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Abstract

It is known that some network operators inject false con-

tent into users’ network traffic. Yet all previous works

that investigate this practice focus on edge ISPs (Internet

Service Providers), namely, those that provide Internet

access to end users. Edge ISPs that inject false content

affect their customers only. However, in this work we

show that not only edge ISPs may inject false content,

but also non-edge network operators. These operators

can potentially alter the traffic of all Internet users who

visit predetermined websites. We expose this practice by

inspecting a large amount of traffic originating from sev-

eral networks. Our study is based on the observation that

the forged traffic is injected in an out-of-band manner:

the network operators do not update the network packets

in-path, but rather send the forged packets without drop-

ping the legitimate ones. This creates a race between the

forged and the legitimate packets as they arrive to the end

user. This race can be identified and analyzed. Our anal-

ysis shows that the main purpose of content injection is to

increase the network operators’ revenue by inserting ad-

vertisements to websites. Nonetheless, surprisingly, we

have also observed numerous cases of injected malicious

content. We publish representative samples of the injec-

tions to facilitate continued analysis of this practice by

the security community.

1 Introduction

Over the last few years there have been numerous reports

of ISPs that alter or proxy their customers’ traffic, includ-

ing, for example, CMA Communications in 2013 [7],

Comcast in 2012 [19], Mediacom in 2011 [10], WOW!

in 2008 [31], and Rogers in 2007 [36]. Moreover, several

extensive studies have brought the details of this practice

to light [20, 34, 28, 39]. The main motivations of ISPs to

alter traffic are to facilitate caching, inject advertisements

into DNS and HTTP error messages, and compress or

transcode content.

All of these reports and studies found that these traf-

fic alterations were carried out exclusively by edge ISPs,

namely, retail ISPs that sell Internet access directly to end

customers, and are their “first hop” to the Internet. This

finding stems from the server-centric approach the above

studies have taken. In this approach, one or a handful of

servers are deployed to deliver specific content to users,

after which a large number of clients are solicited to fetch

that content from the servers. Finally, an agent on the

clients – usually a JavaScript delivered by the server it-

self – looks for deviations between the content delivered

by the server and that displayed to the user. Figure 1(a)

illustrates the traffic monitored in this server-centric ap-

proach.

Such an approach can be used to inspect the traffic of

many clients from diverse geographies who are served

by different edge ISPs. The main disadvantage of this

approach is that the content fetched by the clients is very

specific. All clients fetch the same content from the same

web servers. This allows only the detection of network

entities that aim to modify all of the Internet traffic1 of

a predetermined set of users and are generally oblivious

to the actual content delivered to the user. Such entities

indeed tend to be edge ISPs that target only the traffic of

their customers.

In this work we show that the above approach misses

a substantial portion of the on-path entities that modify

traffic on the Internet. Using extensive observations over

a period of several weeks, we analyzed petabits of In-

ternet traffic carrying varied content delivered by servers

having over 1.5 million distinct IP addresses. We newly

reveal several network operators that modify traffic not

limited to a specific set of users. Such network operators

alter Internet traffic on the basis of its content, primarily

by the website a user visits. The traffic of every Internet

1In some cases these network entities modify all internet traffic orig-

inating from very popular websites such as google.com, apple.com,

and bing.com or all Internet traffic originating from .com.
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(a) Depiction of monitored traffic in the server-centric

approach (of past works). One server with specific

content serves many clients in many edge networks.
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(b) Depiction of monitored traffic in the client-centric ap-

proach (of the current work). Many servers with varied con-

tent serve many clients in a few edge networks.

Figure 1: Server-centric approach versus client-centric approach to monitoring traffic. The lines between clients and

servers illustrate the monitored traffic.

client servermiddle-box

valid packetforged packet

(a) In-band alteration of packet by a middle-box. Only a

single packet arrives at the client.
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(b) Out-of-band injection of a forged packet. Two packets

arrive at the client.

Figure 2: In-band versus out-of-band alteration of con-

tent

user that traverses these network operators is susceptible

to alteration. This is in contrast to the case of edge ISPs

that alter the traffic of their customers only. Although a

primary focus of these network operators is to inject ad-

vertisements into web pages, we also identified injections

of malicious content.

Our analysis is based on the observation that network

operators alter packets out-of-band: all traffic is pas-

sively monitored, and when the content of a packet needs

to be altered, a forged packet is injected into the connec-

tion between the server and the client. The forged packet

poses as the valid packet. If the forged packet arrives

at the client before the valid one, the client will accept

the forged packet and discard the valid one. Such an ap-

proach has considerable advantages to the network oper-

ators since it does not introduce new points of failure to

their traffic processing and there is no potential for a per-

formance bottleneck. Figure 2 illustrates the differences

between in-band alteration of traffic and out-of-band al-

teration. Note that both in-band and out-of-band traf-

fic alteration is possible only on unprotected traffic, e.g.,

traffic that is not carried by TLS [12] or authenticated

using TCP authentication [32].

The out-of-band operation has a crucial characteristic

that enables our analysis: the client receives two pack-

ets – the forged one and the valid one – that claim to be

the same response from the server. However, they carry

different content. This characteristic allows us to detect

traffic alteration events while monitoring the traffic at the

edge network. We can thus monitor and analyze traffic in

a client-centric manner in which the traffic is not destined

to a specific set of servers but to all servers contacted by

the users at the edge network. Figure 1(b) illustrates the

traffic monitored in our work. In this paper we specifi-

cally focus our analysis on alteration of web traffic, i.e.,

HTTP traffic over port 80.

An example of out-of-band injection To illustrate
how content is altered using out-of-band injection, we
describe in the following one of the injections we iden-
tified during our observations. In this example the
user’s browser sends the following HTTP GET request to
cnzz.com (a Chinese company that collects users’ statis-
tics):

GET /core.php?show=pic&t=z HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64)

Host: c.cnzz.com

Accept-Encoding: gzip

Referer: http://tfkp.com/

In response the user receives two TCP segments having
the same value in the sequence number field. The seg-
ments include different HTTP responses. One segment
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carries the legitimate HTTP response that includes the
requested resource (a JavaScript code) from cnzz.com:

HTTP/1.1 200 OK

Server: Tengine

Content-Type: application/javascript

Content-Length: 762

Connection: keep-alive

Date: Tue, 07 Jul 2015 04:54:08 GMT

Last-Modified: Tue, 07 Jul 2015 04:54:08 GMT

Expires: Tue, 07 Jul 2015 05:09:08 GMT

!function(){var p,q,r,a=encodeURIComponent,c=...

The other segment includes a forged response that di-
rects the user via a 302 status code to a different URL
that points to a different JavaScript code:

HTTP/1.1 302 Found

Connection: close

Content-Length: 0

Location: http://adcpc.899j.com/google/google.js

Our analysis shows that this JavaScript redirects the user

through a series of affiliate ad networks ending with

Google’s ad network, which serves the user an ad. In this

injection event the forged segment arrived before the le-

gitimate one, which means that the user sees the injected

ad instead of the original content.

Relation to censorship Website-targeted false content

injection is similar in some ways to content blocking for

the purpose of state-sponsored censorship. There is a

substantial body of work that studies the mechanisms and

characteristics of censorship worldwide [33, 37, 22, 9].

In many cases this blocking of content is also website-

targeted. Moreover, blocking is often done by injecting

false traffic segments, which in some cases is done out-

of-band [33, 11, 8]. In contrast to previous works on cen-

sorship, in this work we study the practice of false con-

tent injection by commercial network operators, rather

than state entities. Such injections primarily serve finan-

cial gains rather than political agenda, with the goal of

altering the web content rather than blocking it. In this

work we study and analyze the practice of financially-

motivated false content injection by network operators.

In Section 7 we discuss in more detail related work on

censorship. During this work we observed numerous oc-

currences of censorship-aimed injections. We do not re-

port on them in this paper.

Our contributions can be summarized as follows:

1. The observation that network operators inject false

web content out-of-band.

2. Investigation of the identities of network operators

that practice website-targeted content injection.

3. Thorough analysis of the characteristics of the in-

jections and the purpose of the injecting operators.

The paper’s structure is as follows. In Section 2 we

present technical background pertaining to injection of

forged TCP and HTTP packets. Section 3 details our

methodology for monitoring web traffic and identifying

injections of forged packets. Section 4 details the sources

of traffic we monitored. In Section 5 we present our anal-

ysis of the injection events and our investigation as to the

identities of the network operators behind them. Sec-

tion 6 proposes effective and efficient client-side miti-

gation measures. Section 7 discusses related work and

Section 8 concludes the paper.

2 Background

2.1 Out-of-band TCP Injection

A TCP [27] connection between two end nodes offers

reliable and ordered delivery of byte streams. To facili-

tate this service, every sent byte is designated a sequence

number. Each TCP segment carries a Sequence Number

field that indicates the sequence number of the first data

byte carried by the segment. The following data bytes in

the segment are numbered consecutively. A third party

that wishes to send a forged TCP segment as part of an

existing TCP connection must correctly set the connec-

tion’s 4-tuple in the IP and TCP header, i.e., the source’s

port number and IP address as well as those of the des-

tination. In addition, for the forged segment to be fully

accepted by the receiver, the sequence numbers of the

forged data bytes must fully reside within the receiver’s

TCP window. Forging such a TCP segment is trivial for

an on-path third party, since it can eavesdrop on the valid

segments of the connection and discover the 4-tuple of

the connection as well as the valid sequence number.

In some circumstances an injected TCP segment may

trigger an undesirable “Ack storm”. An “Ack storm” oc-

curs when the injected segment causes the receiver to

send an acknowledgment for data bytes having sequence

numbers that were not yet sent by the peer. Appendix A

details how an “Ack storm” is formed. Nonetheless, as

long as the injecting third party ensures that the injected

TCP segment is no larger than the valid TCP segment

sent by the peer, no “ACK storm” will be triggered. If

this is not the case, the injector could send a TCP re-

set right after the injection in order to forcibly close the

connection. This will also eliminate the possibility of

an “Ack storm”. The latter option is used only if the

connection is expected to close right after the valid re-

sponse is received. Indeed, in all our observations either

of these alternatives took place and no “Ack storms” were

observed.
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Nonetheless, the fact that the injected TCP segment

aims to displace an already sent or soon to be sent valid

TCP segment poses a different obstacle for the inject-

ing third party. According to the TCP specification [27],

the first data byte received for a given sequence num-

ber is accepted. A subsequent data byte having the same

sequence number is always discarded as a duplicate re-

gardless of its value. Thus, the injected segment must

arrive at the receiver before the valid TCP segment in or-

der to be accepted. Note that the TCP specification does

not consider the receipt of bytes with duplicate sequence

numbers as an error but rather as a superfluous retrans-

mission.

2.2 HTTP Injection

In this work we focus in particular on the injection of

false HTTP responses received by a web client. HTTP

[15] is a stateless client-server protocol that uses TCP

as its transport. An HTTP exchange begins by a client

sending an HTTP request, usually to retrieve a resource

indicated by a URI included in the request. After pro-

cessing the request the server sends an HTTP response

with a status code. The status codes we later refer to in

this paper are:

• 200 (Successful): The request was successfully re-

ceived, understood, and accepted. Responses of this

type will usually contain the requested resource.

• 302 (Redirection): The requested resource resides

temporarily under a different URI. Responses of

this type include a Location header field containing

the different URI.

An HTTP client will receive only one HTTP response

for a given request even when a false HTTP response

is injected because, as mentioned above, the TCP layer

will only accept the first segment that it receives (be it

the false or the valid segment). When the forged re-

sponse is shorter than and arrived before the valid re-

sponse, the client then receives the byte stream that in-

cludes the forged response, followed by the tail of the

valid response. The tail includes the data bytes having

sequence numbers that immediately follow those of the

forged response. By default, the response message body

length is determined by the number of bytes received un-

til the TCP connection is closed. This might be a prob-

lem for the injecting entity as the client will eventually

receive a mixed HTTP response, which might yield un-

intended consequences. To avoid this problem, the in-

jected response will usually include Content-Length or

Transfer-Encoding headers that explicitly determine the

end of the response. Thus, even if the TCP layer delivers

the tail of the valid response to the HTTP layer, it will

not be processed by the client.
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Figure 3: Depiction of the design of the monitoring sys-

tem

3 Methodology

We now describe our methodology for collection and

identification of TCP injection events.

3.1 Monitoring System

At the core of the collection of injection events was a

monitoring system that eavesdropped on Internet traffic

and identified these events. The monitoring system was

deployed at the entry points of large networks (detailed

in Section 4) and analyzed the bidirectional traffic that

flowed in and out of those networks. The monitoring

system was comprised of the following three stages (de-

picted in Figure 3). First, we captured the traffic using

the ’netsniff-ng’ tool [3] along with a Berkeley packet

filter [25] to capture only HTTP traffic. The tool itera-

tively produced files comprising 200,000 packets each.

These files were fed into a queue for processing by the

next stage. To avoid explosion of the queue when the

traffic rate exceeded the throughput of the next stages,

the queue’s length was bounded. Once the queue reached

its limit, the capturing process was halted until the queue

length decreased.

At the next stage each capture file was processed by

a dispatcher process that read each packet in the file, re-

moved the Ethernet header, and computed a hash on the

IP addresses and TCP ports in such a way that packets

of the same TCP session would have the same hash re-

sult. A packet’s hash result was then used to choose one

of several worker processes to handle that packet. In this

way all packets of the same session were delivered to the

same worker.

At the final stage each worker process grouped the

packets it received into TCP sessions and stored each

session in a data structure. For each received packet a

worker checked all the packets of that session to deter-

mine whether the conditions for a packet race were met

(the conditions are detailed in Section 3.2). If so, the last

30 packets of the session were written to a file, includ-

ing their payload, for later analysis. See Section 3.3 for

the ethics and privacy issues pertaining to the storage and

analysis of packets.

The packet sessions were stored by each worker in a
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data structure that is a least-recently-used cache with a

fixed size. Once the cache reached the maximum num-

ber of sessions it can store, the session that was idle the

longest was evicted from the cache. To simplify packet

processing we did not use TCP signaling (SYN and FIN

flags) to create a new session in the cache or evict an

existing one. This design choice gave rise to the possi-

bility that a session would be evicted even if still active.

Nonetheless, as our experiments show, the caches were

large enough so that the minimum idle time after which

a session was evicted did not drop below 10 minutes —

long enough to make the occurrences of active session

evictions negligible. Note that even if such an eviction

were to occur, packet races could still be detected in that

session, since we treated the packets sent after the idle

period as a new session and stored them in the cache. In

this case, however, the packets of the session prior to the

eviction would not be available for analysis.

3.2 Injection Detection

The detection logic of packet injection events is rela-

tively straightforward. Our goal was to detect packet

races within the session, namely, two packets that carry

different payloads, but correspond to the same TCP se-

quence numbers. Usually these packets will arrive in

quick succession. To make our code more efficient we

checked for a race only between pairs of packets that

were received within a time interval that does not exceed

the parameter MaxIntervalTime. Throughout our data

collection process we set MaxIntervalTime = 200msec.

We believe that this value captures the vast majority of

injection events as almost all round trip times on the In-

ternet are below 400msec [18]. Indeed, nearly all of

the time differences we observed between raced pack-

ets were below 100msec (see Section 5). Algorithm 1 in

Appendix B details the procedure for race detection.

The procedure we used to identify packet races should,

in theory, flag only events in which a third party injected

rogue packets into the TCP session. However, inter-

estingly, we observed numerous events which fulfill the

above conditions but are not the result of a packet injec-

tion. We detail such occurrences in Appendix C.

3.3 Ethics and Privacy

As explained above, the monitoring system captures In-

ternet user traffic. To minimize concerns about user pri-

vacy, the system stores only TCP sessions in which a

packet race was detected. All other sessions are only

cached briefly in the workers’ caches, after which they

are permanently erased. Moreover, for each stored ses-

sion, only the last 30 packets (at most) are saved. Earlier

packets are dropped. This is in order to store only those

packets that are relevant to the analysis of the injection

events while minimizing the chance that user privacy will

be breached. Indeed, during our analysis no identifiable

personal information was found in the stored sessions.

Throughout our research we were supervised by the

networks’ administration teams, who reviewed and ap-

proved the code of the monitoring system and procedures

for the analysis of the stored sessions. During the anal-

ysis the location and identity of users associated with IP

addresses were never disclosed to us. Finally, we note

that our monitoring system passively collected informa-

tion; it never interfered or tampered in any way with the

traffic.

3.4 Limitations

Our monitoring system cannot detect content alterations

in which there is no race between the legitimate packet

and the forged one. In particular, we cannot detect the

following cases:

1. In-band changes in which the legitimate packet is

changed in-place. In such cases the client only sees

a forged packet.

2. Additions to the response in which an extra forged

packet is sent such that it extends the HTTP re-

sponse, but does not replace any legitimate part.

3. Drops of packets that are part of a valid HTTP re-

sponse.

We monitored a large volume of traffic originating

from diverse networks having tens of thousands of users

(see Section 4). Nonetheless, as in any other study that

involves uncontrolled traffic, our findings are only as di-

verse as the traffic we monitor. Namely, we cannot iden-

tify an injecting entity on the Internet if we do not mon-

itor traffic that triggers an injection by that entity. Fur-

thermore, the types of injections we have observed are

dependent on the web traffic originating from the net-

works we monitored.

4 Data Sources

During our study we monitored the network traffic of

four institutions. For each institution we monitored the

Internet traffic (incoming and outgoing) of all its users.

In all cases the same monitoring mechanism was used:

traffic was copied to the monitoring system using a SPAN

port out of a border switch. In all cases, we only moni-

tored HTTP traffic, namely traffic having source port or

destination port that equals 80.

Table 1 lists the characteristics of the monitored traffic

sources. For each institution we list the number of users
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Institution User base
Monitoring

period [week]

Traffic

volume [Tb]

Number of sessions

[Million]

University A 20,000 2 80 8

University B &

University C
50,000 16 1400 120

Enterprise D 5,000 3 24 0.8

Table 1: Monitored traffic sources

who may use Internet connectivity in that institution. For

a university this is the number of students and staff, and

for an enterprise this is the number of employees. In ad-

dition, we list the length of time we monitored the traffic

as well as the total volume traffic and number of sessions

the monitoring system processed. In aggregate, we mon-

itored the traffic of more than 75,000 users, while pro-

cessing 1.4 petabits carried by 129 million HTTP ses-

sions contacting servers having more than 1.5 million

distinct IP addresses. The details of University B and

C are displayed together since we monitored their traffic

jointly on the same border switch. Enterprise D repre-

sents the main branch of a large hi-tech company. The

monitored branch includes an extensive R&D division as

well as the headquarter offices and the international mar-

keting and sales divisions. All institutions wish to remain

anonymous.

5 Injection Analysis

In this section we present an analysis of the injection

events. In Section 5.1 we present an overview of the in-

jections and highlight a few of them. Section 5.2 de-

scribes ways to automatically distinguish between the

valid and forged packets. In Section 5.3 we explore the

time differences between the raced packets. Section 5.4

characterizes the recurrence of injection events. Finally,

Section 5.5 presents an investigation aimed at unveiling

the entities behind the injection events.

5.1 Initial Investigation

In this section we refer to a TCP session into which a

forged packet was injected as an injected session. We

manually analyzed each injection event. We detected

around 400 injection events that aim to alter web con-

tent2. Although this is not a negligible number, it pales

in comparison to the total volume of traffic we moni-

tored to extract these events. This is attributed to the

fact that most of the injected sessions were destined to

web servers in the Far East, a region to which relatively

2We have also found hundreds of additional events that do not aim

to alter web content; these events were related to caching and censor-

ship.

little traffic is destined from the networks we monitored.

Thus the relatively small number of injections. Nonethe-

less, these events were sufficient to gain substantial in-

dications as to the different entities that practice forged

content injection (Section 5.5).

We grouped the injection events into 14 groups based

on the resource that was injected into the TCP session.

In other words, two injections that forged the same con-

tent are placed in the same group. Representative (and

anonymized) captures of the injected sessions can be

found in [4]. For each injection group we publish up to

4 captures of injected sessions that are representative of

their respective group. To preserve the anonymity of the

users, in each capture we zeroed the client’s IP address

as well as the IP and TCP checksum fields.

Table 2 lists the groups. For each group we list the

following details:

1. Group name – an identifier that was given by us to

that group. We selected the name either by the name

of the site whose content was forged or by the name

of a server the forged content directed us to.

2. Destination site(s) – the website(s) of the requested

resource that was forged. There may be several such

sites for a single group.

3. Site type – the category of the destination site(s)

4. Location – the country of the IP address of the des-

tination server3

5. Injected resource – the type of forged content that

was injected

6. Purpose – the aim of the injection

It is evident from Table 2 that the majority of injected

sessions we observed were to web servers located in

China. We note that the networks we monitored are not

located in China or the Far East, but in a Western country.

The proportion of HTTP traffic destined to China in the

monitored networks is only about 2%. This is a first indi-

cation that the majority of entities that injected the forged

3Note that this country might be different than the nationality of the

entity that owns the destination site.
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Group name Destination site(s) Site type Location Injected resource Purpose

szzhengan wa.kuwo.cn Ad network China

A JavaScript that

appends content to the

original site

Malware

taobao is.alicdn.com Ad network China

A JavaScript that

generates a pop-up

frame

Advertise-

ment

netsweeper skyscnr.com
Travel search

engine
India

A 302 (Moved) HTTP

response

Content

filtering

uyan uyan.cc
Social

network
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

icourses icourses.cn
Online

courses portal
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

uvclick cnzz.com
Web users’

statistics
Malaysia/China

A JavaScript that

identifies the client’s

device

Advertise-

ment

adcpc cnzz.com
Web users’

statistics
Malaysia/China

A 302 redirection to a

JavaScript that opens a

new window

Advertise-

ment

jiathis jiathis.com
Social

network
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

server erased changsha.cn Travel China

Same as legitimate

response but the value of

HTTP header ’Server’ is

changed

Content

filtering

gpwa gpwa.org Gambling United States

A JavaScript that

redirects to a resource at

qpwa.org

Malware

tupian
www.feiniu.com

www.j1.com
e-commerce China

A JavaScript the directs

to a resource at

www.tupian6688.com

Malware

mi-img mi-img.com Unknown China
A 302 redirection to a

different IP
Malware

duba unknown Unknown China

A JavaScript that

prompts the user to

download an executable

Malware

hao 02995.com
Adware-

related
China

A 302 (Moved) HTTP

response

Advertise-

ment

Table 2: Injection groups and their characteristics
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content we observed reside in China (we investigate the

injectors’ identity in Section 5.5).

Seven injection groups are aimed at injecting adver-

tisements to web pages. An analysis of the injected re-

sources shows similarities between the various groups.

These similarities might indicate that the injections are

done by the same entity or at least by different entities

that use the same injection mechanism or product. The

injection groups ’icourses’, ’uyan’, and ’jiathis’ all used

the HTML meta refresh tag to redirect the user to a dif-

ferent URL. In all cases, the redirection was to Baidu

(a Chinese search engine) using the URL www.baidu.

com/?tn=95112007_hao_pg. The URL includes a re-

ferral tag that identifies hao123.com – a well-known

adware-related site – as the referring site. The referral

tag is possibly used by Baidu to pay hao123 for referring

traffic to it. In one case, the redirected URL included

a search keyword for a clothing chain store. Interest-

ingly, another injection group, ’hao’, referred the user to

hao123.com itself, but using a different mechanism – an

HTTP 302 response.

Surprisingly, five injection groups showed strong indi-

cations that the aim of the injector was malicious. One

such group is ’gpwa’. The injections in this group tar-

get the traffic to gpwa.org. The forged content here in-

cludes a JavaScript that refers to a resource having the

same name as the one originally requested by the user,

but the forged resource is located at qpwa.org, a domain

that is suspiciously similar to the legitimate domain. The

forged domain is registered to a Romanian citizen, who

appears to be unrelated to the organization that registered

the domain gpwa.org. These are strong indications of

malicious intent. As of May 2016 the web server of

qpwa.org is still active at a web hosting provider based

in the US, however we have not been able to retrieve from

it the malicious script.

The injections in the ’duba’ group add to the original

content of a website a colorful button that prompts the

user to download an executable from a URL at the do-

main duba.net. The executable is flagged as malicious

by several anti-virus vendors.

Another malicious injection group is ’mi-img’. In

these injected sessions the client, which appears to be

an Android device, tries to download an application.

The injected response is a 302 redirection to another IP

address (no domain name is specified). According to

BotScout [2] – an online bot database – this forged IP

address is known to be a bot. We retrieved the applica-

tion from this IP address. The downloaded apk file is

flagged by Fortinet’s antivirus as a malware called ’An-

droid/Gepew.A!tr’.

Another injection group worth mentioning is ’server

erased’. In this group injections were identical to

the legitimate response but instead of original value of

the Server HTTP header, e.g., nginx/1.2.7, the string

’*******’ appeared. This is as if to prevent identifica-

tion of the web server’s software. We assume that this

injection is due to a security measure at the network op-

erator. The HTTP specification [14] indeed recommends

that Server header be configurable.

5.2 Distinguishing the Forged Response

from the Valid One

Identifying a race between two packets is a relatively

straightforward task. However, without a priori knowl-

edge of the legitimate content expected from the server,

automatically distinguishing the forged packet from the

legitimate one is not trivial. Nonetheless, in the follow-

ing we list a few rules that worked well for this difficult

task.

IP identification In many operating systems, such as

Windows and Linux [16], the IP identification value

equals a counter that is incremented sequentially with

each sent packet. Is some operating systems there is a

single global counter for all sessions. In others, there is a

separate counter for each destination. Indeed, our obser-

vations show that in most injected sessions the IP iden-

tification values of the packets sent by the web server

are either monotonically increasing (when the counter

is global) or consecutively increasing (when there is a

counter per destination). In most of the injection events

we observed that the injecting entity made no attempt to

make the identification value of the forged packet similar

to the identification values of the other packets sent by

the server. In Appendix D we detail a few of the (failed)

attempts of the injecting entity to mimic the Identifica-

tion field of the legitimate packet it aims to displace.

We formulate the following rule to determine which

of the two raced packets is the forged one: the forged

packet is the one that has the largest absolute difference

between its identification value and the average of the

identification values of all the other packets (except the

raced one).

For all injection events, we manually identified the

forged packet according to its content and compared it to

the corresponding identification that used the above rule.

The comparison reveals that the rule is accurate about

90% of the time. This is a fairly accurate measure con-

sidering that it is not based on the payload of the raced

packets.

IP TTL The IP TTL value in a received packet is de-

pendent on the initial value set by the sender and the

number of hops the packet has traversed so far. Thus, it

is unusual for packets of the same session to arrive at the
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client with different TTL values. Therefore, if the raced

packets have different TTL values we can use them to

distinguish between the two packets. From our observa-

tions, the injecting entity often made no attempt to make

the TTL value of the forged packet similar to the TTL

values of the other packets sent by the server. Similarly

to the case of the IP identification rule above, we iden-

tify the forged packet using the following rule: the forged

packet is the one that has the largest absolute difference

between its TTL value and the average of TTL values of

all the other packets (except the raced one).

Manual analysis of the injection events reveals that the

TTL rule correctly identified the forged packet in 87% of

all injection events. The TTL rule concurs with the IP

identification rule above in 84% of all injection events.

We thus conclude that the TTL and identification val-

ues can serve to effectively distinguish the forged packet

from the valid packet.

We note that our finding that the TTL and Identifica-

tion fields of the forged packets have abnormal values

generally agrees with findings on censorship-related in-

jections which also show that censoring entities do not

align the TTL and Identification values with those of the

legitimate packets (e.g., [8]).

5.3 Timing Analysis

The race between the forged and legitimate packets can

also be characterized by the difference in their arrival

times. By arrival time we mean the time at which the

packet was captured by the monitoring system. Since

the system captures traffic at the entrance to the edge

network close to the client, it is reasonable to assume

that these times are very close to the actual arrival times

at the end client. For each injection event we calculate

the difference between the arrival time of the legitimate

packet and the arrival time of the forged packet. A neg-

ative difference means that the forged packet “won” the

race, and a positive difference means that the legitimate

packet “won”. The histogram of the time differences of

all the injection events we observed are shown in Fig-

ure 4.

It is evident from Figure 4 that in most injection events

the forged packet wins the race. In only 32% of the

events does the legitimate packet arrive first. This re-

sult strengthens our initial assumption that the decision

to inject a forged packet is made according to the HTTP

request sent by the client. This means that the injecting

entity can send the forged packet well before the server

sends the legitimate packet, as the client’s request still

needs to travel to the server. Still, even in such a case,

in a non-negligible portion of events, the forged packet

loses the race. This may indicate injections that occurred

very close the server. Alternatively, it may indicate that
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Figure 4: Arrival time difference between the forged and

legitimate packets

in some cases the decision to inject the packet is made

at the time the response from the server is encountered.

In the latter case, the forged packet is at a distinct disad-

vantage as it starts the race lagging behind the legitimate

packet. In many cases in which the forged packet won

the race, the legitimate packet arrived very soon after, in

less than 10msec.

5.4 Repeatability

All injection groups were observed for only a short pe-

riod of time, usually one to three days, after which they

were not detected again by our monitoring system. A

few injection types were even encountered only once. No

long-term (3 days or more) injections were observed by

our monitoring system4.

We next tried to reproduce the injection events we ob-

served. This attempt was made several weeks after the

initial observations of the injections. For each injection

event we extracted the HTTP request that triggered the

injection. We then sent from the edge network in which

the injection originally occurred the same HTTP request

(following a proper TCP 3-way handshake) to the des-

tination web server. We sent each request 1000 times.

This is with the aim to reproduce the injections even if

they do not occur for every request. We captured the

resulting TCP sessions and searched for injections. We

were not able to reproduce any of the injection groups.

Following the initial publication of this work an effort

independent of our own to reproduce the injections had

more success [17]. The ’gpwa’ and ’hao’ injections were

successfully reproduced. However, the author of [17] has

4The only long-term injections we did observe were related to cen-

sorship and caching. These injections were the only ones we were able

to reproduce.
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not been able to reproduce those injections again in a sec-

ond attempt made a few weeks later. Moreover, when the

injections were observed by [17] they were not always

reliable. For one of the resolved IP addresses (for the

destination site’s domain name) the injections were ob-

served only 30% of the time (this information was given

to us via personal communication by the author of [17]).

From the above findings we surmise that, in gen-

eral, injections by on-path entities may be intermittent;

namely, the injecting entity injects forged content to a

particular site for only a short period of time before mov-

ing on to other sites. Moreover, when an injector is active

for a web site it may target only a portion of the HTTP

requests. This might be motivated by the desire of the

injector to stay “under the radar”. It is plausible that in-

jecting forged content to a site for only a short period of

time might go unnoticed by the users and site owners, or

at least would not cause them to expend effort investigat-

ing the forged content’s origin.

The injections we found were triggered by an HTTP

request to specific resources which in most cases were

not the main page of the site. This leads us to assume that

an effort to actively seek other sites for possible injec-

tions may be computationally too expensive as we would

need the crawl those entire sites.

5.5 Who is Behind the Injections?

We finally turn our attention to the culprits behind these

injection events. In general, it is difficult to unveil these

entities as there is no identifying information in the in-

jected content. Nonetheless, we can get indications as to

the identity of the injecting entities by trying to detect the

autonomous system from which the forged packet orig-

inated. We assume that the entity that operates this au-

tonomous system is the entity responsible for the injec-

tion.

Note that the analysis thus far shows strong indications

that the injections do not originate at the web servers

themselves. First, the injected responses had anomalous

IP ID and TTL values. To bring this about an inject-

ing rogue software on the end server would need to cir-

cumvent the standard TCP/IP stack as it sends packets.

While this is possible it would require the injecting soft-

ware elevated privileges and more complex logic to send

the injected responses. Such elevated privileges would

have also allowed the injector to block the valid response

and eliminate the possibility of a race altogether. Second,

most of the injected packets “win” the race. An attacker

injecting packets from the end server does not have a dis-

tinct advantage to win the race. Therefore it is reasonable

to assume that in such a case the race would have been

more even. Third, to the best of our knowledge there is

no malware that injects packets out-of-band. All known

malware that aim to alter traffic on the machine they re-

side alter the the actual packets to be sent (usually by

simply injecting code to the sending process or hooking

the suitable system services).

We note that we ruled out the possibility that the edge

network operators serving the networks we monitored

are responsible for the injections. We verified this by

speaking directly with the network operators’ adminis-

trators and sharing with them the injections we found.

Since the injections were not reproducible during this

analysis, we cannot employ the oft-used traceroute-like

procedure to locate the injector [22, 8, 24]. In this proce-

dure the packet triggering the injection is repeatedly sent

with increasing TTL values until the forged response is

triggered, thereby revealing the location of the injector.

To identify the injecting entities we resort to the follow-

ing procedure:

1. Estimate the number of hops the forged packet tra-

versed: this estimation relies on the packet’s TTL

value. Specifically, it relies on there being a signifi-

cant difference between the default initial TTL val-

ues set by the major operating systems [29]: in gen-

eral, the differences between those initial values are

larger than the length of most routes on the Internet.

The default initial TTL values of the major operat-

ing systems are 32, 64, 128 and 255. This means,

for example, that if a packet is received with a TTL

value of 57, the initial TTL value of that packet was

likely to be 64 and the number of hops traversed

was likely to be 7. If the estimated number of hops

is larger than 30 or smaller than 3 5, we assume the

estimation is incorrect and stop the analysis.

2. Identify the path from the destination server to the

client: the actual path from the server to the client

cannot be known without an agent in the server’s

network. Instead, we use the path from the client

to the server while assuming that the routing on this

path is symmetric. We identify the path from the

client to the server by using a ’traceroute’ tool. The

traceroute used a TCP syn packet with destination

port 80. We found that such a packet triggers re-

sponses from most routers and servers.

3. Infer the hop along the above path from which the

forged packet was injected: using the estimated

number of hops the forged packet traversed and the

estimated path it traversed, we can now infer the hop

on the path from which the packet was sent.

5Nearly all routes on the Internet are shorter than 30 hops [21]. Ad-

ditionally, it is very unlikely that the injecting third party resides less

than 3 hops away since the first couple of hops reside within the edge

networks we were monitoring.
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Injection group
Web server’s

AS number

Suspected

injecting AS

number

xunlei 17816 17816

szzhengan 4134 4134

taobao 4837 4837

uvclick 38182 38182

adcpc 38182 38182

server erased 4134 4134

GPWA 6943 6943

tupian 4812 4812

Table 3: The autonomous system numbers in which the

injected web servers reside and in which the suspected

injecting entities reside

4. Identify the autonomous system the injecting hop

belongs to: given the IP address of the hop, we can

now identify the autonomous system to which it be-

longs in order to reveal the entity responsible for

injecting the packet. To this end we leveraged pub-

lic databases that hold current BGP advertisements:

this allows us to identify the autonomous system

that advertises the given IP address. BGP advertise-

ments for mapping of IP addresses to autonomous

systems are known to be more precise and up-to-

date than Internet route registries [23].

It should be noted that this procedure has the following

caveats:

1. The initial TTL value of the injected packet may not

be one of the common default values. In such cases,

this analysis can not be carried out. In particular,

based on the TTL values of the injected packet, we

conclude that this is indeed the case for the injec-

tions in the groups ’jiathis’, ’uyan’, ’mi-img’, and

’icourses’.

2. Not all routes on the Internet are symmetric. If the

path from the client to the server is not symmetric,

the analysis will produce an incorrect result. We

address this issue in the next subsection.

3. The implicit assumption of this procedure is that the

injecting machine resides on-path. Strictly speak-

ing, this need not be the case. An on-path machine

monitoring the traffic can trigger the injection from

a remote machine. In such a case the forged packet

will travel on an entirely different path than the le-

gitimate packets.

In Table 3 we list the results of the above analysis.

For each injection group, we list the autonomous systems

AS number Operator

17816, 4837 China Unicom

4134, 4812 China Telecom

38182 Extreme Broadband (Malaysia)

6943 Information Technology Systems (US)

Table 4: The operators for each suspected injecting au-

tonomous system

in which the destination sites reside and the autonomous

systems suspected of the injections. The table lists only

injection groups for which the analysis can be performed;

namely, the estimated number of hops the injected packet

traversed is not larger than 30 and not smaller than 3, and

it is also not larger than the path between the client and

server.

In all cases where the above analysis succeeded, it

indicated that the forged content was injected 2-5 hops

away from destination site. Since the injection groups

are largely independent we believe that this is a signal

that the assumptions we made throughput the above anal-

ysis are not far off. In all cases the injector is located in

the very same autonomous system where the destination

site resides. Indeed, this is the most reasonable location

for an injector to be in order to alter content for all web

users accessing the targeted site.

Table 4 lists for each suspected injecting autonomous

system the organization that operates it. It is worth not-

ing that two of the largest network operators in China

– China Unicom and China Telecom – are suspected of

practicing content injections. Moreover, the autonomous

systems of these operators originate injections of differ-

ent groups. This might imply that more than one injector

mechanism is deployed in these autonomous systems.

The operator of the suspected autonomous system for

the ’gpwa’ group is Information Technology Systems. In

this particular case, this is the organization that is respon-

sible for the content of the destination site for these injec-

tions – gpwa.org. Since there are strong indications that

the injections of this group are malicious (see discussion

in Section 5.1), we assume that the attacker compromised

a router in the suspected autonomous system.

Using a traceroute from the server-side

As noted above, a caveat of the above analysis is that we

used traceroutes from the client to the server while as-

suming this route is symmetric. This is a necessity since

we cannot execute a traceroute to the client from the ac-

tual server. To address this caveat we leveraged RIPE At-

las [26]. This is a global network comprised of thousands

of probes hosted throughout the Internet. Each probe can
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AS number Injection groups

4812 tupian

4134 szzhengan, server erased

4808 uyan, icourses, jiathis

Table 5: Autonomous systems which host RIPE At-

las probes and the corresponding injection groups that

forged traffic of web servers residing in those au-

tonomous systems

be instructed to execute a measurement out of a prede-

termined set that includes ping, DNS query, HTTP re-

quest and traceroute. RIPE Atlas hosts 6 probes in 3

autonomous systems that host destination sites the con-

tent of which was forged. The autonomous systems and

the corresponding injection groups that forged content

for destination sites residing in each autonomous system

are listed in Table 5.

For each of the 6 probes we executed a traceroute from

it to the edge network where the corresponding injection

events were identified. We then employed the procedure

we described above on these new traceroutes. We note

that using these traceroutes may still not be without er-

ror. The probes indeed reside in the autonomous systems

that host the destination site; however, we cannot guar-

antee that their route to the client is the same as the route

from the destination site. Specifically, the traffic from the

probe may exit the autonomous system through a differ-

ent point than the traffic originated from the site.

The traceroute from each of the 3 autonomous sys-

tems to the corresponding edge network were different

than the opposite routes from the edge networks to those

autonomous systems. Nonetheless, in all cases, a pair

of routes in opposite directions traversed the same au-

tonomous systems with the exception of one Tier-1 au-

tonomous system; namely, each route traversed a dif-

ferent Tier 1 operator (for example, the route between

the client and the server traversed Level 3’s AS while

the route in the opposite direction traversed Cogentco’s

AS). The other autonomous systems on the routes were

the same; this is why the outcome of the analysis with

these routes was the same as for the routes in the op-

posite direction. The analysis for the ’szzhengan’ and

’server erased’ injections yielded the same suspected au-

tonomous system – 4134, while the analysis for the ’tu-

pian’ injections yielded a different autonomous system

– 4134 instead of 4812 found by the previous analysis.

Nonetheless, these autonomous systems are siblings op-

erated by the same company – China Telecom.

The injecting groups that correspond to destination

sites residing in autonomous system 4808 – ’uyan’,

’icourses’, and ’jiathis’ – were set with an unknown ini-

tial TTL value (namely the estimated number of hops

was larger than 30 or smaller than 3); hence the analy-

sis cannot be performed on them.

6 Proposed Mitigation

The best mitigation against TCP injection attacks is sim-

ply to use HTTPS. Unfortunately, this is not always sub-

ject to the discretion of the user. Many web sites still

do not support HTTPS [5]. A user wishing to access a

website that does not support HTTPS must resort to the

unprotected HTTP. Moreover, about 17% of the Alexa

Top 500 websites still serve a login page over HTTP but

submit the users password over HTTPS [30]. This setup

allows an on-path entity to steal a user’s login creden-

tials by injecting a false login page. In this section we

present a client-side mitigation measure that monitors the

incoming HTTP traffic and blocks injected forged TCP

segments, thereby defending the user even if he must use

HTTP.

A naive mitigation measure is to simply apply the pro-

cedure described in Algorithm 1 on the monitored traffic

in order to identify packet races. Nonetheless, such an

approach means that every incoming packet must be de-

layed for 200msec. Such a delay is necessary in order to

make sure a given packet is not an injected packet forg-

ing a legitimate one. Only after 200msec have passed

with no race detected can we accept the packet. Such an

approach incurs noticeable delay on the incoming traffic

and degrades the user’s browsing experience. This ap-

proach, however, by definition, ensures that all injected

packets will be identified and blocked. In Section 6.1 we

detail our experimental results with such an approach.

We use these results as a benchmark for the next mitiga-

tion approach.

An improved approach is to take advantage of the in-

sights we presented in Section 5.2, where we showed that

for the vast majority of the injected packets, the values

of the TTL and Identification fields in the IP header do

not correspond to the respective values of the legitimate

packets of the session. This insight can be leveraged

to improve the naive mitigation measure such that only

packets with abnormal TTL or Identification values will

be delayed for 200msec, and only for those packets will

we try to detect a race. This way only suspicious packets

are delayed.

Algorithm 2 in Appendix E details the improved miti-

gation algorithm. Note that this algorithm will be effec-

tive only if the forged packets exhibit anomalous TTL or

Identification values as compared to the legitimate pack-

ets in the injected session. We note that it is possible

for an injector to inject a packet with values that will not

appear anomalous, as in most likelihood it can also in-

spect the traffic sent by the web server. Anomalous TTL
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and identification values have also been observed in the

censorship-related state-sponsored injections [8]. This

indicates that aligning the TTL and identification values

to the legitimate values might not be trivial to implement.

Indeed, aligning the identification value requires that in-

jector keep track of the identification values of packets

sent by the web server for every potential session that

may be injected, well before the actual injection deci-

sion is made. This may require a substantial addition of

memory space and computational overhead. If the in-

jector does align the TTL and identification values, the

improved mitigation algorithm we propose will not be

effective and the naive approach must be used.

6.1 Experiments

We now detail our experiments to evaluate the two mit-

igation algorithms – the naive and improved algorithms.

We evaluate the algorithms using two measures:

1. Web page load time increase – this measure shows

the increase of time it takes to load a web page as

compared to the case where no mitigation measure

is employed. This measures the extent to which the

algorithm degrades the user’s experience.

2. False negatives – this measure counts how many in-

jections are not identified. This measures the effec-

tiveness of the algorithm.

We evaluated the algorithms against two data sets:

1. Benign data set – this data set includes traffic of

benign web browsing having no content injection.

We used the 200 most popular sites from Alexa’s

list [1]. From these sites we used the ones for which

majority of their objects are fetched using HTTP

(rather than HTTPS). There are 136 of these sites

that met this criterion.

2. Injected data set – This data set includes the injected

sessions we captured throughout our observations.

The two algorithms were evaluated on the benign data-

set to measure the web page load time increase. We

browsed each website using PhantomJS. We inspected

the incoming traffic while leveraging the NFQUEUE tar-

get of Linux iptables [6]. We measured the load time

of each website 5 times and recorded the smallest load

time value to disregard intermittent network delays. We

compared these load times to the load times where no

mitigation algorithm is deployed.

The two algorithms were evaluated on the injected

data set to measure the false negative events, i.e., the

injections that were missed. Table 6 summarizes the

findings. It is evident that the naive algorithm imposes

Algorithm
Load time

increase

False

Negative

naive 120% 0%

improved 12% 0.3%

Table 6: The performance of the two mitigation algo-

rithms.

a considerable increase in page load time – 120%. In

contrast, the improved algorithm incurs a mere 12% in-

crease, while having a negligible false negative rate of

0.3%.

7 Related Work

The practice of Internet traffic alteration has been studied

in several works [20, 34, 28, 39], all of which have em-

ployed the server-centric approach described in the In-

troduction.

In [20, 34] the authors deployed a website that directs

users to about 20 back-end servers that deliver a Java ap-

plet. The applet runs a series of tests which try to fetch

predetermined content. The analysis found many web

proxies of several categories, the most popular of which

are anti-virus software installed on the end clients, HTTP

caches and transcoders deployed by ISPs, and security

and censor proxies deployed by enterprises and coun-

tries. Ref. [34] identifies two ISPs that employ HTTP

error monetization, and one that injects advertisements

into all HTTP connections.

In [28] the authors set up a web server that delivers

the same content from a handful of different domains.

The content includes a JavaScript code that runs when

the page is loaded in the client’s browser and reports any

detected changes to the web page. It found that most

changes to the content were made indiscriminately re-

gardless of the originating domains. Most of the con-

tent modifications were due to software installed locally

on the end clients or due to security gateways deployed

at enterprises. Other modifications were due to ISPs

that compressed content delivered to their users. Addi-

tionally, 4 ISPs and a company that provides free wire-

less service were identified as injecting advertisements to

web pages their customers visit.

In [39] the authors leveraged the online advertising in-

frastructure of several ad networks to spread a specially

crafted Flash-based advertisement that runs a JavaScript

code and retrieves a preconfigured measurement page

while reporting back any change made to it. Almost 1000

page alteration events were detected; however, the por-

tion of events for which ISPs are responsible is unknown.

The authors of [38] investigate inflight modifications

of traffic from an unnamed popular Internet search ser-
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vice. In contrast to the abovementioned works, here the

changes were detected by the IP address the client con-

tacted, which was different than the addresses owned by

the search service. This work found 9 ISPs that proxy

their customers’ traffic destined to the search service.

The redirection to the proxy is done by resolving the

DNS name of the service to the IP address of the proxy.

A considerable body of work deals with censoring

countries and the mechanisms they use to censor Internet

traffic. The authors of [33] have categorized the mecha-

nisms of the censorship employed by different countries.

It is noted that China and Thailand use out-of-band de-

vices to send forged packets, which are usually HTTP

302 redirection, or a TCP reset.

In [35] it was shown that several ISPs enforce usage

restrictions of their networks by actively terminating un-

desirable TCP connections. The authors note that this is

done by sending forged TCP resets out-of-band. They

then leverage this insight – much as we do in the cur-

rent work – to identify these forged resets. Nonetheless,

the detection conditions are different than the ones we

used since the forged TCP reset has no payload to spoof;

hence, the detection conditions mainly revolve around

the arrival time and sequence number of the reset seg-

ment as compared to those of other segments in the con-

nection.

The authors of [13] discuss attacks that employ out-

of-band injection of forged DNS responses. To mitigate

the effects of such attacks it is suggested that the resolver

wait after receiving an initial reply to allow a subsequent

legitimate reply to also arrive. In particular, the resolver

should wait for another reply if the first reply arrived

sooner than half of the expected RTT since the query was

issued or if the TTL field in the IP header does not have

the expected value. If indeed two replies eventually ar-

rive, this indicates an attack.

8 Conclusions

In this work we reveal a new side to the practice of false

content injection on the Internet. Previously, discussion

on this practice focused on edge ISPs that limit their mis-

deeds to the traffic of their customers. However, we dis-

covered that some network operators inject false content

to the traffic of predetermined websites, regardless of the

users that visit them. Our work leverages the observa-

tion that rogue content injection is done out-of-band. It

can hence be identified while monitoring an edge net-

work in which the victim clients reside. Our analysis is

based on extensive monitoring of a large amount of In-

ternet traffic. We reveal 14 groups of content injections

that primarily aim to impose advertisements or even ma-

liciously compromise the client. Most of the financially-

motivated false content injection we observed originated

form China. Our analysis found indications that nu-

merous injections originated from networks operated by

China Telecom and China Unicom – two of the largest

network operators in Asia.
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A “Ack storm” due to TCP Injection

An “Ack storm” occurs when the injected segment

causes the receiver to send an acknowledgment for data

bytes having sequence numbers that were not yet sent

by the peer. This acknowledgment is dropped by the

peer, triggering it to respond by resending an earlier Ack,

which may in turn trigger a retransmission by the re-

ceiver. The retransmitted segment will include again an

acknowledgment for the yet to be sent sequence numbers

and so forth. Such a “ping-pong” exchange, if run long

enough, will cause the connection to timeout and reset.

In many cases this is undesirable for the injector as it

will interfere with the flow of traffic on the connection.

An “Ack storm” can subside if the peer eventually sends

data bytes having sequence numbers that correspond to

those of the forged data bytes injected by the third party.

B Injection Detection Algorithm

Algorithm 1 details the procedure for detecting packet

races. This algorithm is executed by each worker pro-

cess upon the receipt of a new packet. In the following,

CP denotes the currently received packet and S denotes

the set of packets received so far as part of the session

of CP. P( f ) denotes the value of parameter f of packet

P. If parameter f is a field of TCP or IP, it is denoted by

the protocol and field names, e.g., P(IP total length) de-

notes the value of the field Total Length in the IP header

of packet P. The algorithm returns True if and only if a

race is detected.

In Algorithm 1, line 1 iterates over the previously

received packets of the current session. Line 2 veri-

fies that the two considered packets have been received

within a time interval that does not exceed the parame-

ter MaxIntervalTime. Lines 5 and 6 compute the total

lengths of the TCP and IP headers of each of the two

packets. Lines 7 and 8 compute the payload size of each

of the two packets. Lines 9 and 10 compute the TCP

sequence number of the last byte delivered in the pay-

load in each of the two packets. Lines 11 and 12 check

for a sequence number overlap between the two packets.

Line 15 checks whether the overlapped payload is differ-

ent. If it is, a race is detected and the algorithm returns

True.

To avoid false positives, we did not consider the fol-

lowing packets (not shown in Algorithm 1):

1. Checksum errors – packets that have checksum er-

rors either in the TCP or IP headers will clearly have
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Input: CP, S

1 foreach OP in S do

2 if CP(t) - OP(t) > MaxIntervalTime then

3 continue;

4 end

5 CP(headers size) = CP(IP header length) + CP(TCP data offset)*4;

6 OP(headers size) = OP(IP header length) + OP(TCP data offset)*4;

7 CP(payload size) = CP(IP total length) - CP(headers size);

8 OP(payload size) = OP(IP total length) - OP(headers size);

9 CP(top sequence number) = CP(TCP sequence number) + CP(payload size);

10 OP(top sequence number) = OP(TCP sequence number) + OP(payload size);

11 if CP(top sequence number) > OP(TCP sequence number) then

12 if OP(top sequence number) > CP(TCP sequence number) then

13 bottom overlap = MAX(CP(TCP sequence number), OP(TCP sequence number));

14 top overlap = MIN(CP(top sequence number), OP(top sequence number));

15 if CP(TCP payload)[bottom overlap:top overlap] !=

OP(TCP payload)[bottom overlap:top overlap] then

16 return True;

17 end

18 end

19 end

20 end

21 return False;

Algorithm 1: Race detection algorithm

a different payload than that of their retransmission.

2. TCP reset – reset packets can carry data payloads

for diagnostic messages which are not part of the

regular session’s byte stream.

C False Positives

There were numerous events in which the race identifi-

cation algorithm (described in Appendix B) of our mon-

itoring system identified a race that was not due to a

forged packet injection. In the following we describe

these events and why they occur:

Retransmissions with different content As per the

TCP specification [27], the payload of retransmitted seg-

ments must have the same content as the payload of the

original segment. In practice, however, this is not always

the case, and retransmitted segments sometimes carry

slightly different content, for the following reasons:

• Load balancing – some websites serve HTTP re-

quests using more than one server. Usually, a front-

end load balancer redirects the HTTP requests ac-

cording to the current load on each web server. It

is sometimes desirable that the same server serve

all HTTP requests coming from the same client.

To facilitate this, the first HTTP response sent to

a client sets a cookie containing the identity of the

server chosen to serve the client from now on. Sub-

sequent requests from that client will include this

server ID and allow the load balancer to redirect

those requests to that server. If the first HTTP re-

sponse needs to be retransmitted, some load bal-

ancers might, at the time of the retransmission,

choose a different web server than the one they

originally chose when the response was first trans-

mitted. This results in a different cookie value set

in the retransmitted response. Examples of web-

sites that exhibit such behavior are wiley.com and

rottentomatoes.com.

• Accept-Ranges HTTP header – the HTTP 1.1 spec-

ification [15] allows a client to request a portion of

a resource by using the Range header in the HTTP

request. It may do so in cases where the web server

has indicated in previous responses its support of

such range requests. Such support is indicated

by the Accept-Ranges header. We observed cases

where a web server sent an HTTP response which

included ’Accept-Ranges: none’, indicating that the

server is unwilling to accept range requests, while

in a retransmission of the same response the header

was replaced by ’Accept-Ranges: bytes’, indicat-

ing that it is willing to accept range requests having

units of bytes. This happened when the retrieved
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resource spanned multiple TCP segments. Presum-

ably, the intention of the server is to allow the client

to retrieve a portion of a resource when network loss

is high. Examples of websites that exhibit such be-

havior are sagemath.org and nih.gov. Further-

more, such behavior was exhibited by several types

of web servers, including Apache, nginx and IIS.

• Non-standard HTTP headers – we have observed

that in some web applications that use non-standard

HTTP headers (namely, headers that begin with

’x-’), a retransmission of an HTTP response has dif-

ferent values for these headers than their value in the

initial response. For example, Amazon’s S3 service

includes in every response the headers ’x-amz-id-2’

and ’x-amz-request-id’, which help to troubleshoot

problems. These headers have a unique value for

each response even if it is a retransmission.

Retransmissions with different sequence numbers

For a few websites we encountered sessions in which a

retransmitted TCP segment started with a sequence num-

ber that was offset by 1 compared to the sequence num-

ber of the original segment. This might occur due to a

bug that caused the unnecessary incrementation when a

FIN segment was sent between the original and retrans-

mitted segment. There were no indications in the HTTP

responses as to the type of software executed by those

web servers. This unnecessary incrementation might also

be an artifact of a middle-box that serves the traffic to

those servers. An example of a website that exhibits such

behavior is www.knesset.gov.il.

Non-compliant TCP traffic We encountered many

TCP sessions (over port 80) which do not appear to

have originated from TCP-compliant nodes. There was

no proper 3-way handshake to open the session, the ac-

knowledgment did not correspond to the actual received

bytes, flags were set arbitrarily, and the sequence num-

bers were not incremented consecutively. This last point

led our monitoring system to flag many of these ses-

sions as injected sessions. Many of these sessions in-

cluded only unidirectional incoming traffic that origi-

nated from a handful of networks primarily residing in

hosting providers (such as GoDaddy and Amazon). We

suspect that these are communication attempts by a com-

mand and control server to its bots. However, we have no

proof of this.

D Attempts to Mimic the Identification

Values of the Legitimate Packet

In the following we account for some of the failed at-

tempts we observed in which the injecting entity tried to

mimic the identification value of the legitimate packet.

Note that in order to increase the chances of winning the

race with the legitimate packet, the forged packet is in-

jected well before the injecting entity has a chance to in-

spect it. For this reason the injecting entity can not sim-

ply copy the identification value of the legitimate packet

to the forged one.

1. Duplicate ID with a packet from the server – in

some cases the injecting entity tries to mimic the

identification values of the packets sent by the

server to make the forged packet less conspicuous.

Sometimes this is done rather carelessly by sim-

ply copying the identification number of one of the

packets the server already sent (not the legitimate

packet the entity wishes to forge). This means that

the client receives two IP packets from the server

having the exact same identification number. This

situation is highly unlikely to occur without the in-

tervention of a third party in the session, as the IP

layer of the server must make sure that each packet

in the session has a unique identification value.

2. Duplicate ID with a packet from the client – in dif-

ferent attempts to, perhaps, mimic the identification

values of the packets sent by the server, some in-

jectors simply copy an identification value from the

HTTP request packet that triggered the response.

Since this packet is, of course, sent by the client,

the injector cannot achieve its goal; the identifica-

tion values of the packets sent by the client are com-

pletely independent of those sent by the server. We

can use this to our advantage. It is possible but un-

likely that two packets – one sent by the server and

the other by the client – have the same identification

value.

3. Swapped bytes of an ID in packets coming from

the client – we noticed that at least one injector that

aims to copy the identification value from a packet

coming from the client (as described in the previ-

ous rule), does so in such a way that the two bytes

of the copied values are swapped. For example, if

the identification value of a packet coming from the

client is 0xABCD, then the identification value of

the injected packet will be 0xCDAB. This is prob-

ably due to a bug of the injector6. Occurrence of

such an event is highly unlikely without third-party

intervention.

E Improved Mitigation Algorithm

Algorithm 2 details the proposed mitigation algorithm.

The algorithm is executed upon the receipt of a new in-

6Most likely the bug is a case of big endian/little endian confusion.
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Input: CP, S

1 if Check Race(CP,S(Suspicious Queue)) then

2 Block suspicious packet;

3 end

4 Suspicious = False;

5 if abs(CP(IP TTL)-S(Average TTL)) > 1 then

6 Suspicious = True;

7 end

8 Lower ID Boundary = (S(Last ID) - 10)%216;

9 Upper ID Boundary = (S(Last ID) + 5000)%216;

10 if CP(IP ID) < Lower ID Boundary or CP(IP ID) > Upper ID Boundary then

11 Suspicious = True;

12 end

13 if Suspicious == True then

14 S(Suspicious Queue).append(CP);

15 end

16 else

17 Update S(Average TTL) with CP(IP TTL);

18 S(Last ID) = CP(IP ID);

19 Accept CP;

20 end

Algorithm 2: Mitigation algorithm

coming packet – CP. As in Algorithm 1 above, S denotes

the session of CP. P( f ) denotes the value of parameter f

of packet P. If parameter f is a field of TCP or IP, it is de-

noted by the protocol and field names, e.g., P(IP ID) de-

notes the value of the field Identification in the IP header

of packet P.

The algorithm maintains a queue of packets that are

suspected of being forged. The incoming packet is first

checked against the suspicious packets for a race. If a

race is detected, the suspicious packet is blocked. Af-

terward, the TTL of the incoming packet is compared

against the average of TTL values of the previous pack-

ets received in the same session. If the difference is larger

than 1, then the packet is marked as suspicious. The

packet is also marked as suspicious if its Identification

value is higher than 5000 plus the Identification value

of the previously received packet of the session or lower

than that value minus 10. The rationale behind this com-

parison is that we generally expect the Identification val-

ues of the session be monotonically increasing, except

in cases of packet reordering. If the packet is marked

as suspicious it is enqueued to the suspicious queue for

200ms. If the packet is not suspicious the value of the

average TTL and last ID are updated and the packet is

accepted.

Note that a race will not be identified if the injected

packet arrives after the legitimate one. This is because

the legitimate packet will not be delayed, and once the

inject packet is received it will not be checked for a race

against the legitimate one. Nonetheless, this does not

compromise the security of the client since in this case

the content of the injected packet will not be accepted by

the client’s TCP layer.
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