approach
to detect malicious behaviors has been recently introduced
by Sekar in [25].

Behavior-based spyware detection has been �rst introduced
by Kirda et al. in [8]. Their approach is tailored to malicious

Internet Explorer loadable modules. In particular, modules
monitoring the user's activity and disclosing private data to
third parties are �agged as spyware.

1) What Key Loggers Are?
Key logging the user's input is a privacy-breaching activity

that can be per petrated at many different levels. When
physical access to the machine is available, an attacker might
wiretap the hardware of the keyboard.

i n c l u d e < w i n d o w s . h >
i n c l u d e < fstream >
u s i n g n a m e s p a c e std ;
o f s t r e a m out (" log . txt " , ios :: out) ;

L R E S U L T C A L L B A C K f (int nCode , W P A R A M wParam
, L P A R A M l P a r a m) { if (w P a r a m == W M _ K E Y D O W
N) {

P K B D L L H O O K S T R U C T p = (P K B D L L H O O K S T R U
C T) (l P a r a m) ; out << char (t o l o w e r (p - > v k C o d e)) ;
}
r e t u r n C a l l N e x t H o o k E x (NULL , nCode , wParam , l P
a r a m) ;
}
int W I N A P I W i n M a i n (H I N S T A N C E inst , H I N S T A N
C E hi , L P S T R cmd , int show) { H H O O K k e y b o a r d H o o
k = S e t W i n d o w s H o o k E x (W H _ K E Y B O A R D _ L L , f ,
NULL , 0) ; M e s s a g e B o x (NULL , L " Hook A c t i v a t e d ! "
, L " Test " , M B _ O K) ;

U n h o o k W i n d o w s H o o k E x (k e y b o a r d H o o k) ; r e t
u r n 0;
}

Figure 1 Windows C++ implementation of a streamlined
user-space key logger.

ME (CSE), S.P.B.Patel Institute of Technology,
Mehsana, Gujarat

S.P.B.Patel Institute of Technology, Mehsana
Gujarat

Medical Science

 INDIAN JOURNAL OF APPLIED RESEARCH X 54

RESEARCH PAPER Volume - 5 | Issue - 1 | Jan Special Issue - 2015 | ISSN - 2249-555X

(a): Zoom on user-space components. (b): Zoom on external
and kernel components.

1) Defences Against Keyloggers
In the past years many defenses were proposed.
Unfortunately, positive results were often achieved only
when focusing on the general problem of detecting
malicious behaviors. Detection of key logging behavior has
notably been an elusive feat. Many are in fact, the applica-
tions that legitimately intercept keystrokes in order to
provide the user with additional usability-related
functionalities (for example, a shortcut manager).

II. METHODOLOGY
3.1Introduction
Our approach is explicitly focused on designing a detection
technique for Type I and Type II user-space key loggers.
Unlike Type III key loggers, they are both background
processes which register operating-system- supported
hooks to surreptitiously eavesdrop (and log) every keystroke
issued by the user into the current foreground application.
Our goal is to prevent user-space key loggers from stealing
con�dential data originally intended for a (trusted) legitimate
foreground application.

Figure 3 the intuition leveraged by our approach in a
nutshell.

The key advantage of our approach is that it is centered on a
black-box model that completely ignores the key logger
internals. Also, I/O monitoring is a non-intrusive procedure
and can be performed on multiple processes simultaneously.
As a result, our technique can deal with a large number of
key- loggers transparently and enables a fully-unprivileged
detection system able to vet all the processes running on a
particular system in a single run. In the following, we discuss
how our approach deals with these challenges.

3.2 Injector
The role of the injector is to inject the input stream into the
system, mimicking the behavior of a simulated user at the
keyboard. By design, the injector must satisfy several
requirements. First, it should only rely on unprivileged API
calls. Second, it should be capable of injecting keystrokes at
variable rates to match the distribution of the input stream.
Finally, the resulting series of keystroke events produced
should be no different than those generated by a user at the
keyboard. In all Unix-like OSes supporting X11 the same
functionality is available via the API call X Test Fake Key
Event, part of the XTEST extension library.

Figure 4 the different components of our architecture.

3.3 Monitor
The monitor is responsible for recording the output stream of
all the running processes. As done for the injector, we allow
only unprivileged API calls. In addition, we favor strategies to
perform real time monitoring with minimal overhead and the
best level of resolution possible. Finally, we are interested in
application-level statistics of I/O activities, to avoid dealing
with �le system level caching or other potential nuisances.

3.4 Pattern Translator
The role of the pattern translator is to transform an AKP into a
stream and vice-versa, given a set of target con�guration
parameters. A pattern in the AKP form can be modeled as a
sequence of samples originated from a stream sampled with
a uniform time interval. A sample Pi of a pattern P is an
abstract representation of the number of keystrokes emitted
during the time interval i. Each sample is stored in a
normalized form rescaled in the interval [0, 1].

3.5 Detector
The success of our detection algorithm lies in the ability to
infer a cause effect relationship between the keystroke
stream injected in the system and the I/O behavior of a key
logger process, or, more speci�cally, between the respective
patterns in AKP form. While one must examine every
candidate process in the system, the detection algorithm
operates on a single process at a time, identifying whether
there is a strong similarity between the input pattern and
theoutput pattern obtained from the analysis of the I/O
behavior of the target process.

3.6 Pattern Generator
Our pattern generator is designed to support several
possible pattern generation algorithms. More speci�cally,
the pattern generator can leverage any algorithm producing
a valid input pattern in AKP form. In this section, we present a
number of pattern generation algorithms and discuss their
properties. The �rst important issue to consider is the effect
of variability in the input pattern. Experience shows that
correlations tend to be stronger when samples are distrib-
uted over a wider range of values [14].

I. EVALUATION
To demonstrate the viability of our approach and evaluate
the proposed detection technique, we implemented a
prototype based on the ideas described in this chapter. Our
prototype is entirely written in C# and runs as an unprivileged
application for the Windows OS. It also collects simulta-
neously all the processes' I/O patterns, thus allowing us to

analyze the whole system in a single run.

4.1Performance
Since the performance counters are part of the default
accounting infrastructure, monitoring the processes' I/O
came at negligible cost: for reasonable values of T, i.e., >
100ms, the load imposed on the CPU by the monitoring
phase was less than 2%. On the other hand, injecting high
keystroke rates introduced additional processing overhead
throughout the system.

4.2 Keylogger Detection
To evaluate the ability to detect real-world key loggers, we
experimented with all the key loggers from the top
monitoring free software list [10], an online repository
continuously updated with reviews and latest developments
in the area. To carry out the experiments, we manually
installed each key logger, launched our detection system for
N T ms, and recorded the results; we asserted successful
detection for PCC ≥ 0.7. In the experiments, we found that
arbitrary choices of N , T , Kmin, and Kmax were possible; the
reason is that we observed the same results for several
reasonable combinations of the parameters. Following the
�ndings we later discuss, we also selected the RFR algorithm
as the pattern generation algorithm for the experiment.

Figure 5 Impact of the monitor and the injector on the
CPU load.

Table 1 Detection Results

V. CONCLUSIONS
This research presented Key Catcher, an unprivileged black-
box approach for accurate detection of the most common
key loggers, i.e., user-space key loggers. We modeled the
behavior of a key logger by correlating the input (i.e., the
keystrokes) with the output (i.e., the I/O patterns produced
by the key logger). In addition, we augmented our model
with the ability to arti�cially inject carefully crafted keystroke
patterns, and discussed the problem of choosing the best
input pattern to improve our detection rate. We successfully
evaluated our prototype system against the most common
free key loggers [10], with no false positives and no false
negatives reported. The possible attacks to our detection
technique, discussed at length in Section 5, are countered by
the ease of deployment of our technique.

Medical Science

RESEARCH PAPER Volume - 5 | Issue - 1 | Jan Special Issue - 2015 | ISSN - 2249-555X

 [1] Yousof Al-Hammadi and Uwe Aickelin. Detecting bots based on key logging activities. In Proceedings of
 the 2008 Third International Conference on Availability, Reliability and Security, ARES ’08, pages 896–902,
march 2008. | [2] M. Aslam, R.N. Idrees, M.M. Baig, and M.A. Arshad. Anti-Hook Shield against the Software Key Loggers. In
Proceedings of the 2004 National Conference on Emerging Technologies, pages 189–192, 2004. | [3]Martin Vuagnoux and
Sylvain Pasini. Compromising electromagnetic emanations of wired and wireless keyboards. In Proceedings of the 18th
conference on USENIX security symposium, SSYM ’09, pages 1–16, Berkeley, CA, USA, 2009. USENIX Association. | [4]Mihai
Christodorescu and Somesh Jha. Testing malware detectors. In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’04, pages 34–44, New York, NY, USA, 2004. ACM | [5] Manuel Egele,
Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on automated dynamic malware-analysis techniques and
tools. ACM Computing Surveys (CSUR), 44(2):6:1–6:42, March 2008. ISSN 0360-0300. | [6]Andrea Lanzi, Davide Balzarotti,
Christopher Kruegel, Mihai Christodorescu, and Engin Kirda. Accessminer: using system-centric models for malware protection.
In Proceedings of the 17th ACM conference on Computer and communications security, CCS ’10. | [7] Kaspersky Lab. Key
loggers: How they work and how to detect them. http://www.viruslist.com/en/analysis?pubid=204791931. Last accessed: Jan
2014. | [8] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and Richard A. Kemmerer. Behavior-based spyware
detection. In Proceedings of the 15th conference on USENIX Security Symposium, SSYM ’06, Berkeley, CA, USA, 2006. USENIX
Association. | [9] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for data structures. In Proceedings of the
8th USENIX conference on Operating systems design and implementation, OSDI ’08, pages 255– 266, Berkeley, CA, USA, 2008.
USENIX Association. | [10] Security Technology Ltd. testing and reviews of key loggers, monitoring products and spy software.
h t t p : / / w w w. k e y l o g g e r. o rg . L a s t a c c e s s e d : D e c 2 0 1 3 . | [1 1] D o n ’ t F a l l V i c t i m t o K e y l o g g e r s :
http://www.makeuseof.com/tag/dont-fall-victim-to-keyloggers-use-these-important-anti-keylogger-tools/ Last accessed: Jan
2014. | [12] Overview of detecting key loggers: http://www.sandboxie.com/ Last accessed: Feb 2014.

REFERENCE

55 X INDIAN JOURNAL OF APPLIED RESEARCH

Keylogger Detection Notes

Refog Keylogger Free 5.4.1 focus-based
buffering

Best Free Keylogger 1.1 -

Iwantsoft Free Keylogger 3.0 -
Actual Keylogger 2.3 focus-based

buffering

Revealer Keylogger Free 1.4 focus-based
 buffering

Virtuoza Free Keylogger 2.0 time-based
buffering

Quick Keylogger 3.0.031 -

Tesline KeyLogger 1.4 -

View publication statsView publication stats

https://www.researchgate.net/publication/281080760

