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Java requires infrastructure 

to run on embedded devices.

This requirement must be

traded against the powerful

support for dynamic behavior

that it offers embedded system

developers.

JAVA FOR
EMBEDDED
SYSTEMS

DEEPAK MULCHANDANI

Wind River Systems

Embedded systems have traditionally been differentiated from desk-
top systems on the basis of functionality: desktop systems provide
a wide spectrum of technologies to serve a broad range of applica-

tion needs, while embedded devices are fitted with just enough software
to handle a specific application. The emergence of the Internet, however,
is shifting the idea of fixed-function embedded devices toward more open
systems offering some form of network connectivity. 

Consumers are driving this shift by demanding Internet-style access to
data. Additionally, certain Internet-based technologies fill gaps in existing
embedded systems technology. For example, embedded Web servers and
small Web browsers provide more flexible and less expensive user inter-
faces than traditional embedded system clients; and component software
offers rich functionality when developed to work in conjunction with an
embedded real-time operating system. 

EMBEDDED JAVA
Embedded system developers have embraced Java over the past few years
because the language is abstracted from underlying hardware, making its
applications portable. With Java, developers can target a platform-indepen-
dent API and migrate their applications to different devices without recom-
piling or reverifying them. Further, the object-oriented nature of Java sup-
ports well-structured development and software reuse. Finally, the Java Virtual
Machine provides a dynamic platform with a secure execution environment.

Java is not just a programming language; it’s a complete dynamic plat-
form that requires extra infrastructure to run on embedded devices.
Accordingly, its suitability to an application depends on the device require-
ments. Developers must consider resource, integration, and real-time per-
formance requirements to determine Java’s suitability to an application.
For example, the bias of the language and platform toward 32-bit proces-
sors would not be appropriate for devices with 4-, 8-, or 16-bit CPUs.
Issues related to memory management and the interpreted Java VM would
hinder applications that demand strict real-time performance.
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Another consideration is the size of the complete
Java platform. Many people believe that support of
a Java VM is all you need to run Java applications.
However, to compute the total size of the Java plat-
form correctly, you must add the size of the Java
VM, Java API package, Java application, and asso-
ciated native-code libraries. Current Java API pack-
ages tend to be large, so the specific API selected for
your device will significantly impact its size. Added
components can also affect platform size. 

Java nevertheless offers powerful support for
embedded devices that must maintain some form
of dynamic behavior. This article
focuses on information pertinent
to the runtime aspects of Java,
specifically the Java APIs and
VM and how they interact with
a real-time operating system
(RTOS). It also addresses archi-
tecture-specific issues such as
memory management, RAM
resources, and performance.
These issues are critical to suc-
cessfully adding or developing
Java-enabled embedded devices. 

Embedded Java
Platform Architecture
Figure 1 illustrates two sample
Java-enabled devices. The exam-
ple on the left is a lightweight
configuration, where the Java VM
is integrated as part of the soft-
ware environment. The configu-
ration on the right is more com-
mon for devices like a network
computer; it includes the JavaOS,
which is well suited to environments that base the
entire programming and user environments on Java. 

The Java runtime environment can be integrated
into almost any embedded device. As Figure 1 shows,
an RTOS is often used as a platform for running the
Java VM. An RTOS establishes a customized foun-
dation for your device that is highly reliable, scalable,
and configurable. The RTOS supports multithread-
ing (scheduling), memory management, networking,
and peripheral management for the Java VM. 

The Java VM includes interfaces that allow it to
be readily integrated with an RTOS and other
native libraries. Written in C, the Java VM is com-
piled with the RTOS and interprets the Java byte-
codes as the application executes. There are two
audiences for the system interfaces: 

■ Developers using the Java API layer to write
applications; these users do not worry about
hardware-specific functionality. 

■ System or firmware developers, who need to
understand how the Java VM and Java packages
work on top of their embedded device, specifi-
cally with the RTOS, software libraries, CPU,
and memory configuration. 

Figure 2 provides a more detailed picture of the
Java platform architecture. It features five layers:

■ Your code: the ZIP or JAR file that contains
your application code. 

■ Java class: the Java API class package you receive
with your Java VM. When you write Java appli-
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Figure 1. Two Java-enabled devices: on the left, a lightweight con-
figuration; on the right, a solution based on Java OS.
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Figure 2. Architecture of the Java platform.
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cations you will reference the API calls provided
by this class package. A majority of the function-
ality in this class package is written in Java itself,
but some portions rely on native-code libraries.
Examples are packages like “java.awt” (for graph-
ics components) and “java.net” (for networking).

■ Native code: any native-code libraries referred
to by Java code in the class package. This layer
co-exists with the Java VM and RTOS. 

■ Platform layer: the Java VM, which loads and
executes Java classes from memory. The Java
VM will utilize the facilities of the RTOS to
manage the Java application operations. 

■ Hardware layer: the complete hardware infra-
structure, managed by the RTOS. The RTOS
resolves all runtime needs of the Java VM and
also manages scheduling. 

The Java VM depends on an RTOS to provide
hardware-specific functionality for running Java
applications. This functionality includes threading,

memory management, and execution of native
code. For example, the Java VM threads must be
mapped onto the native RTOS threading model so
that users can write Java threads. The RTOS han-
dles all the low-level tasks such as boot sequence and
initialization of the device, which isolates the Java
VM and the application code from such activities. 

The device in Figure 2 supports four Java API
packages: java.awt, java.net, java.io, and java.math.
The packages are layered directly (and transparently)
on top of native-code libraries that are responsible for
implementing the required functionality. This tech-
nique supports the abstraction of Java applications
from platform-specific functionality and allows the
Java API package to remain portable across platforms. 

The Java APIs 
Initially, JDK 1.0.2 was the only Java technology
available for application development. Because Java
was initially positioned for the Internet market, JDK
1.0.2 was designed to support a broad set of appli-
cations. As JDK 1.0.2 evolved to JDK 1.1, the Java
API package was enhanced at a penalty of size. As a
result, many embedded manufacturers recognized
the benefits of Java but hesitated to pay the added
resource requirements it places on their devices. 

To address this weakness, JavaSoft developed four
APIs that targeted different market segments: JDK,
PersonalJava, EmbeddedJava, and Java Card. The
sidebar “Java platform APIs” summarizes each one.
These APIs provide a lower “barrier to entry” by
eliminating the need to support Java APIs irrelevant
to a specific market. They are designed to be
upwardly compatible. For example, EmbeddedJava
applications can run on a PersonalJava Java VM and
JDK Java VM without any rewrite of the software.

Table 1 presents the resource requirements for
each API. However, the numbers do not reflect the
complete infrastructure required to run Java on
embedded devices. For example, they do not
include the underlying native infrastructure to run
the Java VM and classes, which includes the
RTOS, graphics stack (for AWT applications), and
networking stack (to name a few). The sizes of
these resources must also be factored in to get an
accurate estimate of the final requirements for the
Java API used for an application.

You must also analyze the sizing estimates pro-
vided by JavaSoft very carefully. According to Table
1, the requirements for the JDK runtime are 4
Mbytes of RAM and 4–8 Mbytes of ROM. How-
ever, the actual Java class package shipped with the
JDK tools is approximately 9.5 Mbytes (in a Zip

JAVA PLATFORM APIS

JavaSoft has defined four JDK-based APIs that target different markets.

■ Java Development Kit. Aims for use on desktop systems such as
Solaris and Microsoft Windows. The JDK API is relevant to
embedded systems that must provide a complete Java user
environment. This would include applications such as Network
Computers and set-top boxes. In general, only a subset of the JDK
API is relevant to embedded systems. For more information, see
the JavaSoft JDK page at http://java.sun.com/products/jdk/1.1/. 

■ PersonalJava (or Java Applet Environment). Targets the connected
device market that needs a GUI and the capability to execute applets.
Examples of such devices are smart phones and handheld PDAs. The
first version of this platform, PersonalJava1.0, was released in
December 1997. JavaSoft has recently announced a specification
for PersonalJava1.1 as well. For more information, see the JavaSoft
PersonalJava  page at http://java.sun.com/products/personaljava/.

■ EmbeddedJava. Targets low-end Java devices, specifically those
lacking a general-purpose display (specifically java.awt).
Developers can customize the Java platform to suit their needs. For
more information, see the JavaSoft Embedded Software  page at
http://java.sun.com/products/embeddedjava/.

■ Java Card. Targets the highly embedded/reduced-feature market
such as smartcards. These applications often do not require the
support of anything but the java.lang packages and ISO support
packages for encryption. For more information, see the JavaSoft
JDK page at http://java.sun.com/products/javacard/index.html.
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file format). In general, this poses a problem for
devices supporting the complete JDK 1.1 imple-
mentation since class files can potentially take up a
majority of the available storage on the embedded
target (based on JavaSoft suggested parameters).

Ultimately, very few embedded devices benefit
from availability of the complete JDK API set; most
require a smaller, customized version of it. There are
several ways to achieve this. First, developers should
make sure they choose the proper API from the four
offered. PersonalJava or EmbeddedJava were, in fact,
defined solely to serve embedded system needs. 

Table 2 (next page) provides a breakdown of the
JDK 1.1.4 class package, along with a comparison
of the requirements for the PersonalJava and Embed-
dedJava APIs. The “Helper package” label for most
of the Sun and Sunw packages means that they are
mainly support packages for the Java packages. The
“Depends on application” label for Java packages in
EmbeddedJava means that developers can include
the specific Java class subsets required on their
embedded device. JavaSoft will provide development
tools with the EmbeddedJava platform to help gen-
erate a customized Java class package. Unfortunate-
ly, developers writing applications for the JDK or
PersonalJava platform cannot officially customize the
Java class package to suit their device requirements. 

As Table 2 shows, the Sun packages (especially
Sun.io) contribute most of the size of the overall Java
class package. Sun.io contributes more than half the
size itself! The second step to saving resources is to
scale out unnecessary Java packages. However, this
depends on the needs of your Java application as well
as the characteristics of your device. 

There are two types of analysis for scaling Java class
packages. The static method analyzes the application
code and compiles a list of the referenced Java API
classes and packages. Using the compiled list, you can
go through the Java class package and remove the
unnecessary packages and classes. The static method
is quick, but prone to some error in missing classes
that are not directly referenced through the source
code. Examples are calls to Class.forName(), which
loads classes using a classloader. 

The dynamic method requires you to run the
application code and generate a log of Java classes
your application references. To perform this analy-
sis, you can run your Java application on a Java VM
with the -verbose flag enabled. The -verbose flag
causes the Java VM to print out the list of classes it
reads and verifies as it executes Java code. This tech-
nique will generate a fairly complete list of all the
Java classes referenced in an application. The
dynamic method is a lot more accurate than static
analysis since it compensates for classes loaded from
other sources such as the network. Using a combi-
nation of static and dynamic analysis, you can put
together a concise list of requirements of your
application. 

From this analysis, it is possible to break up the
JDK 1.1.4 classes.zip file into two separate archives:
rt.jar (1.3 Mbytes) and i18n.jar (3.3 Mbytes). The
rt.jar archive contains the core classes that a major-
ity of Java applications need, and the i18n.jar file
contains a majority of the Sun.io package. The
Sun.io package contains a lot of classes specifically
for internationalization, so breaking it out in a sep-
arate archive allows developers to include such sup-

Table 1. Operating parameters for Java environments defined by JavaSoft.

Operating Parameters Java JDK PersonalJava EmbeddedJava Java Card
RAM size > 4 Mbytes 1 Mbyte < 512 Kbytes 16 Kbytes 
ROM size 4–8 Mbytes < 2 Mbytes < 512 Kbytes 512 bytes 
Packages All Removed java.security The class package image Java card classes

Removed java.rmi will depend on the classes Java ISO Classes
Removed java.sql used by the application.
Removed java.text Java.applet not allowed.
Modified java.awt
Modified java.net
Modified java.zip
Optional java.math

CPU type 100 MHz + 50 MHz + 25 MHz + 300 KIP  
Note: Numbers do not reflect the complete infrastructure needed to run Java on embedded devices. For example, they do not include the size

of the underlying native infrastructure required to run the Java VM and classes.
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port on an as-needed basis. The impact of a 1.3-
Mbtye class package is a lot easier to absorb on an
embedded device. Note that the 1.3 Mbyte figure
is for the JDK class package. The PersonalJava and
EmbeddedJava class package will be much smaller. 

BASICS ON NATIVE METHODS 
So far we have focused on the Java platform and
how it integrates into embedded devices. The archi-
tectures of the Java VM and APIs make them easy
to add to suitable embedded devices. However,
once the integration of the Java VM and other
components is complete, specific technical issues
must be answered regarding how Java affects the
operation of an existing device and what constraints
it places on real-time performance. 

As pointed out earlier, the Java class package
depends on native software libraries for specific
functionality. The mapping of the Java class pack-
age to native software libraries is achieved using a
well-defined protocol, the Java Native Interface.
JNI provides a framework by which the Java VM
can reference and execute native methods. 

Briefly, the first step is to write the Java class,
defining the native methods with the Java “native”
keyword. For example 

public class NativeTest 
{
native int foo();
native int bar();
}

Once you have compiled this Java class, you need
to run the javah tool on the resulting class file. The
javah tool is shipped with the JavaSoft JDK; it will
generate a C source file that contains stub defini-
tions for calling native code segments. For the two
methods shown above, the stub functions will be 

Java_NativeTest_foo_stub()
Java_NativeTest_bar_stub() 

You will have to implement the functions,
NativeTest_foo() and NativeTest_bar(), so that exe-
cution of the Java application will route any

Table 2. Breakdown of JDK 1.1.4 classes with requirements for PersonalJava and EmbeddedJava.

Java Package Name JDK 1.1.4 Size (in bytes) PersonalJava 1.0 EmbeddedJava 1.0 
Java.awt 330,849 Required Depends on application 
Java.io 111,875 Required Depends on application 
Java.lang 171,494 Required Depends on application 
Java.text 606,272 Not required Depends on application 
Java.util 101,943 Required Depends on application 
Java.applet 3,931 Required Not allowed
Java.beans 54,140 Required Depends on application 
Java.net 60,372 Required Depends on application 
Java.math 31,731 Optional Depends on application 
Java.rmi 46,595 Unsupported Depends on application 
Java.security 40,960 Partly optional Depends on application 
Java.sql 36,624 Unsupported Depends on application 
Sun.applet 106,283 (helper) Helper package Helper package 
Sun.awt 418,759 (helper) Helper package Helper package 
Sun.io 5,541,077 (helper) Helper package Helper package 
Sun.audio 18,830 (helper) Helper package Helper package 
Sun.misc 53,898 (helper) Helper package Helper package 
Sun.beans 19,029 (helper) Helper package Helper package 
Sun.net 150,150 (helper) Helper package Helper package 
Sun.rmi 221,062 (helper) Unsupported Helper package 
Sun.security 178,743 (helper) Helper package Helper package 
Sun.jdbc 152,157 (helper) Unsupported Helper package 
Sunw.io 231 (helper) Helper package Helper package 
Sunw.util 537 (helper) Helper package Helper package  
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method foo() calls to Java_NativeTest_foo_stub(),
which in turn will call NativeTest_foo(). 

The stub architecture has been in place since
JDK 1.0.2 and was enhanced in JDK 1.1 with a
more powerful implementation. The JavaSoft Web
site gives more detailed information about using
Java NI for implementing native methods.

Using the description of the Java NI, the
java.awt package works on an embedded device. It
routes calls to methods in the java.awt package to
the underlying X Windows/Motif libraries via the
Motif Peer Class. This class is a set of Java interfaces
that allow AWT components to be mapped to
underlying graphics libraries present on the device.
As a result, when a developer uses the following
statement in a Java application 

Frame f=new Frame(); 

the call is translated into a sequence of X Win-
dow/Motif calls that are responsible for actually cre-
ating and rendering the frame on the screen. In this
scheme, the Java VM is responsible for executing
only the Java code; when the Java VM encounters a
native call, it hands the call off to the native soft-
ware library for execution. Another example of a
similar Java package mapping is the java.net pack-
age, which is layered on top of a platform-specific
TCP/IP implementation. 

ROMIZERS FOR COMPRESSION
The Java VM places two types of runtime require-
ments on RAM resources in the embedded device:
storage of Java objects (Java Heap) and execution of
Java bytecodes (Java Memory Pool). When Java
applications execute, the Java VM copies the byte-
codes from ROM (or other storage) into RAM. This
is required since the Java VM has to verify each Java
class file prior to execution. When the Java VM ver-
ifies a section of code, it converts all the bytecodes
into an alternate “quick” format. This technique
ensures that the Java VM does not execute malicious
code as it loads applications not only from ROM but
also from sources such as the network. The Java VM
keeps the verified code in RAM, which can quickly
drain embedded device resources. Additionally, if the
device needs to support multiple applications in
memory simultaneously, performance may degrade. 

This dependency on RAM poses a problem for
embedded devices, which often rely extensively on
ROM for cost reasons. To solve the problem and
reduce the overhead incurred, new embedded-
friendly tools called ROMizers are being developed.

ROMizers “precompile” Java classes and allow Java
VMs to execute these classes directly from ROM.
This reduces the copy-verify-execute cycle. It also
reduces the interpretation overhead. 

The ROMizer technology mimics the operation
of the Java VM on a host computer and precompiles
Java classes into an alternative native representation
(usually a C data file). The ROMizer loads, verifies,
and links entire sets of Java class files (similar to the
Java VM) and generates output that can be linked in
with an RTOS image. ROMizers can be used to con-
vert selected pieces of the Java platform into a for-
mat more suitable for embedded devices. 

Depending on the features provided, a ROMiz-
er can perform the following tasks: 

■ Merge the “constant pool” data section of each
class file. This removes redundant information
and points all references to the constant pool so
they point to the same constant pool section. 

■ Convert all the bytecodes to their corresponding
“quick” bytecode format. This removes the need
for the Java VM to verify the bytecodes when it
is executing ROMized Java code. By performing
the verification ahead of time, the Java VM does
not have to copy the bytecodes into RAM.
Rather, it can execute them out of ROM. 

■ Create runtime images of the class structures
for the Java VM. This provides a runtime
enhancement as the Java VM does not have to
create these structures upon startup. 

■ Resolve the class hierarchy on the target. This
allows you to place only the required subset of
Java classes on your embedded device. 

Figure 3 compares running a small Java application
that creates a single Frame on the screen without
and with ROMized classes. (The Java VM used is
running on Wind River System’s VxWorks RTOS.)
The ROMized Java VM needs to load and verify
only two classes before starting execution of the Java
application. By comparison, without ROMized
classes, the Java VM must load and verify 44 class-
es before it actually loads the first class for the appli-

ROMizers are embedded-friendly
tools that let Java VMs execute
precompiled classes from ROM.
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cation. This difference will be reproduced through-
out the life cycle of the running application. With-
out ROMized classes, every reference to classes from
the java.lang, java.io, java.util, java.awt, or sun.awt
will have to be loaded into memory and executed.
Calls to ROMized classes, however, do not need to
be loaded in the ROMized Java VM. This technique
definitely speeds application performance.

Note that ROMizing is just one technique that
developers can use to improve the Java runtime per-
formance. Other techniques such as Java native
compilation and JIT compilers are quite popular as
well. But there is a unique difference between the
techniques. ROMizers are useful for developers
who wish to place more of the Java infrastructure
in ROM for cost reasons. The important distinc-
tion is that ROMizers do not perform any opti-
mizations on the Java classes while building the
ROM image. Therefore, ROMized classes should
run and behave exactly the same as interpreted
classes. On the other hand, JIT compilers and Java
native compilers usually take Java bytecodes and
convert them (with optimizations) to native code.
The native code generated is not guaranteed to run
or behave the same as the original Java classes. 

ROMizer can also help by reducing the startup
time of the Java VM. By design, the virtual machine

loads and verifies classes from the java.lang, java.io,
and java.util packages when it first starts up. If you
were to ROMize these specific packages, the Java VM
would locate these precompiled packages on startup
and immediately begin executing the Java applica-
tion. The output from the ROMizer is a C source file,
which basically contains data structures and charac-
ter arrays that resemble the format of the Java classes
in RAM. In Figure 3, the compiled ROMized class
package image size is approximately 1.3 Mbytes,  cre-
ated from compiling the generated ROMized C file.

ROMizers provide an elegant, low-risk mecha-
nism to reduce runtime resource requirements of
Java applications. They are a host-based tool rather
than a target-resident component, so they give the
developer a lot more control in making appropri-
ate trade-offs than other performance enhancement
tools do. The suitability of Java native compilers
and JIT technology for embedded systems will be
discussed in further sections. 

MEMORY MANAGEMENT AND
GARBAGE COLLECTION 
Java applications do not have any explicit mecha-
nisms for memory management. The allocation and
deletion of objects is performed with cooperation
between the Java VM and the garbage collector. On

Application Execution Without ROMized Classes 
All Java packages were run interpreted.
Target CPU: Intel x86
ROMized class package image size: 0 bytes
Size of JDK Class package used:1,351,207 bytes
Overhead incurred: 0 bytes
Java(“-verbose Frame1”)
value=0=0x0
[Loaded java/lang/Thread.class from /java/lib/rt.jar]

//*37 additional [Loaded java . . .] instructions.*//

[Loaded sun/io/CharToByteConverter.class from
/java/lib/rt.jar]
[Loaded sun/io/CharacterEncoding.class from /java/lib/rt.jar]
[Loaded java/util/Locale.class from /java/lib/rt.jar]
[Loaded sun/io/CharToByte8859_1.class from /java/lib/rt.jar]
[Loaded java/io/BufferedWriter.class from /java/lib/rt.jar]
[Loaded java/lang/Compiler.class from /java/lib/rt.jar]
[Loaded Frame1.class from /java/lib/frame.jar] 
<output deleted>

Application Execution with ROMized Classes 
The following packages were ROMized: java.lang,
java.io, java.util, java.awt and sun.awt. The rest were run
interpreted.
Target CPU: Intel x86
ROMized class package image size: 1,302,823 bytes
Size of JDK class package used: 823,287 bytes 
Overhead incurred due to ROMizing: 774,903 bytes
Java(“-verbose Frame1”) 
value=0=0x0
[Loaded java/lang/NoClassDefFoundError.class from
/java/lib/rt.jar]
[Loaded sun/io/CharToByte8859_1.class from
/java/lib/rt.jar]
[Loaded Frame1.class from /java/lib/frame.jar]
<output deleted>

Figure 3. Example output from a Java application that creates a single frame on screen: (left) without ROMized classes
and (right) with ROMized classes. Note that the code on the left has been abbreviated.
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the one hand, this isolates the developer from the
process of keeping track of memory use in an appli-
cation. On the other hand, the garbage collection
process is nondeterministic and cannot be sched-
uled. As a result, you cannot be sure exactly when
the Java VM will clean up the object heap, since it
runs the garbage collector as a low-priority thread
and does not include mechanisms to directly con-
trol the behavior of the garbage collector. The Java
API package does provide a method, System.gc(),
to call the garbage collector, but this method does
not guarantee anything; it merely sends the Java
VM a suggestion to clean up the object heap. 

The garbage collector provided by JavaSoft in
JDK 1.1 is based on the “mark and sweep” algo-
rithm. When it is time to clean up dead objects, the
garbage collector locks out all other Java threads
and then starts marking up the object heap. Once
all the objects eligible for deletion have been
marked, the garbage collector sweeps away the dead
objects. The Java VM internally maintains state
information on the object heap. 

The information is based on ratios and divided
into three categories: green, yellow, or red state.
When there is no shortage of memory, the Java
VM operates in the green state. When memory
drops below a specified threshold, the Java VM

enters the yellow state, which means it should
schedule a garbage collection soon. If the applica-
tion keeps executing, the Java VM enters the red
state, which means the object heap is almost satu-
rated and garbage collection needs to be done
immediately. If the Java VM runs out of memory,
then most likely a Page Fault will occur on the
embedded device. 

Figure 4 presents an example to help understand
the architecture of the Java VM threading model.
The example is based on running the HotJava 1.1
browser on Wind River System’s JDK 1.1.4
VxWorks-based Java VM. The VxWorks Java VM
supports the “native threads” package, which means
that each Java thread is mapped directly to under-
lying VxWorks tasks. This implementation allows
Java threads to freely interoperate with other
VxWorks-specific system tasks. Also, the RTOS can
manage resources for the entire device rather than
handling only the real-time aspects of the device. 

The tasks highlighted in bold are the specific
tasks created by the Java VM for garbage collection
and memory management. Specifically, the Async
Garbage thread and Idle thread combination allows
the RTOS to schedule a garbage collection only
when the system becomes idle. The Red Alloc
thread allows the Java VM to manage the current

-> I
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY 
tJreaper 0x1636c0 203e5e4 116 PEND 2536c4 203e590 3d0001 0
Red Alloc S0x14bfc8 1eaf620 117 PEND 2536c4 1eaf02c 16 0 
AWT-Finaliz 0x14bfc8 1bec7a0 118 PEND 2536c4 1bec1ac 16 0 
Alloc State 0x14bfc8 1ea5470 118 PEND 2536c4 1ea4e7c 16 0 
Request Pro 0x14bfc8 1ebe2e0 120 PEND 2536c4 1ebdcec 3d0002 0 
tJmain 0x154208 26a9ec0 122 PEND 2536c4 26a9e50 0 0 
AWT-EventQu 0x14bfc8 1f93b40 122 PEND+T 2536c4 1f9354c d 241 
Lite-AWT-In 0x14bfc8 1f89990 122 PEND 2536c4 1f8930c 3d0002 0 
Lite-AWT-Ev 0x14bfc8 1f7f7e0 122 PEND 2536c4 1f7f0ec 3d0002 0 
Thread-3 0x14bfc8 1bd4400 122 PEND+T 2536c4 1bd3df8 16 292 
Screen Upda 0x14bfc8 1d84b90 123 PEND+T 2536c4 1d8459c 3d0004 1846 
HotJava App 0x14bfc8 1ce07c0 123 PEND 2536c4 1ce01cc 3d0002 0 
Thread appl 0x14bfc8 1c08dc8 124 PEND 2536c4 1c087d4 3d0002 0 
Thread-0 0x12dc40 2022678 126 PEND 2536c4 20225b4 3d0002 0 
Async Garba 0x1544d4 201a450 126 PEND 2536c4 201a3d0 3d0002 0 
Idle thread 0x1542b4 2012228 127 DELAY 252bbe 20121c4 3d0002 6 
value=0=0x0 

Figure 4. Example list of all application threads running the HotJava 1.1 browser. 
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state of memory in the device. The tJreaper task
cleans up VxWorks stack memory for each Java
thread after it has terminated.

The garbage collector poses a problem in that it
tends to lock down all the Java threads while it
cleans out unused objects from the system. The
lockdown ensures that the state of the heap remains
stable, but it adversely affects real-time performance
of Java applications. A simple workaround to this
problem is to continue to allow the RTOS to man-
age operations of the device—interrupts, device
management, and task scheduling—with those
tasks running at a higher priority. A Java applica-
tion should not be written to rely on any RTOS or
system-specific functionality, nor should it make
any assumptions about scheduling or timing. Any
specific portions of the Java application that are
performance-critical can be implemented in native
code (using Java native interface techniques or
other Java development tools). 

The JDK 1.3 (HotSpot) release will include a
new-generation garbage collector, called the “train”
algorithm. It allows interruptions as the garbage col-
lector cleans up dead objects. This will improve pro-
grammer control in the overall Java VM platform. 

At this point a solution for the PersonalJava and
EmbeddedJava platforms is not known. 

JAVA PERFORMANCE 
Java provides its cross-platform promise using a
combination of the Java class file format and the
Java VM. The Java class file results from the trans-
lation of Java source code to bytecodes on the host
computer. Once the application is in bytecode for-
mat, it can be transmitted to any Java-enabled tar-
get for execution. 

On the target device, each Java bytecode is exe-
cuted using the interpreter loop embedded in the Java
VM. The Java VM interpreter loop is responsible for
translating each Java bytecode into equivalent native-
code functions while the application executes. Java
bytecode applications tend to run slower than native

applications since optimizations cannot be performed
at runtime and the translation is a fairly serial process.
Based on early benchmarks, Java applications tend to
run 20 to 30 percent slower than applications writ-
ten in C. This is not a significant problem for small
applications, but it can be a serious issue when it
comes to running any sizable applications. 

Table 3 provides average figures from a sample of
typical applications performed at Sun Microsystems.
As shown, Java applications spend almost 40 percent
of their execution time in functions that cannot be
directly optimized by performance enhancement
techniques: garbage collection and thread synchro-
nization. The table shows the time spent in native
code execution at 1 percent of overall execution time.
The percentage may be much higher for average
embedded Java applications, which must maintain
close interaction with the underlying hardware. 

A specific optimization technology to improve
Java application performance can only be applied to
speed the interpretation of bytecodes. The techniques
to choose from include the ROMizing technology
presented earlier. Other solutions focus on three main
areas: Java native compilers, JITs, and Java Chips.
ROMizers can also be considered a performance
enhancement tool but by design they are mostly used
to compress the RAM requirements of the Java VM. 

Java Compilers 
Using Java Compilers allows developers to write inter-
operable Java, C, and C++ code. This approach is
similar to standard compilation techniques that you
may use to build your application today. The bene-
fits are the increased performance by having your sys-
tem rely more on the mature native compilers rather
than bytecode-based Java compilers. By converting
the Java into native code, you can reduce the inter-
pretation overhead of the Java VM. This approach
does not eliminate the need for a Java runtime com-
ponent such as a Java VM. Java applications rely on
garbage collection and threading so minimal runtime
support will still have to be included. 

On the downside, you lose the benefits of the
dynamic Java platform as soon as portions are con-
verted to native code. Also, for device updates you
will have to rely on native code patches rather than
using the Java VM to selectively update certain
aspects of your application. 

Just-In-Time Compilers
Just-in-Time Compilers are a popular approach to
improving Java performance. Unlike traditional
compilers, this runtime component replaces the

Table 3. Average execution-time allocation for Java apps.

Application Function Execution Time
Allocation and garbage collection 20%
Thread synchronization 19%
Running native methods 1%
Bytecode interpretation 60%

(Source: “HotSpot: A New Breed of VM,” JavaWorld, Mar. 1998)
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interpreter loop at the heart of the Java VM. JIT
compilers convert Java bytecodes to native code
while an application is running. Once a specific
bytecode sequence has been converted, the remain-
ing executions will run almost as fast as native code. 

JITs capitalize on the locality-of-reference princi-
ple. If the Java VM can reuse translated code, then it
will not be constantly compiling the Java bytecodes
into native code. There are some situations, howev-
er, where the JIT approach does not work as well: 

■ If the application performs operations such as
graphics or floating-point operations, then JIT
compilers do not give a large performance boost. 

■ If the application constantly creates objects, the
garbage collector would interfere with the oper-
ation of the JIT. 

■ If performance is mostly a function of opti-
mizations, JIT compilers are limited by their
status as a runtime component. 

In these situations JITs may not perform much bet-
ter than the default Java VM interpreter loop. 

JIT compilers can also take up large amounts of
RAM, since they translate bytecodes into native
code at runtime. One last consideration: the JIT
needs to be reliable as it will be generating code
while the application executes. 

Java Chips 
Java chips have been offered as a hardware option
to improve Java performance. Some reference chips
currently available are Sun Microsystems picoJava
and microJava processors and Patriot Scientific
PSC1000. These processors are designed to replace
the Java VM interpreter loop and provide other fea-
tures to boost performance. You still need a Java
VM (without interpreter loop) and RTOS to put
together a complete Java platform, so the Java chips
are primarily performance enhancers. 

Java chips are being offered as an alternative to
general-purpose CPUs such as x86, ARM, or Pow-
erPC. However, since Java chips focus exclusively
on improving raw performance of Java bytecodes,
the native code portions of your application may
incur a penalty. If your application contains any
legacy code (written in C or C++), it will have to
be translated into Java bytecodes. 

At this time, many details regarding Java chips
remain unknown. It is hard to say how such chips
will handle the processing requirements of Java
applications and native code written in C and C++.
One proposed model is to use Java chips as byte-

code accelerators for general-purpose CPUs. This
provides the benefits of native code execution per-
formance as well as dramatically improved Java
application performance. 

CONCLUSIONS
Developers can combine different approaches to
improve the performance of Java applications.
Trade-offs have to be designated based on where
you would prefer to optimize the Java software:
host or target device. Java compilers and ROMiz-
ers are host-based tools that can boost performance
by precompiling Java code. JITs and Java chips are
target-based optimization tools, which can impose
extra memory requirements on your target device,
but still provide a dynamic platform. 

The integration of Java into existing embedded
designs is finally allowing development of embed-
ded devices that offer Web connectivity, multime-
dia content, and dynamic extensibility. The RTOS
from which the Java VM derives some of its func-
tionality allows the Java VM to abstract itself from
device-specific architectures. In exchange, the Java
VM provides a secure wrapper around the RTOS,
keeping malicious content from interfering with
the operation of the device. 

International Data Corp. estimates that there
will be 22 million non-PC Internet access devices
by the year 2000. It’s a good guess that not many
of these devices will look or operate the same way.
However, it is a good guess that a large part of the
differentiation will be based on user-specific
requirements: cost, look and feel, multilanguage
support, battery life. In the same way that an
RTOS operates as the brains behind today’s embed-
ded devices, a Java VM tightly integrated with an
RTOS will potentially become the standard soft-
ware platform of tomorrow. ■

Deepak Mulchandani is the engineering manager for embed-

ded Internet products at Wind River Systems. He holds

patents related to debugging technology. Readers may con-

tact him at dmm@wrs.com.

URLs for this tutorial
JavaSof t • java.sun.com
Patr io t  Sc ien t i f i c  shBoom • www.ptsc .com/news/
Sun Microsys tems p icoJava and microJava •
www.sun.com/microe lec t ron ics/
Wind R iver  Sys tem’s  Embedded In terne t  Page •
www.wrs .com/embedweb/index
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