DPTrace

Dual Purpose Trace for Exploitability Analysis of Program Crashes

Rohit Mothe (th1rm0)
Senior Security Researcher
Intel Corporation - Security Center of Excellence

Rodrigo Rubira Branco (BSDaemon)

Principal Security Researcher
Intel Corporation — Security Center of Excellence

* Authors name in random order

vl.1l

For an updated version of this paper, please check the repository of the talk in
github:
https://github.com/rrbranco/BlackHat2016

Table of Contents

[0] Abstract

[1] Background and Motivation
[2] Dichotomy of the ‘Exploitability’ Problem
[3] Approach and Ideas

[4] Solution = Backward Trace (!?)
[5] Solution + = Forward Taint (!)
[6] Challenges & Limitations

[7] Code & Implementation

[8] Demos and real life usages

[9] Other existing solutions

[10] Acknowledgements

[11] References

[0] Abstract

This research focuses on determining the practical exploitability of software issues by means of crash
analysis. The target was not to automatically generate exploits, and not even to fully automate the
entire process of crash analysis; but to provide a holistic feedback-oriented approach that augments a
researcher’s efforts in triaging the exploitability and impact of a program crash (or fault). The resultis a
semi-automated crash analysis framework that can speed-up the work of an exploit writer (analyst).

Fuzzing, a powerful method for vulnerability discovery keeps getting more popular in all segments
across the industry - from developers to bug hunters. With fuzzing frameworks becoming more
sophisticated (and intelligent), the task of product security teams and exploit analysts to triage the
constant influx of bug reports and associated crashes received from external researchers has increased
dramatically. Exploit writers are also facing new challenges: with the advance of modern protection
mechanisms, bug bounties and high-prices in vulnerabilities, their time to analyze a potential issue
found and write a working exploits is shrinking.

Given the need to improve the existing tools and methodologies in the field of program crash analysis,
our research speeds-up dealing with a vast corpus of crashes. We discuss existing problems, ideas and
present our approach that is in essence a combination of backward and forward taint propagation
systems. The idea here is to leverage both these approaches and to integrate them into one single
framework that provides, at the moment of a crash, the mapping of the input areas that influence the
crash situation and from the crash on, an analysis of the potential capabilities for achieving code
execution.

We discuss the concepts and the implementation of two functional tools developed by the authors (one
of which was previously released) and go about the benefits of integrating them. Finally, we
demonstrate the use of the integrated tool (DPTrace — to be released as open-source at Black Hat) with
public vulnerabilities (zero-days at the time of the released in the past), including a few that the authors
themselves discovered, analyzed/exploited and reported.

[1] Background and Motivation

Determining the exploitability of a program crash not only helps the bug hunter/exploit writer who is
rummaging her/his way through tens of thousands of crashes to find some gold but also a product
security response team in the initial triaging phases to understand the real impact of a bug submission
before allocating resources for the development of a fix. It helps enterprises to make informed decisions
on patch prioritization as well if, of course, they have some way of accessing and testing the bug trigger.
At the core of it though, these seemingly different problems are essentially the same - given a large set
of crashes (as a result of fuzzing or obtained by bug submissions by researchers all across the world)
how can one weed out the non-exploitable issues? This is quite a complex problem in itself to
completely automate with so many different code paths, conditional constraints and the continuously
varying states of the target program.

Traditionally, this process of determining exploitability relies on a lot of manual work of debugging the
program at, and just before, the time of the crash and figuring out the kind of error that occurs. While
analyzing submitted (or found on the wild) materials (crashes), it is also necessary to triage back to the
input location that triggered the issue. Product security response teams are often tasked in analyzing
reported issues without access to source-code, thus facing similar challenges as external researchers. To
triage issues, one must have an understanding about the program itself, the internals of the program
state and other specialized knowledge. In the Windows OS, the most readily and popular available
solution to analyze such crashes is provided by Microsoft in the form of a WinDBG plugin called
“lexploitable” (aka “bang exploitable”) [1]. This plugin conducts a preliminary analysis of the crash point
and among a variety of other things, analyzes the crash and determines an exploitability rating that can
span 4 different labels - ‘exploitable’, ‘probably exploitable’, ‘not exploitable’ or ‘unknown’. This is
inferred based on a variety of parameters, like the kind of crash (READ/WRITE based access violation),
call stack related information etc. It obviously is meant for a quick checkup of what the crash is but if
one is really interested in digging through the crash and find out the true exploitability then !exploitable
is not a reliable mechanism. It’s an easy and simplistic way of classifying crashes but does not provide
any real value to address the problem of exploitability. The goal then becomes to improve upon this and
propose a better system. But first, we intend to clearly define the problem and explain the intricacies
involved with it.

[2] Dichotomy of the ‘Exploitability’ Problem

There can be multiple solutions to a particular problem and every solution is unique in the sense that in
the mind of each creator/inventor/designer of the solution, the problem itself is perceived differently.
Hence it is imperative that we detail our vision of the problem of exploitability determination in crash
analysis. The way we see it, there are two dimensions to this problem. One is determining control over
the cause of the exception/crash in the program and the other is determining the actual program
execution control that can be achieved from that.
Both are tied into each other and a lack of information about either of them translates to an incomplete
understanding of the exploitability of the program. A program is truly exploitable if the two following
conditions are met:
a) Whatever is causing the exception/crash is related and to some extent controllable through
the input that crashes a program.
b) Either at the time of the crash or in some code path after the crash, there is evidence of
program control that can be achieved by directly/indirectly manipulating the program input.

Of course a) and b) go hand in hand. If you can’t control the input then b) doesn’t even makes sense and
the crash is not exploitable. Similarly if you have program control but you can’t leverage that to corrupt
something in memory for instance to gain program execution control, then that is also moot and the
crash is non exploitable.

[3] Approach towards a Solution

As noted above, our aim is to solve the two fundamental problems defined above which, in a terse form
are: a) Input control and b) Program Execution Control.

The problem of input control is automating the process of checking whether the attacker controls the
input in a way that influences a crash and also the associated code traces to reach that crash point. The
technique used here is Backward Taint Analysis. It is essentially tracking a particular memory area which
contains controllable input fed to the program initially as taint and track/trace it throughout the
program execution. We dump and analyze the trace to help a researcher check back if the crash was
influenced by the initially defined memory area containing the controllable input or not. Furthermore
the verification process also helps identify what modifications were performed to this input leading to
the crash.

The idea for this is an extension of the original idea presented previously as VDT (Vulnerability Data
Tracer) [2] in the form of a Windbg plugin and an analysis program.

After determining the input control and the influence of the input over the program crash, we want to
go further and try to solve the actual program control problem. The technique we propose here is of
forward taint propagation and the idea is pretty similar to the backward taint (even though the
implementation is completely different, since we not interested in the instruction tracing). Assuming
input control does exist at the moment of the program crash; we create a fake memory structure within
the debugger at the time of the crash, assign certain memory permissions to these allocated blocks of

memory and manually change the invalid illegal access of memory to point to the block of specially
allocated memory. This simulates attacker control of the invalid memory that was accessed and once
the execution continues with the fake memory block pointer, we trace the execution path and analyze
the potential of program control.

The idea primarily is that the way the memory permissions are set up on the fake memory structure, any
attempts to access a region of memory within this block will trigger an immediate exception and prove
that the attacker controlled data can be utilized for program control later in the execution of the
program after the crash. With this a researcher can quickly prototype an actual exploitation attempt
and determine the actual exploitability of the program crash.

The final goal of this work is to release the tool as a debugger extension (WinDBG for now as the tool
targets Windows environments only), that when run with a program that crashes on a particular input:
e Traces the program execution until it crashes
e Analyzes the trace backwards (from the point of the crash to the initial loading of the program)
o Dumps this backward trace to help manual analysis as well
e Determine input influence and if positive then automatically invokes the next stage
e Creates fake memory structures of chosen depth/size, modifies the program execution by
modifying the invalid memory access (through CPU registers changes) and continues execution
e Provides a trace of this post-crash execution to help manual analysis

Sample run of the plugin (we call it DPTrace as in Dual Purpose Trace and pronouncing Deep Trace)
would be as follows:

0:018> .load dptracer

0:018> !dptrace_help

Dual Purpose Tracer vwl.0 Alpha - Copyright (C) 2008-2016

License: This software was created as companion to a Black Hat Presentation.

Developed by Rodrigo Rubira Branco (BSDaemon) <rodrigo@kernelhacking.com> and Rohit Mothe <rohitwas@gmail.com> (alphabetical order of names)
Heavily based on VDT-Tracer by Julio Auto and Rodrigo Branco

|dptrace_trace <filename> - trace the program until a breakpoint or exception and save the trace
in a file to be later consumed by the Visual Data Tracer GUI.
ldptrace_forward <n{required) - s{required) - p{OPTIONAL)> - forward analysis, either no arguments or all mandatory
ldptrace_analyzer <analyzer_filepath> <trace_filepath> <close_gui> <controlled_ranges> <instr_index>
!dptrace_analyzer_help — help to the !dptrace_run_analyzer command
!dptrace_forward_help — help to the !dptrace_forward command

!dptrace_help - this help screen

*Switches are various controlling parameters for the tool including but not limited to running the forward taint tracer
unconditionally, dumping the traces on potential failures, modifying the default memory permissions of the fake
memory structures during forward trace, get notifications of untaken paths (that could influence exploitability), etc.

[4] Backward Taint Analysis = half the problem

Backward Taint Analysis is an inverse approach to the natural taint analysis flow. Basically, instead of
getting all the input, mark it as tainted and track it during the program execution, what it does is to get
the crash, validate what is of interest (which led to the application crash) and trace back to see if it
comes from the input and, if so, what modifications were performed.

This avoids the explosion of tainted data, since most of the input is considered not tainted (and usually it
is legitimate). To do so, the process of backward tainting is divided in two parts:

- A trace from a good state to the crash (incrementally dumped to a file) -> gather substantial
information about the target application when it receives its input data

- Analysis of the trace file -> a verification step, where the conclusive analysis of the trace is
performed

The trace step stores some useful information, like effective addresses and data values (later used to
determine what is been copied to where and how it is been affected). Note that:

- This is done using a WinDBG extension

- It only supports the basic x86 instructions (so, no MMX and SSE)

- Simplification of the instructions to make the next step easier

The simplification deals with many instruction specifics, for example:

- CMPXCHG r/m32, r32 -> 'Compare EAX with r/m32. If equal, ZF is set and r32 is loaded into
r/m32. Else, clear ZF and load r/m32 into AL' [3]

Such an instruction creates the need for conditional taints, since by controlling %eax and r32 the
attacker controls r/m32 too.

The alternative taints list is also generated, in the form of srcdep{1,2,3}.

Since the trace step generates a file to be loaded by the next step, this file contains:
- Mnemonic of the instruction
- Operands
- Dependences for the source operand

Dependences for an operand are for example, elements of an indirectly addressed memory. This will
create a tree of the dataflow, with a root in the crash instruction.

The verification step receives the address ranges that have the attacker data (input to the DPTrace) and
then does the automatic analysis to determine the control over the elements involved at crash time,
activating the next phase of the analysis (the forward analysis). The verification is performed by a
standalone tool called by the plugin (also provided as open-source). Since the dataflow is available in a
tree rooted in the crash instruction, the analysis step will just search in this tree, using a BFS [4]
algorithm.

[5] The Other Half = Forward Taint

The second phase is fully implemented inside the debugger plugin itself, and is activated based on the
results from the backward taint analysis. The idea behind it is: Given a controllable access violation how
do you determine if that control can be leveraged later in the code path to cause an exploitable access
violation.

The method here was conceived originally to help determine whether crashes for potential UAF (Use-
After-Free) bugs in browsers are exploitable or not. This was very helpful in browser based
(IE/Chrome/Firefox) UAF crash analysis when there is a huge corpus of crashes. The main motivation
behind this was that UAFs in browsers or any significantly large programs for that matter are often hard
to analyze for exploitability and typically involve following varied code paths in the control flow to find a
write access violation/potential code redirection using indirect calls (call eax) etc.

The idea is not just limited to UAFs though and this generic pattern of self-referential (kind of) memory
is, in our opinion, applicable to other bug classes as well. Fundamentally, this type of fake memory
structure guarantees to a certain extent that any memory references (like virtual function tables or
other object pointers) will be resolved including memory address references that are additive or
subtractive to the faulting address (which is assumed controllable). So even out of bounds (OOB) access,
underflows/overflows, type confusion (ultimately leading to some form of an OOB access) will all be
under the plugin’s scope.

Logic/Implementation overview:
The basic idea is to automate most of the following manual process in this phase:

a) Inthe debugger you see a seemingly non exploitable read AV (access violation). For example
mov eax ,[ecx] ; (ecx is supposed here to be a pointer to attacker controlled memory.) You
allocate a chunk of memory within the process (preferably the size of the memory pointed to by
ecx to mimic an accurate freed block control using heap spray/feng shui).

b) Let’s call the memory block initialized in step a) as M1. Now allocate multiple memory blocks
M2, M3,M4...Mn within the process such that dword at M1 contains the address of the first
dword of M2 (basically first 4 bytes of M1 point to the address of the first 4 dword of M2),
second dword of M1 points to second dword of M2.... And so on.

Similarly the first dword of M2 points to first dword of M3, second dword M2 to second dword
of M3 and so on and on....
The last memory block Mn just contains garbage data.

c) The permissions of all memory blocks from M1, M2, M3, M4...Mn are Read only. So any attempt
to write/execute on any of the values within the memory blocks would cause an exception later

and that shows evidence of exploitability.

d) Now manually change the ecx value in the crash above to point to the address of M1 which is
the root of the chain of memory blocks pointing to one another.

e) Continue the program execution and it will continue from the point of crash with the modified
value of ecx.

Figure 1 has the layout of the configured memory with the fake entries, for better understanding.

PAGE_READONLY PAGE_READONLY PAGE_READONLY PAGE_GUARD

0x22222200 0x33333300 0x33333300 0x44444400 0x44444400 0x55555500 0xddddddoo Junk
0022204 033333304 _ _ 09 oaa4aaa04 _ _ OO oussssssoq I e ”
022208 o,33333308 OB gunanaa0 DU 065555508 oy L o OIS ”

”

n

”n

”

»
140x22222200 n+0x33333300 n+0x44444400 ‘ n+0xddddddoo »

Fake Object 1 Fake Object 2 Fake Object 3 Fake Object d

The problem here of course is that certain code areas might not be reachable even after multiple runs of
the tool. For example there might be checks on the fake memory values and a certain code path with
exploitable primitives only reached if the values are a certain number or within a certain range. For this
reason, the taint analyzes documents these checkpoints and provides this info in the dump so that the
analyst can further leverage this information in debugging and making sure to cover all the code paths.
This is also a potential limitation that is meant to be addressed in future work by involving code
coverage strategies.

[6] Challenges & Limitations

The primary challenges with the backward trace are determining the actual range of memory which
needs to be traced. Determining this is easier for some cases (like file format bugs) whereas for browser
based bugs this can be difficult.

Currently this requires manual effort from the researcher’s side and for cases like browser based bugs
it’s harder to gauge input control just by tracking input taint since the HTML/JS is interpreted and the
difficulty of mapping the input code in memory prior to interpretation by the HTML/JS engines to the
resulting execution is a more challenging problem that requires a deeper knowledge of the inner
workings of each different browser.

This problem we believe is better solved by a focused analysis of each browser and its internals which
would make it dependent not only on the browser product but also the version and the OS it runs on.

This aspect is out of scope of our current work and our suggestion is to augment this directly via manual
research/analysis. Having said that, the backward taint analysis system in our implementation does offer
some respite in the sense that you don’t need a precise range of addresses in the memory you need to
track the taint.

On the other hand, some immediately obvious limitations of the forward taint approach are covering
conditional code paths that hit only on certain values expected to be in the memory address (checking
of reference counters, object type tag or some other metadata that affects the control flow of the
program after the crash point. Navigating them is a maze and currently our solution doesn’t completely
solve this. But the helpful aid here is that we do mark these so called checkpoints and in the resulting
trace a researcher can see which points to further break at and resume debugging or do another run of
the plugin to skip these checks(if at all they can be skipped) etc. Another potential problem that we
don’t address is that for certain classes of bugs you need the precise object size to imitate a program
control. There is an option in the plugin for inputting the actual size of each block within the memory
structure but this has to be manually inputted by the researcher for now after some basic debugging
and initial triaging of the crash.

[7] Code & Implementation

This new plugin we releasing is a combination of two separate functioning pieces of tools that can be
seamlessly combined into one integrated framework. One of the tools is already public as noted below
and the other one is currently privately held. The intention is to release the combined tool to the public
just after Black Hat 2016 after more tests of the integration.

The implementation of the final tool is a C++ based WinDBG plugin as we personally see the most
benefit in implementing this idea on a standard windows debugger. Future work could involve porting it
to Linux (GDB) based on feedback and interest from the community.

The final tool combines elements from above implementations and provide a single cohesive debugger
(WinDBG plugin only for now) plugin that should enhance a researcher’s crash analysis workflow for
determining exploitability. The reason for choosing to make it a debugger plugging is also to simplify the
integration of this tool into any other fuzzing framework because all the logic is triggered within the
debugger. The specific fuzzing framework can then implement functionality to use the results of
applying this plugin to the crashes on the fly and classify into buckets of exploitability based on the
results.

The code used in this paper can be downloaded at [5]:
https://github.com/rrbranco/BlackHat2016

[8] Demos and real life usages

In this section we demonstrate the analysis of three different issues. We start from the simplest to the
most complicated, trying to not only walking the reader through the process, but also clearly pointing
out the limitations of the approach.

CVE-2010-0188 Adobe Reader Libtiff TIFFFetchShortPair Stack-Based Buffer Overflow (APSB10-07)

A stack-based buffer overflow vulnerability in the libtiff used by Adobe Reader. The vulnerability affects
the AcroForm.api, in the function TIFFFetchShortPair and is related to the element DataCount of a
TIFFDirEntry.

“Tag Image File Format (TIFF) is a file format used primarily for storing digital images, including
photographs and line art. TIFF is a popular format for high color depth images, along with JPEG and
PNG”. The vulnerability affected libtiff and years later it was found that Adobe was still using the
vulnerable library in its products.

Looking into the TIFF format, we have:

Offset Size Description

0x0000 2 Byte Order

0x0002 2 Constant Identifier

0x0004 4 Offset of the first IFD table (T)

T 2 Number of IFD tables (M)

T+0x02 12 IFD Entry 1

T+0x0E 12 IFD Entry 2

T+O0x1A 12 IFD Entry 3

T+0x02+12*M Offset to the next IFD until value
is O

And for each IFD entry:

Offset Size Description

0x0000 2 Tag ID

0x0002 2 Tag Type

0x0004 4 Data Count (dc)

0x0008 4 Value (if dc <= 4) or
Offset (if dc > 4)

PDF files can embed TIFF image files. Those files are parsed by the libtiff inside Adobe and treated as
normal TIFF files. They are usually base64 encoded inside the PDF.

The problem here is with an embedded TIFF file that has TAG ID 0x0129 (known as PageNumber), TAG
ID 0x0141 (known as HalftoneHints), TAG ID 0x0212 (known as YCbCrSubSampling) or TAG ID 0x0150
(known as DotRange). What happens is for those TAG IDs, if their Tag Type is defined as SHORT (3), the
parser uses the value of the Data Count (dc) field to get the size of the source data buffer, as in:

size = data count * 2

That amount of data (size) is read and copied in a fixed stack buffer, leading to a stack-based buffer
overflow.

We did a bit of cheating in this one, since we had a working exploit and no crashes. The working exploit
was crashing in some targets (OS versions), but with an obvious exploitable condition. We modified it to
generate a violation in the stack copying (copying too much data to the point to overwrite illegal values).
We also tried to avoid to trace too many instructions (from the breakpoint to the crash point we traced
more than 10 million instructions). The trick is to instead let the program go under the trace, to create
more conditions for the point where you start tracing. We leave that process as an exercise to the
reader since it is not directly related to our analysis.

This is the instruction of interest and its offset location for analysis:

Breakpoint 0 hit

eax=05bf 3c38 ebx=00000400 ecx=05db7260 edx=05bf3c3d es1=002belbc ed1=00000000
e1p=638038d5 esp=002bel?d ebp=002belad 1opl=(nv up €1 pl nz na po nc
cs=001b s2=0023 ds=0023 es=0023 fs=003b qs=0000 ef1=00200202
AcroForn!D11UnreqisterServer+0xlbd?52;

638038d5 8b01 nov eax,dvord ptr [eck] ds:0023:05db7260=63bd8d68

At the crash point, if we analyze the trace for backward taint data we have:

0:000y !Hptr&ce_analyzer'"\”\“C:\\Users\\rrbranco\\Desktop\\Black Hat 2016\\DPTrace-BlackHat 2016\\Debug\\DETRACE-GUI exe\" \'C:\\Users\\rrhranco\\Desktop\\Bla
hrgs: "'C:\Users\rrbranco\Desktop\Black Hat 2016\DPTrace-BlackHat 2016\Debug\DETRACE-GUI.exe" "C:\Users\rrhranco\Desktop\Black Hat 2016\DPTrace-BlackHat 2016\5

Opening file: C:\Users\rrbranco\Desktop\Black Hat 2016\DPTrace-BlackHat 2016\Sanple_output\dptrace-test2. vdt
Processing file. ..

Instruction: 651c3Sed 8b01 nov eax,dvord ptr [ecx] ds:0023:062d9300=65591260

Dunping instruction taint information:

instr-)5re tainted: *062d9300
instr-)Srchepl tainted: ecx

Meaning that there is control information coming directly from our input. In the GUI, we can see that
the dataflow indeed exists:

651c38da 52 push edx

651c38db ff5014 call dword ptr [eax+14h] ds:0023:65591274=653def20

653def20 a1cc6f9865 mov eax,dword pir [AcroForm!DllUnregisterServer+0x980e49 (65986fcc)] ds:0023:65986fcc=01d49e74

653def25 600 b0

653def27 ff : val
653dof2a fl Analysis Results
666538f0 5
666538f1 8|
66653925
66653928
66653929
653def2d 5
653def2e 8
653def32 5
653def33 e
650ea553
650ea555
650ea559
650ea55b
650ea55f §|
650ea562
653def38 8
653def3c cf
651c38de
651¢c38e0
651c38e3
651c38e6 §
651c38e7 |
651c38ea
651c3gecd
651c38ef ef

651c35¢f 5f
651¢35d0 8bf1 mov esi,ecx

651¢35d2 e8alfbffff call AcroForm!DllUnregisterServer+0x1bcff5 (651¢3178)
651¢3178 8b4154 mov eax,dword ptr [ecx+54h] ds:0023:062d9244=00000000
651¢3187 33¢0 Xor eax,eax

651¢3189 40 inc eax

651c318a c3 ret

651c35ea 8bdelc mov ecx,dword ptr [esi+1Ch] ds:0023:062d920c=062d9300

: 651c35ea 8bdelc

mov__ecx,dword pir [esi+ ds:0023:062d920c=062d9300}

Printing dataflow path:
651c35ea 8bdelc
651c35ed 8b01

mov ecx,dword ptr [esi+1Ch] ds:0023:062d920¢c=062d9300)
mov eax,dword ptr [ecx] ds:0023:062d9300=65591260)

651c35ed 8b01 mov__eax,dword pir [ecx] ds:0023:062d9300=65591260

Modifying our input to create a more distinguishable pattern, we see:

0:000> g

(62c.180): Access violation - code c0000005 (first chance)

Fir=st chance exceptions are reported before any exception handling.

Thi=s exception may be expected and handled.

eax=424144b7 ebx=00000400 ecx=42414241 edx=00000002 e=i=002be28c edi=00000276

eip=638038d5 e=sp=002bel44 ebp=002bel?4 i1opl=0 nv up €1 pl nz na pe nc
ce=001b =s=0023 ds=0023 e==0023 {==003b g=s=0000 efl1=00210206
AcroForm!DllUnregisterServer+0x1bd752:

£38038d5 8b01 nov eax,dvord ptr [ecx] ds:0023:42414241=272727272727?7

And by having identified the location in our input, we can finally demonstrate flow control:

@j "C:\Program Files\Adobe\Reader 9.0\Reader\AcroRd32.exe" - WinDbg:6.11.0001.404 X86
File Edit View Debug Window Help

Command - "C:\Program Files\Adobe\Reader 9.0\Reader\AcroRd32.exe" - WinDbg:6.11.0001.‘ = [j

HodLoad: 10000000 10095000 C:“\Program Files“\Adobe\Reader 9.0\Reader“cryptocme2.dll
HodLoad: 03760000 03746000 C:“\Program Files:NAdobe\Reader 9.0\Reader>ccme_base.dll
HodLoad: 73340000 73347000 C:N\Program Files:NAdobe\Reader 9.0\Reader viewerps.dll

{274 .7b4): C++ EH exception - code e06d7363 (first chance)

ModLoad: 65730000 65447000 NProgram Files“Adobe\Reader 9.0\Reader“plug_in=s“\PPKLite.api
HodLoad: 6faa0000 6faa7000 NWindowsNsystem32\WSOCK32 .d11

HModLoad: 76840000 76905000 NWindowsh\systen32\US52_32 .d11

HodLoad: 77350000 77356000 NWindows\systemn32\NSI .dll

HodLoad: 42800000 4a8a7000 NProgram Files“Adobe“Reader 9.0\Reader“icucnwv36.dll
HodLoad: 4ad00000 4ad17000 NProgram Files“Adobe\Reader 9.0\Reader“icudt3f.dll

HodLoad: 72890000 7289c000 NWindowsN\systemn32NATHLIB . 411

:N\Program Files\Adobe\Reader 9.0“\Reader“plug_ins“Accessibility.api
ModLoad: 69660000 696cc000 NProgram Files“NAdobe“Reader 9.0\Reader:idobeXMP .dll
ModLoad: 686a0000 68707000 NProgram FilesMNAdobeNReader 9.0N\Reader“plug_ins“FPDDom.api
{274 .7bd): Acces=s violation — code c000000S5 {(first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000001 ebx=03beb658 ecx=00000001 ed=x=00000000 esi=004eff60 edi=03beb658

ModLoad: 6beal000 6bf11000

OO0O0000000

eip=45454443 esp=0030dfec ebp=42414241 iopl=0 nv up ei pl nz na po nc
cs=001b s=s=0023 ds=0023 es=0023 f==003b g=s=0000 efl=00210202
45454443 7?7 rarars

< e

Because this case is a simple, classical stack-based buffer overflow and our crash was so near the
exploitable condition, the analysis is quite simplified and did not require real forward analysis. We
included it here to be very clear on the limitations (even for a simple stack-based buffer overflow we
needed a bit of cheating and a lot of manual work). The next example is more elaborate to demonstrate
the capabilities of the tool.

CVE-2014-0282 IE8/9/10/11 ‘Cinput’ Use-After-Free (MS14-035)

This is a CInput Object Use after Free that was reported by ZDI researcher Simon Zuckerbraun and
patched by Microsoft in June 2014. According to Microsoft it affects all versions of IE from 6 to 11. The
PoC Trigger is available on exploit-db since August 2014 (https://www.exploit-db.com/exploits/33860/)
and recently there have been public write-ups on how to convert the PoC to a “calc-popping” exploit*
on different versions of IE(8 and 11) albeit on Windows XP SP3 (exploits rely on the non-aslr msvcr71.dll
binary for the information leak). These can be easily ported to other versions of IE and Windows
utilizing other info leaks like hxds.dll (Windows7 and Microsoft Office 2007 and 2010. Windows 8 has
ForceASLR kernel flag®)

* http://www.cybersphinx.com/exploiting-cve-2014-0282-ms-035-cinput-use-after-free-vulnerability/
* https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/12/cve-2014-0282pdf/

The analysis below was done on Windows 7 SP1 32 bit with IE 11 and page heap enabled for
iexplore.exe (full)

() MS14-035 Internet Explorer CL...

@l Pid 2256 - WinDbg:6.11.0001.404 X86
File Edit View Debug Window Help

.Command - Pid 2256 - WinDbg:6.11.0001.404 X86

0:005> p

eax=0414c9f0 ebx=00000000 ecx=00000002 edx=0414ca’0 esi=0871cf88 edi=0414cal8 =
eip=6a7f38f2 esp=0414c94c ebp=0414cadc iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 f==003b gs=0000 ef1=00000206
mshtml!CBase: : InvokeEvent+0xf1:

6a7£38f2 899c248c000000 mov dword ptr [esp+8Ch].ebx =s=5:0023:0414c9d8=00000000
0:005> pt

2ax=00000000 ebx=00000000 ecx=9ad2cbeb edx=08b01000 esi=085£{5£30 edi=00000000
eip=6ba7f3abd esp=0414caS0 ebp=0414cbac iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 f==003b gs=0000 ef1=00000246
mshtml!CBase: : InvokeEvent+0x62d:

6a7f3a6d c22400 ret 24h

0:005> !dptrace_trace C:\Users\MacbookRo\Desktop\PoCs“midnight_log4.vdt
(8d0.504): Access violation — code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

A total of 22293 instructions were traced and 15557 were dumped to C:\Users\MacbookRo\Desktop“\PoCs\midnight_logd.wvdt
Duration of this command in seconds: 7.000000

0:005> !dptrace_forward 2 68

Allocated range is
EEEIIT-3c21000, 3c£0000-3c£1000

0:005> r
2ax=00000004 ebx=085£7f{b0 ecx=00000002 edx=00000004 esi=08588fal0 edi=00000002
eip=6a7eb792 esp=0414cfbc ebp=0414cf8c iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 f{s=003b gs=0000 ef1=00010202 =
mshtml!CElement : :GetLookasidePtr+0x7: -
6a7eb792 2346lc and eax,dvord ptr [esi+lCh] d=:0023:08588fbc=7727727277

v
4 T »

[0:005> [r esi =3ce0000
I

The above figure illustrates the tracing file being generated (!dptrace_trace) and the forward analysis
allocation prepared (!dptrace_forward).

() MS14-035 Intemet Explorer CL. |

@ Pid 2256 - WinDbg:6.11.0001 404 X86

eip=6a’?f3abd esp=0414ca50 ebp=041l4cbac iopl=0 nv up ei pl zr na pe nc
cs=001b ss 023 ds=0023 es=0023 £s=003b gs=0000 ef1=00000246
mshtnl!CBase: : InvokeEvent+0x62d:
6a7f3abd cZZAUD e

0:005> !dptrace_trace C:\Users\MacbookRo\Desktop\PoCs\nidnight_logd. vdt
(8d0.504): Access violation - code c0000005 {first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

A total of 22293 instructions were traced and 15557 were dumped to C:\Users\MacbookRo\Desktop\PoCs\midnight_logd.vdt
Duration of this command in seconds: 7.000000

0:005> !dptrace_forward 2 68

Allocated range is
3cel000-3ce1000, 3c£0000-3c£1000

0:005> r

2ax=00000004 ebx=085£7fb0 ecx=00000002 edx=00000004 esi=08588fal edi= UUUUUUUZ
eip=6a7eb792 esp=0414cfbc ebp=0414cfdc iopl=0 nv up ei pl nz na po n
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= UUEIIIJZUZ
mshtnl!CElenent : :GetLookasidePtr+0x7:

6a7eh792 23461c and eax, dvord ptr [esi+1Ch] ds:0023:08588fbc=72772277

(Edﬂ 504) Access violation - code c0000005 (!!! second chance !!!)

2ax=00000004 ebx=085f7fb0 ecx=00000002 edx=00000004 esi=08588fal edi=00000002
eip=6a7eb792 esp=0414cfbc ebp=0414cfdc iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 f{s=003b gs=0000 ef1=00010202
mshtnl!CElenent : :GetLockasidePtr+0x7:

6a7eb792 23461c and eax,dvord ptr [esi+1Ch] ds:0023:08588fbc=727777777
0:005> r esi =3ce0000

|] >
—
0:005> |Idptrace_trace C:\Users\MachookRo\Desktop\PoCs\nidnight_log_forward.vdt|

When the crash is triggered, the analyst can set the invalid pointer to the location returned by the
forward allocations (r esi= command). Also note that the first triggering of the bug already sets the
exception, meaning that one must set the value after letting it go. For this issue, we are replacing the
freed object with the root of the fake object chain.

@ Pid 2256 - WnDbg 6.11.0001.404 X86

4 total of 22293 instructions were traced and 15557 were dumped to C:\Users\MacbookRo\Desktop\PoCs\midnight_log4.vdt
Duration of this command in seconds: 7.000000

0:005> !dptrace_forward 2 68

Allocated range
3ce0000-3ce1000, BDiDDDU 3cf1000

0:005> r

2ax=00000004 ebx=085£7fb0 ecx=00000002 edx=00000004 esi=08588fal edi=00000002
eip=6a7eb792 esp=0414cfbc ebp=0414cf8c iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 f{s=003b gs=0000 ef1=00010202
nshtml!|CElenent : :GetLookasidePtr+0x7:

6373]:792 23461c and eax,dvord ptr [esi+lCh] ds:0023:08588fbc=722777727
(8d0.504): Access violation - code c0000005 {!!! second chance !!!

2ax=00000004 ebx=085£7fb0 ecx=00000002 edx=00000004 esi=08588fal ed1 00000002
eip=6a7eb792 esp=0414cfbc ebp=0414cfl8c iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 {s=003b gs=0000 ef1=00010202
mshtml!|CElenent : :GetLookasidePtr+0x7:

6a7eb792 23461c and eax,dvord ptr [esi+1Ch] ds:0023:08588fbc=77277777

5> r esi =3cel000
0:005> Idptrace_trace C:\Users\HachookRo\Desktop\PoCs\midnight_log_forward . vdt
(8d0.504): Access violation - code c0000005 {first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

A total of 9 instructions were traced and 6 were dumped to C:\Users\MacbookRo\Desktop\PoCs\nidnight_log_forward.vdt
Duration of this command in seconds: 0.000000

We let the execution continue, and trace until the subsequent breakpoint/access violation. To be sure
that the freed object is indeed controlled, we can use the analyzer to see the tainted value. We first
define the range of interest:

© MS14-035 Internet Explorer CInput Use-after-free POC - Window:) Visual Data Tracer

File Analysis Help

& ()~ @ http://localhost:8000/CVE-2014-0282 htmi

15526. 6a8498e2 c1e802 shr eax,2
5 y 0 15527, 6a8498e5 c3 ret
¢ Favorites | 5 @] Suggested Sites v @] Web Slice Gallery v
- 99 y 15528 6ag88fa0 8b470c mov eax,dword ptr [edi+0Ch] ds:0023:0384cfdc=07d90f10
() MS14-035 Internet Explorer CI... 15529 6a888fa3 8b4c0608 mov ecx,dword ptr [esi+eax+8] ds:0023:07d90f90=08ceefed
15530. 6ag8sfa7 ff7508 push _dword ptr [ebp+8] _ss:0023:0414cf68=00000000
\a740)
. . | |
@ Pid 2256 - WinDbg:6.11.0001.404 X86 = =] &3 554)}
File Edit View Debua Window Help .
Add Taint Range
Command - Pid 2256 - WinDbg:6.11.0001.404 X86
(8d0.504): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling
This exception nay be expected and handled Start End
4 total of 22293 instructions vere trsced snd 15557 vere dunped to C:\Users\iscbookRo\Deg
Duration of this comnand in seconds: 7.00000 3020000 3cf1000| Add
0:005> Idptrace_forward 2 68 Start End
Allocated range
3c20000-3e1000., 30t 0000~
0:005> »
ebx=085{7{b0 esi=08588fal edl-ﬂﬂ[l[l[l[l[l?
cip-6a7eb792 csp-04ldct s cbp- 0i14ce0e Sopl nv up ei pl nz na po nc
e 03D 2020335 As+0033 “ene0a2) . fo-Dodh g==0000 <£1-0001020
nohtnl ICElonent . -Got LookasidoPtr+0x7
6a7eb792 23461c and eax dvord ptr [esi+1Ch] ds:0023:08588fbc=77777777
0:005> g
(80.504): Aoosss wiolavion - code c0000005 (111 second chance |11)
ebx=085{7{b0 esi=08588fal Ed1=ﬂﬂ[l[l[lﬂEI2
cip-6a7eb792 csp-04ldct oo cbp- 0i14ct0e Sopl nv up ei pl nz na po nc
D ah Lac0335 Jase0033 “ene0a2d . fo-bo3h gs=0000 <£1-0001020
nohtnl 1CElonent -Got LookasidoPtr+0x7
6a7eb792 23461c and eax dvord ptr [esi+1Ch] ds:0023:08588fbc=77777777
0:005> r esi =3c=0000 Close
0:005> Idptrace_trace C:\Users\HachookRo\Desktop\PoCs\nidnight_log_forward.vdt
(8d0.504): Access violation - code c000000S (first chance)
First chance exceptions are reported before any exception handling
This exception nay be expected and handled
4 total of 9 instrustions veve traced and 6 were dunped to C:\Users\HschookRo\Desktop\PoCs\nidnight_log_forvard. vdt o
Duration of this command in seconds: 0.000
< m »
[0:005> |

We let the execution go in the debugger:

() MS14-035 Internet Explorer CL..

@J Pid 2256 - WinDbg:6.11.0001.404 X86
File Edit View Debug Window Help

Command - Pid 2256 - WinDbg:6.11.0001.404 X86 | | = ’ ENX

~

Allocated range is

3ce0000-3c21000, 3cf0000-3c£1000

0:005> r

2ax=00000004 ebx=085£7fb0 ecx=00000002 edx=00000004 esi=08588fal edi=00000002

eip=6ba7eb?92 esp=0414cfbc ebp=0414cfdc iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 f{s=003b gs=0000 ef1=00010202

nshtml!CElenent : :GetLookasidePtr+0x7:

6a7eb792 23461c and eax,dvord ptr [esi+l1Ch] ds:0023:08588fbc=777227727

0:005> g

(8d0.504): Access violation - code c0000005 {!!! second chance !!!)

2ax=00000004 ebx=085{7fb0 ecx=00000002 edx=00000004 esi=08588fal edi=00000002

eip=6a7eb792 esp=0414cféc ebp=0414cf8c iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010202

nshtml!|CElement : :GetLookasidePtr+0x7:

6a7eb792 23461c and eax,dvord ptr [esi+l1Ch] ds:0023:08588fbc=777722777

0:005> r esi =3ce0000

0:005> !dptrace_trace C:\Users\MacbookRo\Desktop\PoCs“midnight_log_forward.vdt

(8d0.504): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

A total of 9 instructions were traced and 6 were dumped to C:\Users\HacbookRo\Desktop\PoCs\midnight_log_forward.vdt

Duration of this command in seconds: 0.000000

0:005> r

2ax=03cf 0000 ebx=085{7fb0 ecx=03cel000 edx=cccccecee esi=03ce0000 edi=00000002

eip=cccocece esp=0414cffd ebp=0414cf8c iopl=0 nv up ei pl nz na po nc =

cs=001b ss=0023 ds-0023 es=0023 fs=003b gs=0000 ef1=00010202 =

ccococee 77 27
-

] 1l »

j0: 005> |

If we look the crash moment and our fake forward structures, we have:

() MS14-035 Internet Explorer CL.

@ Pid 2256 - WnDbg 6.11.0001.404 X86

0:005> r esi =3ce0000

This exception may be expected and handled.

Duration of this command in seconds: 0.000

0:005>

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000
ccccoeee 77 777

0:005> dd esi

03ce0000 03cf0000 03cf0004 03cf0008 03cf000c
03ce0010 03cf0010 03cf0014 03c£0018 03cf00lc
03ce0020 03c£0020 03cf0024 03c£0028 03cf002c
03ce0030 03cf0030 03cf0034 03cf0038 03cf003c
03ce0040 03cf0040 41414141 41414141 41414141
03ce0050 41414141 41414141 41414141 41414141
DSDBDI]GU 41414141 41414141 41414141 41414141

0:005> !dptrace_trace C:\Users\MacbookRo\Desktop\PoCs\midnight_log_forward.vdt
(8d0.504): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.

A total of 9 instructions were traced and gngare dunped to C:\Users\MacbookRo\Desktop\PoCs\mnidnight_log_forward.vdt

2ax=03cf 0000 ebx=085£7fb0 ecx=03cel000 edx=ccccceee esi=03ce0000 edi=00000002
eip=ccccecce esp=0414cféd4 ebp=0414cfBc iopl=0 nv up ei pl nz na po nc

ef1=00010202

ce0070 41 41414141 41414141 41414141
U IJUS> dd 03:E0000
03cf0000 cococcoccc CoCcooccoc CCCCCCCC CCCCCCoo
03cf0010 cccococcc coccocccC COCCCCCC CCCCCCoo
03cf0020
03cf0030 coccoccoccc Coccoccocc CCCCCCCC CCCCCCoo
03cf0040 coccocococc cocooccoc coc cC coccococo
03cf0050
03c£0060
03cf0070 coccococcc CoCoocCoC COCCCCCC CCCCCCoo
«| T

0:005> |

Program control seems evident from the forward analysis view (EIP comes from our faked structure), so
we need to be sure we control the initial violation:

&)= [@] http://localhost8000/CVE-2014-0282htrml

18 Wis14-035 Internet Explorer Clnput Use-after-ree POC - Windows Internet Ex{|] Visual Data fracer | ———

File Edit View Favorites Tools Help
i} Favorites ‘ {5 ej Suggested Sites ¥ ej Web Slice Gallery v
() MS14-035 Intemet Explorer CL. |

Q8 Pid 2256 - WinDbg:6.11.0001.404 X86
File Edit View Debua Window Help

Command - Pid 2256 - WinDbg:6.11.0001.404 X86

VARNING, Frane 16 not in any kuovn odule. Folloving fraxes nay be vrong
4cf60 6a7eb634 6a8Sbded 62641730 08882fd0 Dxcoococ
4Ci64 6aBChdes 62641730 03882¢dD 00001200 nshimliCElement : :Doct0x’

4c68 62641730 08882£d0 00001200 6abéchSd nshtnl!CElenent: Gatlnokasxdz?tr+
dot8c 6733150 08517¢h0 08892(d0 6a7adlld nshinl|CRoraElenent : :DoReseriindc

5
g
g
g
£
£
g
£
”
g
-
”
-
z
g

af 8. s

4d01c 6aBéabcé 085£7£b0 000003£2 00000001 mshtnl!CBase: :ContextInvokeEx+0xSe

4d06c 6887392 085£7¢h0 000003¢2 00000001 nshtml|CElensnt :: Context IuvokeEx]
af t:Versi n

4d0fc 6aefaZée 07ee7fd8 000003£2 00000001 mshtnliPlainInvokeEx+0xeb
4d138 6acfalb$ 08856d10 000003f2 00000403 jscript 0.
4d174 Gasfadda 08856410 00000403 00000001 jscript

4d234 baefaded 000003f2 00000001 00000000 jscript!InvokeDispatchEw+0x98
a£0d9a8 08856d10 0414d29c 00000001 jscript!VAR: : InvokeByNane+0x139

4
4

4

4

4

4

4

4

4

4

4

4

4144268

414d2bd 6af0dadf 08856d10 00000001 00000000 jscript!VAR: :InvokeDispNane+0x7d
414d220 6adedc? 0885610 00000000 00000001 jscript |VAR: ; InvokeByDispID+Oxce
4
4
4
4
4
st
a!
a]
a
2]
a;
=
a

4d47c 6a£05d7d 0414d494 0414d5d8 0073a£88 jscript|CS:
4d564 6af05cdb 0414d5d8 00000000 00000000 jscript!SerFncOby::CallVithFraneOd
4dSac 6af05efl 0414d5d8 00000000 00000000 jscript!ScrFncObj: :Call+0xsd
4d628 6a£0620a 0073a£88 0414d7=8 00000000 jscript!CSession: Execute+0x15E
4d674 6af0c3b3 0884adf0 0414d7e8 0414d78 jscript!COleScript: :ExecutePending

File Analysis Help
15526. 6a8498e2 c1e802 shr eax2
15527. 6a8498e5 c3 ret
15528, 6a888fa0 8b470c mov eaxdword ptr [edi+0Ch] ds:0023:0384cfdc=07d90f10
15529 6a888fa3 8b4c0608 mov ecx.dword pir [] ds:0023:0:
15530. 6ag888fa7 ff7508 push dword ptr [ebp+8] s5:0023:0414cf68=00000000
15531 6a888faa 8b01 mov eaxdword pir [ecx] ds:0023 “Vitable' (6a7ed740)}
15532 6ag88fac ff501c call dword ptr [eax+1Ch] ds:0023:6a7ed’ GetAt (6a7¢2554)}
15533, 6a7c2554 8bff mov ediedi
15534 6a7c2556 55 push ebp
15535. 6a7c2557 8bec mov ebp.esp
15536. 6a7c2559 8b4508 mov eaxdword ptr [ebp+8] $5:0023:0414cf58=00000000
15537. 6a7c2560 8b510c mov edxdword ptr [ecx+0Ch] ds:0023:08ceeff4=00000010
15538, 6a7c2563 clead2 shr edx2
15539, 6a7c256a 8b4914 mov ecx,dword ptr [ecx+14h] ds:0023:08ceeffc=08218ff0
15540. 6a7c256d 8b0481 mov eaxdword ptr [ecx+eax"4] ds:0023:08218ff0=08588fa0
15541 6a7c2570 5d pop ebp
15542 6a7c2571 c20400 ret 4
15543 6a888faf 8b4d0c mov ecx,dword ptr [ebp+0Ch] s5:0023:0414cf6c=0414cf80
15544 6a888fb2 8901 mov dword ptr [ecx],eax ds:0023:0414¢f80=00000000
15545, 6a888fb4 33c0 Xor eaxeax
15546 62888106 50 pop esi
15547. 6a888fb7 5d pop ebp
15548 6a888fb8 c20800 ret 8
15549 62641720 8742410 mov esi,dword ptr [esp+10h] s5:0023:0414cf80=08588fa0
15550. 62641728 6202 push 2
15551 6a64172a 5f P
15552 6a64172b e85ba01a00 call mshtml!CElement::GetLookasidePtr (6a7eb78b)
15553 6a7eb78b 33c0 Xor eax.eax
15554 6a7eb78d 40 inc eax
15555. 6a7eb78e 8bcf mov ecxedi
15556. 6a7eb790 d3e0d shl eaxcl
15557. 6a7eb792 23461c and eax,dword ptr [esi+1Ch] ds:0023:08588fbc=22?7727?
1. 6a7eb792 23461c and eaxdword ptr [esi+1Ch] ds:0023:03ce001¢=03cf001c
2. 6a85bde1 8bce mov ecxesi
3 6a85bde3 e8a5fsf8ff call mshtmllCElement::Doc (6a7eb68d)
4. 6a7eb68d 8b01 mov eax,dword ptr [ecx] ds:0023:03ce0000=03cf0000
5. mov__edx,dword ptr [eax+70h] ds:0023:03cf0070=cccceece
6.

And finally if we look the first crashing point:

0 74207000 C:\Windovs\systea32\nidinap.dll

s violation - code c0000005 (first chance

eptions are reported before any exception handling.
ay be expected and handled

Visual Data Tracer

=Oadcofbd . -
*0433ch34 ebprD3icbit nv up ei pl nz na File Analysis Help
| 4270023 es-0023 o 3588 Cse-0000 <1-00050202

5b4fb792 23461c and eax,dword ptr [esi+1Ch] ds:0023:05e4001¢=05e9001c
5b56bde1 8bce ecxesi

5b56bde3 egasfsfsff caII mshtml!Ordinall 04+0x4boee (5be88d)

5b4fb68d 8b01 mov eaxdworc
mov__edx.dword ptr [eax+
5b4b692fid2 call edx {ccceoccd)

File could ot be found. Dafaulted to export syabols for C:\Vindows\Systeni2ashtnl dll -
Pt
and eax.dvord ptr [esi+ICh] ds:0023:0950efbc=77772277
forvard
e_forvard found
el 590000

Toruard
passed, using default n=2, s=40 (lmes) and p‘DxﬂZ <(read only)>
h argunents type lvdt-tracer vdt_help

is
5e30000-5291000

[Possible source of taint found|

5b4fb68d 8b01 mov__eax,dword ptr [ecx] ds:0023:05e40000=05¢90000}

Source operand: *05e40000]

Pnnhr\g dataflow path:
5bdib68d 8b01
5b4ib68f 805070

mov eax,dword ptr

5 mov__edx.dword pt

Taint source is confirmed. This is shown here using the GUI, but can also be done directly from the
debugger (adding the ranges and collecting the taint information before even proceeding to the forward
analysis):

e o e N e R

0:005> |dptx‘aca analyzer “\"\"C:\\Users\\MacbookRo\\Desktop\\DPTrace-master\\DPTrace-master\\VDT Completo Black EatZ\\Debug\\DPTRACE—GUI exe\" \" C \\Usex’s\\MacbookRo\\DesktOD\\POCS\\l
Executing: ""C:\Users“\rrbranco\Desktop\Black Hat 2016\VDT-BlackHat 2016 VDT Completo Black Hat\Debug\VDT-GUI.exe" "C:\User: N2 vdt" 1 "0x80000-0x81000,0x100

Opening file:
Processing file
Nunber of instrs (and instruction to check taint of): 6 8§
Range Start: 0x5880000 Range End: 0x58b1000

Something went wrong! No instruction found?

Dunping instruction taint information:

\Users\MachookRo\Desktop\PaCs\log_final2. vdt

0:005> |dptrace analyzer “\N"\"C:\\Users\\MacbookRo\\Desktop™\DPTrace-master\\DPTrace-master\\VDT Completo Black Hat2\\Debug“\DPTRACE-GUI .exe\" \"C:\\Users\“MacbookRo\\Desktop\\PoCs\\lc
Executing: ""C:\Users\rrbranco\Desktop\Black Hat 2016\VDT-BlackHat 2016\VDT Completo Black Hat\Debug\VDT-GUI.exe" "C:\Users\MacbookRo\Desktop\PoCs\morning.vdt" 1 "0x80000-0x81000,0x100

Opening file: C:\Users\HachbookRo\Desktop\PaCs\log_final2.wvdt
Processing file

Nunber of instrs (and instruction to check taint of): 6 6
Range Start: 0x5880000 Range End: 0x58b1000

Instruction: 08a3b692 ffd2 call edx {058a0070}

Dunping instruction taint information:

Closing GUI
0:005) ldptrace analyzer "\'\'Cis\Users\fachookRosaDesktop\\DPTrace-naster\DPTrace-nasters\VDT Conpleto Black HatZ\\Debug\\DPTRACE-GUL exen: \'C: \\Usexs\\MaubookRo\\Dasktop\\PoCs\\lc
Ezecuting: *"C:\Users\rrbrancoDesktop\Black Hat 2016\VDT-BlackHat 2016\VDT Completo Black Hat\Debug\VDT-GUI.exe' "C:\Users \PoC: vdt” 1 "0x80000-0x81000, 0x100

Opening fil
Ipmcessm

Users\MachookRoNDesktop\PaCs\log_final2. vdt

Nunber of instrs (and instruction to check taint of): 6 §

Range Start: 0x5880000 Range End: 0x58b1000

Instruction: 08a3b68f 8bS070 Nov. edx, dvord ptr [eax+70h] d=:0023:05890070=058a0070
Dumping instruction taint information:

instr->Src_tainted: *05890070 I
instr->SrcDepl tainted: eax

Closing GUI

<[[»

IU :005> [Idptrace_analyzer "\"\"C:\\Users\ \Desk top\\DPT: “\\DPT: “\\VDT Completo Black Hat2\\Debug“\“\DPTRACE-GUI.exe\" \"C:\\Users\\MacbookRo\\Desktop\\PoCs

CVE-2015-6152 IE 11 CObjectElement Use-After-Free

This is a CObjectElement Use-After-Free that occurs in the CTreeNode::ComputeFormatsHelper function
in MSHTML which was reported by Moritz Jodeit of Blue Frost Security in August 2015 and patched by
Microsoft in December 2016 in MS15-124 bulletin. There is publicly available PoC that crashes

vulnerable version of IE 11° but no public exploit code at the time of writing this.

* https://www.exploit-db.com/exploits/38972/

The analysis below was done on Windows 7 SP1 32 bit with IE 11, Memory Protection Feature turned

off in the Registry setting and page heap enabled (full).

MSHTHML | CTreeNode: : ComputeFormatsHelper+0x53:
S5c7685cS £7402400000300 test dword ptr [eax+24h],30000h ds:0023:0678deb4=?2?772277
:007> .load dptracer
:007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007>

007> !dptrace_forward 4 200 0x=02

EEEEEE L LG

Allocated range is
Sb20000-5b21000, 5b30000-5b31000, Sb40000-5b41000, Sb50000-5b51000

0:007> dd Sb20000|

05b20000 05b30000 05b30004 05b30008 0Sb3000c
05b20010 05b30010 05b30014 05b30018 05b3001c
05b20020 05b30020 05b30024 05b30028 0Sb3002c

< .

%) Pid 2152 - WinDbg:6.2.9200. - R X

File Edit View Debug Window Help

| & [zl A= weE (0 EHEUEOREODOE|[E)H A

Disassembly =)

Offset: @$scopeip Previous Next

Sc7685bf 8b07 nov eax,dvord ptr [edi]

5c7685cl 89442424 nov dword ptr [esp+24h]. eax
£7402400000300 rd ptr +24h], 30000h ds:0023:0678debd=27727777

Sc7685cc 0£8573010000 jne HSHTML | CTreeNode: :ComputeFormatsHelper+0x1fbh (5c768745)

S5c7685d2 £7402400000400 test dword otr [eax+24h1.40000h

Command EJE

cs=001b ss=0023 ds=0023 es=0023 f==003b g==0000 efl1=00210246

[0:007> |

The above figure illustrates the forward analysis preparation (!dptrace_forward) at the moment of the
crash. In this case, we proceed with the forward analysis since IE issues are sometimes complex for

tracing from the beginning (number of instructions, JITed code, etc).

s oo T N W e
S AhEe e . B .. BB BB B I =B B .. = aaa
File Edit View Debug Window Help

=2 (sl H=sved [OBASEOREEOCE|E]] A

Disassembly =)
Offset: @$scopeip Previous Next
Sc7685bf 8b07 nov eax.dword ptr [edi]
5c7685c1 89442424 pt=\'4 dword ptr [esp+24h
£7402400000300 rd ptr 77}
S5c7685cc 0£8573010000 jne HSHTHML ! CTreeNode: : puteFDrmatsHelper+Dx1fb (5:763745)
S5c?7685d2 £7402400000400 test dword otr [eax+24h1.40000h
Command &

Allocated range is
Sb20000-5b21000, 5b30000-5b31000, 5b40000-5b41000, 5b50000-5b51000

0:007> dd Sb20000

05b20000 05b30000 05b30004 05b30008 05b3000c
05b20010 05b30010 05b30014 05b30018 05b3001c
05b20020 05b30020 05b30024 05b30028 05b3002c
05b20030 05b30030 05b30034 05b30038 05b3003c
05b20040 05b30040 05b30044 05b30048 05b3004c
05b20050 05b30050 05b30054 05b30058 05b300Sc
05b20060 05b30060 05b30064 05b30068 05b3006c
05b20070 0S5b30070 05b30074 05b30078 05b3007c
0:007> lvprot S5b20000

Baseiddress: 05b20000

AllocationBase: 05b20000

AllocationProtect: 00000004 PAGE_READWRITE

RegionSize: 00001000

State: 00001000 MEM_COMMIT

Protect: 00000004 PAGE_READWRITE

Type: 00020000 MEM_PRIVATE

0:007> lvprot 05b30000

Baseiddress: 05b30000

AllocationBase: 05b30000

AllocationProtect: 00000004 PAGE_READWRITE

RegionSize: oooo1o000 —3
State: 00001000 MEM_COMMIT -
Protect: 00000002 [SAENAFNIER i
Type: 00020000 MEM_PRIVATE

< m »
j0:007> |

We selected a fake object chain of 4 objects of size 200 (this is not precise, just a rough estimate). This is
enough as any attempts to access outside the range will be caught anyway. Precise size can be
determined by manual analysis to figure out the freed/alloc’d function and checking the size of the root
object. Memory permissions are set as READ_ONLY for all the other objects except the first one (as
seem in the picture).

Edit View Debug Window Help

=4 2] B¢ |(0EREUEOREO00E([E)] A E

Disassembly =
Offset: @$=scopeip Previous Next
5c768593 cd29 int 29h

S5c768595 e99171a2ff imp MSHTMLICFormatInfo: :Cleanup+0xlba (5c18f72b)

5c76859a b304000000 nov ecx, 4

Sc76859f cd29 1nt

Sc7685al e96971a2ff MSHTHML!CFormatInfo: :Cleanup+0x19e (S5c18£70f)

Sc7685a6 f705801f225d00040000 test dword ptr [MSHTML!Microsoft_IEEnableBits (SdZZIfBD)] 4UUh

Sc7685b0 0£85fed20d400 jne MSHTML! ' CBackgroundInfo: :Property<CBackgroundImage>':: 7':: dynamnic atexit destructor for 'fieldDefaultValue''+0
Sc7685b6 £7470800001000 test dword ptr [edi+8],100000h

Sc7685bd 7573 jne MSHTHML!CTreeNode: :ComputeFornatsHelper+0xe8 (5c768632)

Sc7685bf 8b07 nov eax,dword ptr [edi]

Sc7685cl 89442424 nov dword ptr [esp+24h]. eax

5c7685c5 £7402400000300 test dvord ptr [eax+24h]. 30000h ds:0023:05b20024=2400b305|

Sc7685cc 0£8573010000 ine MSHTML!CTreeNode: :ComputeFormnatsHelper+0xlfb (5c768745)

S5c7685d2 £7402400000400 test dword ptr [eax+24h],40000h

S5c7685d9 0£840£d430400 je MSHTML! ' CBackgroundInfo: :Property<CBackgroundImage>':: 7':: dynamic atexit destructor for 'fieldDefaultValue''+0
Sc7685df 8b4030 nov eax,dvord ptr [eax+30h]

Sc7685e2 2403 and al.3

Sc7685e4 3c01 cnp al, 1

Sc7685e6 0£85f1d420400 jne MSHTML! " CBackgroundInfo: :Property<CBackgroundImage>':: 7':: 'dynamnic atexit destructor for 'fieldDefaultValue''+0
5c7685ec 8b442424 nov eax,dvord ptr [esp+24h]

< | m J »
Command BE
eax=0678de90 ebx=0e3d2fc0 ecx=00000000 edx=5d21edfl esi=0679dfac edi=0679dfal -
eip=5c7685cS esp=0644af40 ebp=0644bcl8 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 {s=003b g==0000 ef1=00210246

MSHTHML | CTreeNode: : ComputeFormatsHelper+0x53:

Sc7685cS £7402400000300 test dword ptr [eax+24h],30000h ds:0023:0678debd=72?72277

0:007> r eax=5b20000

0:007> »

eax=05b20000 ebx=0e3d2fc0 ecx=00000000 edx=5d2ledfl esi=0679dfac edi=0679dfal

eip=5c7685cS esp=0644af40 ebp=0644bcl8 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 {s=003b gs=0000 ef1=00210246

MSHTHML | CTreeNode: : ComputeFormatsHelper+0=53

Sc7685cS £7402400000300 test dword ptr [eax+24h],30000h ds:0023:05b20024=2400b305

< | n »

|0:007> |Idptrace_trace C:\Users\rchitwas\Desktop\PoCs\IE11l_logl

We define the offending register to point to our fake object.

B e 2O W W W W W W s
[File Edit View Debug Window Hep
| & (sl A= wed O ERILEO0EEOOE|[E10] A=
Disassembly =
Offset: @$scopeip = =3
5576875C Bb4004 nov cax dword ptr [saz+d] [Visual Data Tracer
Sc76875f 0f8497feffff je MSHTHML ! CTreeNode: : ComputeFormnatsHe N N
5c768765 e98cfeffff Jmp MSHTML!CTresNode : - ComputeFornatsHe| | File Analysis Help
go7eerea b0l push 1 916. T7d5daaf12 cal dwordptrfedx] ds:0023: He0300={ntdlKiFast SystemCall (773d7160)}
e 917. 773d71b0 8bd4 mov edx.esp
S5c76876e 56 push esi Ny sysenter
SC76a77 fe1s8e7saasd Lail werd prr [EERETEREE) e [ebp-10h],OFFFFFFFFhn s5:002%:0644abe-540c944
bd6 j MSHTHL | CTreeNode : : Con e f’44§' ! sshes ee=
5c768778 Bbce nov ecx, esi oo eaxfebp-14h]
5c76877a eB8£9579df £ call MSHTMLICElenent : :Ensu | - gﬁh o
5c76877f ebae inp MSHTML ! CTreeNode: : Com) y 0644abf4=8c050000
go7687el Bbisfdfclsd mov edx.dvord ptr [MSHTMD | 00520000 005051000 2207 o ooy) OFTOF S 4 e 0035 064 debed-dBeaeet
SoresTel flalle nov cax.dvord per fs:[00C 77 call dword pir kemel32)_imp_NiWaitForSingleObject (77501413)] ds:0023:7750
. ptr [eax+ed
55768790 8b7004 i dword pt 4 Start End (L Remove | mov eax.187h
Sc768790 Sb70 nov esi.dvord ptr [eax+i] 7 mov edxoffset SharedUserDatalSystemCallStub (F0300)
. call dword ptr[edx] ds:0023:Afe0300={ntdll!KiFast SystemCall (773d71b0)}
[| mov edx.esp
Command sysenter
uiuus> ret OCh
0:007> push dword ptr [ebp-4] s5:0023:0644abf4=8c050000
0:007> mov esieax
0:007> 77 call dword ptr kemel32!_imp__NtClose (775015¢cc)] ds:0023:775015¢cc={ntdll!Zwt
0:007> il mov eax.32h
g : gg;; IBF mov edxoffset SharedUserData'SyﬁeﬁCallStub (Ae0300) "
: call dword ptr[edx] ds:0023:Fe0300={ntdlI!KiFast SystemCall (773d71b0);
0:007> Close mov edxesp
0:007> !dptrace_forward 4 200 0x02 sysenter
o Trowsseweed et 4
942, 775988ce 8bchb mov eaxesi
llocated rangs 943 77598840 Se pop esi
bZUUD Sb21000 . 5b30000-5b31000, 5b40000-5b41000, 5bS0000-5b51000 541 77598842 ¢3 ret
945, 77598947 6a00 push 0
0:007> dd 5b20000 946. 77598949 57 push edi
05b20000 05b30000 05b30004 05b30008 05b3000c 947, 775989da 56 push esi
05b20010 0Sb30010 05b30014 0Sb30018 05b3001c 948. 775989db ff 150105077 call dword ptr [kemel32!_imp__NtRaiseException (775010F0)] ds:0023:775010F0={
05b20020 05b30020 05b30024 05b30028 05b3002c 949, 773d6380b80F010000 mov eax,10Fh
05b20030 05b30030 05b30034 05b30038 05b3003c | [950. 773d6385ba000Xe® mov edxoffset SharedUserData!SystemCallStub (Fe0300)
< m_||951. 77346382 12 call dwordptrfedx] ds:0023:He0300={ntdl!KiFast SystemCall (773d71b0)}
07007> 952. 773d71b0 8bd4 mov edx.esp
jo: | 953. 7734716234 sysenter
Done!

Since we got the ranges from the forward tracer, we define them in the GUI as the ones we are
interested. We want to know if the source of an access violation can be traced back to controlled input.

1:007> ed eax+24 300

1:007> »

2ax=05bal000 ebx=0eadbfcl ecx=00000000 ed=x=5d36edfl e=si=06l6ffac edi=0616ffal
21p=5c8b85cS esp=05elb320 ebp=05elbfef iopl=0 nv up ei pl zr na pe nc
-==001b ===0023 d=s=0023 e=s=0023 {==003b gs=0000 efl=00010246

YSHTHL | CTreeNode : : ComputeFormatsHelper+0x53:
5c8b85cS £7402400000300 test dword ptr [eax+24h],30000h d=s:0023:05ba0024=00030000

This is an example of other paths of execution, we can manually force them as above (a limitation of the
tool is we do not do symbolic execution, neither make multiple execution attempts).

File Edit View Debug Window Help

(=2 RERERE SE U R A RN Nem B2 o e e el e M = =) R N5

Disassembly

Offset: @$scopeip Previous E
Scl8f7ed 83edel and esp. OFFFFFFEOh

Scl8f7f0 83ec?8 sub esp, 78h

Scl18f7f3 alacf8215d nov eax,dvord ptr [MSHTHL!__security_cookie (5d21f8ac)]
Scl8f7f8 33c4 HOT eax, esp

Scl8f7fa 89442474 nov dword ptr [esp+74h].eax

Scl8f7fe 8bcl nov Sax, 8CX

S5c18£800 56 push esi

S5c18£801 8b750c nov esi,dword ptr [ebp+0Ch]

5c18£804 57 push i

Sc18£808 8b7d08 nov ptr [ebp+8]

S5cl18f80b 89442410 nov [esp+10h].eax

Scl8f80f 897c24lc nov dword ptr [esp+1Ch].edi

S5cl18£813 £7c100000300 test ecx, 30000h

S5c18£819 0£858b7a5d00 jne HMSHTHML!CElement : :ComputeFormats+0x55b (5c7672aa)
Scl18£81f £7c100000400 test ecx, 40000h

Sc18£825 0£84dc215600 je HSHTHML |CElenent : : ComputeFormats+0xSeb (Sc6f1a07)
Sc18£82b 8b4030 nov eax,dvord ptr [eax+30h]

Command

0:007> r eax=5b20000

0:007> !dptrace_trace C:\Users\rohitwas\Desktop\PoCs\IE11l_log3
(868.54c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

4 total of 26 instructions were traced and 23 were dumped to C:\Users‘rohitwas\Desktop“PoCs\IE11l_log3
Duration of this command in seconds: 0.000000

0:007> »

eax=3£800000 ebx=0e3d2fcl ecx=3£800000 edx=00000000 esi=0644acSc edi=0644acSc
eip=5c18f805 esp=0644asal ebp=0644af24 iopl=0 nv up i pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=003b g==0000 ef1=00210202
HSHTHML ! CElement : : ComputeFormats+0x1d:

5c18£805 8b4824 nov ecx,dvord ptr [eax+24h] ds:0023:3£800024=777277277

II < .
n-nn7s

As we analyze the binary, more constrains appear and can be manually forced to be true. We can
always check the taint source to make sure we could satisfy it:

FeZi2-wiokgeliicEies . TR TR W T TR TR TR T W W e

File Edit View Debug Window Help

[RS eeE [0 EREEORE00E|[E)E] A
Disassembly 3 @
Offset: @$scopeip [Visual Data Tracer Fraee
Scl8f7ed 83e4el and esp, 0FFFFFFEOh ~ S
SC18£7£0 83=c78 sub esp,78h File Analysis Help
Scl18f7£3 alacf8215d nov eax,dvord ptr [MSHTML!__sec| |f] 5c76875¢ 804004 mov__eax.dword ptr [eax+4] ds:0023:05020004=0400b305
Scl8£7£f8 33cd =or eax, esp 2 5c76856 808008000000 mov eax.dword ptr [eax+0B8h] ds:0023:05b300bc=bc00b405
Scl8f7fa 89442474 nov dword ptr [esp+74h]. eax 3 507685 80400c mov eaxdword pr [eax+0Ch] ds:0023:050400c8=41414141
Scl8f7fe 8bcl nov. Sax, ecK 4. 5c 7685 8b0f mov ecx.dword ptr [edi] ds:0023:0644ac5c=0000803f
5c18£800 56 push esi 5. 5c768601 89842494000000 mov dword ptr [esp+94h].eax ss:0023:0644afc8=e85¢ 7406
Scl18£801 8b750c nov esi,dword ptr [ebp+0Ch] 6. 5c768608 8d842490000000 lea eax,[esp+30h]
Sc18f804 57 push edi 7. 5c76860f 57 push edi
5c18f805 8b4824 nov = dword ptr [eax+24h] ds: §F] 5c768610 50 push eax
Scl8£808 8L7d08 nov edi.dvord ptr [ebp+8] 9. 5768611 892438000000 mov dword ptr [esp+38h].edi ss:0023:0644afc4=306005
Sc18£80b 89442410 nov dvord ptr [esp+l0h]. eax 10. 50768618 e8cb71af call MSHTMLICElement::ComputeFommats (5¢187e8)
Scl18f80f 897c24lc nov dword ptr [esp+1Ch].edi 1. 5c187e8 8bff mov ediedi
Sc18£813 £7c100000300 test ecx, 30000k 12. 5c187ea 55 push ebp
Sc18£819 0£858b7a5d00 ine MSHTHML!CElement : : ComputeFor] |13 5c187eb Sbec mov ebp.esp
Scl18f81f £7c100000400 test ecx, 40000h 14, 5c187ed 83e4e0 and esp.OFFFFFFECh
Sc18£825 0£84dc215600 je HSHTHML!CElement : : ComputeFor] |15, 5c18 70 83ec78 sub esp.78h
S5cl18£82b 8b4030 nov eax . dvord ptr [ea=z+30h] 16. 5c18#3a1acf8215d mov eax.dword ptr [MSHTML!__security_cookie (5d21f8ac)] ds:0023:5d21f8ac=f3362642
) 17. 5c18f#8 33c4 Xor eax.esp
Command 18. 5c18Fa 89442474 mov dword ptr [esp+74h].eax ss:0023:0644af 1c=00000000
0:007> r =ax=5b20000 x e oy e
0:007> l!dptrace_trace C:\Users“rohitwas\Desktop\PoCs\IE11l_lof |57 " ' -
(868.54c): Access violation - code 0000005 (first chance) ||ar B e 0o mov_ esidnord pirebp+(Ch] ss 0023 0644cf30-Sc2c 4406
First chance exceptions are reported before any exzception haj |55 y . _
This exception may be expected and handled. 23 5c18f805 84824 mov ecx.dword ptr [eax+24h] ds:0023:3f800024=7222777?
A total of 26 instructions were traced and 23 were dumped to
Duration of this command in seconds: 0.000000
0:007> r
eax=3f800000 ebx=0e3d2fc0 ecx=3f800000 edx=00000000 esi=0644]
eip=5cl18f805 esp=0644acsal ebp=0644af24 iopl=0 nv up (|
cs=001b =s=0023 ds=0023 es=0023 f{==003b gs=0000
MSHTHML ! CElement : :ComputeFornats+0x1d:
Scl18f805 8b4824 nov ecx,dvord ptr [eax+24h] ds:||
|
II [0:007> |

This particular execution run leads us to uncertainty and we aren’t sure of an exploitable primitive yet.

So we carry on another execution while trying to meet some other constraints and hit an alternate code
path this time.

s - vioegszomoe e W T N S W
File Edit View Debug Window Help
2] BlagtH=swed (0 EEEEORE OSSR A

Disassembly

Offset @$=scopeip
ScB8b8Sbe £7470800001000 test dword ptr [edi+8].100000h

Sc8b8Sbd 7573 jne HSHTHL | CTreeNode : : ComputeFormatsHelper+0xzel8 (S5cB8bB632)
Sc8baSbf 8b07 Mowv sax,dvord ptr [edi]
SCShSSCl 89442424 d t 24h

3 300 4 000] =h4
SCBhBSCc DfSS?BDlDUDU jne MSHTML'CTreeNDde CDmputeFDrmatsHelper+Dxlfb (5c8bh8745)
5:81385:12 f?4U24DUDUD4DU test dw ptr [eax+24h].40000h

< n

Command

ModLoad: 73600000 7360a000 C:»Windowshsysten3d2 ddrawex . dll

HodLoad: 5870000 Se957000 C:~Windows systen32~DDRAW . d11l

ModLoad: 73470000 73476000 CowWindowshsystemd2~DCIMAN32 d11

(c84 . fc8): Access violation — code c0000005 {(first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=02858290 ebx=0{f776fcl ecx=00000000 edx=5d36edfl esi=0e8Scfac edi=0=85cfal
e2ip=5c8bB85cS esp=05d8b500 ebp=05d8cldl iopl=0 nv up 21 pl zr na pe nc
c=s=001b s===0023 d=s=0023 es=0023 {==003b gs=0000 ef1=0001024¢6

HSHTHL | CTreeNode: : ComputeFornatsHelper+0=z53:

ScB8b8tch £7402400000300 test dyord ptr [eax+24h].30000h d=s:0023:0=858=sbd=777277777
0:008> g

(c84 . fc8): Access violation - code c0000005 (!!! second chance |11}

eax=02858290 ebx=0£776fcl ecx=00000000 edx=5d36edfl esi=0efScfac edi=0=85cfal
e2ip=5c8b85cS esp=05d8b500 ebp=05d8cldl iopl=0 nv up ei pl zr na pe nc
cs=001b ===0023 d=s=0023 es=0023 {==003b gs=0000 ef1=00010246

HSHTHL | CTreeNode: : ComputeFormnatsHelper+0=53:

S5c8b85cht £7402400000300 test dword ptr [eax+24h].30000h d=:0023:0=858ebd=277277777
0:008> !dptrace_ forward 4 200

Allocated range is
55e0000-55=21000,55£0000-55£1000, 65£0000-65£1000, 6600000-6601000

< mn

We start similarly at the crash point and allocate fake objects.

ELEGRToE s B . PR @ B B B B . BT
_

File Edit View Debug Window Help

(2] F 0 S EEHG R E O EESECORE OS] A=

Disassembly

Offset @$=scopeip Previous Ne
S5c8b85be £7470800001000 dword ptr [edi+8],100000h

ScBbB85bd 7573 HSHTHML | CTreelode: :ComputeFormatsHelper+0=ze8 (S5cB8b8632)

ScB8bB5bf 8bO7 eax,dvord ptr [edi]

589442424 dword pt

C 5 £7402400000300 dword -

Ec8bB5cc 0£8573010000 MSHTML'CTrEeHDdE CamputEFarmatsHelper+Ux1Eb (5c8b8?45)
S5c8b85d2 £7402400000400 dyword ptr [eax+24h],40000h

.

(c84. EDS) Access violation - code 0000005 (!!! second chance |11}

eax=02858290 ebx=0£{776fc0 ecx=00000000 edx=5d36edfl esi=OelScfac edi=0e85cfal
2ip=5cB8b85cS esp=05d8b500 ebp=05d8cl1d0 iopl=0 nv up i pl zr na pe nc
ce=001b ===0023 ds=0023 es=0023 {s=003b gs=0000 efl=0001024¢6

MSHTML | CTresNode : : ComputeFormatsHelper+0x53:

5c8b85ch £7402400000300 test dword ptr [eax+24h].30000h d=:0023:0e858ebd=277727277
0:008> !dptrace_forward 4 200

Allocated range is
E5e0000- 5531000 55£0000-55£1000, 65£0000-65£1000, 6600000-6601000

0:008> r eax=5520000
0:008> dd edi 11
O0e85cfal 0=858e90
1008 ed 0e85cfal 0Oe8bcial
:008> ed 0e85cfal S5e0000
:008> ed esp+24 5520000 T
;008> b eax+30 1
;008> eb eax+24 40000 1
“ Overflow error in 'eb eax+24 40000 1°'
;008> b eax+24 40000

Overflow error in 'eb eax+24 40000°

o o ocoooo

(008> ed eax+24 40000

We try another path this time by crafting some different values within the fake object, notably the value
of 0x40000 in the dword @ fake_object+0x24. We also references to the same fake object in edi

(CTreeNode *) and on the stack (esp+24).

X8
-
File Edit View Debug Window Help
(=2 RERE e SE AT RN A U N e e B e e e e o e = i
Disassembly [Visual Data Tracer
Offset: @$=copeip File Analysis Help
773d71ac_5d642400 lea esp, [esp] 67. 7659720 c1e902 shr ecx,2
ntdlllKiFastSystenCall: 68. 7615979 f3ab rep stos dword ptr es:[ed
773d71b0 8bdd nov edx, esp £9. 7659723 3ab rep stos dword ptr es:[edi
773d71b2 D£34 sysenter 70. 7659729 f3ab rep stos dword ptr es:[edi
ntdll |KiFastSystenCallRet: 7 76597e93ab rep stos dword ptr es:[edi
d71bd Tet] 72. 76f59729f3ab rep stos dword ptr es:[edi
773d71b5 8da42400000000 lea esp. [esp] 73. 7655725 f3ab rep stos dword ptr es:[edi
773d71bc 8dA42400 lea esp. [esp] 74. 7659723 3ab rep stos dword ptr es:[edi
Bl LLILL e St cace | 7659729 f3ab rep stos dword ptr es:[edi
Commant 76. T6f557e53ab rep stos dword ptr es:[edi
77 7655729 13ab rep stos dword ptr es:[edi
All cated rang 78, 765979 f3ab rep stos dword ptr es:[edi
5581000 SSEDDUD 55£1000,65£0000-65£1000,6600000-6601000 79. 7659729 f3ab rep stos dword ptr es:[edi
80. 7659729 f3ab rep stos dword ptr es:[edi
0:008> r eax=55=0000 81, 76f597e9f3ab rep stos dword ptr es:[edi
0:008> dd edi 11 82. 7659729 f3ab rep stos dword ptr es:[edi
0e85cfal 02858290 a3 76F597e9f3ab rep stos dword ptr es:[edi
0:008> ed 0efScfal 0Oe85cial 84 76f5973 Bb442408 mov eax.dword ptr [esp+8] ss:0023:05d8b454=80b4dB05
0:008> =d 0=85cfal 55=0000 85 TEFBYAT 5 pop i
0:008> ed esp+24 55e0000 86. TEF59F8 3 ret
0:008> eb sax+30 1 87. 5c2df8b3 33c0 0T EENEEK
0:008> eb sax+24 40000 1 . 88, 5c2dfBbb 83c4lc add esp,0Ch
Overflow error in 'eb eax+24 40000 1° 89, 5c2dfBc6 89442460 mov dword pir [esp+60h].eax ss:0023:05d8b4c0=180c0000
0:008> eb sax+24 40000 o , 90 Bc2dfBca 89442464 mov dword pir [esp+64h].eax ss:0023:05d8bdcd=c D6 770F
Overflow error in 'eb eax+24 40000 91. 5c2dfBce 89442468 mov dword pir [esp+68h].eax ss:0023:05d8b4cB=e4b4dB05
0:008> ed sax+24 40000 92. 5c2df8d4 c7442460ffffff mov dword ptr [esp+60h].0FFFFFFFFh ss:0023:05d8b4c0=000
0:008> ldptrace_trace C:“Users‘rohitwas“\Desktop~PoCs>log_finall.wdt 93. 5c2df8dc 8d442460 lea eax[esp+6h]
WARNING: Continuing a non-continuable exception 94 5c2df8el 7442464 mov dword ptr [esp+64h] OFFFFFFFFh ss:0023:05d8b4c4=0
95. Bc2dfBeB c 7442468 mov dword ptr [esp+68h], 0FFFFFFFFh ss:0023:05d8b4c8:
STaTUS_STaCK_BUFFER_OVERRUN encountersd 96. 5c2dfBf0 838788020000 mov dword pir [edi+288h] eax ds:0023:05d8b818=00000000
WARNING: Steps/trace thread exited 97. 5c2dfaf6 8d442420 lea eax.esp+20h]
. |98 5c2dfBfa 838784020000 mov dword pir ed|+284h .eax ds:0023:05d8b814=00000000
4 total of 3664 instructions were traced and 2507 were dumped to C:“Users‘rohi X 5c2df900 86442410 Oh] s5:0023:05d8b470=00005¢05
Duration of this command in seconds: 1.000000 100. 5c2df904 8608 mov ecx dword ptr [eax] ds 0023:055e0000=00005705
101. 5cB41ale 6a01
102. 5c841a10 eBBbe?eDD call MSHTMU_repon_secumyfaiIure (Bcb30fal)
< m [103. 5cb30fal Bbff mov ediedi
| 104. 5cb3lfa2 55 push ebp
|D :008> |
m Deone!

This time we hit a more interesting exception! Preliminary analysis shows us that the
MSHTML!!report_securityfailure call was triggered due to a failed VTguard_check as shown below:

File Edit View Debug Window Help

(S =T 0N E S E O E =] 4

[Visual Data Tracer

0:008> ub 5c?1le?ch
MSHTHL | CExtraStash: :GetBorderWidths+0xda:
1

Disassembly

Offset: @$scopeip File Analysis Help

773d71ac 8ded42400 lea esp, [esp] 67. 7659720 c1e502 shr ecx.2
ntdll!KiFastSystemCall: 68. 7659725 f3ab rep stos dword ptr es:[edi
773d71b0 B8bd4 nov ed=, esp 69. 7659725 f3ab rep stos dword ptr es:[edi
773d71b2 0f£34 sysenter 70. 76f597e9f3ab rep stos dword ptr es:[edi]
ntdll|KiFastSystenCallRet : 7. 76f597e9f3ab rep stos dword ptr es:[edi]

72. 7659725 f3ab rep stos dword ptr es:[edi
773d71b5 B8dad2400000000 lea esp, [esp] 73 7659725 f3ab rep stos dword ptr es:[edi
773d71bc 8d642400 lea esp, [esp] 74 76f597e9f3ab rep stos dword ptr es:[edi]
PtAlTIFS Tt Cretam™all - 75. 7659729 f3ab rep stos dword ptr es:[edi]

Command | 75. 7659725 f3ab rep stos dword ptr es:[edi

77. 7659725 f3ab rep stos dword ptr es:[edi
ScbhbB8459a balB000000 mov edx, 18h 78. 76f597e9f3ab rep stos dword ptr es:[edi]
Scb8459f b900%eatsc nov ecx,of f=et MSHTHL |MSHTHL DDTRACKER_STOF {S5cab9e00) 79. 7659729 f3ab rep stos dword ptr es:[edi]
Scb845a4 =8960b0LOD call HSHTHL | Template_hb (Scc3513f) 80. 7659725 f3ab rep stos dword ptr es:[edi
Scb845a9 =940af 75§ £ inp HSHTHL |CElement : : ComputeFormats+0x3al (Sc2dfdee) 81 7659725 f3ab rep stos dword ptr es:[edi
0:008> ub 5c841a15 82 76f597e9f3ab rep stos dword ptr es:[edi
MSHTHL | CElement : : ComputeFormats+0=x578 83 7659725 f3ab rep stos dword ptr es:[edi]
EcB8419f6 8b4904 mowv ecx,dvord ptr [ecx+4] 84, 76f597 3 Bb442408 mov eax.dword ptr [esp+8] ss:002
5c8419f9 e93fdeadff inp HSHTHLICElement : : ComputeFormats+0x5a (5c2df83d) 8s. TE59FT 5 pop edi
Sc8419fe Bb542410 nowv edx,dvord ptr [esp+l0h] 86. 765978 c3 ret
ScB41a02 =986d9a9ff jmp MSHTHL | CElement : : ComputeFormats+0x23f (Sc2df38d) 87 5c2df8b9 33c0 XOr eEX.eax
5cB841a07 33c9 HOY ECH, BCE 88, 5c2dfébb 83c4lc add esp.0Ch
5c841a09 e92fdea%ff inp HSHTHL I CElement : : ComputeFormats+0x5a (5c2df83d) 8s. Bc2df8ch 89442460 mov dword ptr [esp+60h].eax ss:
Sc84lale 6all push 50. Bc2dfBca 89442464 mov dword ptr [esp+64h]eax ss:
ScB841a10 =88bf52=00 call MSHTHL!_ report_securityfailure (S5cb30fal) 1. Bc2df8ce 89442468 mov dword ptr [esp+68h] eax ss:

92.

93.

94

5c2df8d4 c7442460ffff mov dword ptr [esp+60h].0FFFF
Bc2df8dc 8d442460 lea eax.[esp+60h]
Bc2df8el 7442464 mov dword pir [esp+64h] OFFFFI

5c71e?9% 6all push
Sc71e79% =81f0db7{f call MSHTHL | CExtraStash: :GetExtra (5c28fd4c2) 95. Bc2df8e8 c 7442468 mov dword ptr [esp+68h],0FFFFI
Sc71e7a3 8b480c mov ecx,dwvord ptr [ea=x+0Ch] 96. 5c2dfef0 898788020000 mov dword ptr [edi+288h].eax
Sc?le?ab £93089b5ff MSHTHL |CExtraStash: GEtBDrderU1dths+Dx33 (5c2770db) 97. 5c2dfef6 8d442420 lea eax.[esp+20h]
S5c?le?ab :78?84DZDDDDDDDDDDDD nov dword ptr [edi+284h], 98. 5c2dfBfa 838784020000 mov dword pir [edi+284h] eax o
Sc?le?bs :787BSUZUDUUDUUUUDUU mov dword ptr [edi+288h], El 99, 5c2df900 86442410 mov _ eax.dword ptr [esp+10h
Sc71e7bf 8bLOB Cx d 100. 5c2df504 8b08 mov ecx.dword ptr [eax] ds:0023:0!
Sc?le?cl 81b9280300004047h350 101 5c841a0e 6301 push 1
102. 5cB41all eWSZeDD cal MSHTML!_ report_securityf

< o 103. 5cb30fal Bbff mov ediedi

| 104. 5cb30fa2 55 push ebp

IU:DUB>|

We can trace back the call and confirm that this is indeed controlled by our taint and we influence the

pointer which is dereferenced to do the vtguard check.

That there is code execution right after the vtguard _check can either be looked into the debugger or
within IDA for more clarity as shown below:

vy

=

nou
nou
nou
cnp
jnz

START OF FUNCTION CHUNK FOR ?ComputeFormats@CElement@@QAEJPAUCFormatInfo@@PAUCTreeNode@a@z|

loc_63ABETAB:

duord ptr [edi+284h], O
dword ptr [edi+288h]. O
ecx, [eax]

dword ptr [ecx+328h], offset

vtguard
loc_63BE1AOE

=]

nou
nou
cmp
jnz

; save ecx to local on stack which gets called into below
ecx, offset ?ComputeFormatsUirtual@CElement@RUAEJPAUCFormatInfo@@PAUCTreeNode@BRZ ; CElement::Comput

Pl

loc_63C57240: ; CTable
cnp ecx, offset ?ComputeFori
jnz loc_63ACOFAE

FIE]
START OF FUNCTION CHUNK FOR ?ComputeFormats@CElement@@QAEJPAUCF

ds:___guard_check_icall_fptr
1
i CODE EXEC!111

FUNCTION CHUNK FOR ?ComputeFormats@CElement@@0AEJPAUCFor

Obviously the thing to note here is that in order to get code execution via the call instruction into a
value controlled by us, the vtguard_check which would necessitate an information leak within MSHTML.

Note that the other two constraints seen above i.e

cmp ecx, CElement::ComputeFormatsVirtual(CFormatinfo *,CTreeNode *) and

cmp ecx, CTableCell::ComputeFormatsVirtual(CFormatinfo *,CTreeNode *) can be conveniently skipped
as the path to call [esp+88+var_74] which calls a pointer @ 0x51c bytes into the tainted object which we

control.

This particular case was detailed to demonstrate the difficulty of analysis in some relatively complex
cases and certain pitfalls in our approach in getting a definitive answer without a lot of manual
intervention and analysis.

[9] Other existing solutions

Many researchers had similar ideas, or ideas towards the same problem. This does not intend to be a
comprehensive list, but instead to give the reader some pointers to understand other approaches and
their potential limitations/benefits.

The order is not chronological nor of importance.
[9.1] ! exploitable

This WinDBG plugin by Microsoft [1] is widely known and referenced and is one of the
precursors of taint analysis for exploitability determination. It tries to classify unique issues (crashes
appearing through different code paths, machines involved in testing and in multiple different test
cases) but still with the same root cause. It group those crashes for analysis and quickly prioritizes issues
(since crashes appears in thousands, while analysis capabilities are very limited).

The main drawback of the approach is that it assumes the attacker has full control at the
elements in the crash point, and then do a forward analysis to verify if with that, there are clearly
exploitable conditions. That leads to lots of false negatives (limitations on defining an exploitable
condition), as well with false positives. It provides a lot of value though as an easy initial triage.

[9.2] Spider Pig

Created by Piotr Bania, the tool is not available for testing/evaluation but has details in a
published paper. Itis much more advanced than the tool provided here (but well, it is not available):

- Has Virtual Code Integration (Dynamic Binary Rewriting)

- Disputable Objects: Partially controlled data is analyzed using the parent data

[9.3] Taint Bochs
Used for tracking sensitive data lifecycle in memory, the objectives are quite different than the
ones on crash analysis. Nonetheless worth having a deeper look.
[9.3] Taint Check
Uses DynamicRIO or Valgrind and provides:
- Taint Seed: Defining the tainted values (data comming from the network for example)
- Taint Tracker: Tracks the propagation
- Taint Assert: Alert about a security violation
It is quite interesting to use while testing software to detect potential security issues, but not
really useful for the exploit creation process itself.
[9.4] Bitblaze
Interesting platform for binary analysis, provides better classification of exploitability

(accordingly to Charlie Miller talk in Black Hat). Can be used as a base platform for VINE. It is a moflow
framework.

[9.5] Cisco Talos Moflow Framework

They’ve recently released a bunch of analysis tools based on the CMU’s BAP framework. The
tools perform symbolic execution (therefore eliminating one of our limitations related to finding paths
that are not traced). The drawback is potential performance problems for complex paths (like the ones
we analyze here), which would be quite slow with the full approach. They are by far the most worthy
checking by anyone interested in this kind of research.

The tools perform post-crash graph back taint slicer and forward symbolic emulation (looking for
more exploitable conditions).

[10] Acknowledgements

<In no particular order>

Julio Auto for his previous work alongside one of the authors of this paper in implementing VDT
(Vulnerability Data tracer) which was the original implementation of the backward taint tracing plugin.

David D. Rude and Kiran Bandla for ideas and feedback regarding the initial prototype of the forward
trace.

[11] References

This paper is quite weak in references, basically because of laziness — we cite many tools in Section 9 but
do not provide references to them. They are all very easy to find in any search engine ©

[1] Microsoft lexploitable. Link: https://msecdbg.codeplex.com/

[2] BSDaemon. “Dynamic Program Analysis and Software Exploitation: From the crash to the exploit
code", Volume 0x0e, Issue 0x43, Phrack. Link: http://phrack.org/issues/67/10.html

[3] Intel Corporation. Link:
http://www.intel.com/software/products/documentation/vlin/mergedprojects/analyzer ec/mergedpro
jects/reference_olh/mergedProjects/instructions/instruct32_hh/vc42.htm

[4] BFS algorithm. Link: http://en.wikipedia.org/wiki/Breadth-first search

[5] GitHub Repository for this Paper/Presentation: Link:

