
Uncovering Zero-Days and advanced fuzzing

How to successfully get the tools to unlock UNIX and Windows Servers

About the presentation

• Whoami

• Introduction

• 0days and the rush for public vulnerabilities

And Advanced fuzzing techniques

Whoami

• My name is Nikolaos Rangos (nick: Kingcope)
• Live in Germany, have greek parents and family
• Hack and like to play with Software
• Develop exploits for software since ~2003
• Am a Penetration tester
• Currently do vulnerability research

Introduction

Server Side vs. Local and Client Vulnerabilities

• By using Remote Exploits (Server Side) you can attack servers silently without user

intervention.
• Scanners can discover Servers that run the specific software and version to exploit

• Local vulnerabilities can be handy to escalate privileges if exploit does not yield
 desired privileges

• Client Side Vulnerabilities (for example Web-Browser Exploits) can be used to attack

entities inside organizations and companies thus require user intervention.

• We will discuss especially remote software flaws, remote vulnerabilites
• Most parts of discussion can be applied to local and client vulnerabilities

Introduction

Discovering vulnerabilities is easy

• Programmers do mistakes and introduce flaws - constantly

Especially new features and versions contain flaws, see cvs
diffing, updated software

• New Technologies bring new possibilities for the attacker

• Discovering flaws can be fun when you have the appropriate
tools set up

• There is no secret – Just needs passion, time, experience and
good music :D

0days and the rush for public vulnerabilities / The environment

The environment – Virtual Machines and software

• For the testbeds you will definitely need VMs set up

• Reason: Different Operating Systems / Targets
 Handy for adding offsets for each version later on

• Software you want to audit can be installed inside the VM
• Upside: You can break the operating system without losing data

• Example setup: Windows 7 Host with several Guests, like:
• Windows Server 2003/2008, Linux, FreeBSD, Solaris x86, etc.
• (You can do kernel debugging by using pipes host->guest)

• Available virtual machines:
• VMWare Workstation, Oracle VirtualBox, QEMU, and more
• Personally Preferred VMWare Workstation over the years

0days and the rush for public vulnerabilities / The environment

The environment – Virtual Machines and software
Illustration: VMWare running FreeBSD on Win7, many Operating Systems for testing

0days and the rush for public vulnerabilities / The tools

The tools
• A kind of programming language, the one you like most:

• Interpreted: Perl, Python.
• Native: C/C++
Used to fuzz software, develop and write the exploit itself.
Used to write own tools for observing processes.
Some puzzles require native code: Local bugs, RPC exploits,
Looks more leet to code in C :>

• UNIX tools:
• strace (Linux), truss/ktrace/kdump (BSD, Solaris) for tracing syscalls
• ltrace for tracing library calls

• Windows: ProcessMonitor
• To reveal bugs by looking at file system access

• Debuggers:
gdb (UNIX), Windbg (Windows User/Kernel), Ollydbg (Windows Userland)

0days and the rush for public vulnerabilities / The tools

Tool example – truss on FreeBSD
Illustration:
Re-Discovering the FreeBSD FTPD Remote Root Exploit (library load) using truss

0days and the rush for public vulnerabilities / Reading source code and binary reversing

Reading source code and testing parallely

• Good knowledge of the programming language required
• Personally prefer reading C code, most of the UNIX world is built up on C
• Some bugs can be discovered/exploited without any code reading

Example: Apache Range-Bytes Denial of Service
• Other bugs need to be researched in source code to be exploited properly

Example: ProFTPD TELNET_IAC Remote Exploit

0days and the rush for public vulnerabilities / Reading source code and binary reversing

Binary reversing and testing parallely

• Good knowledge of assembler required (x86, sparc, arm, etc)
• The Interactive Disassembler (IDA) is the best tool for this task
• Personally tend to look for vulnerable functions in critical code paths

and test the suspicious locations using scripts
• Can be handy when developing exploits,

Example: ProFTPD TELNET_IAC Remote Exploit, finding the plt entry offset
of write(2) and specific assembler instructions.

0days and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python

Semi-automatic fuzzing with perl/python

• „Semi-automatic“ because fuzzing is done partly by the
programming language like perl and partly with the knowledge
of the programmer

• Especially effective for plain-text protocols

• Raw binary protocol fuzzing is possible this way, requires
Wireshark dumps and mostly will cover only initial packets of
the protocol

• Modules for the interpreted programming language can be
used for fuzzing „high level“ and will mostly cover the whole
binary protocol

0days and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python

Fuzzing templates for plaintext and binary protocols

Very Basic template I used alot over the years (perl)

use IO::Socket;
$sock = IO::Socket::INET->new(PeerAddr => 'isowarez.de', # connect to isowarez.de
 PeerPort => 'http(80)', # on port 80 (HTTP)
 Proto => 'tcp');

<input fuzzing ideas here>
print $sock “GET / HTTP/1.0\r\n\r\n”;
########################

Display response
while(<$sock>) {
 print;
}

• Above template is extended in the middle with fuzzing ideas for the protocol
• Can be extended in a way that several packets are sent, by repeating the

template

0days and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python

Fuzzing templates for plaintext and binary protocols

• Previous shown template can be used for binary protocols by just replacing

the payload with binary data

• The basic template is modified using your knowledge about the protocol

and each modification (test case) is run against the remote service

• On the remote side the results are inspected using tracers like strace, truss
to see what is happening or „top“ to inspect Memory and CPU usage

• In case a bug was found, the vulnerability is researched and the exploit
written by extending the basic template.

• The following example shows how the basic template was extended
to a real exploit after verifying a vulnerability was found
Case: Apache HTTPd Remote Denial of Service

0days and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C source on the fly

• Nearly every critical UNIX software is written in C

• Fuzzing by modifying sources is very effective

How it is done

• The target software (server side) is chosen and installed

• The client of the sofware is compiled

• After compilation the audit can begin

• The client sources are modified and after each modification each test case

is compiled and run against the service

0days and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C sources on the fly

• If you want to find logic bugs you have to understand the part

of software you are working on and change the code lines that
are most interesting

• Finding buffer overflows this way can be done rather blindly

• Look for critical code in the C source like network,

command handling, parsers etc.

• Change the buffer contents and buffer lengths one by one

• Compile and test each buffer modification against the
service

0days and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C sources on the fly
Example client code change in SAMBA, source3/client/client.c

0days and the rush for public vulnerabilities / Building exploits

Building exploits
• Logic bugs are nice to have since exploits for logic bugs can be

more stable, effective and easier to develop
• Buffer overruns and memory corruptions can be exploited

depending on their nature and can be as stable as logic bugs,
exploiting can be time consuming

• Goal: retrieve a remote shell/command line
• Patch memory to hit a good place to
• Control the Instruction Pointer (i386 processor: EIP)
• Bypass protections (ASLR/ NX on amd64)
• Execute the payload, retrieve the shell

• Personally prefer reverse shells to evade firewall
protections

• Most work is done using a debugger like gdb
• Add more targets to the exploit
• Test the exploit in the wild, real world and adjust it

0days and the rush for public vulnerabilities / Building exploits

Bypassing ASLR (Address Space Layout Randomization) on Linux
(ProFTPD Remote Root Exploit case)

• Assume we have redirected the Instruction Pointer to our

desired value (for example through Stack Smashing,
overwritten Function Pointer)

• The address space is randomized, so where we jump to ?
• Stack addresses, addresses of libraries, heaps of libraries

are all randomized
• The image (TEXT segment) of the process is NOT randomized
• Duhh!
• We can jump to the TEXT segment, its base has a fixed address

0days and the rush for public vulnerabilities / Building exploits

Bypassing ASLR (Adress Space Layout Randomization) on Linux x86

• Goal: get the shellcode executed

• Find mmap/mmap64 plt entry using IDA
From the plt entry we can indirectly jump to the
randomized library function

• Find memcpy plt entry using IDA
• Use mmap to map a fixed free memory region (read, write,

execute permissions enabled)
• Use memcpy to copy bytes from the TEXT segment to this

memory region, purpose of the bytes: copy the shellcode to
the new memory region

• Jump to the memory copy routine
• Execute the payload that retrieves the reverse shell
• mmap and memcpy are called using ROP (return oriented

programming)

0days and the rush for public vulnerabilities / Building exploits

Exploiting logic flaws
(FreeBSD ftpd Remote Root Exploit case)
• Exploiting logic flaws strongly depends on the nature of the bug
• FreeBSD ftpd example scenario

• We can load a library if the logged in user is inside a chroot
and we can write files to the disk

• How to exploit it
• We need a way to break the chroot and execute code
• Program a dynamic library that
• Breaks the chroot by using ptrace system call

• Attach to an existing FreeBSD process that runs as root using ptrace
• Copy the shellcode into the root owned process by using ptrace
• Let the root owned process continue at the shellcode position
• NX (Non-Executable mappings) on amd64 can be bypassed easily

On FreeBSD there is a rwx (read write execute) memory region
We write our shellcode into this region

0days and the rush for public vulnerabilities / Building exploits

Exploiting logic flaws
(FreeBSD ftpd Remote Root Exploit case)

0days and the rush for public vulnerabilities / Adding targets to the exploit

Adding targets to the exploit

• Reason: Simply important to support wider range of targets
• Targets can be split up in two parts

• Supported Operating System
• Supported software version on Operating System platform

• Environment needs to be set up

As many as possible vulnerable installations
(using Virtual Machines)

• Offsets and possibly other values need to be examined

0days and the rush for public vulnerabilities / Adding targets to the exploit

Adding targets to the exploit

• Add code to exploit for target integration and target selection
• Example: ProFTPD Remote Root Exploit

• Exploit was designed to make it easy to add targets
• Needed values

• write(2) offset (plt entry) is found by using IDA
• Align and Padding are found by running a perl script and observing

the behaviour of the ProFTPD service

• Example: FreeBSD ftpd Remote Root Exploit
• Only task: compile the dynamic libraries on each OS version

• Example: FreeBSD sendfile local root exploit
• To support x86 and amd64 two shellcodes are needed
• The exploit has to be adjusted for each version (buffer sizes)

0days and the rush for public vulnerabilities / Testing shaping & adjusting the exploit in the wild
Last slide

Testing shaping & adjusting the exploit in the wild

• Exploits can run perfect in the testing environment
• In real world they might not succeed in gaining a shell (not

always the case)
• So the exploit needs to be made stable by testing it in real

networks
• How to accomplish that

• Search engines can be nice in finding running servers in the
wild to test the exploit against

• Scanners can be developed to seek the internet for
vulnerable servers

• Once vulnerable servers are discovered, test the exploit against
them

• Mimic the discovered vulnerable OS and software version
• Adjust the exploit by addressing the failures in the exploit code

0days and the rush for public vulnerabilities / Porting Metasploit modules to standalone exploits
Last slide

Thanks to everybody who supported me over times

You know who you are <3

Uncovering Zero-Days and advanced fuzzing

How to successfully get the tools to unlock UNIX and Windows Servers

Questions? Comments ? Suggestions ?

