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Abstract 

The downside of current polymorphism techniques lies to the fact that they require a 

writeable code section, either marked as such in the corresponding Portable Executable (PE) 

section header, or by changing permissions during runtime. Both approaches are identified 

by AV software as alarming characteristics and/or behavior, since they are rarely found in 

benign PEs unless they are packed. In this paper we propose the use of Return-Oriented 

Programming (ROP) as a new way to achieve polymorphism and evade AV software. To this 

end, we have developed a tool named ROPInjector which, given any piece of shellcode and 

any non-packed 32-bit Portable Executable (PE) file, it transforms the shellcode to its ROP 

equivalent and patches it into (i.e. infects) the PE file. After trying various combinations of 

evasion techniques, the results show that ROPInjector can evade nearly and completely all 

antivirus software employed in the online VirusTotal service. The main outcome of this 

research is the developed algorithms for: a) analysis and manipulation of assembly code on 

the x86 instruction set, and b) the automatic chaining of gadgets by ROPInjector to form safe, 

and functional ROP code that is equivalent to a given shellcode. 

1. Introduction 

Return Oriented Programming (ROP) gained increased attention during the late 2000’s [3] as 

an advanced stack smashing method that could bypass Data Execution Prevention (DEP) 

mechanisms. ROP is a rediscovery of threaded code in which programs typically consist of a 

chain of addresses in the stack pointing to code chunks in the attacked executable (or its 

loaded libraries) each of them ending with a return instruction (commonly ret but not only). 

These borrowed code chunks are called gadgets and their “return” is in fact a call to the next 

gadget in the chain. As an analogy to regular code, in ROP, gadgets are the “instructions” and 

esp is the program counter. 

Polymorphism is a technique for AV bypass in which the code changes itself each time it 

runs, but the function of the code (its semantics) does not change at all. In this way, AVs 

cannot create a signature for detection of the shellcode. However, the downside of current 

polymorphism techniques lies to the fact that they require a writeable code section, either 

marked as such in the corresponding PE section header, or by changing permissions during 

runtime. Both approaches are identified by AV software as alarming characteristics and/or 

behavior, since they are rarely found in benign PEs unless they are packed.  



In this work, we claim Return-Oriented Programming (ROP) to be a strong polymorphism 

alternative that eliminate the need of writable code section. More specifically, the first and 

most important benefit of using ROP for AV evasion is that such borrowed code (that of 

gadgets) is always benign and tested against false positives. Evidently, the return address 

chain has to be built somehow onto the stack and that would leave a footprint subject to 

signing. The process involves either pushing the return addresses to the stack or just copying 

the whole chain from another memory location (possibly some .data segment) and adjusting 

the stack pointer. However, we argue that: i) the code required for such operations is very 

common and seemingly benign, ii) can be randomized or encoded in many and trivial ways, 

iii) it largely depends on the attacked PE and its image base since in the worst case it is a 

series of push <VAi> operations. This holds because gadget addresses change for different 

PEs and different image bases, hence changing the footprint and statistics of the chain 

building instructions even if they originate from the same source shellcode. Given these 

features, ROP enables polymorphism without requiring a writeable code section in 

memory. Encoding/decoding can be applied on the gadget chain in memory (i.e. in the stack 

and not in the code section) and/or different gadgets can be randomly chosen for the same 

operation hence altering the shellcode’s footprint. 

Based on the above observations, in this paper we present ROPInjector, a tool which, given 

any piece of shellcode (hereafter, also referred to as source (shell)code) and any non-packed 

executable file, it transforms the shellcode into its ROP equivalent and patches it into (i.e. 

infects) the PE file. ROPInjector, which is written in Win32 C, infects Win32 Portable 

Executables (PEs) and works for the x86 architecture. Since it is very common for AVs to 

detect minor deviations from the typical arrangement of the file sections and their 

characteristics (e.g. a second executable section with RWX permissions), besides the 

transformation of the code into a non-recognizable, non-recurrent form, the developed tool 

addresses several additional issues to achieve evasion, such as the positioning of the shellcode 

in the carrier executable and the way of transferring control to the shellcode. Moreover, we 

have performed several experiments to evaluate the effectiveness of the proposed tool by 

injecting shellcodes to well-known executable files including acrobat reader, firefox, Java, 

etc. Quantitative results show that our proposed technique, if combined with simple 

behavioral anti-profiling techniques may render AV detection infeasible.  

2. Related Work 

To the authors’ best knowledge this is the first work that infects PEs with ROP-encoded 

payload. Nevertheless, in this section we examine two tools having the same purpose with 

ROPInjector, that is, to infect PE files with common (possibly encrypted) shellcode in order 

to bypass AV software. 

The first, Shellter [1], focuses on maintaining the original structure of the PE file, by avoiding 

injection of the shellcode into predefined locations or changing the characteristics of the 

existing sections. It achieves so by overwriting existing code for which it is certain that will 

be given control during execution of the program. The latter is deduced by tracing the 

executable file and analyzing its execution flow. Shellter is also capable of reusing imports of 

the original PE file to change the writing permissions of the section containing the shellcode 

so that encrypted and self-modifying code can be used. It is also capable of injecting “junk 

code” before the shellcode that delays execution as a means to anti-emulation. Shellter is 



advanced in terms of dynamically selecting the location of the patch in the shellcode (as 

opposed to extending the .text section). However, while it features a patching method that 

introduces variability (as to where in the file is the shellcode injected), it relies on traditional 

polymorphism methods, that are still subject to signature generation and detection of write 

permissions or modifications of the .text section in memory. Moreover, our proposed 

approach introduces variability too, due to the transformation to ROP (which is dependent on 

the PE file). 

PEinject [2] is mostly a method (and referenced as such) rather than a full-featured tool. It 

injects the shellcode in the (first sufficiently large) padding space found in the .text section 

(either 0xCC caves or section padding) and does not encode or modify the payload in any 

way, neither does it anticipate for self-modifying or encrypted payloads. Control is passed to 

the injected shellcode by modifying the address of entry point of the PE file’s NT_HEADER.  

The evasion ratios of both methods are compared with our proposed approach in Section 4. 

3. ROPInjector 

3.1 PE patching and passing control to the shellcode 

First of all, the patching of the PE file and the passing of control to the shellcode must be 

done in the least noticeable way. A second executable section hosting the shellcode would be 

too alarming, since the vast majority of executables has only one. The next least disruptive 

and easy to implement option would be to inject the shellcode in the 0xCC padding 

commonly left by the linker in-between code segments (typically OBJ files) in the .text 

section of PEs. However, there may not always be sufficient space in those 0xCC caves, 

while it is important to notice that ROPInjector puts this padding space into better use for our 

purposes as we analyze below.  

For the above reasons we choose to append the shellcode to the existing .text section of the 

executable, and correct all section headers and relocations accordingly. To pass control to it, 

the default practice is to replace the instructions pointed to by 

NT_HEADER.AddressOfEntryPoint with a jump to the shellcode which is appended those 

replaced instructions followed by a jump back to the original execution flow. Directly 

pointing the address of entry point to the shellcode in this case is avoided, since many AVs’ 

heuristics are alarmed by the fact that it points towards the end of .text. An alternative to 

giving control to the shellcode at program entry, is to hook any calls to ExitProcess, exit 

or other similar functions. This technique in particular, as shown also later by the results, 

bypasses behavioral profiling by AVs that employ emulation or sandboxing. This can be 

attributed to the fact that either AVs emulate only a small portion of the executable’s entry 

code due to scanning time constraints, or because of lack of (universal) techniques for 

triggering a graceful exit (many programs do not handle SIGINT and SIGTERM signals). 

3.2 Reverse analysis of x86 machine code 

Reverse analysis of machine code into data structures that are easy to handle is crucial to 

perform any kind of patching, modifications, re-assembly, and any transformation to ROP. 



Two are the most important pieces of information required: i) the origin and destination of all 

relative references (e.g. a relative jump and its target) and ii) which registers are being written 

or read during each instruction, as well as which registers are free to modify. The former is 

required for injecting or removing instructions from a code segment without breaking its 

functioning. The latter is particularly useful to enhance gadget matching, either by performing 

permutations, or by using gadgets that contain redundant but safe instructions (in this case, 

unsafe are branch, privileged, or indirect addressing mode instructions because they risk 

raising errors such as access violation).  

3.3 MOD/REG/RM and SIB unrolling 

Instructions using the MOD/REG/RM indirect addressing mode with displacement or the 

Scaled Index Byte (SIB) addressing scheme in the shellcode are treated specially before the 

transformation to ROP. Such instructions are unwanted for the following reasons:  

i) They are long (in the best and not so likely case 3 bytes long: 1 for opcode, 1 for 

MOD/REG/RM and 1 for SIB) hence unlikely to be found in gadgets; 

ii) They often read many general purpose registers at once, thus reserving them 

while as mentioned earlier, the more the free registers the better; 

iii) Their respective gadgets (should they be found or injected) will probably not be 

reusable, due to the use of displacement and index constants (e.g. mov edx, 

[esi*2+16]). 

In order to circumvent this kind of situations, we reduce such instructions to their arithmetic 

equivalents one-by-one. We call this process unrolling and it is performed to the shellcode 

before any transformation to ROP. For instance, [1] mov eax, [ebx+ecx*2] may be 

replaced by: 

[1'] mov eax, ecx 

[2'] sal eax, 1 

[3'] add eax, ebx 

[4'] mov eax, [eax] 

If the register eax is not free to use for the arithmetic operations, another temporary register 

that is free may be used. 

Noteworthy is how unrolling unlocks register access from one atomic instruction to many. 

For instance, in the latter example, ecx is freed at [1'] and ebx at [3']. If for example eax were 

to be freed at the preceding 10 instructions, then instructions [1'] to [3'] could be moved 10 

instructions behind, thus resulting in an additional free register (i.e., ecx and ebx, but not eax 

which will not be free) in that preceding code chunk. 

3.4 Finding gadgets 

Candidate gadgets in the executable sections of the given PE file must end in one of ret, 

retn, pop regX; jmp regX, or jmp regX. Exceptionally for the latter, the gadget in 

question must be first paired with a loader gadget that loads the required return address into 

regX. The process begins by finding all gadget endings and temporarily storing them to a 

list. For each of those endings, n bytes of preceding machine code is disassembled for each n 



up to maximum depth N (typically 20 bytes). If such disassembly aligns with the ending (not 

guaranteed since x86 instructions are of variable length) a candidate gadget has been found. 

Candidate gadgets containing any illegal, privileged (e.g. sysenter, int, iret), branch or 

esp modifying instructions are filtered out.  

3.5 Parsing gadgets into Intermediate Representation (IR) 

The gadgets found in the aforementioned process are first analyzed instruction-by-instruction 

to infer register access. Since gadgets are allowed to contain safe but redundant instructions, 

their register access is tested for modifications to the register in question (e.g. a mov ecx, 

eax; pop ecx; ret; gadget cannot be used for moving eax to ecx) as well as the non-free 

registers of the source instruction to be encoded.  

Following that, they are parsed into an Intermediate Representation (IR) consisting of an 

operation-type, and 3 operands with different meaning depending on the type. If a multi-

instruction gadget contains more than one representable instructions, only the first is 

considered. However, the following ones have also been considered in other gadgets with the 

same ending, because of the backwards gadget finding process described in the previous 

paragraph. Noteworthy is the fact that by parsing into this higher level IR, one-to-one 

permutations are automatically performed. That is because both gadgets and instructions are 

classified into one of these types, based on which the encoding is then performed, rather than 

on the instructions per se. The IR is also useful for selecting the encoder function 

accompanying every gadget. Encoders are responsible to answer “whether their assigned 

gadget can encode a given instruction”, as well as to encode it into a list of stack operations if 

requested to. 

3.6 Injecting gadgets 

In order to enhance transformation of the source shellcode, and since not all required gadgets 

are always found in the PE file, new ones are also injected as needed. Firstly, the 0xCC caves 

are used for this injection, and if they are filled, the .text section is extended before the actual 

patch. The injection is performed in the least noticeable way to avoid alarms. If a standard 

epilogue (mov esp, ebp; pop ebp; ret) is found right before the 0xCC cave, the 

gadget is injected in-between the preceding code and the epilogue. Figure 1 depicts such an 

example gadget injection of a mov ecx, eax gadget. 

 mov esp, ebp 

 pop ebp 

 ret(n) 

 CCCCCCCCCCCCCCCCCC 

 jmp epilogue; normal flow avoiding gadget  

 mov ecx, eax; the injected gadget  

 jmp return  ; gadget flow avoiding std. epilogue 

epilogue: 

 mov esp, ebp 

 pop ebp 

return: 

 ret(n) 

 CCCCCCCC 

Figure 1: Injection of gadget (right) in 0xCC cave preceded by standard epilogue (left) 



In the case that no epilogue is found at the boundary with the 0xCC cave, a pseudo-function 

with standard prologue and epilogue is injected to avoid heuristics or n-grams that might raise 

suspicion due to non-ordinary returns. This pseudo-function has the following form: 

 push ebp 

 mov ebp, esp 

 <gadget code> 

 jmp return  

 mov esp, ebp 

 pop ebp 

return: 

 ret 
Figure 2: Pseudo-function ending used during gadget injection 

Following gadget insertions will then reuse this pseudo-epilogue as stated above, by injecting 

before the standard epilogue, thus making it look more like a real function. 

3.7 Source code permutations 

Predefined, one-to-one permutations (i.e. one instruction to one gadget) are achieved through 

the IR and encoder functions. Encoders will also perform basic algebraic permutations based 

on the properties of addition, subtraction multiplication and division. For instance, if the 

instruction to be encoded is of type ADD_IMM (add reg, imm), an encoder will repeat 

anything add reg, x with x being an integer divisor of imm, imm/x times. Addition and 

subtraction with constants will also be swapped if the signs of the constants are flipped. M-to-

N permutations quickly scale to exponentially growing space and are out of the scope of this 

work. 

3.8 Chaining gadgets 

The return address chain can be built either during runtime or during compile-time and saved 

to the initialized data section of the file (to be then copied at runtime to the stack). The most 

alarming option would be the first (during runtime) and we choose this to evaluate our 

evasion ratio (also chosen as an implementation option). During this process, besides the 

pushing of the VAs onto the stack, the ROP compiler must consider pushing immediate 

constants, adjustments for stack pointer modifications in the gadget (e.g. redundant pops, 

retns) and gadgets with loader gadgets. For this purpose, the following types of stack 

operations are defined: 

 PUSH_VA    ; push a (loader) gadget VA onto the stack 

 PUSH_IMM ; push an immediate constant onto the stack 

 ADVANCE  ; advance (subtract from) the stack pointer a number of bytes 

 CHAIN         ; pseudo operation denoting a placeholder for the next gadget’s VA 

The result of the encoding process of a given instruction by a given gadget is a series of stack 

operations for the invocation of the gadget. The list of such operations for all gadget calls 

describes the assembly instructions that if executed, will build the chain in the stack. 

Alternatively, such operations may be used to create the required stack frame during compile-

time, save it as initialized data and copy it over from the data section during runtime. The 



latter process allows also for encoding/decoding of the stack frame. In the former case, and 

when multiple calls are made to the same gadget (e.g. as in using inc eax to achieve add 

eax, X) the compiler wraps the call with a conditional jump loop using a free register. 

However, not all types of instructions can be easily encoded into ROP. In this work we do not 

consider the encoding of branches (jumps, calls, loops, interrupts), privileged instructions and 

pops. Hence, the return-oriented code chunks must finally return back to the source shellcode. 

This is achieved by wrapping the chain building instructions in the following: 

[1] call build_chain 

[2] jmp past_the_chain 

build_chain: 
[3] push <VA of gadget N> 

[4] .... 

[5] push <VA of gadget 1> 

[6] ret 

past_the_chain: 
[7] <other instructions / chains> 

In this way, the last gadget (N) will return to instruction [2] jumping past the chain building 

instructions and continuing normal execution flow. 

4. Experiments and Results 

In order to evaluate ROPInjector we used the VirusTotal online antivirus scanning service [4] 

which at the time of this writing includes 57 AVs. For carrier PEs (i.e., the infected ones), we 

selected 9 popular 32-bit executable of various sizes that most of them also include 

certificates (see Table 1). 

Table 1: List of PE files used as carriers in the experiments 

Executable Size 

(KB) 

Version SHA256 hash 

AcroRd32.exe 1489 Version 10.1.12 of Adobe Acrobat Reader X a03297789b5a784af3765c
523b33b9d54578e38a178

ca67103b5e0e74f905331 

Acrobat.exe 321 Version 10.0.0.396 of Adobe Acrobat X Pro 281529dbd6c45cc1706d5

cd66456b5c983aa5e6e3dc
64723779d9b2bd48b769d 

cmd.exe 296 Version 6.1.7601.17514 Windows Command 

Processor 

17f746d82695fa9b35493b

41859d39d786d32b23a9d
2e00f4011dec7a02402ae 

Rainmeter.exe 39 Version 2.4.0.1678 of Rainmeter 00c8f2b58ffb318cf1031f5

8f4fe86a73bcb9716c7072

012114bd42f157dd071 

firefox.exe 331 Version 35.0.0.5486 of Mozilla Firefox 11740f07a822637874da4e

b4eafa309d145a1ca72977

9e30cb3d1e592c5484df 

java.exe 172 Version 7.0.710.14 of Oracle Java 06889c037faab8379aaafb

2bf9e77807e3d432da435c

dab1244bff36c5c562d5 

wmplayer.exe 163 Version 12.0.9600.17415 of Microsoft Windows 

Media Player 

c7adbfeeb7993928cb5427
51625dac6b10e96b18fcdc

d836a72cad62ae797250 

nam.exe 1829 Version 1.0a11a of “The Network Animator” 5d329bb39ba744cdba5e1a
fe107551c18ba0acd46cb6

764391024a73aa2d583f 

notepad++.exe 2348 Version 6.6.9.0 of the GNU text editor for 

Windows 

a11077cb6c209c67eb2d50

7d650fbee0925f3cbe860c
70e0cd779b73f5af4b80 

 



Regarding the source shellcode, we selected the two most popular payloads of Metasploit [5]: 

i) Reverse TCP Shell, and ii) Reverse TCP Meterpreter. For each PE and each shellcode we 

performed 4 patching scenarios as listed in Table 2, resulting in a total of 72 samples. 

Table 2: List of patching scenarios tested against VirusTotal 

Patching Scenario Description 

Original The executable file is not patched at all 

ROP-Exit This is the executable file generated by the ROPInjector. The executable 

file is patched with the shellcode unrolled, converted to ROP, and entry 

point before the original program’s exit (hook ExitProcess or exit) 

Exit In this scenario, the executable file is patched with the shellcode intact and 

entry point before the original program’s exit (hook ExitProcess or exit) 

Shellcode The executable file is patched with the shellcode intact, and entry point 

before the original program. 

 

Figure 3 and Figure 4 depict the evasion ratios (1 −
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐴𝑉𝑠
) of ROPInjector for each 

one of the four scenarios for the reverse shell and the reverse meterpreter payloads 

respectively. We can observe that the executables generated by the ROPInjector (i.e., “ROP-

Exit” scenario) achieve the highest evasion ratio. In particular, in more than half of the test 

cases the ROPInjector results in 100% AV evasion, while in some PE files (e.g., java.exe), the 

ROPInjector has evasion ratio greater than 98.5% for both the reverse shell and meterpreter 

shellcodes. This means that in average ROPInjector achieves AV evasion equal to 99.31%, as 

depicted in Figure 5 (i.e., “ROP-Exit” scenario). 

 
Figure 3: Evasion ratio of ROPInjector for the reverse shell payload 

 
Figure 4: Evasion ratio for the reverse meterpreter payload 



 
Figure 5: Average evasion ratio per combination of methods 

From these results we can deduce that evasion depends almost equally on both code 

obfuscation/transformation (hence signature evasion) and entry point (hence behavioral 

profiling evasion). This can be attributed to the fact that some AVs were able to detect 

ROPInjector despite the fact that there is no signature, due to the ROP polymorphism. It 

seems that behavioral analysis is equally important to static signatures for some AVs (from 

the ones that were alarmed) and is mostly performed during entry of executables. 

Moreover, a comparison is also made with Shellter v2.2 [1] and PEinject [2] in Figure 6. 

Shellter was used with its default options (i.e. with polymorphic junk code). We can observe 

that executables generated from our proposed ROPInjector (i.e., “ROP-Exit”) have the 

highest evasion ratio in all conducted experiments compared to Shellter and PEinject. Note 

also that even the simple “Exit” scenario achieved in some executable files better results than 

Shellter. Finally, the peinject had the worst evasion ratio. 

 
Figure 6: Comparison of evasion ratio between “ROP-Exit”, “Exit” scenarios with Shellter and PEinject 

It is also important to notice that besides VirusTotal, we have also tested the effectiveness of 

ROPInjector against a special piece of software named NCCGroup’s “Experimental Windows 

.text section Patch Detector” [7]. This detector compares the executable sections in memory 

against the ones on disk to detect modifications/patching. As expected, no executable was 

detected as patched, since ROPInjector does not alter the .text section in memory (neither 

does it require to). 



5. Conclusions 

Most antivirus software rely on string signatures and mild behavioral profiling detection 

mechanisms. By encoding the shellcode into its return-oriented equivalent and even by 

performing elementary mutations (unrolling), the former can be bypassed in the vast majority 

of cases. Behavioral profiling can also be avoided by carefully intercepting normal execution 

flow in points that AVs either cannot emulate or simply cannot derive enough evidence to 

classify the behavior as malicious. In this work, we presented as a means to the latter the 

hooking of common calls to process exit resulting in many cases in absolute evasion and in 

others rates greater than 98%. 

The techniques presented can still be mitigated if dealt with individually. For instance, 

signatures could be created for ROP building instructions (although not expected to be very 

effective) and behavioral analysis could be also performed backwards in terms of process life-

cycle. However, since slight variations and randomization can again disarm scanners, a more 

robust countermeasure does not seem straight-forward to design, practical to implement, or 

even realistic to propose. Perhaps the most promising direction is towards the strict coupling 

of the host operating system with the trusted software certificates (or checksums) and a 

“default distrust all” policy, i.e., whitelisting rather than blacklisting, pretty much like what 

was started by Microsoft back in 2001 [6] but did not flourish. 
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