

https://www.youtube.com/watch?v=RSnJOJRqO_k&feature=youtu.be
https://www.youtube.com/watch?v=RSnJOJRqO_k&feature=youtu.be
https://www.youtube.com/watch?v=pGvXKyXpKgc
https://www.youtube.com/watch?v=pGvXKyXpKgc
https://www.youtube.com/watch?v=vrOeARVhIhQ
https://www.youtube.com/watch?v=vrOeARVhIhQ
https://www.youtube.com/watch?v=CzELe0hZBxs
https://www.youtube.com/watch?v=CzELe0hZBxs

○

○

○

Resource Owner/End User Relying PartyService Provider

Service Provider

A process for end-users to grant a third-party website access
to their private resources stored on a service provider.

Resource
Owner

Relying Party

?

A process for end-users to grant a third-party website access
to their private resources stored on a service provider.

Resource
Owner

Relying Party Service Provider

?

○
○
○
○

○
○
○
○

Register your application on the service provider

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

● ‘[]’ means signed with
app secret

● Resource_type can
be: email, user’s
photos, etc

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

4. Req Token, Redirect User back to relying party

5. [Req Token]

6. Access Token

Verifies signature

7. [Access Token]

8. Protected resource: email, contact, etc

Verifies signature

User Service Provider Relying Party’s web server
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

4. Req Token, Redirect User back to relying party

5. [Req Token]

6. Access Token

Verifies signature

7. [Access Token]*

8. Protected resource: email, contact, etc

Verifies signature

* The secret is only known
between the relying party
and service provider

User Service Provider Relying Party’s mobile client
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

4. Req Token, Redirect User back to relying party

5. [Req Token]

6. Access Token

Verifies signature

7. [Access Token]*

8. Protected resource: email, contact, etc

Verifies signature
Many applications decide
to bundle this secret into
their mobile apps.

src/com/pinterest/activity/signin/TwitterAuthActivity.java

26: return (new ServiceBuilder()).

provider(org/scribe/builder/api/TwitterApi).

apiKey("Zr6TVkMT2KhKIZwERTB8IQ").

apiSecret("WYmVb7f0a************************X83gNCGQ0").

callback("oauth://twitter").

build();

● After we notified Quora and Pinterest in
2014
○ Both Quora and Pinterest revoked their

existing relying party secrets.
○ Quora’s twitter authentication was

non-functional after our report.
● Both are not using twitter login

anymore...

○

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + Redirect URI, Redirect User to gain permissions

4. Req Token + Verifier , Redirect User back to relying party

5. [Req Token, Verifier]

6. Access Token

Verifies signature,
Verifier

7. [Access Token]*

8. Protected resource

Verifies signature

Verifier is only sent to the
registered redirect URL

OAuth 1.0a

User Service Provider Relying Party
1. [App ID, Resource_type]

2. Req Token

Verifies signature

3. Req Token + callback URI, Redirect User to gain permissions

4. Req Token + Verifier , Redirect User back to relying party

5. [Req Token, Verifier]

6. Access Token

Verifies signature,
Verifier

7. [Access Token]*

8. Protected resource

Verifies signature Evernote doesn’t check
The redirect URI

Get the local secrets of a
benign app to fake the
login

Change the callback URI

○

○

User Service Provider Relying Party
1. client_id, scope, redirect_uri Redirect User to gain permissions

2. Access Token , Redirect User back to relying party

3. Access Token

Verifies redirect
URI

Relying party must
supply a “redirect URI”
to receive access
tokens from the service
provider

● No relying party secret!
● No signature/encryption
● Access token is not

bound to a RP

4. Protected resource

User Service Provider Relying Party
1. client_id, scope, redirect_uri Redirect User to gain permissions

2. Access Token , Redirect User back to relying party

3. Access Token

Verifies
redirect URI*

*The receiver of the access
token must be the same as
the registered redirect URI

Browser redirection
(HTTP 302)

4. Protected resource

spotify server

User’s device

Facebook server

Access token Access token

intent://token

The “intent” URI- scheme is
registered by the receiving
relying party application

spotify server

User’s device

Facebook server

Access token

Access token

intent://token

attacker server

The attacker can register
and overwrite the callback
for the “intent” scheme

○
○

relying_party = Activity.getCallingPackage();

dev_key_hash = getPackageManager().

getPackageInfo(relying_party, PackageManager.GET_SIGNATURES);

Authentication
A process for a user to prove his or her identity to a relying
party, utilizing his or her existing session with the service
provider.

Service Provider Resource
Owner

?
Relying Party

Authentication
A process for a user to prove his or her identity to a relying
party, utilizing his or her existing session with the service
provider.

Service Provider Relying Party
Resource
Owner

?

Authentication

Service Provider

Resource
Owner

Relying Party

Authorization

Relying Party

Service Provider

?

Resource
Owner

?

The OAuth 2.0
implicit flow is not
secure for
authentication

User Service Provider Relying Party
1. client_id, scope, redirect_uri Redirect User to gain permissions

2. Access Token , Redirect User back to relying party

3. Access Token is not
bound to a relying party

4. UserID

●

Attacker server

Smartphone

Authenticates
Bob’s Access
token

Bob

Facebook server

Bob’s
Access token

Wish server

Smartphone

Authenticates
Attacker’s
Access token

Attacker

Facebook server

Bob’s
Access token

Bob’s Access token
User ID

<script

type="text/javascript">window.location.href="fbconnect:\/\/succe

ss#granted_scopes=user_birthday\u00252Cuser_hometown\u00252Cuser

_location\u00252Cuser_likes\u00252Cuser_friends\u00252Cemail\u00

252Ccontact_email\u00252Cpublic_profile&denied_scopes=&access_to

ken=XXXXXXXXXXX&expires_in=5182633";</script>

GET /v2.2/me?access_token=XXXXXXXXXXX&format=json&sdk=android

...

{

"id": "100007872092560",

"birthday": "11\/25\/1989",

"email": "yutong\u0040lockie.io",

"first_name": "Yutong",

"gender": "male",

"last_name": "Pei",

"link":

"https:\/\/www.facebook.com\/app_scoped_user_id\/100007872092560

\/",

"locale": "en_US",

"name": "Yutong Pei",

"timezone": -7,

"updated_time": "2014-02-22T02:45:44+0000",

"verified": false

}

○

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwic3ViIjoiMjQ4
Mjg5NzYxMDAxIiwiYXVkIjoiczZCaGRSa3F0MyIsIm5vbmNlIjoibi0wUzZfV3pBMk1qIiwiZXhwIjoxMzExMjgxOTcwLCJpY
XQiOjEzMTEyODA5NzAsImF0X2hhc2giOiI3N1FtVVB0alBmeld0RjJBbnBLOVJRIn0.VW_s1XIAkhlFTfx90VjofHjbRqM5ME
tMA5mlctc7dCE

 {
 "iss": "http://server.example.com",
 "sub": "248289761001",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "at_hash": "77QmUPtjPfzWtF2AnpK9RQ"
 }

User Service Provider Relying Party
1. client_id, scope, redirect_uri Redirect User to gain permissions

2. Authorization Code , Redirect User back to relying party

3. Authorization Code + Client Credential

5. Access Token

6. Protected resource

4. Access Token Service side request

User Service Provider Relying Party
1. client_id, scope, redirect_uri Redirect User to gain permissions

2. Authorization Code , Redirect User back to relying party

3. Authorization Code + Client Credential

5. Access Token

6. Protected resource

4. Access Token

The authorization code
should be one-time
password

The service provider should
verify that the authorization
code belongs to the same
relying party

Attacker server

Android

OAuth2 code
flowBob’s

Authorization
code

Bob

Sina server

Bob’s
Authorization
code

Sohu server

Android

OAuth2 code
flow

Attacker’s
Authorization
code

Attacker

Sina server

Bob’s
Authorization
code

Bob’s Authorization code

Bob’s Access token

○

○

User Service Provider Malicious
Relying party

2. User logs
into Tencent3. Access token,

[App ID, User ID]

1. App ID, redirect URI

Verifies
redirect URI

4. Access token,
[App ID, User ID]

● No information about relying party for Tencent
mobile UI

User’s device App ID is public information

The user sees the same Tencent
login-dialog for all relying parties

User Service Provider Malicious
Relying party

2. User logs
into Tencent3. Access token,

[App ID, User ID]

1. App ID, redirect URI

Verifies
redirect URI

4. Access token,
[App ID, User ID]

● No information about relying party for
Tencent mobile UI

Attacker Service Provider Relying party

2. Attacker logs
into Tencent3. Access token,

[App ID, User ID]

1. App ID, redirect URI

Verifies
redirect URI

4. Access token,
[App ID, User ID]

User’s device Attacker’s device

Impact:
~700 million users affected.
Tencent acknowledged the vulnerability and
patched it within a week.

Smartphone

Login attacker’s
account

Attacker

Github server

Phishing
link to
attacker’s
account

Bob will be logged into
attacker’s account

Bob

Smartphone

Attacker starts the OAuth flow on his machine:
https://github.com/login/oauth/authorize?client_id=2722d7d1c25dca9b3559

&redirect_uri=https://app.autocode.run&scope=user:email,public_repo

Tricks the user into rendering this iframe:
<iframe src="https://app.autocode.run/?code=f3ec63e21bb4841d01f9"

style="visibility:hidden;display:none"></iframe>

https://github.com/login/oauth/authorize?client_id=2722d7d1c25dca9b3559&redirect_uri=https://app.autocode.run&scope=user:email,public_repo
https://github.com/login/oauth/authorize?client_id=2722d7d1c25dca9b3559&redirect_uri=https://app.autocode.run&scope=user:email,public_repo
https://github.com/login/oauth/authorize?client_id=2722d7d1c25dca9b3559&redirect_uri=https://app.autocode.run&scope=user:email,public_repo

○

○
○

Webview provides the feature that app
can get the cookies from the webview it
embeds

Facebook uses long term cookie even
inside webview, and attacker can reuse
the cookie to log in as the user.

○

○

○

○

○

○

○

{eric.chen,yuan.tian,patrick.tague}@sv.cmu,edu
shuochen@microsoft.com
yutong@uber.com

mailto:shuochen@microsoft.com
mailto:shuochen@microsoft.com

