
Writing Shellcodes in Linux

 by Amitesh Singh

Introduction

Shellcoding is a skill to write your machine codes in hexadecimal form. Many
people lack it. From the view of security it is very important, as hackers use it
to exploit vulnerable applications. In this article, we are working on Linux
using the IA-32(x86) architecture. Basic knowledge of C, ASM(AT&T style) and
working with debuggers (gdb & objdump)is required.

Lets Start

Consider a simple program

######exit.c###########
 int main()
 {

exit(0);
 }
###########EOP########

$ make exit && ./exit
cc exit.c -o exit
$ echo $?
0
$
Syntax of exit() is "void exit(int status)".The exit() function causes normal

program termination and the the value of status return to the parent. Here in the
above program status return to main is 0.you can check it by altering the code

int main()
{ exit(1);
}

$ make exit && ./exit
cc exit.c -o exit
$ echo $?
1
$
Writing ASM code for above program

Since the operating system features are accessed through System calls. These are
invoked by setting the registers in special way and issuing the instruction int
$0x80.

For function<6 arguments

EAX<<=========function(EBX,ECX,EDX,EDI,ESI)
The syscall number of function stores in EAX and arguments store in EBX,ECX & so
on.
You can view Linux SYSCALLS in file ‘unistd.h’. For our function exit(0),the
syscall no. of exit is 1 hence EAX is to be loaded with 1 and EBX with the exit

Page 1 of 4Writing Shellcodes in Linux

12/10/2004

status which is 0 here.

######exit.s######
.globl main
main:

movl $0,%ebx
 movl $1,%eax
 int $0x80
#######EOP###########

Now compile it and disassemble it using 'gdb' or 'objdump'
$as -o exit.o exit.s && ld -o exit exit.o
$objdump -d a.out

08048314 <main>:
 8048314: bb 00 00 00 00 mov $0x0,%ebx
 8048319: b8 01 00 00 00 mov $0x1,%eax
 804831e: cd 80 int $0x80

Too many null bytes there. Any null byte in the shellcode will be considered the
end of string, hence only the first byte of the shellcode to be copied into the
buffer. To get the shellcode copy into the buffer properly, all of the null bytes
must be eliminated.

Using XOR we can eliminate null bytes.

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

hence XOR a,a gives a=0
movl $0,%ebx =====>>> xorl %ebx,%ebx
Now for second line
"movl $1,%eax"

Let first understand EAX in detail

As here we are only working with 1 byte so there is no need to use %eax. You
could just use %ah or %al. %ax is the least-significant half of the %eax and
further %ax is divided into 2 parts %ah(most significant byte) & %al(least
significant byte).

______EAX________
| |

| | | AH | AL |
|___|____|____|____|

|____AX___|

Loading any value into %eax will wipe out whatever value in %ah & %al (and also %
ax).Similarly loading any value into either %ah or %al(also %ax) will corrupt
whatever value that was formerly in %eax. Hence it's ok to use a register for
either a byte or a word but never both at the same time.

movl $1,%eax =====>> movb $1,%al

Again writing ASM code

.globl main

Page 2 of 4Writing Shellcodes in Linux

12/10/2004

main:

xorl %ebx,%ebx
 movl %1,%al
 int $0x80

Now disassembling our modified program

08048314 <main>:
 8048314: 31 db xor %ebx,%ebx
 8048316: b0 01 mov $0x1,%al
 8048318: cd 80 int $0x80
 804831a: 90 nop
 804831b: 90 nop

Another way to eliminate null bytes

Well we can write "movl $1,%eax" in different way by eliminating the null bytes.

movl %1,%eax =========>> movl %ebx,%eax
 incl %eax
Disasssembling.......
08048314 <main>:
 8048314: 31 db xor %ebx,%ebx
 8048316: 89 d8 mov %ebx,%eax
 8048318: 40 inc %eax
 8048319: cd 80 int $0x80
 804831b: 90 nop
but the size of the shellcode is larger than previous one so later one is better.
Finally it's time to write the shellcode
"\x31\xdb\xb\x01\xcd\x80"

######exit.s############
char shellcode[]="\x31\xdb\xb\x01\xcd\x80";
int main(int argc,char *argv[])
{ int *ret;

*((char**)(&ret+2))=shellcode;

}
##################EOP#############
now compiling it

$ make exit && ./exit
cc exit.c -o exit
$ echo $?
0
$

Great it works.....

Author: Amitesh Singh
 singh.amitesh@gmail.com

 http://amitesh.info

Page 3 of 4Writing Shellcodes in Linux

12/10/2004

Page 4 of 4Writing Shellcodes in Linux

12/10/2004file://J:\my%20articles\shellcode.htm

