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1 Motivation

Increasing use of threads lead developers to wish for a better way of dealing with
thread-local data. The POSIX thread interface defines interfaces which allow storing
void * objects separate for each thread. But the interface is cumbersome to use. A key
for the object has to be allocated dynamically at run-time. If the key isn’t used anymore
it must be freed. While this is already a lot of work and error prone it becomes a real
problem when combined with dynamically loaded code.

To counter these problems it was decided to extend the programming languages to
let the compiler take over the job. For C and C++ the new keywahdead can be
used in variable definitions and declarations. This is not an official extension of the
language but compiler writers are encouraged to implement them to support the new
ABI. Variables defined and declared this way would automatically be allocated local to
each thread:

__thread int i;
__thread struct state s;
extern __ thread char *p;

The usefulness of this is not limited to user-programs. The run-time environment
can also take advantage of it (e.g., the global varigbleo must be thread-local)
and compilers can perform optimizations which create non-automatic variables. Note
that adding _thread to the definition of an automatic variable makes no sense and is
not allowed since automatic variables are always thread-local. Static function-scope
variables on the other hands are candidates, though.

The thread-local variables behave as expected. The address operator returns the
address of the variable for the current thread. The memory allocated for thread-local
variables in dynamically loaded modules gets freed if the module is unloaded. The
only real limitation is that in C++ programs thread-local variables must not require a
static constructor.

To implement this new feature the run-time environment must be changed. The
binary format must be extended to define thread-local variables separate from normal
variables. The dynamic loader must be able to initialize these special data sections.



1  MOTIVATION

The thread library must be changed to allocate new thread-local data sections for new
threads. The rest of this document will describe the changes to ELF format and what
the run-time environment has to do.

Not all architectures ELF is available for are supported in the moment. The list of
architectures which is supported and described in this document are:

IA-32

IA-64

SPARC (32-bit and 64-bit)
SuperHitachi (SH)

Alpha

x86-64

S390 (31-bit and 64-bit)

The description for HP/PA 64-bit awaits integration into this document and all other
architectures have as of the time of this writing no (finalized) support.
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2 DATA DEFINITIONS

Table 1: Section table entries fabss and.tdata

| Field | .thss | .tdata \
sh_name .thss .tdata
sh _type SHT.NOBITS SHT.PROGBITS
sh flags SHFEALLOC + SHEALLOC + SHEWRITE
SHEWRITE + SHETLS | + SHETLS
sh _addr virtual address of section | virtual address of section
sh _offset 0 file offset of initialization image
sh _size size of section size of section
sh _link SHNUNDEF SHNUNDEF
sh _info 0 0
sh _addralign alignment of section alignment of section
sh _entsize 0 0

2 Data Definitions

The changes required to emit thread-local data objects are minimal. Instead of putting
variables in sectionslata and.bss for initialized and uninitialized data respectively,
thread-local variables are found.idata and.tbss . These sections are defined just
like the non-threaded counterparts with just one more flag set in the flags for the section.
The section table entries for these sections look as shown iffable 1. As can be seen the
only difference to a normal data section is that #&=TLS flag is set.

The names of the sections, as is in theory the case for all sections in ELF files, are
not important. Instead the linker will treat all sections of tyg€T PROGBITSwith
the SHETLS flags set astdata  sections, and all sections of ty &I T.NOBITS with
SHETLS set astbss sections. It is the responsibility of the producer of the input files
to make sure the other fields are compatible with what is described irf fable 1.

Unlike the normaldata sections the running program will not use thdata
section directly. The section is possibly modified at startup time by the dynamic linker
performing relocations but after that the section data is kept around asitibkza-
tion image and not modified anymore. For each thread, including the initial one, new
memory is allocated into which then the content of the initialization image is copied.
This ensures that all threads get the same starting conditions.

Since there is no one address associated with any symbol for a thread-local variable
the normally used symbol table entries cannot be used. In executablgs thee
field would contain the absolute address of the variable at run-time, in DSOs the value
would be relative to the load address. Neither is viable for TLS variables. For this
reason a new symbol tyg&TT_TLS is introduced. Entries of this type are created for
all symbols referring to thread-local storage. In object filessthealue field would
contain the usual offset from the beginning of the sectiorsthehndx field refers to.
For executables and DSOs téte value field contains the offset of the variable in the
TLS initialization image.
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2 DATA DEFINITIONS

Table 3: Program header table entry for initialization image

| Field | Value \
p_type PT_TLS
p_offset File offset of the TLS initialization image

p_vaddr Virtual memory address of the TLS initialization image
p_paddr Reserved

p_filesz Size of the TLS initialization image
p_memsz | Total size of the TLS template
p_flags PFR

p-align Alignment of the TLS template

The only relocations which are allowed to use symbols of typ&TLS are those
which are introduced for handling TLS. These relocations cannot use symbols of any
other type.

To allow the dynamic linker to perform this initialization the position of the initial-
ization image must be known at run-time. The section header is not usable; instead a
new program header entry is created. The content is as specified iajtable 3.

Beside the program header entry the only other information the dynamic linker
needs is th®F STATIC_TLS flag in theDT_FLAGSentry in the dynamic section. This
flag allows to reject loading modules dynamically which are created with the static
model. The next section will introduce these two models.

Each thread-local variable is identified by an offset from the beginning of the
thread-local storage section (in memory, ttss section is allocated directly fol-
lowing the .tdata  section, with the aligment obeyed). No virtual address can be
computed at link-time, not even for executables which otherwise are completely relo-
cated.
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3 RUN-TIME HANDLING OF TLS

3 Run-Time Handling of TLS

As mentioned above, the handling of thread-local storage is not as simple as that of
normal data. The data sections cannot simply be made available to the process and
then used. Instead multiple copies must be created, all initialized from the same initial-
ization image.

In addition the run-time support should avoid creating the thread-local storage if
it is not necessary. For instance, a loaded module might only be used by one thread
of the many which make up the process. It would be a waste of memory and time to
allocate the storage for all threads. A lazy method is wanted. This is not much extra
burden since the requirement to handle dynamically loaded objects already requires
recognizing storage which is not yet allocated. This is the only alternative to stopping
all threads and allocating storage for all threads before letting them run again.

We will see that for performance reasons it is not always possible to use the lazy
allocation of thread-local storage. At least the thread-local storage for the application
itself and the initially loaded DSOs are usually always allocated right away.

With the allocation of the memory the problems with using thread-local storage
are not yet over. The symbol lookup rules the ELF binary format defines do not allow
to determine the object which contains the used definition at link-time. And if the
object is not known the offset of the variable inside the thread-local storage section
for the object cannot be determine either. Therefore the normal linking process cannot
happen.

A thread-local variable is therefore identified by a reference to the object (and
therefore thread-local storage section of the object) and the offset of the variable in
the thread-local storage section. To map these values to actual virtual addresses the
run-time needs some data structures which did not exist so far. They must allow to
map the object reference to an address for the respective thread-local storage section
of the module for the current thread. For this two variants are currently defined. The
specifics of the ABIs for different architectures require two varigts.

tp tlsoffset,  tlsoffset_  tlsoffset TLS Blocks for
t 1 2 3 .
Dynamically—loaded modules

y TCB y Y

%

Y

A

Figure 1: Thread-local storage data structures, variant |

10ne reason to use variant Il is that for historic reasons the layout of the memory pointed to by the thread
register is incompatible with variant I.
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Variant | (see figurg]1) for the thread-local storage data structures were developed
as part of the I1A-64 ABI. Being brand-new, compatibility was no issue. The thread
register for thread is denoted byp,. It points to a Thread Control Block (TCB) which
contains at offset zero a pointer to the dynamic thread velttpfor the thread.

The dynamic thread vector contains in the first field a generation nugdser
which is used in the deferred resizing of tbt; and allocation of TLS blocks de-
scribed below. The other fields contain pointers to the TLS blocks for the various
modules loaded. The TLS blocks for the modules loaded at startup time are located di-
rectly following the TCB and therefore have an architecture-specific, fixed offset from
the address of the thread pointer. For all initially available modules the offset of any
TLS block (and therefore thread-local variable) from the TCB must be fixed after the
program start.

tlsoffset tlsoffset tlsoffset tp TLS Blocks for
3 2 1 t .
Dynamically—loaded modules
Y

R=tnNlI

gep dw, dv, dvgo dv, AV

Y TCB

Y Y

»
\

A A A

Figure 2: Thread-local storage data structures, variant Il

Variant Il has a similar structure. The only difference is that the thread pointer
points to a Thread Control Block of unspecified size and content. Somewhere the TCB
contains a pointer to the dynamic thread vector but it is not specified where. This is
under control of the run-time environment and the pointer must not be assumed to be
directly accessible; compilers are not allowed to emit code which directly access the
dtv;.

The TLS blocks for the executable itself and all the modules loaded at startup are
located just below the address the thread pointer points to. This allows compilers to
emit code which directly accesses this memory. Access to the TLS blocks is possible
again through the dynamic thread vector, which has the same structure as in variant |,
but also relative to the thread pointer with some offset which is fixed after the program
starts. The offset of TLS data for the executable itself is even known at link-time.

At program start time the TCB along with the dynamic thread vector is created
for the main thread. The position of the TLS blocks for the individual modules is
computed using architecture specific formulas based on the size and alignment require-
ments {Issize, andalign,) of the respective TLS block. In the architecture specific sec-
tions the formulas will use a function ‘round’ which returns its first argument rounded
up to the next multiple of its second argument:

roundz,y) = yx [z/y]
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3 RUN-TIME HANDLING OF TLS 3.1 Startup and Later

The memory for the TLS blocks does not necessarily has to be allocated right away.
It depends on the model, static or dynamic, the module is compiled with whether it is
necessary or not. If the static model is used the address (better said, offset from the
thread pointettp,) is computed using relocations by the dynamic linker at program
start time and compiler generated code directly uses these offsets to find the variable
addresses. In this case memory has to be allocated right away. In the dynamic model
finding the address of a variable is deferred to a function nanied _get _addr which
is provided by the run-time environment. This function is also able to allocate and
initialize the necessary memory if this has not happened yet.

3.1 Startup and Later

For programs using thread-local storage the startup code must set up the memory for the
initial thread before transferring control. Support for thread-local storage in statically
linked applications is limited. Some platforms (like 1A-64) don't define static linking

in the ABI (if it is supported it is non-standard), other platforms like Sun’s discourage
the use of static linking since only limited functionality is available. In any case is
dynamically loading modules in statically linked code severely limited or completely
impossible. Therefore is the handling of thread-local storage very much simpler since
only one module, the executable itself, exists.

The more interesting case is handling thread-local-storage in dynamically linked
code. In this case the dynamic linker must include support for handling this kind of
data sections. The requirements added by the ability to dynamically load code which
uses thread-local storage are described in the next section.

To set up the memory for the thread-local storage the dynamic linker gets the infor-
mation about each module’s thread-local storage requirements froRTtMES pro-
gram header entry (see taple 3). The information of all modules is collected. This can
possibly be handled with a linked list of records which contain

e a pointer to the TLS initialization image,
e the size of the TLS initialization image,
o thetlsoffset, for the module,

¢ a flag indicating whether the module uses the static TLS model (only if the ar-
chitecture supports the static TLS model).

This list will be extended when dynamically loading additional modules (see next
section) and it will be used by the thread library to set up the TLS blocks for a newly
created thread. It would also be possible to merge two or more initialization records
for the initial set of modules to shorten the list.

If all TLS memory would have to be allocated at startup time the total size would
be tlssize; = tlsoffse}, + tlssizey, where M is the number of modules present at
startup time. It is not necessary to allocated all this memory right away unless one
module is compiled for the static model. If all modules use the dynamic model it is
possible to defer the allocation. An optimized implementation will not blindly follow
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3.1 Startup and Later 3 RUN-TIME HANDLING OF TLS

the flag indicating the use of the static model. If the required amount of memory is
small it might not be worth the effort to defer the allocation, it might even save time
and resources.

As explained at the beginning of this section, a variable in thread-local storage is
specified by a reference to a module and an offset in the TLS block. Given the dynamic
thread vector data structure we can define the module reference as an integer starting
with 1 (one) which can be used to index thes array. The number each module
receives is up to the run-time environment. Only the executable itself must receive a
fixed number] (one), and all other loaded modules must have different numbers.

Computing the thread-specific address of a TLS variable is therefore a simple oper-
ation which can be performed by compiler-generated code which uses variant I. But it
cannot be done by the compiler for architectures following variant Il and there is also
a good reason to not do it: deferred allocation (see below).

Instead a function namedls _get _addr is defined which could in theory be im-
plemented like this (this is the form this function has for 1A-64; other architectures
might use a different interface):

void *
_ tls_get_addr (size_t m, size_t offset)

char *tls_block = dtv[thread_id][m];

return tls_block + offset;

}

How the vectodtv[thread  _id] is located is architecture specific. The sections
describing the architecture-dependent parts of the ABIs will give some examples. One
should regard the expressidtv[thread _id] as a symbolic representation of this
process.mis the module ID, assigned by the dynamic linker at the time the module
(application itself or a DSO) was loaded.

Using the_tls _get _addr function has the additional advantage to allow imple-
menting the dynamic model where the allocation of the TLS blocks is deferred to the
first use. For this we simply have to fill thitv[thread _id] vector with a special
value which can be distinguished from any regular value and possibly the value indi-
cating an empty entry. It is simple to change the implementationtief _get _addr
to do the extra work:

void *
_ tls_get_addr (size_t m, size_t offset)

char *tls_block = dtv[thread_id][m];

if (tls_block == UNALLOCATED_TLS_BLOCK)
tls_block = dtv[thread_id][m] = allocate_tls (m);

return tls_block + offset;

}
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The functionallocate _tls needs to determine the memory requirements for the
TLS of modulemand initialize it appropriately. As described in secf{ipn 2 there are two
kinds of data: initialized and uninitialized. The initialized data must be copied from
the relocated initialization image set up when modulgas loaded. The uninitialized
data must be set to zero. An implementation could look like this:

void *
allocate_tls (size_t m)

{
void *mem = malloc (tlssize[m]);
memset (mempcpy (mem, tlsinit_image[m], tlsinit_size[m]),
0, tlssize[m] - tlsinit_size[m]);
return mem;

}

tlssize[m] , tIsinit_size[m] , andtlsinit_image[m] have to be de-
termined in an implementation-dependent way. They are all known after modhale
been loaded. Note that the same im#gmit_image[m] is used for all threads,
whenever they are created. A thread does not inherit the data from it's parent.

Both variants for the storage data structures allow using the static model. The
modules which are compiled this way can be recognized bYpth8TATIC TLS flag
in the DT_FLAGSentry in the dynamic section. If such a module is part of the initial
set of modules (remember, such modules cannot be loaded dynamically) the memory
for the TLS block must be allocated immediately at startup time for the initial thread
and whenever a new thread is created for this new thread. Otherwise the allocation
can be deferred and the elementsdbd; are set to an implementation defined value
(UNALLOCATEDLS_BLOCKin the example code above).

3.2 Dynamic Loading

Dynamic loading of modules adds some more complexity to the picture. First, there
should not be a limit on how many modules which use thread-local storage can be
loaded at one point which means tiitg; arrays must be enlarged if necessary. Second,

it is absolutely necessary to avoid memory leaks. This must be kept in mind when
optimizing the implementation for speed. The speed problems arise when deallocating
memory of the TLS block of an unloaded module. The slots in the dynamic thread
vector must be reused sooner or later. Not doing this would mean constantly extending
the vector when loading new modules.

Since deallocating and then reallocating memory is expensive, especially since it
has to be done for each individual thread, one might want to avoid the costs by keeping
the memory around. But this must never lead to memory leaks if the same module is
loaded and unloaded multiple times.

Now that the restrictions of the implementation are clear the actual work which
has to be performed must be described. Dynamically loading modules which contain
thread-local storage requires preparing the application for using the currently running
and all future threads for using this memory. Note that loading modules which do
not use thread-local storage themselves do not require special attention regardless of
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3.3 Statically Linked Applications 3 RUN-TIME HANDLING OF TLS

whether the rest of the program uses thread-local storage. The information about the
new TLS block must be added to the list of initialization records and the counter for the
number of loaded module®/ must be incremented. While this takes care of threads
which will be created afterwards already running threads must be prepared, too.

Loading a new module can mean that the size of the dynamic thread vector allo-
cated for any given thread is possibly too small. This is what the generation counter
gen in eachdtv; helps to detect. If the vector is accessed the first thing to do is to make
sure the generation number is up-to-date and if not, allocate a larger vector. While this
theoretically could be done by the thread which creates the new thread (or the new
thread itself) this would only lead to sychronization problems and possibly unneces-
sary work if a thread does not use any thread-local storage. Since dynamically loaded
modules cannot use the static model it is never necessary to allocate new elements in
dtv; right away. It is always possible to defer this until the first use in which case
_tls _get _addr is used.

3.3 Statically Linked Applications

The TLS handling in statically linked applications is much simpler than in dynami-
cally linked code. At least if it is determined that statically linked applications cannot
dynamically load more modules. Even on systems which under some circumstances
allow dynamically loading (such as systems using the GNU C library) dynamic load-
ing might be restricted to loading to very basic modules and disallow those modules
containing code using or defining thread-local storage.

Therefore statically linked code always has exactly one TLS block. And since only
one module is ever used there is also no question about the variable offsets. Since all
thread-local variables must be contained in this one TLS block the offset is also known
at link-time.

The linker will always be able to fill in the module ID and offset and perform code
relaxations. There is no work for the startup code to except setting up the TLS block
for the initial thread. The thread library will have to do the same for newly created
threads. This is a simple task since there is exactly one initialization image.

From the discussions in this section we can already see that the access of the TLS
blocks is very simple since thigsoffset value is known at link-time and adding the
thread pointer, thésoffsef value, and the variable offset results in the address of the
variable. For some architectures the linker can automatically help to improve the code
by rewriting the compiler-generated code. When discussing the thread-local storage
access models we will see how much simpler the code gets and when discussing the
linker relaxations we will see how the linker can perform all the necessary optimiza-
tions.

3.4 Architecture Specific Definitions

Not all architectures use the same variant for the thread-local storage data structures
and some other requirements are also different. The handling of the thread pointer is
so low-level that it naturally is architecture specific. This section describes these bits
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to fill in the gaps in the discussion so far and prepares for the description of the inner
workings of the startup code.

3.4.1 1A-64 specific

The IA-64 ABI specifies the use of thread-local storage data structures according to
variant | above. The size of the TCB is 16 bytes where the first 8 bytes contain the
pointer to the dynamic thread vector. The other 8 bytes are reserved for the implemen-
tation.

The address of thdty; array can be determined by loading the 64-bit wipd
pointed to by the thread registgs, (GR 13). Each element alty; is 8 bytes in size to
accommodate a pointer.

The TLS blocks for all modules present at startup time (i.e. those which cannot
be unloaded) are created consecutively following the TCB. flduéfse} values are
computed as follows:

tisoffsef = round16,align,)
tlsoffsef,,;, = roundtlsoffsef, + tissize,, align,, ;)

forallmin1 <m < M whereM is the total number of modules.
The function_tls _get _addr is defined in the IA-64 ABI as described above:

extern void *_tls_get addr (size_t m, size_t offset);

It takes the module ID and the offset as parameters requiring relocations to change the
calling code to provide the needed information.

3.4.2 1A-32 specific

The 1A-32 ABIs specify the use of thread-local storage data structures according to
variant Il. Note the use of the plural: there are two versions of the 1A-32 ABI. The
data structure layout does not differ between the two models. The size of the TCB
does not matter for the ABIs. The dynamic thread vector cannot be directly accessed
from compiler generated code. Each element ofdiweis 4 bytes in size, enough for

a pointer and certainly enough for a generation counter.

Since the 1A-32 architecture is low on registers the thread register is encoded in-
directly through thesgs segment register. The only requirement about this register is
that the actual thread pointgg, can be loaded from the absolute address 0 vi&dfe
register. The following code would load the thread pointer in%tleex register:

movl %gs:0, %eax

To access TLS blocks for modules using the static modettludfsef, offsets
have to be known. These values mustdobtracted from the thread register value.
Unlike what happens on |A-64 where the offsets are added. The offsets are computed
as follows:
tisoffsef = roundtlssize, align,)
tlsoffsef,,;, = roundtlsoffset, + tlssize, 1, align,, )

Version 0.20, February 8, 2003 11



3.4 Architecture Specific Definitions 3 RUN-TIME HANDLING OF TLS

forallmin1 < m < M whereM is the total number of modules. These formulas
differ slightly from the 1A-64 formulas because of the fact that the values have to be
subtracted.

The _tls _get _addr function also differs slightly from the 1A-64 version. The
prototype is

extern void *__tls_get _addr (tls_index *ti);
where the typeéls _index is defined as

typedef struct

{
unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;

The element names are given only for presentation purposes. They are not available
outside the run-time environment. The information passed to the function is the same
as for the 1A-64 version of this function but only code to pass one parameter must
be generated and the values need not be loaded from the GOT by the calling code.
Instead this is centralized in thels _get _addr function. Note that the elements of
the structure have the same size as individual elements of the GOT. Therefore such a
structure can be defined on the GOT, occupying two GOT entries.

The definition of this function is one of the things which distinguish the two IA-

32 ABIs. The ABI defined by Sun Microsystems uses the traditional 1A-32 calling
convention for this function where the parameter is passed to the function on the stack.
The GNU variant of the ABI defines that the parameter is passed to the function in the
%eax register. To avoid conflicts with the Sun interface the function has a different
name (note théhree leading underscores):

extern void *__ tls_get_addr (tls_index *ti)
__attribute__ ((__regparm__ (1)));

This declaration uses the notation for the GNU C compiler. The difference for the
function itself is not big. But the complexity of the linker operations and the size of the
generated code varies greatly in favor of the GNU variant.

For the implementation on GNU systems we can add one more requirement. The
addres$sgs:0 represents is actually the same as the thread pointer. I.e., the content of
the word addressed viags:0 is the address of the very same location. The advantage
is potentially big since we can access memory directly via%tge register without
loading the thread pointer first. The documentation for the initial and local exec model
for x86 below shows the advantages.

3.4.3 SPARC specific

The SPARC ABI is virtually the same as the 1A-32 ABI. Both were designed by Sun.
The difference between 32-bit and 64-bit SPARC implementations is only the different
size of variables containing pointers.
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As for IA-32, the structure of the TCB is not specified. Phg7register is used as
the thread register containinig,. Accessing the dynamic thread vector with the thread
register’'s help is implementation defined. Each element ofithieis 4 bytes in size
for the 32-bit SPARC and 8 bytes in size for 64-bit SPARC.

The TLS blocks of the modules present at startup time are allocated according
to variant Il of the data structure layout and the offsets are computed with the same
formulas both, the 32- and the 64-bit, code.

tisoffsef = roundtlssize,align,)
tisoffsef,,;, = roundtlsoffset, + tlssize,1,align,, )

forallmin1l < m < M whereM is the total number of modules.
The_tls _get _addr function has the same interface as on I1A-32. The prototype is

extern void *__tls_get _addr (tls_index *ti);
where the typels _index is defined as

typedef struct

{
unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;

Here as well the element names are given only for presentation purposes. They are
not available outside the run-time environment.

Since theunsigned long int type has 4 bytes on 32-bit SPARC and 8 bytes
on 64-bit SPARC systems the elementsiof _index have for both CPU versions the
same size as elements of the GOT and therefore it is here also possible to define object
of this type in the GOT data structure.

3.4.4 SH specific

The SH ABI was designed by Kaz Kojima to follow the design of variant I. There is
not yet any support for 64-bit SH architectures. This _get _addr function has the
same interface as on SPARC:

extern void *_tls_get_addr (tls_index *ti);

where the typéls _index is defined as

typedef struct

{
unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;
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As usual, the element names are given only for presentation purposes. They are not
available outside the run-time environment.

The details for the currently supported SH ABIs differ from the SPARC, 1A-32,
and IA-64 code because of the architecture of the processor. The processor versions
before SH-5 provide only very restricted addressing modes which allow only offsets
with up to 12 bits. Since the compiler cannot make any assumptions on the layout and
size of functions (and therefore the relative position of symbols) addresses of objects
and functions cannot generally be computed at runtime. Instead addresses are stored in
variables and the values are computed by the runtime linker at load time. This abolishes
the need to define any TLS relocations for instructions. It is only necessary to define
relocations for data object. This simplifies the TLS handling significantly since only
very few new relocations are needed.

The code sequences to access TLS are fixed. No scheduling is allowed. It is not
necessary with the SH implementation today since they do not feature sophisticated
out-of-order execution.

3.4.5 Alpha specific

The Alpha ABI is a hybrid between the 1A-64 and SPARC models. The thread-local
storage data structures follow variant | above. The size of the TCB is 16 bytes where
the first 8 bytes contain the pointer to the dynamic thread vector. The other 8 bytes are
reserved for the implementation.

The TLS blocks for all modules present at startup time (i.e. those which cannot
be unloaded) are created consecutively following the TCB. fldwéfse}, values are
computed as follows:

tisoffsef = round16, align,)
tisoffsef, ., = roundtlsoffsef, + tlssize,, align,, ;)

forallmin1 < m < M whereM is the total number of modules.
The_tls _get _addr function is defined as for SPARC,

extern void *__tls_get _addr (tls_index *ti);

The thread pointer is held in the thread’s process control block. This value is ac-
cessed via the PALcode entry poAL rduniq

3.4.6 x86-64 specific

The x86-64 ABI is virtually the same as the 1A-32 ABI. The difference is mainly in
different size of variables containing pointers and that it only provides one variant
which closely matches the IA-32 GNU variant.

Instead of segment registesgs it uses thedfs segment register. Accessing the
dynamic thread vector with the thread register’s help is implementation defined. Each
element of thalty, is 8 bytes in size.

The TLS blocks of the modules present at startup time are allocated according
to variant Il of the data structure layout and the offsets are computed with the same
formulas.
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tisoffsef = roundtlssize,align,)
tisoffsef,,, = roundtlsoffsef, + tlssize,1,align,, )

forallmin1 <m < M wherelM is the total number of modules.
The_tls _get _addr function has the same interface as on 1A-32. The prototype is

extern void *__tls_get addr (tls_index *ti);
where the typéls _index is defined as

typedef struct

{
unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;

Here as well the element names are given only for presentation purposes. They are
not available outside the run-time environment.

3.4.7 s390 specific

The s390 ABI uses variant Il of the thread-local storage data structures. The size of the
TCB does not matter for the ABI. The thread pointer is stored in access register

and needs to get extracted into a general purpose register before it can be used as an
address. One way to get the thread pointer feeadto, for example%r1l is by use of

theear instruction:

ear %rl, %a0

The TLS blocks of the modules present at startup are allocated according to vari-
ant Il of the data structure layout and the offsets are computed with the same formulas.
Thetlsof fset; values must be subtracted from the thread register value.

tisoffsef = roundtlssize, align,)
tlsoffsef, ., = roundtlsoffsef, + tlssize, 1, align,, )

forallmin1 < m < M whereM is the total number of modules.
The s390 ABI is defined to use thetls _get _offset function instead of the
_tls _get _addr function used in other ABIs. The prototype is:

unsigned long int __tls_get_offset (unsigned long int offset);

The function has a second, hidden parameter. The caller needs to set up the GOT
register%rl12 to contain the address of the global offset table of the caller's module.
The offset  parameter, when added to the value of the GOT register, yields the ad-
dress of als _index structure located in the caller’s global offset table. The type
tls _index is defined as
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typedef struct
{

unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;

The return value of tls _get _offset is an offset to the thread pointer. To get
the address of the requested variable the thread pointer needs to be added to the return
value. The use oftls _get _offset might seem more complicated than the standard
_tls _get _addr but for s390 the use oftls _get _offset allows for better code se-
quences.

3.4.8 s390x specific

The s390x ABI is a close match to the s390 ABI. The thread-local storage data struc-
tures follows variant 1l. The size of the TCB does not matter for the ABI. The thread
pointer is stored in the pair of access registe® and %al with the higher 32 bits

of the thread pointer ifva0and the lower 32 bits ifval One way to get the thread
pointer into e.g. registeXrl is to use the following sequence of instructions:

ear %rl,%a0
sllg %r1,%r1,32
ear %rl,%al

The TLS block allocation of the modules present at startup uses the same formulas

for tlsoffsef, as s390 and the s390x ABI uses the sartie _get _offset interface
as s390.

16 Version 0.20, February 8, 2003



4 TLS ACCESS MODELS

4 TLS Access Models

The document so far already mentioned two different ways to access thread-local stor-
age, the dynamic and the static model. These are the basic differentiations of the TLS
access models. Different models, falling in one of these two categories, are used to
provide as much performance as possible. The ABIs covered in this document define
four different access models. The ABIs for other platforms might define additional
models.

All models have in common that the dynamic linker at startup-time or when a mod-
ule gets loaded dynamically has to process all the relocations related to thread-local
storage. Processing of none of these relocations can be deferred; just as any other
relocation for variables (instead of function calls) they must be processed right away.

When performing a relocation f@TT_TLS symbol the result is a module ID and
a TLS block offset. For relocations or normal symbols the result would be the address
of the symbol. The module ID and TLS block offset are then stored in the GOT. The
text segment cannot be modified and therefore the code generated by the compiler and
linker has instructions which read the values from the GOT.

4.1 General Dynamic TLS Model

The general dynamic TLS model is the most generic. Code compiled with it can be
used everywhere and it can access variables defined anywhere else. Compilers will
by default generate code with this model and only use a more restrictive model when
explicitly told to do so or when it can safely use another model without limiting the
generality.

The generated code for this model does not assume that module number nor vari-
able offset is known at link-time (leave alone compile-time). The values for the mod-
ule ID and the TLS block offset are determined by the dynamic linker at run-time
and then passed to thels _get _addr function in an architecture-specific way. The
_tls _get _addr function upon return has computed the address of the variable for the
current thread.

The size of the code to implement this model and the time needed at run-time for
relocation and in the code to compute the address makes it necessary to avoid this
model whenever possible. If both the module ID and the TLS block offset or even only
the module ID are known better ways are available.

Since in this model thetls _get _addr function is called to calculate the variable
address it is possible to defer allocating the TLS block with the techniques described
above. If the linker is changing the code to something more efficient this could be a
model which does not allow deferred allocation.

In the following sections the code shown is determining a address of a thread-local
variablex:

extern __thread int x;

&X;
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4.1.1 1A-64 General Dynamic TLS Model

Since the 1A-64 version of thetls _get _addr function is expecting the module 1D

and the TLS block offset as parameters the code sequence for the general dynamic TLS
model on |A-64 has to load these two values in the parameter registersandoutl .

The result will be in the result registesto .

It is important to know that the 1A-64 ABI doasot provide provisions for linker
relaxation. Once code is generated for a certain model the linker cannot help even if it
could find out that the model is not optimal. It is therefore important that the compiler
(sometimes guided by the programmer) generates the right code.

In the code sequences the instructions get assigned addresses of offsets. For IA-64
these only help referring to the instructions easier. The compiler can freely decide to
rearrange them.

General Dynamic Model Code Sequence | Initial Relocation Symbol
0x00 mov locO=gp

0x06 addl tl=@ltoff(@dtpmod(x)),gp RIA 64 LTOFFDTPMOD22 x
0x0c addl t2=@Iltoff(@dtprel(x)),gp RIA 64 LTOFFEDTPREL22 x

0x10 Id8  outo=[t1]
0x16 1d8 outl=[t2]
Ox1c br.callrp= _tls _get _addr

0x20 r;wlov gp=Iloc0

Outstanding Relocations

GOT[m] R.IA 64 _DTPMODG64LSB X
GOT[n] RIA _.64_DTPREL64LSB X

The instruction at addre$s06 determines the address of the GOT entry generated
for the @Itoff(@dtpmod(x)) expression. The linker puts the 22-bit offset of the
entry from thegp register in the instruction and creates a new GOT e®&gT[m] in
the example, which gets filled at run-time by the dynamic linker. For this the dynamic
linker has to process tirelA _64_DTPMOD64LSBelocation to determine the module ID
for the module containing the symbwol(on platforms using big-endian the relocation
would beR.IA _64_DTPMOD64M9B

Similarly the instruction at addre€x0c is handled. The assembler handles the
@ltoff(@dtprel(x)) expression by storingp-relative offset of the GOT entry in
the instruction and allocating a new GOT entry. The dynamic linker stores at run-time
in this GOT entryGOT[n] (wheren does not have to have any relatiomio the offset
of the variablex in the TLS block of the module the variable was found in. The value is
determined by processing tRelA 64 _DTPREL64LSBrelocation attached to this GOT
entry (on big-endian systems it would BgA 64 _ DTPREL64MSR

The remainder of the generated code is straight-forward. The GOT values are
loaded with the twdd8 instructions and stored in the parameter registers for the
following call to the function__tls _get _addr . We have seen the prototype of this
function above and it should be obvious to see that it matches the use in the code here.
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Upon return the computed address of the thread-local varialidestored in the
registenet0 .
4.1.2 1A-32 General Dynamic TLS Model

The IA-32 code sequence for the general dynamic model exists in two variants since
the function__tls _get _addr is called differently as explained above. First the version
following Sun’s model:

General Dynamic Model Code Sequence Initial Relocation  Symbol

0x00 leal x@dtindx(%ebx),%edx R 386 _TLS_GD32 X
0x06 pushl %edx R 386 _TLS_.GDPUSH X
0x07 call x@TLSPLT R 386 _TLS_GDCALL X
0x0c popl %edx R 386 _TLS_.GDPOP X
0x0d nop

Outstanding Relocations
GOT[n] R 386 _TLS_.DTPMOD32 x
GOT[n+1] R386 _TLS_.DTPOFF32 X

The_tls _get _addr function of the IA-32 ABI only takes one parameter which is
the address of ths _index structure containing the information. TRe386 _TLS_GD32
relocation created for the@dtindx(%ebx) expression instructs the linker to allocate
such a structure in the GOT. The two entries required fotltheindex object must
of course be consecutive0©T[n] andGOT[n+1] in the example code above). These
GOT locations get the relocatioms386 _TLS_.DTPMOD32nd R 386 _TLS_DTPOFF32
associated with it. The order of the two GOT entries is determined by the order of the
appropriate fields in the definition 6§ _info .

The instruction at addre$x00 only computes the address of the first GOT entry
by adding the offset from the beginning of the GOT which is known at link-time to the
content of the GOT registénebx. The result is stored in any of the available 32-bit
registers. The example code above use®dbex register but the linker is supposed to
be able to handle any register used. The address is then passed tis thget _addr
function on the stack. Theushl andpopl instruction perform this work. They get
their own relocations so that the linker can recognize these instructions in case code
relaxations are later possible.

Thex@TLSPLTexpression is the call tatls _get _addr . It is not possible to sim-
ply write call __tls _get _addr@plt since this would provide the assembler no in-
formation about the associated symbolirf this case) and so it would not be able to
construct the correct relocation. This relocation, once more, is necessary for possible
code relaxations.

After the function call the registefeax contains the address of the thread-local
variablex. Thenop instruction at addregix0d is added here to create a code sequence
which allows code relaxations to be performed. As we will see later some of the code
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sequences used for other access models need more space.
The code sequence for the GNU variant is similar but significantly simpler:

General Dynamic Model Code Sequence Initial Relocation Symbol

0x00 leal x@tlsgd(,%ebx,1),%eax R 386 _TLS_GD X

0x07 call __tls _get _addr@plt R.386 _PLT32 __tls _get _addr
Outstanding Relocations

GOT[n] R.386 _TLS_DTPMOD32 X

GOT[n+1] R.386 _TLS_DTPOFF32 X

The different calling convention far_tls _get _addr reduces the code sequence
by two instructions. The parameter is passed to the function ifetie register. This
is what theleal instruction at addres300 does. To signal that this instruction is for
the GNU variant of the access model the synt@tisgd(%ebx) is used. This creates
the relocatiorR 386 _TLS_GDinstead 0fR 386 _TLS_.GD32. The effect on the GOT is
the same. The linker allocates two slots in the GOT and places the offset from the
GOT registepbebxin the instruction. Note the form of the first operandeafl  which
forces the use of the SIB-form of this instruction, increasing the size of the instruction
by one byte and avoiding an additiomalp .

The call instruction also differs. There is no need for a special relocation and so
__tls _get _addr is called using the normal syntax for a function call.

4.1.3 SPARC General Dynamic TLS Model

The SPARC general dynamic access model is very similar to the IA-32 one. The
_tls _get _addr function is called with one parameter which is a pointer to an object
of typetls _index .

General Dynamic Model Code Sequence | Initial Relocation Symbol
0x00 sethi %hi(@dtindx(x)),%00 R.SPARCTLS_GDHI22 X
0x04 add  %00,%lo(@dtIndx(x)),%00 R SPARCTLS_GDLO10 X
0x08 add %I7,%00,%00 R SPARCTLS_GDADD X
0x0c call _tls _get _addr R SPARCTLS_GDCALL X
Outstanding Relocations, 32-bit
GOTI[n] R.SPARCTLS_DTPMOD32 X
GOT[n+1] R SPARCTLS_.DTPOFF32 X
Outstanding Relocations, 64-bit
GOT[n] R SPARCTLS_.DTPMOD64 X
GOT[n+1] R SPARCTLS_DTPOFF64 X

The expressio®dtindx(x) causes the linker to create an object of type _info
in the GOT. Due to SPARC’s RISC architecture the offset has to be loaded in two
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steps in the registe%o0 The @dtindx(x) expression used withohi() produces
a R SPARCTLS_GDHI22 relocation while the next instruction usésgo() to get the
lower 10 bits and this way creates the matcHR§PARCTLS_GDLO10 relocation.

The offset so loaded is that of the first of two consecutive words in the GOT which
the linker will add when creating an executable or shared object and which get the
relocationsR_ SPARCTLS_DTPMOD64and R SPARCTLS DTPOFF64assigned. These
relocations will instruct the dynamic linker to look up the thread-local synibahd
store the module ID of the module it is found in into the first word and the offset in the
TLS block into the second word.

Theadd instruction at addresx08 produces the final address. In this example the
%I7 register is expected to contain the GOT pointer. The linker is prepared to deal with
any register, though, not ondgl7. The requirement is only that the GOT register must
be the first register in the instruction. To locate the instructi®rS®ARCTLS_GDADD
relocation is added to the instruction.

The last instruction in the sequence is the callts _get _addr which causes a
R SPARCTLS_GDCALL relocation to be added.

The code sequence must appear in the code as is. It is not possible to move the
seconchdd instruction in the delay slot of theall  instruction since the linker would
not recognize the instruction sequefe.

4.1.4 SH General Dynamic TLS Model

Accessing a TLS variable in the general dynamic model is simply the concatenation of
the code to access a global variable and a function call. The global variable contains
the offset of the address TLS variable, a value determined by the linker. The called
function is_tls _get _addr .

General Dynamic Model Code Sequence Initial Relocation Symbol

0x00 mov.l 1fr4
0x02 mova 2f,r0
0x04 mov.l 2frl
0x06 add ro,rl
0x08 jsr @rl
0x0a add ri12,r4

0x0c bra  3f
0x0e nop

.align 2
1 long x@tlsgd RSHTLS_.GD32 X
2: .long _tls _get _addr@plt
3:

Outstanding Relocations

GOT[n] RSHTLS.DTPMOD32 x
GOT[n+1] RSHTLS DTPOFF32 x

2This is at least what Sun’s documentation says and apparently how Sun’s linker works. Given the
relocations which show exactly what the instructions do this seems not really necessary.
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The value stored in the word labeled with contains the link-time constant offset
of the first of two GOT entries which make up thie _index object. The complete
address of the object will be computed in the instruction at offsed . The second and
third instruction compute the address afs _get _addr with the usual code sequence.
In the instruction at offséix08 the function is then called and it returngin the result.
Note that theadd instruction at offsedx0a is executed in the branch delay slot. After
_tls _get _addr returns all that is necessary is to skip over the data.

It is worth mentioning that this code is fairly expensive. Each and every access
to a TLS variable in the general dynamic model requires four words of data and two
additional instructions to skip over the data placed in the middle of the text segment.

4.1.5 Alpha General Dynamic TLS Model

The Alpha general dynamic access model is similar to that for IA-32._Thke _get _addr
function is called with one parameter which is a pointer to an object ofttypendex .

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 Ida $16,x($gp) !tisgd!l RALPHATLSGD X
0x04 Idg $27, _tls _get _addr($gp)!literal!l RALPHALITERAL _tls _get _addr
0x08 jsr $26,($27),0 llituse _tisgd!1 RALPHALITUSE 4

0xOc Idah $29,0($26) !gpdisp!2 RALPHAGPDISP 4

0x10 Ida $29,0($29) !gpdisp!2

Outstanding Relocations

GOTI[n] RALPHADTPMODG64 X
GOT[n+1] RALPHADTPRELG64 X

The relocation specifietisgd  causes the linker to create an object of type_info
in the GOT. The address of this object is loaded into the first argument repfisterith
thelda instruction. The rest of the sequence is the standard call sequence for a func-
tion, except thallituse  _tlsgd is used instead dfituse  _jsr . The reason for this
will become apparent when relaxation is discussed.

4.1.6 x86-64 General Dynamic TLS Model

The x86-64 general dynamic access model is very similar to the I1A-32 GNU variant.
The _tls _get _addr function is called with one parameter which is a pointer to an
object of typetls _index .

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 .byte 0x66

0x01 leag x@tlsgd(%orip),%rdi R X86_64_TLSGD X
0x08 .word 0x6666

Ox0a rex64

0x0b call _tls _get _addr@plt R X86_64 _PLT32 _tls _get _addr
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Outstanding Relocations

GOT[n] R.X86_64 _DTPMODG64 X
GOT[n+1] R_X86_64 _DTPOFF64 X

The_tls _get _addr function of the x86-64 ABI only takes one parameter which is
the address of ths _index structure containing the information. TReX86_64 _TLSGD
relocation created for the@tlsgd(%rip)  expression instructs the linker to allocate
such a structure in the GOT. The two entries required fotitheindex object must
of course be consecutiveQT[n] andGOT[n+1] in the example code above). These
GOT locations get the relocatiomsx86_64_DTPMOD64ANdR X86_64 DTPOFF64as-
sociated with it.

The instruction at addre€x00 only computes the address of the first GOT entry
by adding the PC relative address of the beginning of the GOT which is known at link-
time to the current instruction pointer. The result is passed vigsthe register to the
_tls _get _addr function. Note the instruction must be preceeded bgtal6 prefix
and immediately followed by theall instruction at offsedx08 . Thecall instruction
has to be preceeded by twatal6 prefixes and ongex64 prefix to increase the total
size of the whole sequence to 16 bytes. Prefixes and not no-op instructions are used
since the former have no negative impact in the code.

4.1.7 s390 General Dynamic TLS Model

For the s390 general dynamic access model the compiler has to set up the GOT register
%r12 before it can call_tis _get _offset . The_tls _get _offset function gets one
parameter which is a GOT offset to an object of tylse _.index . The return value of

the function call has to be added to the thread pointer to get the address of the requested
variable.

General Dynamic Model Code Sequence Initial Relocation Symbol
I %r6,.L1-.L0(%r13)
ear %r7,%a0
| %r2,.L2-.L0(%r13)
bas %r14,0(%r6,%r13) R.390 _TLS_GDCALL X
la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %r13

.L1: .long _tls _get _offset@plt-.LO

.L2: .long x@tlsgd R 390_TLS_.GD32 X
Outstanding Relocations

GOT[n] R390_TLS.DTPMOD  x

GOT[n+1] R390_TLS.DTPOFF  x
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TheR 390 _TLS_GD32relocation created for the literal pool enke@tlsgd instructs
the linker to allocate @ds _index structure in the GOT, occupying two consecutive
GOT entries. These two GOT entries have the relocatfAs80 _TLS DTPMOLand
R 390 _TLS_DTPOFFassociated with them.

TheR 390 _TLS_GDCALLrelocation tags the instruction to caltls _get _offset
This instructions is subject to TLS model optimization. The tag is hecessary because
the linker needs to known the location of the call to be able to replace it with an in-
struction of a different TLS model. How the instruction tag is specified in the assembler
syntax is up to the assembler implementation.

The instruction sequence is divided into four parts. The first part extracts the thread
pointer from%a0and loads the branch offset tals _get _offset . The first part can
be reused for other TLS accesses. A second TLS access doesn’t have to repeat these
two instruction, but can us#ré and%r7 if these registers have not been clobbered
between the two TLS accesses. The second part is the core of the TLS access. For
every variable that is accessed by the general dynamic access model these two instruc-
tion have to be present. The first loads the GOT offset to the varigblesndex
structure from the literal pool and the second calis _get _offset . The third part
uses the extracted thread pointertn7 and the offset irvor2 returned by the call to
_tls _get offset to perform an operation on the variable. In the example the address
of x is loaded to registe¥or8. The compiler can choose any other suitable instruction
to access, for example al* %r8,0(%r2,%r7) " would load the content of to %r8.

That leaves room for optimizations in the compiler. The fourth part is the literal pool
that needs to have an entry for th@tlsgd offset.

All the instruction in the general dynamic access model for s390 can be scheduled
freely by the compiler as long as the obvious data dependencies are fulfilled and the
registersr0 - %r5 do not contain any information that is still needed after lihe
instruction (they get clobbered by the function call). Registers, %r7 and%r8 are
not fixed, they can be replaced by any other suitable register.

4.1.8 s390x General Dynamic TLS Model

The general dynamic access model for s390x is more or less a copy of the general
dynamic model for s390. The main differences are the more complicated code for the
thread pointer extraction, the use of thasl instruction instead of theas and the

fact the s390x uses 64 bit offsets.

General Dynamic Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
sllg  %r7,32

ear %r7,%al
lg %r2,.L1-.L0(%r13)
brasl %rl4, _tls _get _offset@plt R.390 _TLS_GDCALL X
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la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %r13

.L2: .quad x@tlsgd R 390 _TLS_GD64 X
Outstanding Relocations

GOT[n] R.390 _TLS_.DTPMOD X

GOT[n+1] R 390 _TLS_DTPOFF X

The relocation® 390 _TLS_GD64 R 390 _TLS_.DTPMO®RNAR 390 TLS_ DTPOFFdO
the same as their s390 counterparts, only the bit size of the relocation target is 64 bit
instead of 32 bit.

4.2 Local Dynamic TLS Model

The local dynamic TLS model is an optimization of the general dynamic TLS model.
The compiler can generate code following this model if it can recognize that the thread-
local variable is defined in the same object it is referenced in. This includes, for in-
stance, thread-local variables with file scope or variables which are defined to be pro-
tected or hidden (see the Generic ELF ABI specification for more information on this).
We refer to these kind of variables here as protected.

Just as areminder, a thread-local variable is defined by the module ID and the offset
in the TLS block of that module. In the case of variables which are known to be found
in the same object as the references the offsets are known at link-time. The module 1D
is not known (unless it is the main application in which case more optimizations can be
performed). It is therefore still necessary to cals _get _addr to get the module ID
and eventually allocate the TLS block. If the parameters fitw _get _addr would
make the function compute the start address of the TLS block by passing zero as the
offset it is then possible to reuse this value many times to access many variables by
adding the offset of the protected thread-local variable to the start address of the TLS
block. The compiler can easily and efficiently generate such code.

But one must keep in mind that it is normally not really an advantage to use the local
dynamic model if only one protected thread-local variable is used thiEvaawouId
mean a call ta_tls _get _addr as for the general dynamic model plus an additional
addition to compute the address. But the equation changes if more than one variable
is treated this way. We still have only one function call and every variable adds an
addition. Because the difference between the general and the local dynamic model
is not just replacing some instructions with a few others but instead generating quite
different code, the optimization from the general to the local dynamic model cannot
be performed by the linker. The compiler has to do it, perhaps with help from the
programmer.

In the architecture specific description the examples implement something equiva-
lent to this piece of code:

3For IA-64 it can be of advantage.
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static __thread int x1;
static __thread int x2;

&x1;
&x2;

4.2.1 1A-64 Local Dynamic TLS Model

The instruction set of the IA-64 makes it possible that the code sequence to determine
the address of one variable with the local dynamic model is shorter than the general
dynamic model code sequence. In addition the variable offset does not have to be
computed by the dynamic linker and the GOT needs one less element.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 mov locO=gp

0x06 addl tl=@lItoff(@dtpmod(x)),gp RIA 64 LTOFFEDTPMOD22 x
0x0c addl outl=@dtprel(x),r0 RIA 64 _DTPREL22 X

0x10 1d8  outo=[t1]
0x16 br.callrp= _tls _get _addr

0x20 r;wlov gp=Iloc0

Outstanding Relocations
GOT[n] R.IA _.64_DTPMOD64LSB X

The difference to the general dynamic model is that it is not necessary to find the
offset of the variable by adding th@Itoff(@dtprel(x)) value togp and then load
from this address. Instead thddl instruction at addres@xOc is used to compute
the offset directly (this is how loading an immediate value on 1A-64 works). This all
means that one lesdd instruction is needed in the second bundle and the compiler
could fill the slot with something else.

This code sequence has one limitation, though. The offset in the TLS block has
only 21 bits. If the amount of thread-local data exce2tisbytes (2 MiBi) different
code has to be used. Larger offsets must be loaded using the long move instruction
which allows a full 64-bit offset to be loaded. In addition, the compiler could optimize
the addl instruction further if it would be known that the thread-local data require-
ments don't excee@'? bytes (8 KiBi). The relocations used in these cases would
beR.IA 64 DTPREL64l andR.IA _64_DTPREL14respectively. Whatever the compiler
chooses, there is normally no possibility for the linker to determine the best or nec-
essary instruction so the selection should be up to the user with the help of compiler
switches. The code sequence from the example above is a good compromise and useful
as the default.

In case a function must access more than one protected thread-local variable the
savings can be even larger. In this case tti® _get _addr call is not used to compute
the address of any variable but instead only to compute the address of the beginning of
the TLS block.
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Local Dynamic Model Code Sequence, I Initial Relocation Symbol
0x00 mov locO=gp
0x06 addl tl=@ltoff(@dtpmod(x1)),gp RIA 64 _ LTOFFDTPMOD22 x1

0x0c mov outl=r0

0x10 1d8 outo=[t1]
0x16 br.callrp= _tls _get _addr

0x20 r’ﬁov gp=loc0
0x26 mov r2=ret0

0x30 addl locl=@dtprel(x1),r2 RIA 64_DTPREL22 x1

0x36 addl loc2=@dtprel(x2).r2 RIA 64 DTPREL22 X2
Outstanding Relocations

GOT[n] RIA 64 DTPMODG4LSB X

The first part of the code is very similar to the previous code where only one vari-
able was used. The only difference is that explicitly zero is passetso_get _addr
as the second parameter. This computes the beginning of the TLS block for the module
x1 is found in, i.e., the module this code is in as well.

To complete the computations additional code is needed and it starts with saving
the return value of the function call in a place where it can later be used (the register
r2 ). Finally we see the actual code to compute the variable addresses. Itis very simple
since we only have to add the offset of the variable to the base address of the TLS
block. The offset is an immediate value known at link-time replaced in the code with
the RIA _64_DTPREL22relocation. This relocation is, just as in the code above, a
compromise between size and flexibility. Here as well the compiler could use the short
add instruction or the long move instruction.

4.2.2 |A-32 Local Dynamic TLS Model

The code sequence for the local dynamic model is not providing any advantage over
the general dynamic model unless more than one variable is used. It is easy to see
why. The code to call.tls _get _addr does not change at all since it only computes
the address of the GOT entry. The GOT entry must consists of two words even though
theti _offset word is known at link-time. In case more than one variable is needed
there is an advantage in using this model. The following is the code sequence for Sun’s
variant.

Local Dynamic Model Code Sequence Initial Relocation  Symbol
0x00 leal x1@tmdnx(%ebx),%edx R 386 _TLS_LDM32 x1

0x06 pushl %edx R 386 _-TLS_LDMPUSH X1
0x07 call x1@TLSPLT R386 _TLS_.LDMCALL x1

0x0c popl %edx R.386 _TLS_LDMPOP x1
0x10 movl  $x1@dtpoff,%edx R386_TLS.LDQ32 x1

0x15 addl %eax,%edx
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0x20 movl
0x25 addl

$x2@dtpoff,%edx
%eax,%edx

R.386 _TLS_LDQ32 X2

GOTIn]

Outstanding Relocations
R 386 _TLS_.DTPMOD32 x1

The x1@tmdnx(%ebx) expression in the first instruction instructs the assembler
to generate &386 _TLS_LDM32. This in turn will tell the linker to create a special

tls _index object on the GOT where the _offset

element is zero. This is why in

the code above there is only one outstanding relocation for the GOTi Thedule
element will be filled with the module 1D of the module the code is in when it processes

theR.386 _TLS_DTPMOD32elocation.

Whenthe callta_tls _get _addr call returns thé&eeaxregister contains the address
of the TLS block of the module the code is in for the current thread. All thatis needed is
to complete the address computation by adding the variable offsets. The instructions at
addres®x10 and0x15 compute the address of the variakieby adding the offset to

the%eaxregister content. For this the expresstan@dtpoff

is used which generates

a relocation of typdr 386 _TLS_LDQ32. This relocation reference the varialte and
its offset can be computed by the linker and filled in the instruction.

Using a second variable requires only the repetition of the addition which is less
work than the function call and although two variables are used onlyl®néndex

element is created in the GOT.

The advantages are even more obvious in the code sequence for the GNU variant.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leal x1@tlsldm(%ebx),%eax R 386 _TLS_LDM x1
0x06 call __tls _get _addr@plt R.386 _PLT32 __tls _get _addr
0x10 leal x1@dtpoff(%eax) Yoedx R 386 TLS.LDQ32 x1

0x20 leal x2@dtpoff(%eax) Yoedx R 386 TLS.LDQ32 X2

GOT[n]

Outstanding Relocations
R.386 _TLS_.DTPMOD32 x1

The computation of the base address in the TLS follows the Sun variant, along with
the improvements due to the calling conventions_afs _get _addr . The GOT con-

tains one specials _index entry with theti _offset
differences are that the expressidr@tlisidm(%ebx)

element being zero. The only
is used for the address of the

GOT entry. The expression is handled just ietmdnx(%ebx) except that the relo-
cation which is created for the instructioris886 _TLS_LDMinstead 0R 386 _TLS_LDM32.

28
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But the calling convention is not the only advantage. The instructions to compute
the final addresses are optimized as well. Using the power oéthe instruction the
two instructions needed in Sun’s variant can be folded in one. The relocation for the
instruction remains the same. But this is not all. If instead of computing the address of
the variable the value of it has to be loaded one simply uses

movl x1@dtpoff(%eax),%edx

This instruction would get the same relocation as the origéaainstruction. Stor-
ing something in such a variable works exactly the same way.

As long as the base address of the TLS block is kept around in a register loading,
storing, or computing the address of a protected thread-local variable is a matter of one
instruction.

4.2.3 SPARC Local Dynamic TLS Model

For SPARC as for IA-32 the local dynamic model does not provide any advantage
when only one variable is used. The disadvantage is even bigger for SPARC due to the
nature of the RISC instruction set. If more than one variable is used the generated code
could look like this:

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 sethi %hi(@tmdnx(x1)),%00 R.SPARCTLS_LDMHI22 x1
0x04 add  %00,%lo(@tmndx(x1)),%00 R SPARCTLS_LDMLO10 x1
0x08 add %I7,%00,%00 R SPARCTLS_LDMADD x1
0x0c call _tls _get _addr R SPARCTLS_LDMCALL x1
0x10 sethi %hix(@dtpoff(x1)),%I1 RSPARCTLS.LDQHIX22  x1
0x14 xor  %l1,%lox(@dtpoff(x1)),%I1 RSPARCTLS_LDQLOX22  x1
0x18 add %00,%I1,%I1 R SPARCTLS_LDQADD x1
0x20 sethi %hix(@dtpoff(x2)),%I2 RSPARCTLSLDQHIX22  x2
0x24 xor  %I2,%lox(@dtpoff(x2)),%I2 RSPARCTLSLDOLOX22  x2
0x28 add %00,%I2,%I2 R SPARCTLS_LDQADD X2
Outstanding Relocations, 32-bit
GOT[n] R.SPARCTLS_.DTPMOD32 x1
Outstanding Relocations, 64-bit
GOTI[n] R SPARCTLS_DTPMOD64 x1

The first four instructions are basically equivalent to the code sequence used for the
general dynamic model. But instead of usi@gltindx(x) to generate @ds _index
entry for symbolx this code usesmndx(x1) which creates a special kind of index
which refers to the current module (which contaiis) with an offset zero. The
linker will create only one relocation for the object, depending on the platform ei-
therR. SPARCTLS_DTPMOD32r R SPARCTLS_DTPMOD64 The DTPRELrelocation is
not necessatry.

The reason for this is that the offsets are loaded separately. @iy@off(x1)
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expression is used to access the offset of the symbolUsing the two instructions

at addres®x10 and0x14 the complete offset is loaded and added to the result of the
_tls _get _addr call in %00to produce the result itl1. The @dtpoff(xl) expres-
sions creates the relocatioRSPARCTLS_ LDQOHIX22 andR.SPARCTLS_LDOLOX22

for the %ohix() and%lox() part respectively. Thadd instruction is marked with a

R SPARCTLS_LDOADDrelocation so that the linker can recognize it.

The benefit of using the local dynamic model is that for every additional variable
only three new instructions have to be added and no additional GOT entries or run-
time relocations. Altogether, inight be even preferable to use this model even for
one variable if the run-time overhead of processing the run-time relocations should be
avoided.

4.2.4 SH Local Dynamic TLS Model

As for the other architectures the code generated for the local dynamic model in SH
differs from the general dynamic model in that for the first local symbol which is looked
up additional efforts are necessary. The code sequence for the second and all later
lookups is much cheaper which is especially true for SH.

Local Dynamic Model Code Sequence Initial Relocation Symbol

0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add ro,rl
0x08 jsr @rl
OxO0a add ri12,r4

0xOc bra 3f
0x0e nop

.align 2
1 long x1@tlsgd R.SHTLS_LD_32 x1
2: .long _tls _get _addr@plt
3:

mov.|l .Lp,rl

mov.l r0,r1

'rﬁ'ov.l .Lg,r1

mov.l r0,rl
Lp: long x1@dtpoff R SHTLS.LDQ32 x1
.Lp: .long x2@dtpoff RSHTLS.LDQ32 X2

Outstanding Relocations

GOT[n] RSHTLS.DTPMOD32 x1

The first seven instruction are equivalent to those in the generic dynamic model.
Only this time the symbol looked up is special as it has the offset zero in the module’s
TLS data segment. This is identical to what is done on SPARC and IA-32. The differ-
ence to the generic dynamic code is that only one of the two GOT slots needed has a
relocation attached. The _offset field is always zero.
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Once these preliminaries are over the code to determine the address of the local
variables is simply. It consists of loading the linktime-constant offset of the variable in
the TLS segment and adding to it the earlier found address of the beginning of the TLS
segment for module and the current thread.

Compared with the generic dynamic model code sequence a lookup of two vari-
ables saves three instructions, one GOT entry, and one function call. For three TLS
variable lookups the benefit would be eight instructions, one data word, two GOT en-
tries, and two function calls. It is easy to see that choosing the local dynamic model
pays off whenever more than one variable is in play.

It is worth noting that in this code sequence the allocation of the memory for the
offsets for the variables, marked by the labéls and.Lqg , can be delayed and even-
tually combined with other data (as in the example code above)nidwel andadd
instructions do not have to be touched again after they have been created. Optimiza-
tions of the local dynamic model to the local exec model do not touch these instructions.
Therefore they can be moved around freely by the compiler, they need not have a fixed
relative position to the data.

4.2.5 Alpha Local Dynamic TLS Model

For Alpha as for IA-32 the local dynamic model does not provide any advantage when
only one variable is used. If more than one variable is used the generated code could
look like this:

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 Ida $16,x($gp) !tlsldm!l RALPHATLSLDM X
0x04 Idg $27, _tls _get _addr($gp)!literal!l R ALPHALITERAL _tls _get _addr
0x08 jsr $26,($27),0 llituse _tlsldm!1 RALPHALITUSE 5
0xOc Idah $29,0($26) !gpdisp!2 RALPHAGPDISP 4
0x10 Ida $29,0($29) !gpdisp!2
0x20 Ida  $1x1($0) !dtprel RALPHADTPREL16 x1
0x30 Idah $1x2($0) !dtprelhi RALPHADTPRELHI X2
0x34 Ida $1,x2($1) !dtprello RALPHADTPRELLO x2
0x40 qu $1,x3($gp) !gotdtprel R ALPHAGOTDTPREL x3
Ox44 addq $0,$1,$1

Outstanding Relocations
GOTI[n] RALPHADTPMOD64 X

The instructions betweedx00 and0x14 are basically the same as the sequence

used for the general dynamic model. The difference is!tlstm

is used instead of

Itlsgd , which creates ds _index entry for the current object with a zero offset.

The offset is added later with one of thigrel

relocations. For this we have

three choices of code generation options depending on the expected size of the TLS
data segment. The sequencedg20 is good for a 15 bit positive displacement (32
KiB); the sequence a@x30 is good for a 31 bit positive displacement (2 GiB); and the
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final sequence ax40 is good for a 64 bit displacement.

4.2.6 x86-64 Local Dynamic TLS Model

Similarly to IA-32 and SPARC this access model has no advantage over global dynamic
model if there is just one local variable accessed this way.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leag x1@tlsld(%rip),%rdi R.X86_64 _TLSLD x1
0x07 call _tls _get _addr@plt R X86_64 _PLT32 _tls _get _addr
0x10 leaq x1@dtpoff(%rax),%rcx RX86_64_DTPOFF32 x1
0x20 leaq x2@dtpoff(%rax).%r9 R X86.64_DTPOFF32 X2
Outstanding Relocations
GOT[n] R_X86_64 _DTPMOD64 x1

The first two instructions are basically equivalent to the code sequence used for
the general dynamic model, although lack any padding. The two instructions must
be consecutive. Instead of usimg@tlsgd(%rip) to generate dls _index en-
try for symbolx1 this code usegl@tlsld(%rip) which creates a special kind of
index which refers to the current module (which contatnd with an offset zero.

The linker will create only one relocation for the objeRtX86_64_DTPMOD64 The
R X86_64 _DTPOFF64relocation is not necessary.

The reason for this is that the offsets are loaded separatelyxId@étpoff ex-
pression is used to access the offset of the symbolsing the instruction at address
0x10 the complete offset is loaded and added to the result of tle _get _addr
call in %rax to produce the result ifercx. The x1l@dtpoff  expression creates the
RX86_64 _DTPOFF32relocation. If instead of computing the address of the variable
the value of it has to be loaded one simply uses

movq x1@dtpoff(%rax),%rll

This instruction would get the same relocation as the origézalinstruction. Stor-
ing something in such a variable works exactly the same way.

As long as the base address of the TLS block is kept around in a register loading,
storing, or computing the address of a protected thread-local variable is a matter of one
instruction.

The benefit of using the local dynamic model is that for every additional variable
only three new instructions have to be added and no additional GOT entries or run-
time relocations. Altogether, ihight be even preferable to use this model even for one
variable if the run-time overhead of processing the run-time relocations can be avoided.
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4.2.7 s390 Local Dynamic TLS Model

The code sequence of the local dynamic TLS model for s390 does not provide any
advantage over the general dynamic model if only a single variable is accessed. It is
even slightly worse because an additional literal pool entry is need@@ts{dm and
x@dtpoff instead of jusx@tlsgd ) that has to get loaded and added to the return
value of the_tls _get _offset function call. The local dynamic model is much better
than the global dynamic model if more than a single local variable is accessed because
for every additional variable only a simple literal pool load is needed instead of a full
blown function call.

Local Dynamic Model Code Sequence Initial Relocation Symbol
I %r6,.L1-.L0(%r13)
ear %r7,%a0
| %r2,.L2-.L0(%r13)
bas %r14,0(%r6,%r13) R390_TLS_LDCALL x1
la  %r8,0(%r2,%r7)
| %r9,.L3-.L0(%r13)

la %r10,0(%r10,%r8) # %rl0 = &x1

I %r9,.L4-.L0(%r13)

la  %r10,0(%r10,%r8) # %rl0 = &x2
.LO: # literal pool, address in %r13
.L1: .long _tls _get _offset@plt-.LO
.L2: .long xl1@tlsldm R.390_TLS_LDM32 x1
.L3: .long xl1@dtpoff R_390 _TLS_LDO32 x1
.L4: .long x2@dtpoff R_390 _TLS_LDO32 X2

Outstanding Relocations

GOT[n] R390_TLS.DTPMOD  x1

As for the 1A-32 local dynamic TLS model semantic thie@tlsldm expression
in the literal pool instructs the assembler to emi 390 _TLS_LDM32relocations. The
linker will create a specidls _index object on the GOT for it with thé _offset
element set to zero. The _module element will be filled with the module ID of
the module the code is in when it processesR&90 _TLS_LDM32 relocation. The
literal pool entriexx1@dtpoff andx2@dtpoff are translated by the assembler into
R 390_TLS_LDO32relocations. The linker will calculate the offsets fdr andx2 in
the TLS block for the module and will write them to the literal pool.

The instruction sequence is divided into four parts. The first part is analog to the
first part of the general dynamic model. The second part céilis get _offset  with
the GOT offset to the specids _index object created through the@tisldm entry
in the literal pool. The GOT regist&ori2 has to be set up before the call. After the
third instruction in the second part of the code seque&na@contains the address of
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the thread local memory for the module the code is in. Part three of the code sequence
shows how the addresses of the thread local varigblandx2 are calculated. Part
four shows the literal pool entries needed by the code sequence.

All the instruction of the local dynamic code sequence can be scheduled freely by
the compiler as long as the obvious data dependencies are fulfilled and the function call
semantic of théas instruction is taken into account.

4.2.8 s390x Local Dynamic TLS Model

The local dynamic access model for s390x is similar to the s390 version. The same
differences as between the two general dynamic models for s390 vs. s390x are present.
The extraction of the thread pointer requires three instruction instead of one, the branch
to _tls _get offset is done with thebrasl instruction and the offsets have 64 bit
instead of 32 bit.

Local Dynamic Model Code Sequence Initial Relocation  Symbol
ear %r7,%a0
sllg  %r7,%r7,32
ear %r7,%al
g %r2,.L1-.L0(%r13)
brasl %rl14, _tls _get _offset@plt R390_TLS_LDCALL x1
la %r8,0(%r2,%r7)
lg %r9,.L2-.L0(%r13)
la %r10,0(%r9,%r8) # %rl0
g %r9,.L3-.L0(%r13)
la %r10,0(%r9,%r8) # %rl0 = &x2

&x1

.LO: # literal pool, address in %r13

.L1: .quad x1@tlsldm R390_TLS_LDM64 x1
.L2: .quad x1@dtpoff R 390 _TLS_LDO64 x1
.L3: .quad x2@dtpoff R 390_TLS_LDO64 X2

Outstanding Relocations
GOTI[n] R390_TLS.DTPMOD x1

4.3 Initial Exec TLS Model

A more restrictive optimization is usable if the variables accessed are known to be in
one of the modules available and program start and if the programmer selects to use the
static access model. The last condition means that the generated code will not use the
_tls _get _addr function which means that deferred allocation of memory for the TLS
blocks accessed this way is not possible. It would still be possible to defer allocation
for dynamically loaded modules.
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The idea behind the optimization is that after the dynamic linker loaded all modules
referenced directly and indirectly by the executable (and some more like those named
by LD_PRELOAD each variable in the TLS block of any of those modules has a fixed
offset from the TCB since all the memory for the initially loaded modules is required
to be allocated consecutively. The offsets are computed using the architecture-specific
formulas fortlsoffse, described in sectiop 3.4 (where is the module ID of the
module the variable is found in) to which the offset of the variable in the TLS block is
added.

The consequence of this optimization is that for each variable there would be a
run-time relocation for a GOT entry which instructs the dynamic linker to compute the
offset from the TCB. There is no need to compute the module ID. Therefore, coming
from the general dynamic model, the number of run-time relocations is cut by half.

The code sequences in the following discussion implement a simple access to a
variablex:

extern __thread int x;

&X;

4.3.1 1A-64 Initial Exec TLS Model

The initial exec model requires the code sequence to get the offset relative to the TCB
from the GOT location the dynamic linker put it in and add this value to the thread
pointer. Very short and simple.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 addl tl=@lItoff(@tprel(x)),gp RIA 64 _ LTOFETPREL22 x

0x10 1d8  t2=[t1]

0x20 add  locO=t2,tp

Outstanding Relocations
GOTI[n] RIA _64_TPREL64LSB X

The@ltoff(@tprel(x)) expression instructs the linker to crea B\ 64 L TOFF. TPREL22
relocation which in turn requests the linker to create a GOT entry withra 64 _TPREL64LSB
relocation associated. This relocation is processed at program startup time by the dy-
namic linker to produce an offset relative to the TCB block (pointed to bytghe
register) of the desired variable. The offset value only has to be loaded wittigthe
instruction at addresdx10 and then added to the value of ttpe register to get the
final address in thiacO register.

The instructions can be freely mixed with other to enhance policy. Especially the
handling of thetp register handling can be optimized.

Version 0.20, February 8, 2003 35



4.3  Initial Exec TLS Model 4 TLS ACCESS MODELS

4.3.2 IA-32 Initial Exec TLS Model

The IA-32 code for the initial exec model is very simple and fast. The only problem
is locating the TCB block. The mechanism for this used by the platforms supported so
far is to use théogs segment register. Accessing memory at offset 0 with this segment
register enables loading the TCB address. As always we handle Sun’s version first.

Initial Exec Model Code Sequence | Initial Relocation Symbol

0x00 movl x@tpoff(%ebx),%edx R.386 _TLS.IE _32 X
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations
GOT[n] R 386 _TLS_-TPOFF32 x

The assembler generates for #@tpoff(%ebx) expressions 8386 _TLS_IE _32
relocation for the symbat which requests the linker to generate a GOT entry with
a R386_TLS_TPOFF32relocation. The offset of the GOT entry is then used in the
instruction. TheR_.386 _TLS_TPOFF32relocation is processed at program startup time
by the dynamic linker by looking up the symboin the modules loaded at that point.

The offset is written in the GOT entry and later loaded by the instruction at address
0x00 in the%edx register.

Themovl instruction at addresix06 loads the thread pointer for the current thread
in the%eax register. This step eventually has to be adjusted to the method the platform
is using to access the thread pointer.

Finally, thesubl instruction computes the final address. Note that it is necessary
to subtract the offset from the thread pointer. In variant Il of the thread-local storage
data structure which 1A-32 uses the TLS blocks are located before the TCB.

This code sequence requires only three instructions and occupies 14 bytes just like
the general dynamic model code sequence. It can be done better as the GNU variants
shows. There are two different GNU variants, one for position independent code which
uses GOT pointer and one for code without GOT pointer. The position independent
variant:

Initial Exec Model Code Sequence, Il Initial RelocationSymbol

0x00 movl %gs:0,%eax

0x06 addl x@gotntpoff(%ebx),%eax R_386 _TLS_GOTIE X
Outstanding Relocations

GOTIn] R386_TLS_.TPOFF  x
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This code sequence does basically the same except that the GOT value is added, not
subtracted, it combines the loading from the GOT and the arithmetic in one instruction.
The variant without GOT pointer is:

Initial Exec Model Code Sequence, Il | Initial RelocationSymbol

0x00 movl %gs:0,%eax

0x06 addl x@indntpoff,%eax R.386 _TLS_IE X
Outstanding Relocations

GOT[n] R386_TLS_.TPOFF  x

This code sequence results in the same dynamic relocation, but in the instruction it
resolves to the absolute address of the GOT slot, not its relative address from the start
of GOT.

The GNU variants uses a relocation that computes the negative offset of the variable
in the TLS block, rather than the positive offset. This is a significant advantage in that
the offset may be embedded directly in a memory address (see below).

Thus to load the contents &f(rather than its address) with Sun’s model the fol-
lowing code sequence is used.:

Initial Exec Model Code Sequence, IV| Initial Relocation Symbol
0x00 movl x@tpoff(%ebx),%edx R 386 _TLS_IE _32 X
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax
0x0e movl (%eax),%eax

Outstanding Relocations
GOT[n] R386 _TLS_.TPOFF32 x

This is the same sequence as before with an additional load at the end. In constrast,
the GNU sequences don't get longer. The position independent version looks like this:

Initial Exec Model Code Sequence, V Initial RelocationSymbol

0x00 movl x@gotntpoff(%ebx),%eax R 386 _TLS_GOTIE X
0x06 movl %gs:(%eax),%eax

Outstanding Relocations
GOT[n] R_386 _TLS_TPOFF X
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The TLS variant Il has the static TLS immediately before the TCB and therefore
negative offsets from the memory location pointed to byetlyeregister directly access
it. For the position dependent code the code looks like this:

Initial Exec Model Code Sequence, VI| Initial RelocationSymbol

0x00 movl x@indntpoff,%ecx R 386 _TLS_IE X
0x06 movl %gs:(%ecx),%eax

Outstanding Relocations
GOTIn] R386_TLS_.TPOFF  x

In the last sequence, ¥heax register is used instead of theecx above, the first
instruction may be either 5 or 6 bytes long.

4.3.3 SPARC Initial Exec TLS Model

The SPARC initial exec code sequence given here relies on the GOT pointer in register
%I7 and the thread pointer in registeég7. With these registers available the code
sequence is simple. We have two different versions, for 32- and 64-bit platforms, since
we are loading a GOT entry from memory and this entry differs in size between the 32-
and 64-bit machines.

Initial Exec Model Code Sequence, 32-bit| Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%00 R.SPARCTLS.IE _HI22 X
0x04 or %00,%lo(@tpoff(x)),%00 R.SPARCTLSL.IE _.LO10 X
0x08 Id [%17+%00],%00 R SPARCTLS_IE _LD X
0x0c add %0Q7,%00,%00 R.SPARCTLS_IE _ADD X
Outstanding Relocations, 32-bit
GOT[n] R SPARCTLS_TPOFF32 X

The code loads the constant offset of the GOT entry in%o® register. The
@tpoff(x)  operator creates tHR SPARCTLS_IE HI22 andR.SPARCTLS_IE LO10
relocations which instruct the linker to allocate the GOT entry and to attach a reloca-
tion of typeR SPARCTLS_TPOFF32to it. Theld instruction then loads the GOT entry.

To allow the linker to recognize the instructionRaSSPARCTLS_IE _LD relocation is
added. Finally thedd instruction computes the addresxofThe instruction is tagged
with a R SPARCTLS_IE _ADDrelocation. Note that the offset generate by the dynamic
linker is expected to be negative so that it can be added to the thread pointer.

Initial Exec Model Code Sequence, 64-bit\ Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%00 R SPARCTLS.IE _HI22 X
0x04 or %00,%lo(@tpoff(x)),%00 R.SPARCTLS.IE _.LO10 X
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0x08 ldx [%617+%00],%00
0x0c add %Q7,%00,%00

R.SPARCTLS.IE _.LDX X
R.SPARCTLS.IE _ADD X

Outstanding Relocations, 64-bit
R SPARCTLS_TPOFF64 X

GOTIn]

The 64-bit version is basically identical except that the GOT entry is computed
and loaded as a 64-bit value. The relocation used to tagl thestruction also differs
accordingly.

4.3.4 SH Initial Exec TLS Model

The initial exec code sequence provides no surprises. It is as simple as one can get it
for a RISC machine with the limitations of the small offsets and a not directly usable
thread register.

Initial Exec Model Code Sequence| Initial Relocation Symbol
0x00 mov.l 1f,r0
0x02 stc gbr,ri
0x04 mov.I @(r0,r12),ro
0x06 bra 2f
0x08 add r1,r0

.align 2
1 .long x@gottpoff R SHTLS.IE _32 X
2:

Outstanding Relocations

GOTI[n] RSHTLS_TPOFF32  x

The offset ofx relative to the thread pointer is loaded first. This as usual has
to happen indirectly. The word with the label had the only relocation of the code
sequence associate. The linker will fill in the offset of the GOT entry which will contain
the offset of the TLS variable in the static TLS block. The GOT entry will be filled by
the dynamic linker. The instruction at offs®t04 loads the value of the GOT entry into
registen0 and then adds the value of the thread register to it. The thread register value
is not directly available for an addition so it has to be moved into a regular register first.

For the initial exec code sequence it is once again important that it appears in the
output as presented here. The linker has to find the instructions using the relocation
generated by@gottpoff

4.3.5 Alpha Initial Exec TLS Model

The initial exec model requires that the thread pointer be loaded from the PCB into a
general purpose register. It is expected that this should be done once at the beginning
of the function and the value re-used after that. But for completeness, the PALcall is
included in the example sequence.
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Initial Exec Model Code Sequence Initial Relocation Symbol

0x00 call _pal PAL _rduniq
0x04 mov $0,$tp

0x10 Idq $1.x(Sgp) !gottprel RALPHAGOTTPREL  x
0x14 addg $tp,$1,$1

Outstanding Relocations
GOT[n] R ALPHATPREL64 X

The !gottprel relocation specifier directs the linker to create a GOT entry that
contains an associateédALPHATPREL64 relocation. This relocation is processed at
program startup by the dynamic linker to produce an offset relative to the TCB block
for the desired variable. The offset only has to be loaded and added to the value of the
thread pointer to obtain the absolute address.

4.3.6 x86-64 Initial Exec TLS Model

The x86-64 initial exec model code uses this segment register to locate the TCB.
Accessing memory at offset 0 with this segment register enables loading the TCB ad-
dress.

Initial Exec Model Code Sequence Initial Relocation Symbol

0x00 movq %fs:0,%rax

0x09 addq x@gottpoff(%orip),%rax R X86_64_GOTTPOFF  x
Outstanding Relocations

GOT[n] R X86_64 _TPOFF64 X

The assembler generates for f@gottpoff(%orip) expressions R.X86_64_GOTTPOFF
relocation for the symbot which requests the linker to generate a GOT entry with a
RX86_64 _TPOFF64relocation. The offset of the GOT entry relative to the end of the
instruction is then used in the instruction. TReX86_64_TPOFF64 relocation is pro-
cessed at program startup time by the dynamic linker by looking up the synifbthe
modules loaded at that point. The offset is written in the GOT entry and later loaded
by theaddq instruction.

To load the contents of (rather than its address) an equally long sequence is avail-
able:

Initial Exec Model Code Sequence, I Initial Relocation Symbol
0x00 movq x@gottpoff(%rip),%rax R X86_64 _ GOTTPOFF x
0x07 movqg %fs:(%rax),%rax
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Outstanding Relocations
GOT[n] R X86_64 _TPOFF64 X

4.3.7 s390 Initial Exec TLS Model

The code for the initial exec model is small and fast. The code has to get the offset
relative to the thread pointer from the GOT and add it to the thread pointer. There are
three different variants. The position independent variant with a small Gigi¢ ()

is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
I %r9,x@gotntpoff(%rl2) R390_TLS_GOTIE12 x

la %r10,0(%r9,%r7) # %rl0 = &x

Outstanding Relocations
GOT[n] R 390 _TLS_TPOFF32 x

TheR 390 _TLS_GOTIE12 relocation created for the expressig@gotntpoff causes
the linker to generate a GOT entry witfiRe890 _TLS_TPOFFrelocation x@gotntpoff
is replaced by the linker with the 12 bit offset from the start of the GOT to the generated
GOT entry. Ther 390 _TLS_TPOFFrelocation is processed at program startup time by
the dynamic linker.

The position independent variant with a large GGPIC ) is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
| %r8,.L1-.L0(%r13)
I %r9,0(%r8,%r12) R 390 _TLS_LOAD X
la %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %r13

.L1: .long x@gotntpoff R390_TLS_GOTIE32 x
Outstanding Relocations
GOT[n] R390_TLS_TPOFF32 x
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The R.390 _TLS_GOTIE32 relocation does the same BRs390 _TLS_GOTIE12, the
difference is that the linker replaces th@gotntpoff ~ expression with a 32 bit GOT
offset instead of 12 bit.

The variant without GOT pointer is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
| %r8,.L1-.L0(%r13)
| %r9,0(%r8) R.390 _TLS_LOAD X
la  %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %r13

.L1: .long x@indntpoff R_390 _TLS_IE32 X
Outstanding Relocations
GOT[n] R.390_TLS_.TPOFF32 x

TheR 390 _TLS_IE32 relocation instructs the linker to create the same GOT entry
as forR.390 _TLS_GOTIE{12,32 } but the linker replaces the@indntpoff ~ expression
with the absolute address of the created GOT entry. This makes the variant without
GOT pointer inadequate for position independent code.

4.3.8 s390x Initial Exec TLS Model

The initial exec model for s390x works like the initial exec model for s390. The posi-
tion independent variant with a small GOTp{c ) is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al
lg  %r9,x@gotntpoff(%rl2) R390_TLS_.GOTIE12 X
la  %r10,0(%r9,%r7) # %rl0 = &x

Outstanding Relocations
GOT[n] R.390_TLS_TPOFF32 x

The position independent variant with a large GGPIC ) is:

Initial Exec Model Code Sequence \ Initial Relocation Symbol
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ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al
Ig %r8,.L1-.L0(%r13)
Ig %r9,0(%r8,%r12) R.390_TLS_LOAD X
la  %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13

.L1: .quad x@gotntpoff R390_TLS_GOTIE64 x
Outstanding Relocations
GOT[n] R 390 _TLS_TPOFF64 x

The linker will replacex@gotntpoff ~ for R.390 _TLS_GOTIE64 with a 64 bit GOT
offset. The variant without GOT pointer is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al
larl %r8,x@indntpoff R390_TLS_IEENT X
lg  %r9,0(%r8) R.390 _TLS_LOAD X
la %r10,0(%r9,%r7) # %rl0 = &x

Outstanding Relocations
GOTI[n] R390_TLS_TPOFF64 x

The R.390 _TLS_IEENT relocations causes@indntpoff  to be replaced with the
relative offset from thearl  instruction to the GOT entry. Because the instruction is
pc relative the variant without GOT pointer can be used in position independent code
as well.

4.4 Local Exec TLS Model

Optimizations for the local dynamic model, similar to those the local dynamic model
adds to the generic dynamic model, lead to the local exec model. Its use is even more
restricted than that of the local dynamic model. It can only be used for code in the
executable itself and to access variables in the executable itself.

Restricting the use to the executable means that just as for the local exec model that
the TLS block can be addressed relative to the thread pointer. Restricting the variables
to only those defined in the executable means that always the first TLS block, the one
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for the executable, is used and therefore the size of all the other TLS blocks is irrelevant
for the address computation. It also means that the linker knows when creating the final
executable what the offset from the TCB is. The formula for the actual offset depends
on the architecture but it consists of a sum or difference of the thread pointer, the offset
of the first TLS blockilsoffsef and the offset of the variable in this TLS blooKset,.
The result is known at link-time and is made available in the code as an immediate
value.

The code in the architecture descriptions in the next sections implements something
along the line of the following where the code must be in the executable itself:

static __thread int x;

&X;

4.4.1 1A-64 Local Exec TLS Model

The code sequence for this model is very simple. If the thread register value is main-
tained appropriately in a register suitable for tl instruction the code sequence
consists of only one instructions for every new variable.

Local Exec Model Code Sequence Initial Relocation  Symbol
0x00 1d8 r2=tp

0x10 addl locO=@tprel(x),r2 RIA 64 TPREL22 X
Outstanding Relocations

Beside preparing thadd instruction by moving the thread pointer value in the
r2 register all the code does is adding the constant offset to the thread pointer (the
add instruction cannot directly use the register). TheRIA 64 _TPREL22relocation
names the variable and the linker is performing determitiswffset + offsef.. l.e.,
beside the offset of the variable in the TLS block only the alignment of the TLS block
has an influence on the result.

As with the initial exec model the code sequence given here is one of three possible
one. It allows handling of thread-local data uRtd bytes (2 MiBi). Optimization are
possible for dealing with less thai? bytes (8 KiBi) or more ther?! bytes in which
case the relocations used @&®A 64 _TPREL14 andR.IA 64 _TPREL64l respectively
and the instruction is either a short add or a long move.

4.4.2 1A-32 Local Exec TLS Model

The 1A-32 code sequence basically is only an addition of the offset which is available
as an immediate value to the thread pointer. The way the thread pointer is determined
might vary; in Sun’s model it can be determined by loading at offset O frontddee
segment.
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Local Exec Model Code Sequence Initial Relocation  Symbol

0x00 movl $x@tpoff,%edx R386 _TLS_LE_32 x1
0x05 movl %gs:0,%eax
0Ox0b subl %edx,%eax

Outstanding Relocations

The x@tpoff expression is used here not as an offset relative to the GOT but in-
stead as an immediate value. For this the linker genera®e3s8 TLS_LE_32 reloca-
tion which can be resolved by the linker. The value so determined is the positive offset
of the variable in the TLS block. It is subtracted from the thread pointer value to lead
to the final address of in the%eax register. The GNU variant has again the advantage
of being shorter.

Local Exec Model Code Sequence, Il Initial Relocation  Symbol

0x00 movl %gs:0,%eax
0x06 leal x@ntpoff(%eax),%eax R386 _TLS_LE X

Outstanding Relocations

Here the GNU variant uses a relocation that computes the negative offset of the
variable in the TLS block, rather than the positive offset. This is a significant advantage
in that the offset may be embedded directly in a memory address (see below).

Thus to load the contents &f(rather than its address) with Sun’s model the fol-
lowing code sequence is used:

Local Exec Model Code Sequence lll| Initial Relocation Symbol

0x00 movl $x@tpoff,%edx R.386 _TLS_LE_32 x1
0x05 movl %gs:0,%eax
0Ox0b subl %edx,%eax

0x0d movl (%eax),%eax

Outstanding Relocations

This is the same sequence as before with an additional load at the end. In contrast,
the GNU sequence does not get longer:

Local Exec Model Code Sequence, I\/f Initial Relocation  Symbol
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0x00 movl %gs:0,%eax
0x06 movl x@ntpoff(Y%eax),%eax R.386 _TLS_LE X

Outstanding Relocations

If instead of computing the address of the variable we want to load from it or store
in it the following “sequence” can be used. Note that in this case we usethgoff
expression not as an immediate value but instead as an absolute address.

Local Exec Model Code Sequence, V Initial Relocation Symbol
0x00 movl %gs:x@ntpoff,%eax R386 _TLS_LE X
Outstanding Relocations

The fact that the load and store operation is even simpler than the computation
of the address is certainly astonishing at first. But the segment register handling is
weird. One can think of the segment registeys as a mean to move the zero address
of the virtual address space to a different location. The new location once computed
is directly accessible only to the CPU internals. This is why computing its address at
user-level requires the additional requirement that the first word of the shifted address
space contain the shift value or address.

4.4.3 SPARC Local Exec TLS Model

The SPARC local exec model code sequence is as easy as can get. It is just a matter of
adding the offset, which is available as an immediate value, to the thread register value.

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 sethi %hix(@tpoff(x)),%00 R SPARCTLS_LE_HIX22 x
0x04 xor  %00,%lox(@tpoff(x)),%00 RSPARCTLS_LELOX10 x

0x08 add %g7,%00,%00

Outstanding Relocations

The %hix(tpoff(x)) and %lox(tpoff(x)) expressions cause the assembler
to emit theR. SPARCTLS_LE_HIX22 and R.SPARCTLS_LE_LOX10 relocations which
request the linker to fill the offset value in the instructions as immediate values. This
loads the offset into thesoOregister. The followingadd instruction requires that the
offset here is negative. To compute the final address the offset is added to the value
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of the thread registe¥g7. Theadd instruction isnot tagged with a relocation. The
reason is that the linker will never have to recognize this instruction for relaxation since
it does not get any simpler.

4.4.4 SH Local Exec TLS Model

As for the other architectures the local exec model code sequence is really simple. The
main difference is that as for all SH code a data relocation is needed.

Local Exec Model Code Sequence Initial RelocationSymbol
0x00 mov.l .Ln,r0

0x02 stc gbr,rl
0x04 add r1,r0

Ln: Jlong x@tpoff RSHTLS.LE 32 X
Outstanding Relocations

This code loads the two components of the address, the thread-pointer relative off-
set (known at linktime) and the thread pointer, in the registerandrl respectively
and adds them. Since no more optimzation is possible from this code sequence the
exact location of the word with the lab&lh is unimportant.

4.4.5 Alpha Local Exec TLS Model

The Alpha local exec model sequences are nice and tidy. There are three sequences
to choose from, depending on the size of the TLS that the application expects. In the
sequences below, it is expected tiRatL_rduniq has been invoked, and the thread
pointer copied tctp .

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 Ida $1,x1($tp)  !tprel RALPHATPREL16  x1
0x10 Idah $1x2($tp) 'tprelhi RALPHATPRELHI  x2
0x14 Ida $1,x2($1) Itprello RALPHATPRELLO  x2
0x20 Idq $1,x3(Sgp)  'gottprel RALPHAGOTTPREL X3
0x24 addl $1,5tp,$1

Outstanding Relocations

The first sequence is good for 32 KiB, the second sequence for 2 GiB, and the third
for a full 64 bit displacement.
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4.4.6 x86-64 Local Exec TLS Model

The x86-64 code sequence is similar to IA-32 GNU variant. It is only an addition of
the offset which is available as an immediate value to the thread pointer. The thread
pointer is loaded from offset 0 of thefs segment.

Local Exec Model Code Sequence | Initial Relocation ~ Symbol

0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R_X86_64 _TPOFF32 X

Outstanding Relocations

To load a TLS variable instead of computing its address, the following sequence
can be used:

Local Exec Model Code Sequence, Il Initial Relocation ~ Symbol

0x00 movg %fs:0,%rax
0x09 movq x@tpoff(%rax),%rax R_X86_64 _TPOFF32 X

Outstanding Relocations

or shorter:
Local Exec Model Code Sequence, IlI| Initial Relocation Symbol
0x00 movq %fs:x@tpoff,%rax R_X86_64_TPOFF32 X
Outstanding Relocations

4.4.7 s390 Local Exec TLS Model

The local exec model for s390 is only an addition of the offset which is available as
an immediate value to the thread pointer. In general the offset can have 32 bit which
requires a literal pool entry.

Local Exec Model Code Sequence Initial Relocation  Symbol
ear %r7,%a0
| %r8,.L1-.L0(%r13)
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la %r9,0(%r8,%r7) # %r9 = &x

.LO: # literal pool, address in %r13
.L1: .long x@ntpoff R390 _TLS_LE32 X
\ Outstanding Relocations

The linker resolves the_390 _TLS_LE32 relocation to a negative offset to the thread
pointer.

4.4.8 s390x Local Exec TLS Model

The local exec model for s390x differs to the s390 model only in the thread pointer
extraction and the size of the offset.

Local Exec Model Code Sequence Initial Relocation  Symbol
ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al
lg %r8,.L1-.L0(%r13)
la %r9,0(%r8,%r7) # %r9 = &x

.LO: # literal pool, address in %rl13
.L1: .quad x@ntpoff R390_TLS_LE64 X
Outstanding Relocations
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5 Linker Optimizations

The thread-local storage access model are hierarchical in the way they can be used. The
most generic model is the general dynamic model which can be used everywhere. The
initial exec model can be used unconditionally when generating the executable itself.
It can also be used if a shared object is not meant to be dynamically loaded. These two
models already define a hierarchy. The other two models are special optimizations for
either one of the more generic models if the definition is in the same module as the
reference. Graphically the hierarchy and transitions between the access models can be
represented like th[§:

— Legend: —® Default
__thread int j; £ ~ ® Optimization

““““““““ | Compiler
Y Y Commandline
General Initial
Dynamic Exec
Backend known
I I local optimization
y v y v g
General Local Initial Local
Dynamic Dynamic Exec Exec
e S N Linker known _
y y vy * y exec optimization
General Local Initial Local
Dynamic Dynamic Exec Exec
Lo, Linker known
v v v v v local Optlmlzatlon
General Local Initial Local
Dynamic Dynamic Exec Exec

The diagram shows how a code sequence to access a thread-local variable can be
optimized (or not) by compiler and linker. The solid lines indicate the default path
taken from any position. The default is to always leave the code as it is. Optimization
are indicated by the dashed lines.

Optimizations can have five different reasons:

e The programmer tells the compiler that the generated code is for an executable
and not used in a shared object.

e The programmer tells the compiler that the generated code does not have to ac-
cess variables in dynamically loaded code directly (ugiagm is OK).

e The compiler realizes that a thread-local variable is protected. |.e., the reference
is in the same module as the definition.

e The linker knows whether an executable (typREXEQ is created or an shared
object (typeET_DYN.

4This nice illustration was originally developed by Mike Walker.
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e The linker knows whether a reference to thread-local variable from code in the
executable is unconditionally satisfied by a definition in the executable itself. The
definition need not be protected since the executable is always the first object in
the symbol lookup path.

In the description of the access models for the architectures we already explained
the prerequisites for the use of the model. In the following section we explain in detail
how the code relaxations have to happen. This is not exactly trivial since there is not
a 1:1 relationship between the instructions used in the code sequences and we have to
handle differences in the sizes.

Of the architectures defined in this document so far only 1A-32, SPARC, x86-64,
Alpha, and SH have defined linker optimizations. Doing this for IA-64 would be very
difficult to say the least. Code generation for IA-64 ideally has to move the bundles
given in the code sequences as far away from each other as possible to increase par-
allelism. But this means that locating the instructions which belong together is every-
thing but trivial. Not even tagging the instructions with relocations would work since
multiple code sequences could be merged together to load from or store in multiple
thread-local variables at once. Only very complicated flow analysis could reveal the
individual code sequences and nothing like this is current planned.

The architectures which define optimizations require that the compiler emits code
sequences as described. This, together with the relocations tagging the instructions,
will allow the linker to recognize the code sequences. Minor variations like using
different registers can easily be masked out. The details of how the code sequences are
recognized will not be discussed here. We assume that the linker has the capabilities
and concentrate on the actual work which has to be done now.

5.1 1A-32 Linker Optimizations

The linker is able to perform four different optimizations which save execution time by
reducing run-time relocations and loads from memory. The diagram only shows three
transitions but the initial exec to local exec transformation can be performed in addition
to others. Since the code sequences for the Sun and GNU variants are different we need
to discuss them here separately as well.

One word on the side effect of some of the optimizations. If the original code
uses the general dynamic or local dynamic access modeltthie_get _addr func-
tion is used to access the variables. If none but these two models is used this means
that the allocation of the TLS blocks can be deferred as explained in the previous sec-
tions. If the linker performs its optimizations access to the TLS block happens without
_tls _get _addr getting the chance to eventually allocate the memory the static model
is automatically enabled and tb& STATIC_TLS flag must be set. This is normally not
a deterrent since the access to the static TLS block is frequent and deferred allocation
is really most useful for dynamically loaded code.

General Dynamic To Initial Exec

Probably the most important of the relaxations the linker can perform is the change
from the general dynamic to the initial exec model. The general dynamic model is the
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most expensive at run-time and therefore should be avoided if possible. First we handle
the Sun variant.

GD — IE Code Transition Initial Relocation Symbol
0x00 leal x@dtindx(%ebx),%edx R 386 _TLS_GD32 X
0x06 pushl %edx R 386 _TLS_GDPUSH X
0x07 call x@TLSPLT R.386 _TLS_.GDCALL X
0x0c popl %edx R_386 _TLS_GDPOP X
0x0d nop

I I I
0x00 movl x@tpoff(%ebx),%edx R.386 _TLS_IE _32 X
0x06 movl 9%gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations

GOT[n] R 386 _TLS_TPOFF32 X

This optimization can be performed whenever an executable is created. The opti-
mization for the GNU variant is similar:

GD — IE Code Transition Initial Relocation Symbol

0x00 leal x@tlsgd(,%ebx,1),%eax R 386 _TLS_.GD X

0x07 call __tls _get _addr@plt R 386 _PLT32 __tls _get _addr

U 4

0x00 movl %gs:0,%eax

0x06 addl x@gotntpoff(%ebx),%eax R 386 _TLS_GOTIE X
Outstanding Relocations

GOT[n] R 386 _TLS_TPOFF X

It should now be clear why the general dynamic model code sequences for both
variants are longer than necessary. fibg in Sun’s case and the use of the SIB-form
in the GNU variant are needed to have room for the IE code sequence.

General Dynamic To Local Exec

The symbol lookup rules for ELF define that if a symbol needed in the executable is
defined in the executable it is always picked. The reason is that the executable is always
at the head of the search scope list. Therefore the general dynamic to local exec is quite
frequent as well and can save even more than the transition to the initial exec model.
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5.1 IA-32 Linker Optimizations

GD — LE Code Transition Initial Relocation Symbol
0x00 leal x@dtindx(%ebx),%edx R 386 _TLS_GD32 X
0x06 pushl %edx R 386 _TLS_GDPUSH X
0x07 call x@TLSPLT R.386 _TLS_.GDCALL X
0x0c popl %edx R 386 _TLS_GDPOP X
0x0d nop

J U J
0x00 movl $x@tpoff,%edx R 386 _TLS_LE_32 X
0x05 nop
0x06 movl 9%gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations

This optimization for the Sun variant reduces the number of instructions by one and
replaces the function call with a memory load and an arithmetic operation. The GNU

variant is equally effective:

GD — LE Code Transition Initial Relocation Symbol

0x00 leal x@tlsgd(,%ebx,1),%eax R 386 _TLS_GD X

0x07 call __tls _get _addr@plt R.386 _PLT32 __tls _get _addr
! 4 \

0x00 movl %gs:0,%eax

0x06 addl $x@ntpoff,%eax R 386 _TLS_LE X

Outstanding Relocations

Please note the length of thevl instruction in the replacement code. It assumes

that a modR/M byte is used.

Local Dynamic to Local Exec

If the user did not tell the compiler that the code is intended for an executable it is still
possible for the linker to optimize the code but as can be seen below, the result is not

optimal.

LD — LE Code Transition

Initial Relocation Symbol

0x00 leal xl@tmdnx(%ebx),%edx
0x06 pushl %edx

0x07 call x1@TLSPLT

0x0c popl  %edx

0x10 r.r%lovl $x1@dtpoff,%edx
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R.386 _TLS_LDM32 x1

R386 _TLS_LDMPUSH x1
R.386 _TLS_LDMCALL x1
R.386 _TLS_LDMPOP x1

R.386 _TLS_LDQ32 x1
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0x15 addl 9%eax,%edx
J U U

0x00 movl %gs:0,%eax
0x06 nop
0x07 nop
0x08 nop
0x09 nop
0x0a nop
0x0b nop
0x0c nop

0x10 movl  $x1@tpoff,%eax R386 TLS.LE.32 x1
0x15 addl %eax,%edx

Outstanding Relocations

The long sequence abps is the result of the large code size for the code sequence
generated for the local dynamic model. It is unavoidable at this point. Only the pro-
grammer telling the compiler that the code is for an executable could have avoided it.
What is described here is what Sun documents. The GNU variant has to same problem
but solves it with a bit less negative impact on run-time performance.

LD — LE Code Transition Initial Relocation Symbol
0x00 leal x1@tlsldm(%ebx),%eax R 386 _TLS_LDM x1
0x06 call __tls _get _addr@plt R.386 _PLT32 __tls _get _addr
0x10 leal x1@dtpoff(%eax) Yedx R 386 TLS.LDQ32 x1

I \ I

0x00 movl %gs:0,%eax
0x06 nop
0x07 leal OxO(%esi,1),%esi

0x10 leal x1@ntpoff(%eax),%edx R 386 TLS.LE x1
Outstanding Relocations

The instruction at addresix07 requires some explanation. It might look some
pretty expensive instruction which does a lot but in fact it is a no-op. The value of the
%esi register is stored in the same register after multiplying it with one and adding
zero. The reason this instruction is chosen is that it is long, 4 bytes to be exact. This
means to fill the 5 byte hole we only need one extsa instruction. This is much
cheaper than using seveop instructions (similar to what Sun does).

In case the local dynamic model code is not computing the address and instead
loads from or stores in the variable directly the transformed code is also simply loading
or storing. The transformation is simple and just as documented in the example code
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above: replace thel@dtpoff(%eax) expression withx1@tpoff(¥oeax)  which is
accomplished by changing time386 _TLS_LDQ32 relocation into éR 386 TLS_LE_32
relocation.

Initial Exec To Local Exec

The last optimization helps to squeeze out the last bit of performance if the code was
already compiled for exclusive use in an executable and a variable was found to be
available in the executable itself. This transition is much less wasteful than the local
dynamic to local exec transition.

IE — LE Code Transition Initial Relocation  Symbol

0x00 movl x@tpoff(%ebx),%edx R 386 _TLS_IE _32 X
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

4 \ \
0x00 movl $x@tpoff,%edx R 386 _TLS_LE_32 X
0x05 nop
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations

This optimization saves one run-time relocation, transforms one memory load into
a load of an immediate value but also adds a new instruction. This instructiomgs a
and which does not disrupt the execution much. The GNU variant does not need such
ugliness:

IE — LE Code Transition Initial Relocation  Symbol
0x00 movl %gs:0,%eax
0x06 addl x@gotntpoff(%ebx),%eax R 386 _TLS_GOTIE X
4 4 4
0x00 movl %gs:0,%eax
0x06 leal x@ntpoff(%eax),%eax R 386 _TLS_LE X
Outstanding Relocations

5.2 SPARC Linker Optimizations

Since the model used for SPARC is mostly identical to that of IA-32 it is not surprising
that the same four optimizations are available here as well. In general the optimization
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are a bit cleaner due to the RISC instruction set of the SPARC processor which unlike
the CISC of 1A-32 has a uniform length for the instructions.

General Dynamic To Initial Exec

This optimization manages to get rid of one run-time relocation and the call to the
_tls _get _addr function. But the memory allocation for the static TLS block cannot
be deferred anymore and tb& STATIC_TLS flag must be set.

GD — IE Code Transition, 32-bit Initial Relocation Symbol
0x00 sethi %hi(@dtindx(x)),%00 R SPARCTLS_GDHI22 X
0x04 add  %00,%lo(@dtIndx(x)),%00 R SPARCTLS_GDLO10 X
0x08 add %I7,%00,%00 R SPARCTLS_GDADD X
0x0c call _tls _get _addr R SPARCTLS_GDCALL X
\ 4 \
0x00 sethi %hi(@tpoff(x)),%00 R SPARCTLS_IE _HI22 X
0x04 or %00,%lo(@tpoff(x)),%00 R SPARCTLS.IE _LO10 X
0x08 Id [%17+%00],%00
0x0c add %g7,%00,%00
Outstanding Relocations
GOTIn] R SPARCTLS_TPOFF32 X

We do not list the 64-bit version here as well. The differences are the same as
described in section 4.3.3. The actual register used for the GOT poialerirf the
code above) can vary. The linker will figure the actual register used out from the
instruction tagged witliR SPARCTLS_GDADD

General Dynamic To Local Exec

This optimization is also straight-forward, the instructions of the general dynamic
model are simply replaced by those of the local exec model. The only thing to keep in
mind is filling the short local exec code sequence witlog.

GD — LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@dtindx(x)),%00 R.SPARCTLS_GDHI22 X
0x04 add  %00,%lo(@dtindx(x)),%00 R SPARCTLS_GDLO10 X
0x08 add  %I7,%00,%00 R.SPARCTLS_GDADD X
0x0c call _tls _get _addr R SPARCTLS_GDCALL X

U ! I
0x00 sethi %hix(@tpoff(x)),%00 R.SPARCTLS_LE_HIX22 X
0x04 xor  %00,%lox(@tpoff(x)),%00 R SPARCTLS_LE_LOX10 X
0x08 add %Q7,%00,%00
0x0c nop

Outstanding Relocations
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This optimization removes both run-time relocations and the call tatlhe get _addr
function. The executable must be marked withreSTATIC_TLS flag, though.

Local Dynamic To Local Exec

The transition from the local dynamic to the local exec model is also on SPARC the
least optimal. It is best to enable the compiler to generate the optimal code right away.
But the optimization is nevertheless effective since it eliminates one run-time relocation
and the call to thetls _get _addr function.

LD — LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@tmdnx(x1)),%00 R SPARCTLS_LDMHI22  x1
0x04 add  %00,%lo(@tmndx(x1)),%00 RSPARCTLS.LDMLO10  x1
0x08 add  %I7,%00,%00 R SPARCTLS_LDMADD x1
0x0c call _tls _get _addr R SPARCTLS_LDMCALL x1
0x10 sethi %hix(@dtpoff(x1)),%I1 R SPARCTLS_LDQHIX22  x1
0x14 xor  %l1,%lox(@dtpoff(x1)),%I1 RSPARCTLS_LDOLOX22 x1
0x18 add %00,%I1,%I1 R SPARCTLS_LDQADD x1

\ \ \
0x00 nop
0x04 nop
0x08 nop
0x0c mov %g0, %00
0x10 sethi %hix(@tpoff(x1)),%00 RSPARCTLSLE HIX22  x1
0x14 xor  %00,%lox(@tpoff(x1)),%00 RSPARCTLS_LELOX10  x1
0x18 add %g7,%00,%00

Outstanding Relocations

This optimization also requires that the executable is marked withRISTATIC _TLS
flag.

Initial Exec To Local Exec

If the programmer told the compiler the code is meant for the executable but only the
linker knows that a variable is defined in the executable itself the following optimiza-
tion helps to eliminate the remaining run-time relocation.

IE — LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%00 R.SPARCTLS_IE _HI22 X
0x04 or %00,%lo(@tpoff(x)),%00 R.SPARCTLS.IE _LO10 X
0x08 Id [%17+%00],%00 R SPARCTLSLIE LD X
0xOc add %g7,%00,%00 R SPARCTLS_IE _ADD X

\
0x00 sethi %hix(@tpoff(x)),%00 R.SPARCTLS_LE_HIX22 X
0x04 xor  %00,%lox(@tpoff(x)),%00 R.SPARCTLS_LE_LOX10 X
0x08 mov %00,%00
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0x0c add  %g7,%00,%00 \
\ Outstanding Relocations

Since the local exec model code sequence has only three instructions the instruction
at addresox08 is added as a no-op.

5.3 SH Linker Optimizations

As for 1A-32 and SPARC the linker can perform a number of optimizations. But the
repertoire is limited due to the structure of the SH code and the code sequences used.

General Dynamic to Initial Exec

If the initial exec model can be used code compiled using the general dynamic model
can save two instructions and potentially one GOT entry by performing the following
transformation:

GD — IE Code Transition Initial Relocation Symbol

0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2frl
0x06 add ro,ri
0x08 jsr @rl
Ox0a add ri12,r4
0x0c bra 3f
0x0e nop
.align 2
1: Jlong x@tlsgd R SHTLS.GD32 X
2: Jong _tls _get _addr@plt
3.

U U J
0x00 mov.l 1f,r0
0x02 stc  gbr,r4d
0x04 mov.I @(r0,r12),r0

0x06 bra  3f
0x08 add r4,r0
Ox0a nop
0x0c nop
0x0e nop

.align 2
1: Jlong x@gottpoff R SHTLS.IE _32 X
2: dong 0O
3:

Outstanding Relocations

GOT[n] R SHTLS_.TPOFF32 X

The call to_tls _get _addr has been optimized out and the instructions and the
data definition associated with the jump are complete gone. Note that we can move the
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bra instruction for so that the now unnecessary memory locations fillednwithare
never executed.

General Dynamic to Local Exec

The transformation from general dynamic to the local exec model is almost identical
to the last transformation. Only we save one more instruction and there is no dynamic
relocation left.

GD — IE Code Transition Initial Relocation ~ Symbol

0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2frl
0x06 add ro,rl
0x08 jsr @rl
Ox0a add rl12,r4

0xOc bra  3f
0x0e nop
.align 2
1 long x@tlsgd RSHTLS.GD32 X
2: .long _tls _get _addr@plt
3.
I I U

0x00 mov.| 1f,r0
0x02 stc  gbr,r4
0x04 bra  3f
0x06 add r4,r0
0x08 nop
0x0a nop
0x0c nop
0x0e nop

.align 2
1 long x@tpoff RSHTLS_LE_32 X
2: dong O
3

Outstanding Relocations

Again it is possible to place th@a instruction tactically well to avoid having the
execute all theop instructions which have to be filled in.

Local Dynamic to Local Exec

The final optimization allows converting local dynamic code sequences to locale exec
code sequences. The code generation this way is potentially even more efficient than
the local exec code sequence described above since the thread register is read only
once.

Local Dynamic Model Code Sequencé Initial RelocationSymbol
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0x00
0x02
0x04
0x06
0x08
Ox0a
0x0c
0x0e

.Lp:
.Lp:

0x00
0x02
0x04
0x06
0x08
Ox0a
0x0c
Ox0e

mov.l 1fr4
mova 2f,r0
mov.l 2frl
add ro,rl
jsr @rl
add ri12,r4
bra 3f
nop
.align 2
long x1@tlsgd

.long _tls _get _addr@plt

1ﬁovJ.LpJ1
mov.l r0,r1

%ovJ.Lqu
mov.l rO,r1

Jéﬁg x1@dtpoff
Jong x2@dtpoff

U

bra 3f

stc gbr,r0
nop
nop
nop
nop
nop
nop

.align 2
dong O
dlong O
mov.| .Lp,r1
mov.l r0,r1
mov.| .Lg,r1
mov.l r0,r1

.Lp: Jng x1@tpoff
.Lp: .long x2@tpoff

RSHTLS_LD_32

R SHTLS_LDQ32
R SHTLS_LDQ32

4

RSHTLS_LE_32
RSHTLS_LE 32

x1

x1
X2

x1
X2

Outstanding Relocations

Since computing the base address for the relocation used is now very simple (just
loading the thead register) the prologue is almost empty. The one instruction can be
executed in the branch delay slot of the jump over the first data.

5.4 Alpha Linker Optimizations

The Alpha linker optimizations are cleaner than either the IA-32 or SPARC, because
there are no restrictions on the ordering of instructions.

60
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The TLSGDTLSLDM LITERAL, andLITUSE relocations are related by sequence

number in the assembly file. This causes them to be emitted adjacent into the object

file.

Relaxation of the_tls _get _addr patterns cannot occur unless relocatiohSGD
LITERAL, andLITUSE _TLSGDappear in that exact sequence (and similaff@LDN).
This is to distinguish the case where thesGDrelocation is not associated with any one
call sequence. The assembler will enforce the constraint thatWfSE _TLSGDexists,
the TLSGDandLITERAL relocations will be present, and no othéTUSE relocations

will be associated with thel TERAL .

Relaxation of the_tls _get _addr patterns require that there b&s&DISP reloca-
tion at the offset immediately following thjsr .

General Dynamic To Initial Exec

GD — IE Code Transition Initial Relocation Symbol
0x00 Ida $16,x($gp) RALPHATLSGD X
0x04 Idg $27, _tls _get _addr($gp) RALPHALITERAL _tls _get _addr
0x08 jsr $26,($27),0 R ALPHALITUSE 4
0x0c Idah $29,0($26) RALPHAGPDISP 4
0x10 Ida $29,0(3$29)

! ! 3
0x00 Idg $16,x($gp) RALPHAGOTTPREL X

0x04 unop

0x08 call _pal PAL _rduniq
0xOc addq $16,$0,$0

0x10 unop

GOT[n]

General Dynamic To Local Exec

GD — LE Code Transition

Outstanding Relocations
R ALPHATPOFF64 X

0x00 Ida $16,x($gp)
0x04 Idg $27, _tls _get _addr($gp)
0x08 jsr $26,($27),0
0xOc Idah $29,0($26)
0x10 Ida $29,0($29)
U
0x00 Idah $16,x($31)
0x04 Ida $16,x($16)
0x08 call _pal PAL _rduniq
0x0c addq $16,%$0,$0
0x10 unop

Initial Relocation Symbol
RALPHATLSGD X
RALPHALITERAL _tls _get _addr
RALPHALITUSE 4
RALPHAGPDISP 4

i3 i3
RALPHATPRELHI X
RALPHATPRELLO X
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This transition is used if the offset af in the TLS block is within 2GiB. If the
offset is larger, then th&D — IE transition is used, except that there is no dynamic

relocation.

If the offset ofx in the TLS block is within 32KiB, then the first instruction is an

Ida and the second instruction isiaop.

Local Dynamic To Local Exec

ThelLD — LE transitions are identical to th@D — LE transitions, except that we
reference the base of the module’s TLS section rather than a specific variable.

Initial Exec To Local Exec

IE — LE Code Transition

Initial Relocation Symbol

0x00 Idg $1,x($gp)
0x04 addgq $tp,$1,$0
[}

0x00 Ida $16,x($31)
0x04 addq $tp,$1,$0

RALPHAGOTTPREL  x

I I
RALPHATPREL X

Outstanding Relocations

This transition is only used if the offset &fin the TLS block is within 32KiB. If
the offset is larger, then the code sequence is unchanged, but the dynamic relocation in

the GOT is removed.

5.5 x86-64 Linker Optimizations

x86-64 linker optimizations closely match IA-32 optimizations of GNU variants.

General Dynamic To Initial Exec

This code transition should explain the 4 byte padding in the general dynamic code
sequence on x86-64. The |IE sequence is 4 bytes longer:

GD — IE Code Transition Initial Relocation Symbol

0x00 .byte 0x66

0x01 leaq x@tlsgd(%rip),%rdi R.X86_64 _TLSGD X

0x08 .word 0x6666

Ox0a rex64

0x0b call _tls _get _addr@plt R X86_64 _PLT32 _tls _get _addr
! 4

0x00 movq %fs:0,%rax

0x09 addq x@gottpoff(%rip),%rax R.X86_64_GOTTPOFF X

Outstanding Relocations
GOT[n] R_X86_64 _TPOFF64 X
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5.5 x86-64 Linker Optimizations

General Dynamic To Local Exec

This transition is similar to the previous one, just the offset can be stored directly into

the instruction:

GD — LE Code Transition Initial Relocation Symbol

0x00 .byte 0x66

0x01 leaq x@tlsgd(%rip),%rdi R.X86_64 _TLSGD X

0x08 .word 0x6666

Ox0a rex64

0x0b call _tls _get _addr@plt R_X86_64 _PLT32 _tls _get _addr
U U U

0x00 movq %fs:0,%rax

0x09 leag x@tpoff(%orax),%rax R.X86_64 _TPOFF32 X

Local Dynamic to Local Exec

Outstanding Relocations

The following code transition requires padding in the resulting instruction:

LD — LE Code Transition Initial Relocation Symbol
0x00 leaqg x1@tlsld(%rip),%rdi R X86_64 _TLSLD x1
0x07 call _tls _get _addr@plt R X86_64 PLT32 _tls _get _addr
0x10 leaq x1@dtpoff(%rax),%rcx R.X86_64_DTPOFF32 x1
\ !
0x00 .word 0x6666
0x02 .byte 0x66
0x03 movg %fs:0,%rax
0x10 leaq  x1@tpoff(%rax),d6rdx R.X86_64 TPOFF32 x1

Initial Exec To Local Exec

The last of the x86-64 code transitions:
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IE — LE Code Transition Initial Relocation Symbol
0x00 movq %fs:0,%rax
0x09 addq x@gottpoff(%rip),%rax R X86_64 _GOTTPOFF X
J \’ 4
0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R.X86_64_TPOFF32 X
Outstanding Relocations

5.6 s390 Linker Optimizations

The s390 ABI defines the same four linker optimizations as 1A-32. The optimizations
explain the_tls _get _offset function. All code sequences for s390 consist of basi-
cally three things:

1. extract the thread pointer,
2. get the offset of the requested variable to the thread pointer, and

3. an operation on the variable with an index/base operand that combines the thread
pointer and the offset (e.¢p %rx,0(%ry,%rz) ).

All the optimizations have to do is to change the method how the offset is acquired.

General Dynamic To Initial Exec

The general dynamic access model is the most expensive one which makes this tran-
sition the most important one. For the general dynamic access model the code has to
load a GOT offset from the literal pool and then catls _get _offset to get back

the offset of the variable from the thread pointer. For the initial exec access model the
code has to load a GOT entry that contains the offset of the variable from the thread
pointer. One of the initial exec code variants uses a literal pool entry for the GOT off-
set. This makes the transition simple, the function call instruction is replaced by a load
instruction and the literal pool constat@tlsgd is replaced withx@gotntpoff

GD — IE Code Transition Initial Relocation Symbol
| %r6,.L1-.L0(%r13)
ear %r7,%a0
| %r2,.L2-.L0(%r13)
bas %r14,0(%r6,%r13) R 390 _TLS_GDCALL X
la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %r13
.L1: .long _tls _get _offset@plt-.LO
.L2: .long x@tlsgd R 390 _TLS_.GD32 X
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3 \ I
I %r6,.L1-.L0(%r13)
ear %r7,%a0
I %r2,.L.2-.L0(%r13)
I %r2,0(%r2,%r12) R.390 _TLS_LOAD X
la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %r13

.L1: .long _tls _get _offset@plt-.LO

.L2: .long x@gotntpoff R.390 _TLS_GOTIE32 X
Outstanding Relocations

GOTI[n] R.390 _TLS_TPOFF32 X

General Dynamic To Local Exec

The optimization that turns the general dynamic code sequence into the local exec code
sequence is as simple as the general dynamic to initial exec transition. The local exec
code sequence loads the offset of the variable to the thread pointer directly from the
literal pool. The function call instruction of the general dynamic code sequence is
turned into a nop and the literal pool consta@ttlsgd is replaced withk@ntpoff :

GD — LE Code Transition Initial Relocation ~ Symbol
| %r6,.L1-.L0(%r13)
ear %r7,%a0
| %r2,.L2-.L0(%r13)
bas %r14,0(%r6,%r13) R.390 _TLS_GDCALL X
la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %r13
.L1: .long _tls _get _offset@plt-.LO
.L2: .long x@tlsgd R 390 _TLS_.GD32 X
I 4 I

| %r6,.L1-.L0(%r13)

ear %r7,%a0

I %r2,.L2-.L0(%r13)

bc 0,0 # nop

la %r8,0(%r2,%r7) # %r8 = &x

.LO: # literal pool, address in %rl13
.L1: .long _tls _get _offset@plt-.LO
.L2: .long x@ntpoff R390 _TLS_LE32 X
Outstanding Relocations
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Local Dynamic To Local Exec

The local dynamic to local exec code transition is a bit more complicated. To get the
address of a thread local variable in the local dynamic model three things need to be
added: the thread pointer, the (negative) offset to the TLS block of the module the code
is in and the offset to the variable in the TLS block. The local exec code just has to add
the thread pointer to the (negative) offset to the variable from the thread pointer. The
transition is done be replacing the function call with a nop, the literal pool constant

x1@tlsldm with 0 and the@dtpoff constants witt@ntpoff :

LD — LE Code Transition

Initial Relocation ~ Symbol

| %r6,.L1-.L0(%r13)
ear %r7,%a0

I %r2,.L2-.L0(%r13)
%r14,0(%r6,%r13)
la  %r8,0(%r2,%r7)

R.390 _TLS_LDCALL x1

I %r9,.L3-.L0(%r13)
la  %r10,0(%r10,%r8) # %rl0
I %r9,.L4-.L0(%r13)
la  %r10,0(%r10,%r8) # %rl0

.LO: # literal pool, address in %rl13
.L1: .long _tls _get _offset@plt-.LO
.L2: .long xl1@tlsldm
.L3: .long x1@dtpoff
.L4: .long x2@dtpoff
3
I %r6,.L1-.L0(%r13)
ear %r7,%a0

&x1

&x2

R.390 _TLS_LDM32 x1
R.390 _TLS_LDO32 x1
R390_TLS_LDO32 X2

I ¢

I %r2,.L2-.L0(%r13)
bc 0,0 # nop
la  %r8,0(%r2,%r7)

I %r9,.L3-.L0(%r13)
la  %r10,0(%r10,%r8) # %rl0
I %r9,.L4-.L0(%r13)
la  %r10,0(%r10,%r8) # %rl0

.LO: # literal pool, address in %rl3
.L1: .long _tls _get _offset@plt-.LO
.L2: long O

.L3: .long x1@ntpoff

.L4: .long x2@ntpoff

= &x1

&x2

R.390 _TLS_LE32 x1
R390 _TLS_LE32 X2
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GOT[n]

Initial Exec To Local Exec

The code transition from initial exec to local exec doesn’t improve the execution speed

Outstanding Relocations
R 390 _TLS_.DTPMOD x1

but for two of the three initial exec variants a GOT entry less is needed.

IE — LE Code Transition Initial Relocation Symbol
ear %r7,%a0
| %r8,.L1-.L0(%r13)
I %r9,0(%r8,%r12) R390 _TLS_LOAD X

la

%r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %r13
.L1: .long x@gotntpoff

4

ear %r7,%a0

I
Ir

%r8,.L1-.L0(%r13)
%r9,%r8 ; bcr 0,%r0

la

%r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .long x@ntpoff

R390_TLS_GOTIE32 x
4 I

R390_TLS_LE32 X

Outstanding Relocations

IE — LE Code Transition Initial Relocation Symbol
ear %r7,%a0
| %r8,.L1-.L0(%r13)
| %r9,0(%r8) R.390 _TLS_LOAD X

la

%r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .long x@indntpoff

4

ear %r7,%a0

I
Ir

%r8,.L1-.L0(%r13)
%r9,%r8 ; bcr 0,%r0

Version 0.20, February 8, 2003

R390 _TLS_GOTIE32 X
4 I

67



5.7 s390x Linker Optimizations 5 LINKER OPTIMIZATIONS

la %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %r13
.L1: .long x@ntpoff R 390 _TLS_LE32 X

\ Outstanding Relocations

There is no IE— LE code transition for the small GOT case because no literal
pool entry exists where the modified consta@mntpoff could be stored. For this case
a slot in the GOT is used for the constant.

5.7 s390x Linker Optimizations

The same four optimizations as for s390 are available for s390x. The optimizations
follow the same principles but with 64 bit instructions instead of 32 bit instructions.
The 6 bytebrasl instruction is replaced with either the 6 byge load instruction or

the 6 bytebrcl 0,.  nop. The 6 bytdg instruction is replaced with the 6 byte triadic
shift by O bitsllg that is used instead of the more approprigte which unfortunatly

has only 4 byte.

General Dynamic to Initial Exec

GD — IE Code Transition Initial Relocation Symbol
ear %r7,%a0
sllg  %r7,%r7,32
ear %r7,%al
Ig %r2,.L1-.L0(%r13)
brasl %rl14, _tls _get _offset@plt R_390 _TLS_GDCALL X
la %r8,0(%r2,%r7) # %r8 = &x
.LO: # literal pool, address in %rl13
.L1: .quad x@tlsgd R 390_TLS_GD64 X
I 3 \’
ear %r7,%a0
sllg  %r7,%r7,32
ear %r7,%al
Ig %r2,.L1-.L0(%r13)
[o} %r2,0(%r2,%r12) R_390 _TLS_LOAD X
la %r8,0(%r2,%r7) # %r8 = &x
.LO: # literal pool, address in %rl13
.L1: .quad x@gotntpoff R 390 _TLS_GOTIE64 X
Outstanding Relocations
GOT[n] R 390 _TLS_TPOFF64 X
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5.7 s390x Linker Optimizations

General Dynamic to Local Exec

GD — LE Code Transition Initial Relocation ~ Symbol
ear %r7,%a0l
sllg  %r7,%r7,32
ear %r7,%al
Ig %r2,.L1-.L0(%r13)
brasl %rl14, _tls _get _offset@plt R.390 _TLS_GDCALL X
la %r8,0(%r2,%r7) # %r8 = &x
.LO: # literal pool, address in %r13
.L1: .quad x@tlsgd R.390_TLS_GD64 X
4 4 \
ear %r7,%al
sllg  %r7,%r7,32
ear %r7,%al
Ig %r2,.L1-.L0(%r13)
brcl 0,.
la %r8,0(%r2,%r7) # %r8 = &x
.LO: # literal pool, address in %rl13
.L1: .quad x@ntpoff R 390 _TLS_LE64 X

Local Dynamic to Local Exec

Outstanding Relocations

LD — LE Code Transition Initial Relocation ~ Symbol
ear %r7,%a0
sllg  %r7,%r7,32
ear %r7,%al
[o} %r2,.L1-.L0(%r13)
brasl %rl14, _tls _get _offset@plt R 390 _TLS_LDCALL x1
la %r8,0(%r2,%r7)
Ig %r9,.L.2-.L0(%r13)
la %r10,0(%r9,%r8) # %rl0 = &x1
[o} %r9,.L3-.L0(%r13)
la %r10,0(%r9,%r8) # %rl0 = &x2
.LO: # literal pool, address in %rl13
.L1: .quad x1@tlsldm R 390_TLS_LDM64 x1
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.L2: .quad x1l@dtpoff
.L3: .quad x2@dtpoff
3
ear %r7,%a0
sllg  %r7,%r7,32
ear  %r7,%al

lg %r2,.L1-.L0(%r13)
brcl 0,.
la %r8,0(%r2,%r7)

Ig %r9,.L2-.L0(%r13)

la %r10,0(%r9,%r8) # %rl10 =
[o} %r9,.L3-.L0(%r13)
la %r10,0(%r9,%r8) # %rl0 =

.LO: # literal pool, address in %rl13
.L1: .quad O

.L2: .quad x1l@ntpoff

.L3: .quad x2@ntpoff

&x1

&x2

Initial Exec to Local Exec

IE — LE Code Transition

R390_TLS_LDO64 x1
R390_TLS_LDO64 X2
. I
R390_TLS_LE64 x1
R390 _TLS_LE64 x2
Outstanding Relocations

Initial Relocation Symbol

ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al

lg  %r8,.L1-.L0(%r13)
lg %r9,0(%r8,%r12)

la  %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .quad x@gotntpoff
\
ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al

lg  %r8,.L1-.L0(%r13)
sllg %r9,%r8,0

la  %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .quad x@ntpoff

R.390_TLS_LOAD X

R.390 _TLS_GOTIE64 X
I I

R.390_TLS_LE64 X
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5.7 s390x Linker Optimizations

IE — LE Code Transition Initial Relocation Symbol
ear %r7,%a0
sllg %r7,%r7,32
ear %r7,%al
lg  %r8,.L1-.L0(%r13)
lg  %r9,0(%r8) R390 _TLS_LOAD X
la  %r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .quad x@indntpoff

ear

I
%r7,%al

sllg %r7,%r7,32

ear

%r7,%al

R390_TLS_GOTIE64 X
I I

g

%r8,.L1-.LO(%r13)

sllg %r9,%r8,0

la

%r10,0(%r9,%r7) # %rl0 = &x

.LO: # literal pool, address in %rl13
.L1: .quad x@ntpoff

R 390_TLS_LE64 X
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6 New ELF Definitions

This section shows the actual definitions for the newly introduced constants necessary
to describe the extended ELF format. The generic extensions are:

#define SHF_TLS (1 << 10)
#define STT_TLS 6

#define PT_TLS 7

6.1 New IA-64 ELF Definitions

#define R_IA64_TPREL14 0x91 /* @tprel(sym+add),immi14 */
#define R_IA64_TPREL22 0x92 /* @tprel(sym+add),imm22 */
#define R_IA64_TPREL64I 0x93 /* @tprel(sym+add),imm64 */
#define R_IA64_TPREL64MSB 0x96 /* @tprel(sym+add),data8 MSB */
#define R_IA64_TPREL64LSB 0x97 /* @tprel(sym+add),data8 LSB */

#define R_IA64_LTOFF_TPREL22 0x9a /* @ltoff(@tprel(s+a)),imm2 */

#define R_IA64_DTPMOD64MSB Oxa6 /* @dtpmod(sym+add),data8 MSB */
#define R_IA64_DTPMOD64LSB Oxa7 /* @dtpmod(sym+add),data8 LSB */
#define R_IA64_LTOFF_DTPMOD22 Oxaa /* @ltoff(@dtpmod(sym+add)),imm22 */

#define R_IA64_DTPREL14 Oxbl /* @dtprel(sym+add),imm14 */
#define R_IA64_DTPREL22 0xb2 /* @dtprel(sym+add),imm22 */
#define R_IA64_DTPREL64I 0xb3 /* @dtprel(sym+add),imm64 */

#define R_IA64_DTPREL32MSB Oxb4 /* @dtprel(sym+add),data4d MSB */
#define R_IA64_DTPREL32LSB Oxb5 /* @dtprel(sym+add),datad LSB */
#define R_IA64_DTPREL64MSB 0xb6 /* @dtprel(sym+add),data8 MSB */
#define R_IA64_DTPREL64LSB Oxb7 /* @dtprel(sym+add),data8 LSB */
#define R_IA64_LTOFF_DTPREL22 Oxba /* @Itoff(@dtprel(s+a)), imm22 */

The operators used in the code sequences are defined as follows:

@ltoff( exp) Requests the creation of a GOT entry that will hold the full value of
exprand computes thgp-relative displacement to that GOT entry.

@tprel( expn Computes ap -relative displacement — the difference between the ef-
fective address and the value of the thread pointer. The expression must evaluate
to an effective address within a thread-specific data segment.

@dtpmod(exp) Computes the load module index corresponding to the load module
that contains the definition of the symbol referenced by the relocation. When
used in conjunction with th@ltoff()  operator, it evaluates to thygp-relative
offset of a linkage table entry that holds the computed load module index.

@dtprel( expy Computes a dtv-relative displacement — the difference between the
effective address and the base address of the thread-local storage block that con-
tains the definition of the symbol referenced by the relocation. When used in
conjunction with the@ltoff()  operator, it evaluates to thgp-relative offset of
a linkage table entry that holds the computed displacement.
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6.2 New IA-32 ELF Definitions

#define R_386_TLS_TPOFF 14 /* Negative offset in static TLS
block (GNU version) */

#define R_386_TLS_IE 15 /* Absolute address of GOT entry
for negative static TLS block
offset */

#define R_386_TLS GOTIE 16 /* GOT entry for negative static
TLS block offset */

#define R_386_TLS LE 17 /* Negative offset relative to
static TLS (GNU version) */

#define R_386_TLS_GD 18 /* Direct 32 bit for GNU version
of GD TLS */

#define R_386_TLS_LDM 19 /* Direct 32 bhit for GNU version
of LD TLS in LE code */

#define R_386_TLS_GD_32 24 [* Direct 32 bit for GD TLS */

#define R_386_TLS_GD_PUSH 25 [* Tag for pushl in GD TLS
code */

#define R_386_TLS GD_ CALL 26 /* Relocation for call to

#define R_386_TLS_GD_POP 27 [* Tag for popl in GD TLS
code */

#define R_386_TLS LDM_ 32 28 [* Direct 32 bit for local
dynamic code */

#define R_386_TLS_LDM_PUSH 29 /* Tag for pushl in LDM TLS
code */

#define R_386_TLS_LDM_CALL 30 /* Relocation for call to

#define R_386_TLS_LDM_POP 31 /* Tag for popl in LDM TLS

code */

#define R_386_TLS_LDO_32 32 /[* Offset relative to TLS
block */

#define R_386_TLS IE 32 33 /* GOT entry for static TLS
block */

#define R_386_TLS LE 32 34 [* Offset relative to static
TLS block */

#define R_386_TLS DTPMOD32 35 /* ID of module containing
symbol */

#define R_386_TLS_DTPOFF32 36 /* Offset in TLS block */
#define R_386_TLS_TPOFF32 37 /* Offset in static TLS
block */

The operators used in the code sequences are defined as follows:

@dtindx( expn Allocate two contiguous entries in the GOT to holdls _index
structure (for passing tatls _get _addr ). The instructions referencing this en-
try will be bound to the first of the two GOT entries.

@tlsgd( expy) This expression is the eqpuivalent @fdtindx( expn for the GNU
variant of the calling conventions. The linker is also allocating to two consecu-
tive entries in the GOT and the processing of the relocation produces the offset
of the first entry as the value of the expression. The only difference is that the
function called is __tls _get _addr .
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@tlsplt  This expression is used in tlall instructions to__tls _get _addr in the
Sun variants. Theall instruction is associated with the symbol the whole
code sequence this instruction is part of deals with. RI386 _TLS xxx CALL
relocations generated for tlall  instructions will reference the symbol. The
linker will insert a reference tatls _get _addr .

@tmndx(exp)) Allocate two contiguous entries in the GOT to holtka _index struc-
ture (for passing totls _get _addr ). Theti _offset field of the object will be
set to 0 (zero) and thi2 _module field will be filled in at run-time. The call to
_tls _get _addr will return the starting offset of the dynamic TLS block.

@tlsldm( exp This expression is the GNU variant @tmndx(expp . Just as for
@tlsgd( expy the only difference is that the function called in the following
call instructionis___tls _get _addr .

@dtpoff Calculate the offset of the variable it is added to relative to the TLS block it
is contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@tpoff Calculate the offset of the variable it is added to relative to the static TLS
block. The linker allocates one GOT entry for the result of the relocation.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

If used in the form@tpoff( exp) the offset of the variable iaxprrelative to the
static TLS block is calculated. The linker allocates one GOT entry for the result
of the relocation.

@ntpoff Calculate the negative offset of the variable it is added to relative to the static
TLS block.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

@gotntpoff  This expression is the GNU variant @tpoff( expy) . The difference
is that the GOT slot allocated by it it must be added to a variable and that the
relocation is for botimovl andaddl assembler instruction which is relevant of
the code sequence is transformed to the Local Exec model by the linker.

The @gotntpoff  is alsonot used for immediate instructions. Instead the GNU
variant of the Local Exec model will also use t@apoff expression. Since the
Local Exec model is as simple as it gets the linker does not have to be aware of the
differences of the two variants. No conversion can be performed and therefore
the expression is used exclusively to get the linker fill in the correct offset.

@indntpoff  This expression is similar t@gotntpoff , but for use in position de-
pendent code. Whil@gotntpoff resolves to GOT slot address relative to the
start of the GOT in thenovl oraddl instructions@indntpoff resolves to the
absolute GOT slot address.
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6.3 New SPARC ELF Definitions

#define R_SPARC_TLS_GD_HI22 56
#define R_SPARC_TLS_GD_LO10 57
#define R_SPARC_TLS_GD_ADD 58
#define R_SPARC_TLS_GD_CALL 59

#define R_SPARC_TLS_LDM_HI22 60
#define R_SPARC_TLS LDM_LO10 61
#define R_SPARC_TLS_LDM_ADD 62
#define R_SPARC_TLS LDM_CALL 63
#define R_SPARC_TLS LDO_HIX22 64
#define R_SPARC_TLS LDO_LOX10 65

#define R_SPARC_TLS_LDO_ADD 66
#define R_SPARC_TLS_IE_HI22 67
#define R_SPARC_TLS_|E_LO10 68
#define R_SPARC_TLS_IE_LD 69
#define R_SPARC_TLS_IE_LDX 70
#define R_SPARC_TLS_IE_ADD 71

#define R_SPARC_TLS_LE_HIX22 72

#define R_SPARC_TLS LE_LOX10 73
#define R_SPARC_TLS_DTPMOD32 74
#define R_SPARC_TLS DTPMOD64 75
#define R_SPARC_TLS _DTPOFF32 76
#define R_SPARC_TLS_DTPOFF64 77
#define R_SPARC_TLS_TPOFF32 78
#define R_SPARC_TLS_TPOFF64 79

The operators used in the code sequences are defined as follows:

@dtindx( expp Allocate two contiguous entries in the GOT to holdis _index
structure (for passing tatls _get _addr ). The instructions referencing this en-
try will be bound to the first of the two GOT entries.

@tmndx(expy) Allocate two contiguous entries in the GOT to holtdka _index struc-
ture (for passing totls _get _addr ). Theti _offset field of the object will be
set to O (zero) and th& _module field will be filled in at run-time. The call to
_tls _get _addr will return the starting offset of the dynamic TLS block.

@dtpoff( expn Calculate the offset of the variable éxprrelative to the TLS block it
is contained in.

@tpoff( expy) Calculate the negative offset of the variablekprrelative to the static
TLS block.

6.4 New SH ELF Definitions

#define R_SH_TLS_GD_32 144
#define R_SH_TLS_LD_32 145
#define R_SH_TLS_LDO_32 146
#define R_SH_TLS_IE_32 147
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#define R_SH_TLS_LE_32 148
#define R_SH_TLS_DTPMOD32 149
#define R_SH_TLS_DTPOFF32 150
#define R_SH_TLS_TPOFF32 151

The operators used in the code sequences are defined as follows:

@tlsgd( expy) This expression is the eqpuivalent @fdtindx( expn for the GNU
variant of the calling conventions. The linker is also allocating to two consecu-
tive entries in the GOT and the processing of the relocation produces the offset
of the first entry as the value of the expression. The only difference is that the
function called is_tls _get _addr .

@tlsldm( expn This expression is the GNU variant @tmndx(expp . Just as for
@tlsgd( expy the only difference is that the function called in the following
call instructionis___tls _get _addr .

@dtpoff Calculate the offset of the variable it is added to relative to the TLS block it
is contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@tpoff Calculate the offset of the variable it is added to relative to the static TLS
block. The linker allocates one GOT entry for the result of the relocation.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

If used in the form@tpoff( exp) the offset of the variable iaxprrelative to the
static TLS block is calculated. The linker allocates one GOT entry for the result
of the relocation.

@gottpoff  Represents the offset in the GOT for the entry which containgsthendex
entries for the variable the relocation is attached to.

6.5 New x86-64 ELF Definitions

#define R_X86_64 DTPMOD64 16 /* ID of module containing
symbol */

#define R_X86_64 DTPOFF64 17 /* Offset in TLS block */

#define R_X86_64_TPOFF64 18 /* Offset in initial TLS

block */

#define R_X86_64 TLSGD 19 /* PC relative offset to GD GOT
block */

#define R_X86_64 TLSLD 20 /* PC relative offset to LD GOT
block */

#define R_X86_64 DTPOFF32 21 /* Offset in TLS block */
#define R_X86_64 GOTTPOFF 22 [* PC relative offset to IE GOT
entry */
#define R_X86_64_TPOFF32 23 [* Offset in initial TLS
block */
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The operators used in the code sequences are defined as follows:

@tlsgd(%rip)  Allocate two contiguous entries in the GOT to holdls _index
structure (for passing tatls _get _addr ). It may be used only in the exact
x86-64 general dynamic code sequence shown above.

@tlsld(%rip) Allocate two contiguous entries in the GOT to holdisx _index
structure (for passing tatls _get _addr ). Theti _offset field of the object
will be set to 0 (zero) and thie _module field will be filled in at run-time. The
callto_tls _get _addr will return the starting offset of the dynamic TLS block.
It may be only used in the exact code sequence as shown above.

@dtpoff Calculate the offset of the variable relative to the start of the TLS block it is
contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@gottpoff(%rip) Allocate one GOT entry to hold a variable offset in initial TLS
block (relative to TLS block endsfs:0 ). The operator must be usedritovg or
addqg instructions only.

@tpoff Calculate the offset of the variable relative to TLS block ewds:0 . No
GOT entry is created.

6.6 New s390/s390x ELF Definitions

#define R_390_TLS LOAD 37 [* Tag for load insn in TLS code */

#define R_390 TLS GDCALL 38 /* Tag for call insn in TLS code */

#define R_390_TLS LDCALL 39 /* Tag for call insn in TLS code */

#define R_390 TLS GD32 40 /* Direct 32 hit for general dynamic
thread local data */

#define R_390 TLS GD64 41 [* Direct 64 bit for general dynamic
thread local data */

#define R_390_TLS GOTIE12 42 /* 12 bit GOT offset for static TLS
block offset */

#define R_390_TLS_GOTIE32 43 /* 32 bit GOT offset for static TLS
block offset */

#define R_390 TLS GOTIE64 44 [* 64 bit GOT offset for static TLS
block offset*/

#define R_390 TLS LDM32 45 /* Direct 32 bit for local dynamic
thread local data in LE code */

#define R_390 TLS LDM64 46 /* Direct 64 bit for local dynamic
thread local data in LE code */

#define R_390 TLS IE32 47 [* 32 bit address of GOT entry for
negated static TLS block offset */

#define R_390 TLS IE64 48 [* 64 bit address of GOT entry for
negated static TLS block offset */

#define R_390 TLS IEENT 49 [* 32 bit rel. offset to GOT entry for
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negated static TLS block offset */
#define R_390_TLS_LE32 50 /* 32 bit negated offset relative
to static TLS block */
#define R_390 TLS LE64 51 /* 64 bit negated offset relative
to static TLS block */
#define R_390 TLS LDO32 52 /* 32 bit offset relative to TLS
block */
#define R_390_TLS LDO64 53 /* 64 bhit offset relative to TLS
block */
#define R_390 TLS DTPMOD 54 /* ID of module containing symbol */
#define R_390_TLS DTPOFF 55 /* Offset in TLS block */
#define R_390 TLS TPOFF 56 /* Negated offset in static TLS
block */

The operators used in the code sequences are defined as follows:

@tlsgd Allocate two contiguous entries in the GOT to holdsa _index structure.
The value of the expressiot@tisgd is the offset from the start of the GOT to
thetls _index structure for the symbol. The call to_tls _get _offset  with
the GOT offset to thés _index structure of x will return the offset of the thread
local variable x to the TCB pointer. Th@tlsgd operator may be used only in
the general dynamic access model as shown above.

@tlsldm  Allocate two contiguous entries in the GOT to holdsa _index structure.
Theti _offset field of the object will be set to 0 (zero) and ttie_module
field will be filled in a at run-time. The value of the expressia@tisidm is the
offset from the start of the GOT to this special _index structure. The call
to _tls _get offset with the GOT offset to this speci@b _index structure
will return the offset of the dynamic TLS block to the TCB pointer. Td#sgd
operator may be used only in the local dynamic access model as shown above.

@dtpoff Calculate the offset of the variable relative to the start of the TLS block it
is contained in. The@dtpoff operator may be used only in the local dynamic
access model as shown above.

@ntpoff The value of the expressiom@ntpoff is the offset of the thread local vari-
ablex relative to the TCB pointer. No GOT entry is created in this case. The
@ntpoff operator may be used only in the local exec model as shown above.

@gotntpoff  Allocate a GOT entry to hold the offset of a variable in the initial TLS
block relative to the TCB pointer. The value of of the expressi@gotntpoff
is offset in the GOT to the allocated entry. T@gotntpoff operator may be
used only in the initial exec model as shown above.

@indntpoff ~ This expression is similar t@gotntpoff . The difference is that the
value ofx@indntpoff  is not a GOT offset but the address of the allocated GOT
entry itself. It is used in position dependent code and in combination with the
larl instruction. The@indntpoff operator may be used only in the initial exec
model as shown above.

78 Version 0.20, February 8, 2003



7 REVISION HISTORY

7 Revision History

2002-1-27First version. The information and structure of the document is mainly
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