

Recover a RSA private key from a TLS
Session with Perfect Forward Secrecy

Marco Ortisi

 July 25 th, 2016

TABLE OF CONTENTS

1 ABSTRACT .. 4

2 INTRODUCTION .. 5

2.1 RSA-CRT PREREQUISITES .. 5

2.1.1 RSA signature with RSA-CRT .. 5

2.1.2 The RSA signature must be faulty .. 5

2.1.3 The RSA signature must be calculated on known values ... 6

3 GENTLE INTRODUCTION TO RSA .. 8

3.1 WHAT IS A RSA SIGNATURE .. 8

3.2 HOW RSA WORKS ... 8

3.3 RSA-CRT AND LENSTRA ATTACK ... 9

3.4 DOUBLE CHECK RSA-CRT ... 10

4 EXPLOITING RSA-CRT ... 11

4.1 ACTIVE APPROACH ... 11

4.2 PASSIVE APPROACH .. 13

4.3 HOW TO DETECT THE PRESENCE OF A FAULTY SIGNATURE .. 13

4.3.1 TLS < 1.2 .. 13

4.3.2 TLS 1.2 .. 14

4.4 OTHER PROTOCOLS .. 15

4.4.1 IPSEC and IKE ... 15

5 AFFECTED PRODUCTS ... 17

5.1 THE FIX .. 18

6 TOOLS .. 19

6.1 HIGH VOLTAGE ... 19

6.2 PICIOLLA ... 19

6.3 PREPARE A TEST ENVIRONMENT .. 20

7 RESOURCES ... 22

LIST OF TABLES

Table 1 – RSA-CRT vulnerability: affected crypto libraries, software and vendors 17

Table 2 – RSA-CRT vulnerability: Hardware vendors / products affected 18

LIST OF FIGURES

Figure 1 – Random Structure from TLS Client Hello Message .. 11

Figure 2 – Random Structure from TLS Server Hello Message ... 11

Figure 3 – “n” value (server public key) from TLS Server Certificate Message 12

Figure 4 – “e” exponent from TLS Server Certificate Message .. 12

Figure 5 – Server Params Structure from TLS Server Key Exchange Message 12

Figure 6 – RSA Signature from TLS Server Key Exchange Message 13

Figure 7 – How to check if a RSA digital signature is faulty (TLS < 1.2) 14

Figure 8 – How to check if a RSA digital signature is faulty (TLS 1.2) 14

1 ABSTRACT
This whitepaper describes an attack technique against RSA-CRT that whether successfully

exploited allows a malicious agent to retrieve the private key from a TLS service supporting

Perfect Forward Secrecy cipher suites, just by interacting with it in an active way or passively

sniffing the traffic.

Section 2 introduces the history of this attack and the preconditions that must be satisfied for

its exploitation.

Section 3 provides a gentle introduction to the RSA cryptographic algorithm and RSA-CRT

optimization. Once the basics have been built, Section 4 describes in detail how to exploit the

vulnerability. Affected crypto libraries, software solutions and hardware products are covered

on Section 5. The proof of concepts developed, including how to set up a test environment to

do practice with the exploitation of this vulnerability, is presented in Section 6.

External links and resources are finally listed on Section 7.

2 INTRODUCTION
The RSA-CRT attack has very deep roots in the past but for long time has been believed

exploitable only locally. In 1996 Arjen Lenstra[1] demonstrated that the usage of the so-called

CRT (Chinese Remainder Theorem) optimization put the RSA implementations at great risk if

a fault occurred during the computation of a digital RSA signature. Specifically the risk was

the leak of the private key of server.

Around 2000, researchers conjectured that smart cards were sensibly affected by the same

problem, but this required the necessity for an attacker to have physically access to the device

in order to try to disrupt the math behind RSA and retrieve the private key. In 2001 a pool of

researchers discovered what will be known in the IT security history as the "OpenPGP format

attack"[2]. An attacker could retrieve the server’s private key by:

1. getting a local copy of file containing the encrypted private key;

2. tampering with it in order to introduce faulty bits;

3. capturing a single message subsequently signed with the modified encrypted private

key;

Of course, once more, this required local access in the system to work. The first researcher

that described how the attack could also have remote impacts and implications was Florian

Weimer[3] from RedHat at the end of 2015. Unfortunately, no proof of concept was released

along with his research.

The hereby whitepaper aims to fill up this gap, trying at the same time to explain with an

approach more “for the masses” the details and implications of this attack technique.

2.1 RSA-CRT PREREQUISITES
In order to exploit the RSA-CRT vulnerability on a target system, three prerequisites must be

met:

 The RSA signature must be calculated using the RSA-CRT optimization;

 The RSA signature must be faulty, namely calculated in a wrong way;

 The RSA signature must be computed on values the attacker knows in clear-text.

Below we analyze all of them one by one.

2.1.1 RSA signature with RSA-CRT
The modular exponentiations required by RSA are computationally heavy. RSA-CRT is an

optimization that introduces a less expensive way to do RSA calculations where a private key

is involved (decryption and signing operations). It is used by default in every modern crypto

library (including openssl, mbedTLS, Java SE, Nettle, libgcrypt, etc…) and due to performance

reasons is not advisable to disable such a feature. Because of this, the hereby prerequisite is

normally satisfied.

2.1.2 The RSA signature must be faulty
Events causing some faults during computational operations because of CPU overheating,

RAM errors, massive exposure of hardware to solar rays, radiation, abnormal voltage, etc…

have been well-known and documented in the past. For example, they are the cause that

make possible a bitsquatting attack. The miscalculation of a digital RSA signature is an

unpredictable event but this does not mean it will never occur. It is not only is possible but can

also happen without the external intervention of a malicious agent.

2.1.3 The RSA signature must be calculated on known values
This condition is normally met if the attacker carefully chooses to negotiate only specific cipher

suites and, of course, if the server supports those. When Diffie Hellman is used as a key

exchange mechanism and RSA is used as authentication algorithm only, this prerequisite is

always satisfied, including when the Elliptic Curve variant is agreed with the TLS connection.

In fact, if cipher suites such as DHE_RSA_WITH_ANY_ANY_ANY_ANY or

ECDHE_RSA_WITH_ANY_ANY_ANY_ANY are agreed, a dynamically generated RSA

signature is appended onto a TLS Server Key Exchange Message. This signature is applied

on three specific, concatenated, pieces of information which are observed during the TLS

handshake (for more detail about that process see the section 4.1):

 Client Random structure taken from the Client Hello Message;

 Server Random structure taken from the Server Hello Message;

 Server Params structure taken from the Server Key Exchange Message;

With TLS, a message that needs to be signed is hashed and padded first, so that the result

produced in output is a stream of bytes which has the same length of the RSA key. Padding

is very important because actually it changes the final shape of a clear-text message.

Moreover, for this specific attack technique, it is imperative for the attacker to know the exact

clear-text message which is signed. Anyway, the padding scheme used by SSL in every

known version nowadays (from SSL 3.0 to TLS 1.2) is a fully deterministic variant of PKCS

1.5. This means that it is predictable.

2.1.3.1 Padding with TLS < 1.2

A RSA digital signature is nothing more than a hash of some plain-text value then encrypted

with the private key of server. For example, assuming that the following hash (from now on

termed “payload”) must be signed:

0D3F8FF87A4D697E73FE86077FD1D10C4ECC59797E759EDD89931B2208B8044CB4A

1B96A

Below is how the message would be padded before a signature with RSA 2048 was applied

and inserted inside a TLS Server Key Exchange Message:

0001FFF

FFF

FFF

FFF

FFF

FFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000D3F8FF87A4D697E73FE86077FD1D

10C4ECC59797E759EDD89931B2208B8044CB4A1B96A

Basically “0001” (green color) is always prepended to the sequence of padding bytes, instead

“00” (blue color) is always appended to the end. In the middle the padding is more or less

composed by a long sequence of “FF” (violet color) depending on the payload length (yellow

color), where:

number_of_FF = (size_of_RSA_key – green_bytes – blue_byte – payload_len)

Finally the payload itself follows.

2.1.3.2 Padding with TLS 1.2

With TLS 1.2 the padding scheme is pretty similar to that one seen in the previous paragraph.

There is a small difference anyway. Let us assume the payload to be signed is the following:

3B62EAB7A60E798C9E251FD8399FC3619B1B5B751B042AFE8D7A123DD850D839653

EFBAC11B17C37182FA9532D2C17804F75F7DDBD84D57A4C4E062771F225A3

Below how it would be padded:

0001FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FF003051300D060960

8648016503040203050004403B62EAB7A60E798C9E251FD8399FC3619B1B5B751B042A

FE8D7A123DD850D839653EFBAC11B17C37182FA9532D2C17804F75F7DDBD84D57A4

C4E062771F225A3

Basically, the new entry here is the grey part. It represents the DER encoded form of the

Object Identifier (OID) for the hashing algorithm used to hash the payload (yellow color). In

this specific case it indicates SHA512[6]:

const unsigned char sha512_der_encoded[] =

"\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x

40";

With TLS < 1.2 the indication of the hashing algorithm used is unnecessary because the

payload is always the outcome of two hashes concatenated each other and respectively

calculated by using the MD5 and SHA1 hashing algorithms (see 4.3.1).

3 GENTLE INTRODUCTION TO RSA
Below follows a gentle introduction to RSA. It is about how RSA works and why RSA-CRT

poses a problem. This chapter can be skipped if the reader deems to own solid basics about

this crypto standard.

3.1 WHAT IS A RSA SIGNATURE
To understand the basis of this whitepaper is very important to have a gentle introduction to

the main concepts around RSA and public key encryption. With RSA a public key (freely

distributable) is used to encrypt a message, instead the private key (that as the name suggests

must be kept secret) is used to decrypt that message. To oversimplify we can say that there

is a case when the private key is instead used to encrypt, namely when an entity wants to sign

a message. In that specific case, the public key is conversely used to decrypt such a value

and prove the authenticity of the signature because of the “mathematical” connection between

private key and public key.

3.2 HOW RSA WORKS
RSA is a very simple standard. The encryption and decryption functions can be merely

described in terms of multiplication, exponentiation and modulo operations:

encryption = c = m^e % n

decryption = m = c^d % n

Where:

^ = exponentiation operation

% = modulo operation

* = multiplication (when used below)

In this context:

 c is the ciphertext (the encrypted message);

 m is the message to encrypt;

 n and e are public information and in fact they compose the public key. While “e” is a

little exponent (usually a value such as 3 or 65537) that is found inside the server

certificate (Figure 4), n is instead a big semi prime number which is also found inside

the server certificate (Figure 3) and is given by the multiplication of two prime numbers

termed “p” and “q”. The security of RSA rotates entirely around the fact that these two

prime numbers must not be revealed or discovered.

 d is the private key mathematically tied with n. It is calculated by feeding the modular

inverse function[4] with "e" and the result of p-1 multiplied by q-1 (see the formula

below):

d = inverse_mod(e,(p-1) * (q-1))

Just a couple of sentences above, we have said that the security of RSA rotates around the

robustness of “p” and “q”. To say the truth, it is even worse than this. Actually, the discovery

of just one of “p” and “q” is enough to derive a private key, because “e” is already a public

information. This can be verified very easily. Reasoning on small numbers, let us assume that

n (the public key into the certificate) has the value 77. If at some point, an attacker discoveres

the value of “p” is 7, the other prime number “q” can be recovered just dividing n by p:

q = 11 -> 77 / 7

The same is whether the attacker discovers that q is equals to 11. In that case, p can be

retrieved just by simply calculating:

p = 7 –> 77 / 11

And naturally p multiplied by q gives n as a result:

n = 77 -> 7 x 11

Once again, this means that by deriving a prime factor of n (whatever of the two) one can

determine the other one and recover the private key. Here is where the problem with RSA-

CRT comes. When the Lenstra attack[1] is successful, it allows to acquire one of the prime

numbers (“p” or “q”). Let us see how.

3.3 RSA-CRT AND LENSTRA ATTACK
RSA-CRT (Chinese Remainder Theorem) has been developed as a performance optimization

for RSA operations where the RSA calculation is broken down in two smaller parts. The

following values are precomputed:

qInv = (1/q) mod p

dP = d * (mod p - 1)

dQ = d * (mod q - 1)

These other values shown below are instead calculated dynamically because the message to

sign is of course supposed to be always different:

s1 = m^dP mod p

s2 = m^dQ mod q

h = (s1 – s2) * qInv mod p

s = s2 + q * h

If during the calculation of s1 or s2 there is a fault, a wrong signature is generated. An attacker

can retrieve a prime factor of n from a miscalculated signature when RSA-CRT is used for

signing operation by using the greatest common divisor[5] function shown below (see [1] for

further details):

gcd(y^e – x, n)

The information required to feed the “gcd” function are all public and visible during the TLS

handshake. In addition, those can be also captured with no effort with a passive sniffer. In fact:

 y is the faulty/miscalculated signature. This can be taken directly from the TLS Server

Key Exchange packet (Figure 6);

 e is the public exponent found inside the TLS Certificate Message (Figure 4);

 x is the original value before to be signed. It is padded but PKCS 1.5 padding

scheme is deterministic with TLS (see the paragraph 2.1.3);

 n is the public key (p * q) also found inside the Server Certificate (Figure 3);

When the greatest common divisor formula is applied, one of the prime factors of n leaks out,

becoming known to the attacker. At this point he/she can derive very easily the other one:

other_prime_factor = n / leaked_prime_factor

Finally, the attacker has the control of both p and q and then the private key is lastly computed:

d = inverse_mod(e,(prime_factor_P - 1) * (prime_factor_Q -1))

3.4 DOUBLE CHECK RSA-CRT
A possible suggested check to prevent that p or q can leak out is to verify that the digital

signature calculated with RSA-CRT is actually not faulty by checking:

y^e = x % n

This check is still less expensive rather than consider the possibility to switch back to the

original RSA implementation without any optimization for the calculation of digital signature:

m^d % n

This is due to the exponentiation. In fact “e” is a very small exponent compared to “d” (the

private key of server).

4 EXPLOITING RSA-CRT
How the RSA-CRT attack works is very simple. The attacker establishes a TLS handshake

with the target by negotiating Perfect Forward Secrecy cipher suites only (see 2.1.3). Each

packet sent out or received, the attacker collects a precise piece of information that will allow

him/her to move forward with the attack. At a specific point of the handshake, a RSA digital

signature is found and it is checked for congruency. If not valid, the recovery of the private key

of server is attempted via the Lenstra attack of 1996 (3.3). In contrary case, a new TLS

handshake is established. It is said active approach.

In addition, instead of actively establish TLS connections, the attacker can also exploit the

RSA-CRT vulnerability just by capturing the network traffic (passive approach).

4.1 ACTIVE APPROACH
With the active approach, multiple sequential TLS handshakes are established with the target

so to negotiate Perfect Forward Secrecy cipher suites, until a failure in the RSA digital

signature is detected. At the point, the attacker attempts to calculate the private key of server.

First, the attacker sends a TLS Client Hello message. This packet includes a list of supported

cipher suites (remember, only PFS cipher suites must be agreed) but more importantly

contains a 32 bytes Random structure (Figure 1) which will be useful later.

Figure 1 – Random Structure from TLS Client Hello Message

The server answers with a TLS Server Hello message. This packet indicates which cipher

suite has been chosen by server. Anyway, in particular, the attacker is specifically interested

on a 32 bytes Random structure (Figure 2) which will be useful later.

Figure 2 – Random Structure from TLS Server Hello Message

Afterwards, the server transmits back to the client a TLS Server Certificate message. For the

purposes of the attacker, the most interesting pieces of information here are two values called

“n” (Figure 3) and “e” (Figure 4) found inside the digital certificate. They represent the public

key of server.

Figure 3 – “n” value (server public key) from TLS Server Certificate Message

Figure 4 – “e” exponent from TLS Server Certificate Message

Then the server continues the handshake by sending a TLS Server Key Exchange Message.

From that, the attacker wants to collect the Server Params structure (Figure 5).

Figure 5 – Server Params Structure from TLS Server Key Exchange Message

Within the same TLS packet, the server appends a signature that is just applied on the three

pieces of information the attacker has harvested earlier:

 Client Random structure taken from the Client Hello Message;

 Server Random structure taken from the Server Hello Message;

 Server Params structure taken from the Server Key Exchange Message;

Figure 6 – RSA Signature from TLS Server Key Exchange Message

The validity of the signature is finally checked. If it is not valid (we say that we are in presence

of a faulty signature) the attacker can try to retrieve the private key of server through the

Lenstra attack of 1996 (3.3).

4.2 PASSIVE APPROACH
If the approach chosen is passive, it means that the attacker does not directly interact with the

target TLS service. Instead, the packets are passively sniffed from the network. The attack is

still possible because all the information exchanged that are useful to derive the private key of

server are transmitted in clear-text over the network, during the preliminary phase of a TLS

handshake, when data encryption and anti-tampering countermeasures are not applied yet.

4.3 HOW TO DETECT THE PRESENCE OF A FAULTY SIGNATURE
The way in which a faulty signature can be detected is really simple but a little laborious and

depends on the version of TLS agreed.

Basically, the attacker can’t simply generate the digital signature for the three collected

structures just as the server does and compare this value with that one extracted from the

Server Key Exchange message, because he/she does not own the private key of server.

However as a client, the attacker knows the plain-text message signed by server and therefore

can:

1. Use the public key of server extracted from the TLS Server Certificate Message and

decrypt the signature from the TLS Server Key Exchange Message;

2. Remove the padding from the value got at point 1

3. Compare the value obtained at point 2 with the expected hash of the plain-text

message. If there is a mismatch, the signature is faulty.

4.3.1 TLS < 1.2
When the protocol TLS 1.0 or 1.1 is used, the value signed by the server and transmitted as

RSA digital signature with the TLS Key Server Exchange Message is the concatenation of two

hashes (MD5 and SHA1) calculated on Client Random, Server Random and Server Params

structs.

After having collected all the TLS messages of interest (from Client Hello to Server Key

Exchange) the attacker calculates offline the expected value for the signature (before to be

encrypted) which produces 36 bytes in output (16 bytes for the MD5 hash and 20 bytes for the

SHA1 hash). Then the attacker uses the public key of server extracted from the TLS Server

Certificate Message to decrypt the signature found in the TLS Server Key Exchange message.

Afterwards the padding is removed from there (see section 2.1.3.1) to get the raw value

originally signed by server. This value is finally compared with that one computed offline. If

there is a match, a new TLS handshake is tried (it means the signature is valid). In contrary

case the recovery of the private key is attempted (3.3). The entire process is depicted in Figure

7.

Figure 7 – How to check if a RSA digital signature is faulty (TLS < 1.2)

4.3.2 TLS 1.2
In case the handshake is based on TLS 1.2, the process to determine the presence of a faulty

RSA digital signature is quite similar than that one described in the previous paragraph.

Figure 8 – How to check if a RSA digital signature is faulty (TLS 1.2)

The only difference is that the hashing algorithm the attacker uses to compute offline the hash

of the values collected over the network is not static (concatenation of MD5 and SHA1 hashes)

but it is specified inside the TLS Server Key Exchange Message itself.

So this time the value the attacker have to calculate offline actually must be hashed with the

signature algorithm specified inside the TLS Server Key Exchange Message. Furthermore

he/she must be also aware of the padding scheme implemented (see section 2.1.3.2) which

is slightly different compared to that one used for TLS handshake < 1.2. The entire procedure

is depicted in Figure 8.

4.4 OTHER PROTOCOLS
TLS is not the only network protocol where Perfect Forward Secrecy cipher suites, RSA and

specifically RSA-CRT play an important security role. Another one where is made intensive

usage of these crypto standards and algorithms is IPSEC, specifically the IKE component

(Internet Key Exchange) listening on udp ports 500 or 4500.

4.4.1 IPSEC and IKE
Before to establish a protected channel with IPSEC, peers have to authenticate each other

and negotiate the so-called “Security Associations” (SA). This is the purpose of IKE[7]. For the

Phase 1 (Authentication of peers and Negotiation of SA) it provides two different modes: main

and aggressive. It has been always believed that only by sniffing the network traffic it is not

possible to recover a private key (just as happens for TLS) and an active approach is

necessarily requested for doing that.

Among the diverse authentication mechanisms supported both in main and aggressive mode,

IKEv1 supports the “signature authentication”. It is a kind of authentication based on digital

certificates. In main mode, what is shown below is the exact sequence of packets exchanged:

IKEv1 Phase 1 Main Mode (Signature Auth)

Initiator Responder

----------- -----------

(1) HDR, SA -->

 <-- (2) HDR, SA

(3) HDR, KE, Ni -->

 <-- (4) HDR, KE, Nr

(5) HDR*, IDii, [CERT,] SIG_I -->

 <-- (6) HDR*, IDir, [CERT,] SIG_R

* Indicates payload encryption

Here are observable two order of problems:

1. The Initiator (attacker) is the first sending a Certificate (CERT) on packet 5. If the

responder (server) does not recognize it, the connection should be discarded. This

means the attacker must own a valid certificate.

2. The Signature (SIG_R) from server that has to be checked is sent on packet 6, but it is

exchanged inside an encrypted channel when it is transmitted. So this means that only

a peer that participates actively in the handshake can try to exploit the RSA-CRT

vulnerability.

Anyway, these premises do not take in consideration what happens when the server supports

the aggressive mode.

IKEv1 Phase 1 Aggressive Mode (Signature Auth)

Initiator Responder

----------- -----------

(1) HDR, SA, KE, Ni, IDii -->

 <-- (2)HDR, SA, KE, Nr, IDir,

 [CERT,] SIG_R

(3) HDR, [CERT,] SIG_I -->

Basically, the aggressive mode makes the IKEv1 phase 1 more compact. This goes at

complete benefit of the attacker. Indeed on packet 2 the server transmits first its Certificate

(CERT). In addition, with the same packet, the Signature (SIG_R) is attached. These exchanges

occur in a not encrypted channel. It means that with just two packets, if all the preconditions

are met, the attacker can recover the private key of server without being active part in the

communication and by simply sniffing the network traffic.

Anyway, it is worth to note that aggressive mode implies not negligible security risk with only

minor returns in terms of negotiation speedup. Its usage has not been recommended during

these last few years because of security implications especially in combination with other

authentication mechanisms, in particular PSK (Pre-Shared-Key Auth), where the hash of the

password used to connect to the VPN endpoint can be sniffed in plain text over the network.

However, a complete research on this protocol and the impacts the RSA-CRT vulnerability

can have on it are out of scope for this whitepaper.

5 AFFECTED PRODUCTS
In order to exploit the RSA-CRT vulnerability an attacker have to find a piece of software linked

to a vulnerable crypto library that implements RSA-CRT and that does not verify the

correctness of the generated RSA digital signatures. Different crypto libraries, software and

hardware products having these features have been found affected in real-life scenarios or

declared to be affected by their respective vendors (see Table 1 and Table 2). Florian Weimer

of Redhat and his research have given a sensible contribution in that sense.

In some cases it was not possible determine remotely the exact version of software or

hardware products. It is worth to note that the list of Table 2 is based on what was found inside

the leaked digital certificates and could not be complete or accurate.

crypto library,
software or

vendor
Version and notes

mbedTLS

(formerly

PolarSSL)

< 2.1.1, 1.3.13 and 1.2.16: MBEDTLS_RSA_NO_CRT can be defined to
disable RSA-CRT but this option is off by default)

libgcrypt < 1.6.3 (equivalent to CVE-2015-5738)

Nettle < 3.1: used by GnuTLS

Java SE < 5.0u81, 6u91, 7u76, 8u40 (CVE-2015-0478)

JRockit < R28.3.5 (CVE-2015-0478)

EMC

RSA BSAFE Micro Edition Suite (MES) 4.0.x and 4.1.x before 4.1.5, RSA
BSAFE Crypto-C Micro Edition (CCME) 4.0.x and 4.1.x before 4.1.3, RSA
BSAFE Crypto-J before 6.2.1, RSA BSAFE SSL-J before 6.2.1, and RSA

BSAFE SSL-C before 2.8.9 (CVE-2016-0887)

OpenSSL
<= 0.9.7 and *potentially* between 1.0.2 and 1.0.2d because of CVE-2015-

3193 only on x86_64 architectures + custom versions

Go < 1.6.2

Cryptlib
up to latest 3.4.3 (CRYPT_OPTION_MISC_SIDECHANNELPROTECTION

would prevent the attack but it is set to false by default)

wolfSSL

(formerly

CyaSSL)

< 3.6.8 (CVE-2015-7744)

Libtomcrypt < 2.00

Eldos

SecureBlackbox
< 13.0.280 and 14.0.281

MatrixSSL < 3.8.3

Openswan up to latest version 2.6.47 vulnerable when not compiled with NSS

Table 1 – RSA-CRT vulnerability: affected crypto libraries, software and vendors

By analyzing the affected solutions, it is observable that they are fundamentally embedded

devices of some kind, with a high prevalence for devices providing network connectivity or IT

security features (firewalls, routers, SSL accelerators, VPN concentrators, etc…). Another

category found as affected is represented by consumer or SOHO devices such as network

surveillance cameras and printers.

5.1 THE FIX
A few of crypto libraries allow users to disable RSA-CRT (for example the configuration option

MBEDTLS_RSA_NO_CRT supported on mbedTLS) but this is not convenient due to

performance issues. Most vendors have issued a patch between the end of 2015 and the next

months of 2016 to address this problem. See Table 1 and Table 2 to determine whether a

vulnerable products or solutions has been used inside your company or office, and look for a

patch from the vendor’s website.

Hardware Version and notes (when known)

FORTINET Series 300 / FortiGate < 5.0.13 / 5.2.6 / 5.4.0

Dell (SonicWALL< SonicOS 6.1.1.12)

F5 (Traffix SDC)

ZTE ZXSEC Firewall (models US2640B, US2630B, US2620B)

LANCOM
wireless devices (version 8.84) <- apparently silently

patched in 2014

D-Link-DCS-

933L
Surveillance camera

HILLSTONE

NETWORKS
(SG-6000 Firewall)

CITRIX
ZYXEL
NORTEL
QNO

Viprinet

Table 2 – RSA-CRT vulnerability: Hardware vendors / products affected

6 TOOLS
In order to demonstrate the exploitability of the RSA-CRT flaw, two different proof-of-concepts

have been developed. They are described in the subsequent paragraphs.

6.1 HIGH VOLTAGE
High Voltage implements the active approach method (see 4.1) to exploit the RSA-CRT

vulnerability. It is a C-language application that requires as only dependency the openssl-

devel package on CentOS/Redhat (libssl-dev on Ubuntu, Kali Linux and Debian).

Usage: hv -h <host_name> -p <port> [-t] [-v] [-f] [-c num]

-h: host or ip address to connect to

-p: tcp port to connect to (1-65535)

-t: use TLS_v1.2 (default: no)

-v: enable verbose mode (default: no)

-c: number of childs (default: 1)

-f: do not stop when a signature fault is detected (default: no)

The PoC requires two mandatory options from command line: the hostname (-h) and the TCP

port to attack (-p). By default the connection is established with the TLSv1.0 protocol. The

option –t overrides this setting by establishing connections with the TLSv1.2 protocol. The

verbose mode is disabled by default but can be enabled with the option –v.

By default only one process establishing TLS connections is forked. The –c option allows to

specify a higher number of forked childs. Every child will start to establish TLS connections

independently by the others.

Always by default, once a faulty digital signature is detected and the recovery of the server

private key is attempted, the program stops. The –f option prevents this behavior and lets the

program run forever until it is interrupted by the user.

Example:

$ hv –h 192.168.1.1 –p 443 –t –c 5

When a TLS session is successfully exploited, a dedicated folder with a random name inside

the “results” directory is created containing the private/public key and certificate of the

server. The file “host.txt” contains the server’s IP address. If instead a file called

“incomplete.txt” is found, it is the signal that the public key calculated is not corresponding

to the private key recovered. When this happens it means that an error has occurred during

the RSA-CRT attack, for example because both of s1 and s2 (see 3.3) were wrong.

6.2 PICIOLLA
Piciolla implements the passive approach method (see 4.2) to exploit the RSA-CRT

vulnerability. It consists of two components: a bash script and a C-language application. The

only dependencies are the openssl-devel package on CentOS/Redhat (libssl-dev on Ubuntu,

Kali Linux and Debian) and the tcpflow package. To compile the C file run:

$ gcc piciolla.c –o piciolla –lcrypto -lssl

Piciolla works on network dump files. Firstly tcpflow has to be launched uncompress the single

TCP streams from one or more PCAP files:

$ mkdir streams

$ cp ../pcaps/bigfile.pcap ./streams

$ cd streams

$ tcpflow –r bigfile.pcap

$ ls –al

192.168.002.144.59105-172.016.032.001.443

172.016.032.001.443-192.168.002.144.59105

192.168.002.144.31337-010.010.172.250.995

010.010.172.250.995-192.168.002.144.31337

[...]

Afterwards “piciolla.sh” is executed from the command prompt, providing as an input the

directory containing the extracted TCP streams.

$./piciolla.sh ./streams

Then each file is analyzed and whether it appears to be a TLS data stream, the C application

“piciolla” is invoked via the bash script.

At the end of the analysis, one or more of the following directories could be created:

 not_tls: here are copied all the TCP stream files that are not TLS sessions.

 incomplete: here are copied all the incomplete TCP stream files (for example when

only the client payload is detected but there is no server payload or vice-versa).

 tls_not_affected: here are copied all the TCP stream files that are TLS sessions for

which nothing has been found.

 results: if this directory exists it means one or more private keys have been

recovered. For each session successfully exploited a dedicated folder with a random

name is created containing the private/public key and certificate of the server, in

addition to the corresponding TCP stream files that allow to identify the vulnerable

entity and the payloads exchanged.

6.3 PREPARE A TEST ENVIRONMENT
As one of the three preconditions (see 2.1) needed for the exploitation of the RSA-CRT

vulnerability is unpredictable (it requires the generation of a faulty signature, namely an event

that cannot be controlled by the attacker) the faster way to set up a test environment is actually

to patch the openssl crypto library in order to deliberately inject RSA digital signatures

calculated in a wrong way.

The author of this whitepaper has adopted the procedure reported below in order to create a

working test environment to use as testbed for High Voltage and Piciolla. On the machine that

will play the role of vulnerable target:

1. Install the openssl and openssl-libs packages.

2. Download the source codes of openssl from https://www.openssl.org/. The author

used the version 1.0.1l but any other recent version should work;

3. Apply the Florian Weimer’s openssl patch[3] specified on page 13 “Figure 1: Patch to

inject a RSA-CRT-related fault into OpenSSL for testing purposes”;

4. Compile the openssl source codes being sure to disable the cryptographic hardware

support. Run from command line ./config --openssldir=/usr/local/ssl4 -no-

hw –no-engine shared; make; make install

Now the target machine has two installations of openssl. The first one from point 1 which is

good and perfectly working. The other one inside the folder “/usr/local/ssl4” that instead

generates faulty RSA signatures. With the good version of openssl let us create a new private

key and digital certificate:

$ openssl req –x509 –newkey rsa:4096 –keyout newone.key –out newone.pem

-days 365 -nodes

Instead with the vulnerable version of openssl let us run a TLS service by referencing the

private key and certificate just created with the previous step:

$ cd /usr/local/ssl4/bin

$./openssl s_server –www –cert /path/to/newone.pem –key

/path/to/newone.key –accept 443

$ netstat –tupan | grep 443

tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 6543/./openssl

From this moment on, High Voltage or piciolla can be used to recover the private key of the
vulnerable server from another network host, for example by executing:

$./hv –h server_IP –p 443

https://www.openssl.org/

7 RESOURCES
[1] Memo on RSA signature generation in the presence of faults – Arjen Lenstra
(https://infoscience.epfl.ch/record/164524/files/nscan20.PDF)

[2] Attack on Private Signature Keys of the OpenPGP format, PGP TM programs and other
applications compatible with OpenPG – Vlastimil Klíma and Tomáš Rosa
(http://eprint.iacr.org/2002/076.pdf)

[3] Factoring RSA Keys With TLS Perfect Forward Secrecy – Florian Weimer
(https://people.redhat.com/~fweimer/rsa-crt-leaks.pdf)

[4] Modular Multiplicative Inverse – Wikipedia
(https://en.wikipedia.org/wiki/Modular_multiplicative_inverse)

[5] Greatest Common Divisor – Wikipedia
(https://en.wikipedia.org/wiki/Greatest_common_divisor)

[6] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1 – J. Jonsson, B. Kaliski (http://www.ietf.org/rfc/rfc3447.txt)

[7] The Internet Key Exchange – D. Harkins, D. Carrel (https://tools.ietf.org/html/rfc2409)

https://infoscience.epfl.ch/record/164524/files/nscan20.PDF
http://eprint.iacr.org/2002/076.pdf
https://people.redhat.com/~fweimer/rsa-crt-leaks.pdf
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/Greatest_common_divisor
http://www.ietf.org/rfc/rfc3447.txt
https://tools.ietf.org/html/rfc2409

