
Capturing 0day Exploits with PERFectly Placed Hardware Traps

Cody Pierce, Endgame Matthew Spisak, Endgame
Kenneth Fitch, Endgame

Abstract
Advanced software exploitation is a rapidly changing
field of study. In recent years, clever ways to bypass
existing exploit defenses have become mainstream.
Reactive defensive solutions based on known exploita-
tion techniques have been proven ineffective, and easily
circumvented. In this paper, we discuss a new system
for early detection and prevention of unknown exploits.
Our system uses Performance Monitoring Unit hard-
ware to enforce coarse-grained Control Flow Integrity
(CFI). By using hardware features that exist in modern
processor architectures, and real-time CFI policy en-
forcement, we hope to prove that our approach is effec-
tive, suitable for practical use, while staying resistant to
bypass.

1. Introduction
The PMU and CFI have been discussed and studied in
academic literature for several years. Outside of aca-
demia, vendors are also hard at work to enforce the
proper behavior of programs through control flow in-
tegrity. In most cases this enforcement is performed by
validation logic inserted at compile time. While com-
pile time instrumentation is powerful, it takes signifi-
cant effort to leverage these features in commercial
software.

Our research furthers the state-of-the-art in PMU-based
defensive applications by introducing the concept of
real-time control flow integrity, with the goal of devel-
oping a system that could be adapted to real-world sce-
narios such as web browsers and document readers.
Additionally we demonstrate how the use of the Branch
Prediction Unit and, more specifically branch mis-
predictions, is a strong candidate for implementing
Control Flow Integrity policies. We intend to demon-
strate that our hardware-assisted CFI (HA-CFI) system
has a low performance impact and measurable preven-
tion success against 0day exploits and previously un-
known exploitation techniques.

1.1. Prior Art and Operational Constraints
Our work builds on previous research that identified the
Performance Monitoring Unit of microprocessors as a
good candidate for enforcing Control Flow Integrity.
The Performance Monitoring Unit is a specialized unit

in most microprocessor architectures that provides use-
ful performance measuring facilities for developers.
Most features of the unit are intended to count hardware
level events during program execution to aid in pro-
gram optimization and debugging.

In their paper, Yuan et al [YUAN11] introduced the
novel application of these events to exploit detection for
software security. Their researched focused on using
PMU events along with the Branch Trace Store mes-
sages to correlate and detect code-injection and code-
reuse attacks without source code. Xia et al explored
the idea further in their paper CFIMon [XIA12]. By
combining precise event context gathering with the
BTS and PEBS to enforce real-time control-flow integ-
rity. In addition to these foundational papers, others
have pursued variations on the idea to specifically tar-
get exploit techniques such as Return-Oriented-
Programming.

Alternatively, just-in-time CFI solutions have been pro-
posed using dynamically instrumented frameworks
such as PIN [PIN12] or DynamoRIO [DYN16]. These
frameworks dynamically interpret code as it is executed
while providing instrumentation functionality to devel-
opers. Applying control flow policies with a framework
like PIN allows for the flexible and reliable checking of
code. However, it often incurs a significant CPU over-
head, in the area of 10 to 100x, making it unusable in
the enterprise.

Our research into dynamic run-time CFI included pa-
rameters we feel would make this approach relevant to
enterprise security, while also providing significant
detection and prevention assurances. We established the
following functional requirements:

1. Implementation must work on 32 and 64bit
Operating Systems.

2. CFI policies must be applied without software
recompilation or access to source code.

3. The system must not have prior knowledge of
the program, or preprocessing of the program
in any way.

4. Performance overhead of the solution should
be minimal.

To maintain resiliency against bypass we included three
additional parameters to scope the work:

1. Additional code will not be added to the run-
ning program in the form of “hooks” or valida-
tion logic.

2. It must work in the Kernel.
3. The system must be able to detect and prevent

an exploit in real-time

2. Approach
HA-CFI uses PMU-based traps in order to apply
coarse-grained CFI on indirect calls on the x86 archi-
tecture. The system uses the PMU to count and trap
mispredicted indirect branches in order to validate
branch destinations in real-time. In addition to gaining
assistance from a carefully tuned PMU, a practical im-
plementation of this approach requires support from
Intel’s Last Branch Record (LBR) feature, and a meth-
od for tracking thread context switching in a given OS.
It also requires an algorithm for validating branch des-
tination addresses, all while keeping performance over-
head to a minimum. After more than a year of fine-
tuning these hardware features, we have proven our
model is capable of generically detecting control-flow
hijacks in real-time with acceptable performance over-
head on both Windows and Linux.

Because control-flow hijack attacks often stem from a
corrupted or modified VTable, many CFI designs focus
on validating all indirect branches. For example, once
an attacker is able to layout memory appropriately with
a fake VTable with custom virtual function pointer(s), a
use-after-free or type confusion bug then exercises code
that invokes the virtual function in this hijacked VTable
providing the initial code execution. These call sites are
indirect branches. Because these call sites have never
before jumped to the attacker controlled address, this
indirect call is almost always mispredicted by the
branch prediction unit. Therefore, by only focusing on
mispredicted indirect call sites we greatly limit the
number of places that a CFI check is necessary.

HA-CFI configures the Intel PMU on each core to
count and generate an interrupt on every mispredicted
indirect branch. The PMU is capable of delivering an
interrupt any time an event counter overflows, and thus
HA-CFI sets the initial counter value to -1 and resets
the counter to -1 from the interrupt service routine to
generate a trap for every occurrence of the event. In this
way, the HA-CFI interrupt service routine becomes our
CFI component capable of validating each mispredicted
call and determining whether it is the result of mali-
cious behavior. To validate target indirect branch ad-
dresses, HA-CFI builds a comprehensive whitelist of

valid code pointer addresses as each .dll/.so is loaded
into protected processes. When a counter overflows, the
Interrupt Service Routine (ISR) called is then able to
compare the mispredicted branch to a whitelist, and
determine if the branch is anomalous.

Figure 1: High level design of HA-CFI using the PMU to validate

mispredicted branches

3. Design
To ensure we minimized the overhead of HA-CFI while
maintaining an extremely low false-positive rate, sever-
al key design decisions had to be made, and are de-
scribed below.

3.1. The Indirect Branch
On the Intel x86 architecture, an indirect branch can
occur at both a CALL or JMP instruction. This paper
focuses exclusively on the CALL instruction for several
reasons. First, indirect JMP branch locations were
found most often to be utilized for switch statements, in
which the jump table data would rarely if ever be cor-
rupted or utilized in a control-flow hijack attack. In our
experimentation on Linux, we found roughly 12% of
hijacked indirect branches occurred as part of an indi-
rect JMP, but occurred even less frequently on Win-
dows. In fact, in one ActiveX Flash binary on Win-
dows, 98% of all indirect branches were found to be
CALL instructions. Secondly, ignoring mispredicted
JMP instructions further reduces the overhead of HA-
CFI. Therefore, we opted to omit mispredicted JMP
branches during this research, which can be achieved
with settings on the PMU and LBR.

Figure 2: A breakdown of hijackable indirect JMP vs CALL in-

structions found in Windows and Linux x64 binaries

The Intel PMU supports hundreds of events for count-
ing, many of which provide conditional filters and
“unit-masks”, offering numerous additional combina-
tions and finer granularity for these events. We evalu-
ated two similar events for counting mispredicted indi-
rect CALL instructions:
BR_MISP_RETIRED.NEAR_CALL and
BR_MISP_EXEC.TAKEN_INDIRECT_NEAR_CALL
. The main difference between the two events is that the
BR_MISP_RETIRED event can be utilized as a precise
event for PEBS. We verified that some speculative mis-
predicts counted by the BR_MISP_EXEC event occa-
sionally included branches that were not actually mis-
predicted. While the
BR_MISP_RETIRED.NEAR_CALL technically in-
cludes both direct and indirect CALLs, rarely, if ever, is
a direct call actually mispredicted. As a result we chose
this event as it causes fewer interrupts due to the exclu-

sion of speculative events.
Intel	branch	misprediction	event	codes	

3.2. Added Precision with the LBR
CFIMon [XIA12] chose to validate branches in a de-
layed manner using the Intel Branch Trace Store (BTS),
a completely separate hardware feature from the PMU.
One of the reasons they focused on Intel BTS is be-
cause branch traces are recorded in a precise manner
with the tradeoff that analysis of the trace data cannot
be performed in real-time, thus only offering a detec-
tion solution. HA-CFI offers both detection and preven-
tion of control-flow hijacks since it’s operating in real-
time, validating each mispredicted branch as it occurs.

The interrupt instruction skid is one of the greatest chal-
lenges to our approach. This term represents the num-
ber of instructions that execute past the instruction that
actually triggered the counter overflow in the PMU.
Since our ISR is responsible for validating each mis-
predicted branch destination address, we can’t rely on
the instruction pointer within the context of the inter-
rupted thread to actually represent the precise branch

destination. In fact, [AMD07] states that this skid can
be up to 72 instructions. Frequently the skid is a single
instruction or just a handful of instructions. Regardless,
to precisely resolve the exact branch that caused the
PMU to generate an interrupt, we make use of Intel’s
Last Branch Record (LBR) stack.

The Intel LBR stack size varies across different Intel
microarchitectures: 16 entries for Haswell, and 32 en-
tries for Skylake. A powerful feature of the LBR is the
ability to filter the types of branches that are recorded.
For example, returns, indirect calls, indirect jumps, and
conditional branches can all be included or excluded.
With this in mind, we can configure the LBR to only
record indirect call branches occurring in user mode.
With this filter in place, our ISR queries the top of the
LBR stack knowing that it was the likely source for the
PMC overflow. In this way, the LBR offers a level of
precision in determining the exact branch destination
address, and is thus a requirement for our system to
operate.

Additionally, the most significant bit of the LBR branch
FROM address indicates whether the branch was actu-
ally mispredicted. As a result, this provides a quick
filter for the ISR to ignore the branch if it was predicted
correctly. It’s important to note that we are not iterating
over the entire LBR stack, only the most recently in-
serted branch.

3.3. On-Demand PMU-Assisted CFI
HA-CFI is focused on protecting commonly exploited
applications such as browsers, mail clients, and Flash.
As such, the PMU and LBR are both configured to only
operate on mispredicted indirect calls occurring in user
mode, ignoring those that occur in ring-0. Moreover, by
monitoring thread context switches in both Windows
and Linux, we can turn the entire PMU on and off de-
pending upon which applications are being protected.
For example, when a thread as part of Internet Explorer
is schedule in, we enable the PMU to resume trapping
mispredicted indirect call instructions. However, as
soon as a thread not being monitored, such as a thread
in Calc.exe, is scheduled in we can immediately disable
the PMU for that core. This design decision is perhaps
the most critical element in keeping our performance
overhead at an acceptable level.

3.4. Runtime Whitelist Generation
The final component to the HA-CFI system is the actual
integrity check that involves querying a whitelist data
structure containing valid destination addresses for indi-
rect calls. Whitelist generation is performed at run-time
for each image loaded into a protected process.

Event Name Code Mask Descrip-
tion

BR_MISP_RETIRED.
NEAR_CALL

0xC5 0x02 Direct and
indirect
mispredict-
ed near call
instructions
retired.

BR_MISP_EXEC.TA
KEN_INDIRECT_NE
AR_CALL

0x89 0xA0 Taken
speculative
and retired
mispredict-
ed indirect
calls

We first focused on post-processing captured branch
data. In this setup, we had our kernel driver and ISR in
data collection mode only, buffering each mispredicted
indirect call and loaded image base addresses, and
sending it to a user-space client. After running numer-
ous benchmarking tools we started with a working data
set of over 150 million mispredicted branches. We used
this data to iteratively explore and add new static analy-
sis algorithms for the identification of valid indirect call
destinations. Eventually, we generated a whitelist such
that all branches from our dataset could be verified in a
hashtable leaving zero unknown captured branches.

The key to proper whitelist generation for indirect call
addresses is to exhaustively find all code pointer ad-
dresses present in each loaded image. While the specif-
ic implementation is slightly different between PE and
ELF binaries, the approach is the same. When loaded
into memory, PE/ELF binaries are scanned in search of
code pointer addresses, addresses that point into the
.text section, using the following checks:

- Exports: All function symbols are enumerated
and addresses retrieved

- Relocations: Relocations section is scanned
searching for code pointers and recording ad-
dresses that point to .text

- Callbacks: The .text section is scanned using
simple pattern matching to identify code
pointer addresses that we label callback func-
tions

4. Implementation Challenges
Throughout the course of our research, we encountered
numerous hurdles to meet our original goal of low-
overhead, high detection stats. Some of these challeng-
es such as registering for PMU interrupts on Windows,
and properly tracking thread context switches are high-
lighted in this section.

4.1. Windows PMU and APIC Programming
We first configured the performance management unit
(PMU) and the programmable interrupt controller
(APIC) to use a supplied function pointer as the inter-
rupt handler for counter overflows. Our initial prototype
was developed under Linux. Programming the interrupt
controller to handle PMU overflows was relatively
straightforward, but porting the same techniques to
Windows proved problematic. We were aware that di-
rectly modifying the interrupt descriptor table (IDT)
would violate Windows’ Kernel Patch Protection
[MIC16], aka PatchGuard, causing a system halt when
the operating system detected our changes. After signif-
icant research, we discovered an undocumented option

in the Windows Hardware Abstraction Layer (HAL)
that registers a driver supplied interrupt handler for
PMU interrupts. Calling the HalpSetSystemInformation
routine with the HalProfileSourceInterruptHandler
information class allowed us to register a callback for
performance interrupts supported by Windows.

NTSTATUS	status;	
PVOID	buffer[1];	
buffer[0]	=	profileSourceInterruptHandler;	
status	=	HalpSetSystemInformation(HalProfileSourceInterruptHandler,	
																																		sizeof(PVOID),	
																																		buffer);	

Registering	a	PMU	Interrupt	Handler	on	Microsoft	
Windows	

4.2. Thread Tracking
The largest issue with implementing CFI on Windows
was restricting PMU monitoring to a single process or
thread. The PMU isn’t natively aware of thread context
and will continuously count and generate interrupts. In
our Linux prototype, we leveraged a kernel API for
registering callbacks whenever a thread was swapped
out on a given processor. To our knowledge, Windows
has no such functionality.

The technique we ultimately arrived at makes use of the
Asynchronous Procedure Call (APC) mechanism. Win-
dows allows developers to register APC routines for a
given thread, which are then added to a queue to be
executed at certain points. This can be applied to sce-
narios requiring a thread to be interrupted when an
asynchronous event occurs, such as the fulfillment of an
IO request. However, we leveraged the fact that the
APC routine list is drained opportunistically when a
thread resumes execution after being swapped out. By
maintaining an APC registered on all threads that we
seek to monitor at all times, we are notified that a
thread has resumed execution when our routine exe-
cutes. The routine re-enables the PMU counter if neces-
sary and updates various tracking metrics. We detect
when a processor swaps out a thread and begins execut-
ing another when we receive an interrupt in a different
thread context. We can then disable the PMU counters,
if needed.

5. Results
To evaluate our system, we measured success both in
terms of performance overhead added by HA-CFI as
well as detection statistics when tested against various
exploits in common client applications, including the
most common web browsers, as well as Microsoft Of-
fice and Adobe Flash. We sourced exploits from
Metasploit modules for testing, as well as numerous
live samples from popular Exploit Kits found in the
wild.

5.1. Performance
After completing our prototype, we were concerned
about the overhead of monitoring with HA-CFI and its
impact on system performance and usability. Since each
mispredicted branch in a monitored process would
cause an interrupt, there was the potential for a very
high number of interrupts to be generated. We subject-
ed our prototype implementations to several tests to
measure overhead. Monitoring Internet Explorer 11
while running a JavaScript performance test suite, the
driver detected approximately 83,000 interrupts per
second on average. In contrast, monitoring an “idle” IE
resulted in roughly 1,000 interrupts per second. Our
performance analysis revealed that overhead is highly
dependent upon the process being protected. For exam-
ple, with Firefox we saw around 10% overhead while
running Dromaeo [DRO16] JavaScript benchmarks,
with PassMark benchmarking tool we saw 8-10% over-
head, but with Internet Explorer under heavy usage this
number was above 10% We have deployed HA-CFI on
systems in daily use monitoring web browsing, and
observed little impact on performance or usability.

5.2. Exploit Detection
We extensively tested HA-CFI against a variety of ex-
ploits to determine its efficacy against as many bug
classes and exploitation techniques as possible, with an
emphasis on recent samples using approaches intended
to bypass other mitigation measures. We ran one set of
tests against more than 15 Metasploit exploits targeting
Adobe Flash Player, Internet Explorer, and Microsoft
Word. HA-CFI detected and prevented exploitation for
each of the tested modules, with an overall detection
rate greater than 98%. We attribute the 2% false nega-
tive rate to instruction skid, as described above.

We found the Metasploit results to be encouraging, but
came to the conclusion that they did not provide suffi-
cient diversity in exploitation techniques needed to
comprehensively test HA-CFI. We used the VirusTotal
service to download a set of samples used in real-world
exploit kit campaigns from several widespread kits
[KAF16]. In total, we tested forty-eight samples com-
prising twenty unique CVE vulnerabilities. We ana-
lyzed the samples to verify that they employed a varied
set of both Return-Oriented Programming (ROP) and
“ROPless” techniques. HA-CFI succeeded in detecting
all 48 samples, with an overall detection rate of 96% in
a multiple trial consistency test.

CODE EXECU-
TION TECH-

NIQUE

SAM-
PLES

HA-CFI
DETEC-

TION
RATE

EMET DE-
TECTION

RATE

ROP 37 95% 100%

ROPless Tech-
nique A

1 100% 0%

ROPless Tech-
nique B

10 100% 0%

Results of VirusTotal Sample Testing, by Exploitation Technique

BUG CLASS #

CVEs
SAM-
PLES

HA-CFI DETEC-
TION RATE

Out-Of-Bounds
Write

3 6 83%

Buffer Overflow 3 6 83%
Integer Overflow 2 6 100%
Use-After-Free 4 14 100%

Double Free 2 4 100%
Type Confusion 3 6 100%
Race Condition 1 4 100%

Uninitialized
Memory

1 1 100%

Results of VirusTotal Sample Testing, by Bug Class

5.3. Case Studies
The first case study is CVE-2015-2419, a double-free in
jscript9 and this particular vulnerability is being ex-
ploited in most of the popular exploit kits. This specific
example depicted below was taken from the Magnitude
exploit kit. We chose this sample since the exploit au-
thors used the traditional ROP approach to code-
execution, where the initial control-flow hijack jumps
directly to stack pivot gadget, and then eventually a
gadget that returns into a call to VirtualProtect. Our
HA-CFI system was able to reliably detect and prevent
this initial control-flow hijack branch jumping to the
stack pivot gadget. In comparison, Microsoft’s En-
hanced Mitigation Experience Toolkit (EMET)
[EME16] is only able to detect the stack pivot once the
VirtualProtect gadget is invoked. The figure below
shows where HA-CFI and EMET detect this particular
exploit found in the wild.

Figure 3: CVE-2015-2419 exploit execution prevention

A second case study to highlight is CVE-2014-0515, a
heap overflow in Adobe Flash. This bug is also com-
monly found in popular exploit kits, and while the bug
and sample itself are almost two years old, the signifi-
cance of this bug is that the exploit authors implement-
ed a technique that is “ROP-less”. In other words, a
DEP bypass is implemented without using ROP gadg-
ets. Instead, the authors hijack a virtual function call for
FileReference.cancel() in ActionScript, but re-use a
function within the Flash binary that invokes Virtu-
alProtect marking a region of memory as executable.
The exploit then searches for this VirtualProtect wrap-
per function, and points the virtual function pointer for
cancel() to the wrapper function. ActionScript code is
then able to mark the region of memory containing
shellcode as executable, the process is repeated to hi-
jack the same call to then jump straight to the shellcode
address. This control-flow hijack effectively bypasses
anti-ROP mitigations such as Microsoft EMET, while
HA-CFI is able to capture and prevent the initial hijack
branch since the wrapper function is not a normal
branch for indirect call sites. The figure below depicts
this example found in the SweetOrange exploit kit.

Figure 4: CVE-2015-0515 exploit execution prevention

5.4. Future Work
While the PMU is largely supported in current virtual-
ization products, most hypervisors don’t emulate Intel’s
Last Branch Record (LBR) feature. Since HA-CFI uses
the LBR for precise lookups of the offending mispre-
dicted branch, HA-CFI is currently unable to run in
virtualized environments. We have performed some
initial investigations into modifying Xen [XEN16] to
support the required MSR’s and determined it would be
reasonable to modify the hypervisor to add the needed
LBR support and filtering, making our approach poten-
tially viable on Xen guest operating systems.

Additionally, our current whitelist approach encounters
challenges identifying legitimate branches into just-in-
time (JIT) compiled code. We are continuing our re-
search in this area with hopes of properly identifying
legitimate just-in-time code pages.

6. Conclusion
Modern exploitation techniques are rapidly changing. A
new approach to exploit detection that can work with
complex applications is needed. In this paper we
demonstrated a practical and novel approach to exploit
detection that uses the Performance Monitoring Unit to
enforce control flow integrity on branch mis-
predictions. Using a run-time generated whitelist we
can determine the validity of indirect calls to locations
classified as malicious. This approach greatly reduces
the overhead of the instrumentation by moving the poli-
cy enforcement to a “coarse-grained” verifier on mis-
predicted indirect branch targets. The data provided
also shows the efficacy of such a system on samples
captured in-the-wild. These samples, from popular ex-
ploit kits, allow us to measure against unknown threats
further validating its application. As exploits advance,
we also need advanced exploit detection. Using HA-
CFI we have advanced the state-of-the-art to give en-
terprise-scale security software an upper hand in the
detection of exploitation.

7. References
[YUAN11] L. Yuan, W. Xing, H. Chen, B. Zang, “Se-
curity Breaches as PMU Deviation: Detecting and Iden-
tifying Security Attacks Using Performance Counters”,
APSys’11, July 11-12, 2011.
[PIN12] PIN: A Dynamic Binary Instrumentation Tool.
https://software.intel.com/en-us/articles/pin-a-dynamic-
binary-instrumentation-tool
[DYN16] DynamoRIO: Dynamic Instrumentation Tool
Platform.
http://www.dynamorio.org/
[XIA12] Y. Xia, Y. Liu, H. Chen, and B. Zang,
“CFIMon: Detecting violation of control flow integrity
using performance counters,” in Proceedings of the
2012 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 1–12,
IEEE Computer Society, 2012.
[LI14] �X. Li and M. Crouse, “Transparent ROP Detec-
tion using CPU Performance Counters.” https: / /
www.trailofbits.com / threads / 2014 / transparent rop
detection using cpu perfcounters.pdf. Threads 2014. �
[AMD07] P. Drongowski, “Instruction-Based Sam-
pling: A New Performance Analysis Technique for
AMD Family 10h Processors”, AMD, Nov 2007.
[DRO16] Dromaeo JavaScript Benchmark.
http://www.dromaeo.com
[EME16] The Enhanced Mitigation Experience
Toolkit.
https://support.microsoft.com/en-us/kb/2458544
[KAF16] Kafeine. Exploit Kit Samples.
http://malware.dontneedcoffee.com/

[MIC16] Kernel patch protection for x64-based operat-
ing systems.
https://technet.microsoft.com/en-
us/library/cc759759(v=ws.10).aspx
[XEN16] Xen Project
http://www.xenproject.org/

