
Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040705.html

1 of 4 08-07-2004 10:49

SSH Users beware: The hazards of X11 forwarding
By Brian Hatch.

Summary: Logging into another machine can compromise your
desktop...

Sponsored by LinuxQuestions.org.

LinuxQuestions.org is a free, friendly and active Linux
Community with over 100,000 members. Founded in
2000, LQ offers forums, reviews, a Linux hardware
compatibility list, a Linux knowledge base in wiki format,
Linux tutorials and more. LQ has forums for everything
from Linux Newbies to Linux in the Enterprise and has
over 15 officially recognized Linux distribution forums.

The last two articles have discussed the security model of X11, the
guts behind Linux window managers and all things graphical.[1]
Essentially, if you can contact the X11 server process, you can do
anything you want to it, such as sniffing all keystrokes, dumping or
manipulating windows, etc.

In order to access the server, you must have two things:

The MIT Magic Cookie that the server requires, if any. (Most
distros set up X11 to require these, which is good.)

1.

Access to the X11 server's socket, be it a network TCP socket
or a unix domain socket.

2.

In my previous examples, I showed you how you can satisfy these
requirements by being root on the machine on which the X11 server is
running. I got lots of hate mail because of it, with arguments like the
following:

"But if they already have root, the game is lost!" "I don't
let anyone on my machine, so it's a moot point!" "I don't
have sshd running, so how could they get in anyway?"

These are all valid (and anticipated) statements. Here's where I get to
say "Trust me, I was getting somewhere important..."

Enter SSH, a wonderful encrypted remote login/file transfer/port
forwarding/you name it protocol. You probably use it when you log
into to other Linux machines, such as your shell server, email account,
etc.[2]

SSH has the ability to tunnel X11 connections through it - this feature is
called X11 Forwarding. In brief, if you are on your desktop attached
to an X11 display (you can run xclock for example) then when
you SSH to a different machine, it can tunnel X11

Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040705.html

2 of 4 08-07-2004 10:49

you SSH to a different machine, it can tunnel X11
over the connection. You can run graphical X11
applications on the remote machine, but they display
back on your desktop.

Here's the nitty gritty: upon logging into the remote system, the ssh
server process binds a TCP port (let's say 6010), creates you an MIT
Magic Cookie on the server by running xauth, and then sets the
$DISPLAY environment variable to point to it's port (for example
$DISPLAY=localhost:10.0 [3]) When you run an X11 application,
it reads the $DISPLAY variable, connects to the X11 server (in this
case the sshd process on the remote system) and provides the magic
cookie (by reading ~/.Xauthority). sshd verifies the cookie, and
passes he data back to the ssh process on your desktop over the
encrypted link. ssh on your desktop then forwards the data to the
actual X11 server on your desktop, using the desktop's cookie.

Now all of this happens behind the scenes -- all you notice is that you
log into the remote machine, and when you run an X11 application, the
window appears on your desktop. This is cool, this is great, this is
secure - encrypted from end to end.[4]

But even though the X11 application is secure, you've opened up a
new vulnerability. If someone on the server can read your
~/.Xauthority file (hopefully only root, but if you have bad file
permissions you're in trouble), and can connect to the port that sshd
has bound (which anyone can) then they can access your desktop's
X11 server, even if they're not anywhere near you!

Let's reiterate: if you log in via SSH to a remote server with X11
forwarding, root on that server can access your desktop, sniff your
keystrokes, abuse your windows, you name it. If you have bad
permissions on your ~/.Xauthority file, then anyone on that server
can control your desktop.

OpenSSH used to have X11 forwarding enabled by default, but luckily
newer versions have luckily changed this. Unfortunately, some Linux
distributions still enable it by default in the global
/etc/ssh/ssh_config file.[5] This means that any time you SSH to
another machine, that machine's administrators could attack you. Not
good, definitely not good.

Now is this something that occurs in the real world? Heck yes -- I've
seen more than one free shell account provider with unethical
administrators who used this feature to snoop passwords and other
information addresses. Again, you may point out that they can already
gather any of this data sent to the machine you've logged into. But the
fact they can access keystrokes that are never going to their server at
all is a very different and worrisome situation.

So, when should you enable X11 forwarding? Only when you really

Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040705.html

3 of 4 08-07-2004 10:49

So, when should you enable X11 forwarding? Only when you really
really need to, and only to machines which you trust. In addition, if you
must perform actions outside the X11 application (for example opening
up a different terminal and logging in somewhere) you can enable the
'secure keyboard' feature of some programs (for example hitting 'ctrl
right-button' in xterm and selecting the first option) to keep your
keystrokes from being available to anything but that one window. But a
malicious user could still perform all of the other tricks discussed last
time, such as getting screenshots of those secure windows.

It's best to enable X11 forwarding manually, ssh to the other system,
run your X11 application, and log out as soon as possible.

To turn off X11 forwarding by default, add the following to the bottom
of your ~/.ssh/config file, or the global /etc/ssh/ssh_config
file:

 Host *
 ForwardX11 no
 ForwardAgent no

(Note: the last line also disables the SSH Agent forwarding - you can
probably guess why that's a bad idea at this point.)

If you need to have X11 forwarding for a connection, run ssh with the
-X flag, for example:

 $ ssh -X server /usr/bin/display filename.jpg

Following this method, you'll never accidentally log in with SSH X11
Forwarding enabled.

SSH X11 Forwarding is a wonderful thing when you need it - it's much
better than sending your connections back to your desktop in the clear
- but you need to understand that you open your entire environment up
to any attacker on the server. Use it wisely and sparingly.

NOTES:

[1] Ok, tis true, there are some things that let you have graphics even in
plain text TTYs, such as w3m, the greatest text based web browser in
the world. If you never go into X11, you can stop reading this article
now.

[2] From my desktop alone, I have 45 outbound SSH connections at
the time I write this. Probably half of those are to bounce through
firewalls and are running multiple SSH sessions via screen. Thank
goodness for SSH -- I don't know how all those point-and-click users
administer their machines.

[3] Why is it localhost:10.0 instead of localhost:6010?
Normally, the first X11 display is on port 6000, the next on port 6001,
which get abbreviated as :0, :1 and so on. SSH binds higher than the

Hacking Linux Exposed http://www.hackinglinuxexposed.com/articles/20040705.html

4 of 4 08-07-2004 10:49

which get abbreviated as :0, :1 and so on. SSH binds higher than the
number of actual physical displays that are expected (very few
desktops run more than one X11 display, much less nine of them)
which is why it starts at 6010 and works it's way up.

[4] Those who try this over anything but a LAN connection will also
note that this is slow... X11 can use a lot of bandwidth.

[5] Just to be more confusing, some disable X11 forwarding on the
server by default, which means the user has no ability to use it even if
they want to, even though this could only be used to attack the user,
not the server. Very weird -- I don't grasp the logic here.

Brian Hatch is Chief Hacker at Onsight, Inc and author of Hacking
Linux Exposed and Building Linux VPNs. He looks back on his
college days of playing xtank at 3am and wonders "Did anyone steal
my passwords when we all ran 'xhost +' " ? Brian can be reached at
brian@hackinglinuxexposed.com.

Copyright Brian Hatch, 2004

