
Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040830.html

1 of 3 01-09-2004 14:38

SSH Bouncing - How to get through firewalls easily.
By Brian Hatch.

Summary: Often you'll have firewalls or other network equipment that doesn't allow direct SSH
access to machines behind it. Using a bit of trickery, you can get through without seemingly
jumping through any hoops.

Sponsored by Beginning Perl, Second Edition

Hacking Linux Exposed author James Lee's most recent book, Beginning Perl Second
Edition, emphasizes the cross-platform nature of Perl. Throughout the book, Lee
promotes Perl as a legible, sensible programming language and dispels the myth that
Perl is confusing and obscure. Perfect for the beginning Perl user looking to gain a
quick and masterful grasp on the language, this concise and focused book begins with
the basics and moves on to more advanced features of Perl, including references,
modules, and object-oriented programming.

For reviews and purchasing information, go to
http://www.hackinglinuxexposed.com/books/

Have you ever been in the situation that you wanted to SSH directly to a machine, but there has
been some device in between that prevents it? Say you have a Linux firewall that protects your
DMZ, and you have a boatload of machines behind it that you want to manage. There are all sorts
of methods that are used to do so, and all have some level of annoyance.

SSH to the intermediate host
The first and most simple solution is to SSH to the machine in the way, say the firewall.
The firewall administrator can just set up one or more non-privileged accounts for users
who need access to the machines behind it. This is a pain, of course - if you want to upload
a file, you need to upload it to the firewall via sftp/scp, and then upload it to the target
server. What a pain. And security-wise, you now have all these random firewall accounts
running amok, probably not your favourite situation.

Of course, it's still nicer than Windows networking, but we can do better.

Non-standard SSH ports
You can set up a bunch of ports that tunnel into the target machines. You might have
firewall port 5000 go to port 22 (the SSH port) on machine1, firewall:5001 go to machine2,
firewall:5002 go to machine3, etc. For example,

  #!/bin/sh
  # Set up forwards for inbound SSH

 
  EXT_IP=205.382.29.20    # External IP address
  EXT_IFACE=eth0          # External Interface
  INT_IFACE=eth1          # Internal Interface

  # handy dandy tcp forward function
  tcp_forward () {
    local ext_port int_ip
    echo "$1" | {
      read int_ip  ext_port
       # create prerouting and appropriate forward from the tuple
       iptables -A PREROUTING -t nat -p tcp -d $EXT_IP \
          --dport $ext_port -j DNAT \
          --to-destination $int_ip:22
       iptables -A FORWARD -i $EXT_IFACE -o $INT_IFACE \
          -p tcp -d $int_ip --dport 22 -m state \
          --state NEW -j ACCEPT

   }

   tcp_forward " 192.168.1.1      5000"
   tcp_forward " 192.168.1.2      5001"
   tcp_forward " 192.168.1.3      5002"
   tcp_forward " 192.168.1.4      5003"
   ...



Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040830.html

2 of 3 01-09-2004 14:38

   ...
   tcp_forward " 192.168.1.58     5057"
   tcp_forward " 192.168.1.59     5058"

What problems do we have with this setup? Well, you need to manage the forwards, which
is rather a pain. Also, you now have these ports open to the outside world, which means
you need to create ACLs for them on the firewall or the target or both, lest anyone be able
to try to guess passwords.

The other problem with this is that you'll get ssh host key conflicts unless you're careful --
you appear to connect to the machine 'firewall' but you get different keys when you hit the
actual machine behind it. To get around this, you can use $HOME/.ssh/config sections like
this:

  Host machine1
  Hostname firewall.my_network.com
  Port 5000
  HostKeyAlias machine1

  Host machine2
  Hostname firewall.my_network.com
  Port 5001
  HostKeyAlias machine2

Then you can just ssh machine1 and not need to remember the port, and due to the
HostKeyAlias option each machine will have it's own key recognised correctly, rather than
sharing the one for the firewall.

Netcat SSH bounce
This is my preferred method, and it can be used to create a seamless connection. What you
do is SSH to the intermediate machine (the firewall in this example) and from that machine
you run Netcat (nc). Netcat can be used in all sorts of situations, such as a replacement for
telnet:

 $ nc www.some_host.com 80
 GET / HTTP/1.0

 ...

When used as a telnet-like replacement, all it does is open up a connection to the remote
port and transfer the data, unaltered, to and from it and your keyboard/screen. So how do
we use this to help out with our SSH connection?

OpenSSH supports the ability to use a proxy command. A proxy command is a program
(shell script, binary, etc) that /usr/bin/ssh will run, rather than making an actual TCP
connection to the target. The job of the proxy command is to establish a connection to the
target. /usr/bin/ssh talks to this command, and doesn't care how it does its work.

So, what will our proxy command do?

The proxy command will SSH to the firewall
On the firewall, it will run Netcat as follows:

  nc -w 1 target_host 22

The nc command says 'connect to port 22 on the target host, and wait one
second after the connection is dead before closing it.' Now Netcat's
stdin/stdout are going to be connected to the SSH server on the target,
and the /usr/bin/ssh client on your desktop. To the client program, it
looks just like it's hit the target directly, the proxy does the work of
getting them together.

So, how do we create this proxy? How 'bout a shell script:

  $ cat netcat-proxy-command
  #!/bin/sh
  bouncehost=$1
  target=$2

  ssh bouncehost   nc -w 1 $target 22



Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040830.html

3 of 3 01-09-2004 14:38

  ssh bouncehost   nc -w 1 $target 22
 

Then point to this proxy command via your $HOME/.ssh/config file:

  $ head $HOME/.ssh/config
  Host machine1
  Hostname machine1
  HostKeyAlias machine1
  ProxyCommand netcat-proxy-command firewall.my_network.com 192.168.1.1

  Host machine2
  Hostname machine2
  HostKeyAlias machine2
  ProxyCommand netcat-proxy-command firewall.my_network.com 192.168.1.2

  ...

Or, to make it even easier to copy/paste, use the fact that %h in a $HOME/.ssh/config file
is replaced with the hostname, and you can use the following:

  $ head $HOME/.ssh/config
  Host machine1
  Hostname 192.168.1.1
  HostKeyAlias machine1
  ProxyCommand netcat-proxy-command firewall.my_network.com %h

  Host machine2
  Hostname 192.168.1.2
  HostKeyAlias machine2
  ProxyCommand netcat-proxy-command firewall.my_network.com %h
  ...

All the logic of how to actually get to the host is in the config file, all the magic in getting
there is in the proxy script, and you can connect 'directly' to the target machine at the
command line like this:

  $ ssh machine1
  $ scp machine1:/path/to/some/file .

Now doing this requires that you can connect to the firewall without a password[1] If you
can't, then you'll want to to enable SSH key based security. If you don't know how to do
that yet, see one of the Previous Articles that covers it.

There are many other options that I didn't cover here, such as VPN technologies, Portknocking and
fun tunnels like chownat (http://chownat.lucidx.com/). While these can all be exciting, I'm trying to
stick to pretty portable tools that are likely pre-installed on your machines anyway.

Next time, we'll see how to tighten security a bit by making changes to the firewall user's
configuration.

NOTES:

[1] If you don't have passwordless authentication to the firewall, you'll need to type the firewall
password each time too. This is annoying, but not a show stopper.

Brian Hatch is Chief Hacker at Onsight, Inc and author of Hacking Linux Exposed and Building
Linux VPNs. He can't understand how a few months have gone by since he had time to write. Oh
wait, maybe it's the number of kids in his home, and the massive distance between him and any
free babysitting -- i.e. relatives... Brian can be reached at brian@hackinglinuxexposed.com.

Copyright Brian Hatch, 2004


