
ISSN 0956-9979

Editor: Edward Wilding

Technical Editor: Fridrik Skulason, University of Iceland

Editorial Advisors: Jim Bates, Bates Associates, UK, Phil Crewe, Fingerprint, UK, Dr. Jon David, USA, David Ferbrache, Information Systems Integrity & Security
Ltd., UK, Ray Glath, RG Software Inc., USA, Hans Gliss, Datenschutz Berater, West Germany, Ross M. Greenberg, Software Concepts Design, USA, Dr. Harold
Joseph Highland, Compulit Microcomputer Security Evaluation Laboratory, USA, Dr. Jan Hruska, Sophos, UK, Dr. Keith Jackson, Walsham Contracts, UK,
Owen Keane, Barrister, UK, Yisrael Radai, Hebrew University, Israel, John Laws, RSRE, UK, David T. Lindsay, Digital Equipment Corporation, UK, Martin
Samociuk, Network Security Management, UK, John Sherwood, Sherwood Associates, UK, Dr. Ken Wong, BIS Applied Systems, UK, Ken van Wyk, CERT,
USA.

CONTENTS
EDITORIAL 2

TECHNICAL NOTES 3

MAC THREATS

MDEF C 4

FROM THE FIELD

4K - A Warning of Data
Corruption 5

FOR MANAGEMENT

PC Security Part I. Controlling the
Operating System 7

KNOWN IBM PC VIRUSES 11

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

FOR PROGRAMMERS

Virus Encryption Techniques 13

VIRUS ANALYSIS

WHALE
- A Dinosaur Heading
for Extinction 17

ADDENDUM

Jonah’s Journey
- A Complementary Report 20

PRODUCT REVIEW

HyperACCESS/5 - A Virus
Filtering COMMS Package 21

END-NOTES & NEWS 24

THE AUTHORITATIVE INTERNATIONAL PUBLICATION
ON COMPUTER VIRUS PREVENTION,

RECOGNITION AND REMOVAL

November 1990

VIRUS BULLETINPage 2

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

EDITORIAL

Hope Springs Eternal

Some beneficial developments have arisen in the wake of the
WHALE virus (which is reported in two separate articles in
this month’s edition, see pp. 17-20).

Initial analysis suggested that this particular program would be
a ‘tough nut to crack’ and it soon became clear that collabora-
tion between researchers would be necessary to accelerate the
process of disassembly.

In fact, ad hoc arrangements to minimise the duplication of
analysis and harmonise the disassembly process emerged
within days of the program’s discovery. Information and
annotated disassemblies were transferred (in encrypted form)
by e-mail among a central corps of programmers. The priority
was to find a method by which the virus could be detected
consistently - WHALE obligingly “lifted her skirts” and a
number of proven detection methods have now been identified.
(These methods are not being published but are available to
bona fide anti-virus software developers through VB.)

The most encouraging aspect of this process was the unparal-
leled cooperation and consultation between the various
researchers and programmers involved.The strengthening of
communications links and increased cooperation among
researchers should significantly reduce the response time in
analysing rogue software in the event of a future emergency.

Various initiatives are currently under way in the United
Kingdom to establish a government- and/or industry-funded
research and reporting centre along similar lines to the
Computer Emergency Response Team in the United States or
the Information Security Research Centre at the Queensland
University of Technology, Australia. It is important that any
equivalent British centre is devoid of commercial interests or
affiliation. This would suggest that it should be controlled by
an academic or government body. VB hopes to be able to report
some ‘concrete’ initiatives presently.

There is also an air of cautious optimism that MS-DOS and
PC-DOS virus code is reaching its defined limits. Thorough
study of undocumented operating system features has proved
very helpful in analysing some of the latest computer viruses
while standard virus writing tricks are becoming ever more
readily identifiable. The ‘armoured’ viruses, of which WHALE
is the most tortuous, convoluted and ludicrous, are a sign of
resignation by the virus writers; the defensive bulk which they
carry actually increases the likelihood of detection.

An additional benefit of ongoing research is the mass of
forensic evidence which accumulates and which is carefully
indexed for future reference. This information, which is

constantly updated, is available in the event that the police
should require technical support pending an arrest or prosecu-
tion.

Slowly but surely, an informal network is developing which
can respond to the threat of malicious software. However, to be
truly effective it will need to be formalised and properly
funded. Regrettably, this is appears unlikely to happen until a
genuine disaster occurs.

Cutting Out the Middle-Men

There is a well-founded suspicion that certain virus writers,
far from wishing to cause computer havoc, are simply seeking
publicity and/or notoriety for their programs.

The fastest, easiest way to do this is to send a virus directly to
a researcher, usually anonymously or, as happened on at least
one occasion, by claiming that the sample was ‘found’.
Documented incidents include the appearance of the TP series,
Murphy-2, New Vienna, SVIR and Icelandic-2.

There have been some instances whereby a sample made
available for disassembly was atypical - it contained additional
text strings or replication code was absent. In some of these
cases this would only be possible if the virus had been sent
directly by its writer or a close associate.

The original Datacrime virus is understood to have been sent
directly to a researcher, which may explain its apparent non-
existence in the wild. (Not one incident of any of the Datac-
rime family actually triggering has been reported to VB this
year, a statistic confirmed by other organisations active in the
field.)

This phenomenon, whereby the virus is sent directly to a
research specialist is referred to as “cutting out the middle-
man”. The situation makes virus researchers analogous to
lightning conductors and might be construed as beneficial -
dangerous code ends up in the hands of those best qualified to
deal with it.

Unfortunately, each such sample has to undergo the same
painstaking analysis as other malicious software because there
is no guarantee that the virus can be isolated - the originator
could still release the virus into the wild, if he has not already
done so.

Suggestions have been made that the VB Table of Known IBM
PC Viruses should reflect whether or not entries are likely to
be encountered in the real world as opposed to being isolated
or laboratory specimens. It would certainly be feasible to
indicate the set of forty or so viruses and variants which are
currently known to be causing genuine infections. However, to
dismiss functioning viruses of dubious origin as being of no
consequence would be folly - the research community is simply
not in a position to categorise them as such.

Page 3

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

TECHNICAL NOTES

High Level Languages

Although most viruses are clearly written in assembly lan-
guage, it is possible to use a high-level language such as C or
Pascal instead. Several such viruses are known today, includ-
ing AIDS, AIDS-2 and Kamikaze, but their number is low
compared to the 250 or so different virus variants written in
assembly language. As writing in C or Pascal is undoubtedly
easier than writing in assembly language, some explanation
must be sought. The High-Level Language viruses (HLL)
generally show evidence of being created by programmers with
less knowledge than many of the assembly language viruses.
The reason may be that the assembly language programmers
want their “creations” to reflect their ability -being able to
write a program in assembly language indicates a higher level
of technical ability than being able to program in Pascal.
Another reason is that writing an advanced virus in “pure” C
or Pascal is difficult, as many interrupt level calls are required
for any function beyond simple replication.

A characteristic of HLL viruses is their size - due to compiler
overhead, a HLL virus may be ten times larger than an
equivalent assembly language virus. To the virus writer the
HLL virus offers one considerable advantage, which partially
offsets this obvious drawback: it is difficult to select a usable
search pattern for the virus, as any segment of code within the
virus could easily be created by the compiler when a totally
different program is being compiled.

Overwriting Viruses

As an overwriting virus will cause irreversible damage to any
program it infects by writing itself over the beginning of the
host program, one might think that this type of virus has the
potential to become a serious threat. This is not so.

A virus cannot become a serious problem unless it is able to
spread. When a virus is detected, some action is usually
undertaken to eliminate it, although this action may be
deferred if the virus causes no serious disruption. All other
factors being equal, a virus which does not make its presence
known will spread faster and more widely than a virus which is
detected early or interferes with normal processing. Overwrit-
ing viruses cause serious disruption by destroying their host
programs which results in immediate detection because
infected programs will not run normally, if at all.

‘Cooperation’

The 2100 virus from Bulgaria illustrates a new trend - ‘coop-
eration’ between different viruses. The phenomena of interac-
tion between viruses is not new - there are already several
‘anti-virus’ viruses known. The 2100 virus is able to recognise

the Anthrax virus, which may indicate that both viruses were
written by the same author, probably the person calling himself
‘Dark Avenger’.

When the Anthrax virus infects a disk, it will place a copy of
itself on the last track of the disk in addition to infecting the
boot sector. If the original boot sector is restored by some anti-
virus program or utility which does not overwrite the last track,
the disk will contain an inactive but functional copy of the
virus, even after it has seemingly been disinfected. The 2100
virus (itself a parasitic virus which infects COM and EXE
files) is able to locate this “spare” copy of the Anthrax virus
and will reactivate its dormant code thus causing the boot
sector to become reinfected.

Unintentional Side-Effects

It is well known that several viruses contain malicious code
intended to cause damage when some specific trigger condition
is met. This damage usually involves formatting the hard disk,
deleting programs or corrupting data. What is less well known
is the fact that some viruses may cause unintentional damage,
sometimes only when certain hardware is present.

A well documented example of unintentional damage is that
done by the New Zealand virus which can corrupt the FAT on
some hard disks and which overwrites the third sector of the
root directory corrupting 1.2 Mbyte 5.25" diskettes with more
than 32 files. Another example of unintentional corruption is
the “Den Zuk” virus and its variants which format track 40.
They may cause a loss of data when infecting a 3.5 inch and/or
high-density diskette, where track 40 is already present.

Another side-effect is FAT corruption caused by running
CHKDSK or a similar program with a “stealth” type virus
active in memory. The virus hides itself, which causes a
discrepancy as the number of blocks allocated for the infected
files may not match the number of blocks actually required,
according to the reported length. CHKDSK will report a FAT
error and attempt to correct the problem, corrupting the FAT in
the process.

So, even if a virus is reported as “harmless”, there is always a
possibility that some particular combination of hardware and
software may cause a corruption of programs or data.

Lost Property

Several viruses have been reported in the past but never made
available to any virus researcher. Some of the viruses men-
tioned on the next page have appeared in past issues of the
Virus Bulletin classified as ‘Reported Only’, but a sample has
never been made available. These viruses may never have
existed (‘vapourware’) or their reported existence may have
arisen as the result of misinterpretation.They may also have
existed at one time, but being very rare or slow to spread have
become extinct.

VIRUS BULLETINPage 4

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

The ‘lost’ viruses include:

1702: Reported as a 1702 byte variant of Cascade, which is
either 1701 or 1704 bytes.

2730: A search pattern for this virus appeared in one of John
MacAfee’s scanning programs. It does not match any currently
known virus.

Agiplan: This virus was described in a West German newspa-
per nearly two years ago. From the description it seems similar
to the Zero-Bug virus. Both add 1536 bytes to the start of
infected COM. A search pattern was provided for the virus but
no infections have been reported outside of the West German
AGIPLAN company which is believed to have ordered all
infected files to be destroyed.

Cookie: A virus displaying the message “Gimme a cookie”
called the ‘Cookie Monster’ has often been reported. It is
probably a myth.

Gates of Hades: A virus reported to be able to cause physical
damage to hard disks.

Hyperspace: Reported to display a special visual effect,
followed by the message “Welcome to hyperspace” and a
reported increase in processing speed.

Missouri: This was reportedly a boot sector virus. It is
generally believed never to have existed.

Nichols: Another “myth” virus

Poem: Reported to display fragments of a poem.

Retro: A “recurring” virus - probably another myth.

Screen: Reported by Ross Greenberg in an article in BYTE
(June 1989). His copy of the virus seems to be lost, and as no
other reports have surfaced, the virus is probably extinct by
now. The same article’s description of the dBASE virus (also
reported by Ross Greenberg) bore little resemblance to the
actual example of the dBASE virus which VB examined in
December 1989.

CIAC Warn of Virus Propagation on Novell

The Computer Incident Advisory Capability, University of
California, USA, issued bulletin number A-33 on September
21, 1990. It warns of a virus threat to MS-DOS system
networks. This bulletin provides a possible explanation for
Jerusalem-B’s apparent ability to replicate on Novell networks,
a phenomenon first reported after tests were undertaken by Dr.
Jon David at Novell’s Paramus, New Jersey, facility in June of
this year.

CIAC report that file servers on Novell use attribute bits to
perform write-protection on stored files. Many viruses will
clear these attribute bits before attempting to infect files, thus
circumventing the write-protection scheme. If a diskette
infected with Jerusalem-B is executed on a Novell network
node, the virus will become memory-resident. When the user

logs on to the file server (using login.exe), the virus infects this
program despite the fact that it is write-protected. Login.exe is
a shared program which is executed automatically when users
log on to the Novell network. Thus the network configuration
enables the Jerusalem-B virus to spread more quickly than if it
had spread through the exchange of floppy disks.

CIAC. Tel (USA) 423 4416 Fax (USA) 415 423 0913
E-mail ciac@tiger.11n1.gov

MAC THREATS

MDEF C

A new strain of the MDEF (Garfield) virus has been detected
in Ithaca, New York. The virus appears to have been released
into the wild just prior to the apprehension of its author by the
New York State Police (VB, October, 1990).

The virus, similar to MDEF, has two characteristic features.
First, the system MDEF resource is changed to 6982 when
replaced by the virus-infected MDEF 0 resource. Second, in
contrast to MDEF (with its ‘Garfield’ resource), MDEF C adds
no characteristic resource name.

MDEF C avoids detection by anti-virus INITS by re-vectoring
ChangeResource and AddResource traps to ROM (thus
bypassing RAM resident handlers installed by protection
software). The virus may also cause system crashes and other
unpredictable behaviour when running under Finder.

Software upgrades are being made available for the major anti-
virus packages. Updated releases and user upgrades are
summarised below:

Symantec’s SAM Version 2.00 traps MDEF C and the
following virus definition can be added to previous releases:

Virus Name MDEF C
Resource Type MDEF
Resource ID 0
Resource Size 556
Search String 4D4445464267487A005EA9AB
SearchOffset set 448

Disinfectant Version 2.3 will detect and remove both MDEF C
and a new ANTI A variant. Gatekeeper Aid Version 1.1 has
also been upgraded to trap MDEF C.

Virus Detective Version 4.0.3 will trap MDEF C with the
addition of the following search string:

Resource MDEF & ID=0 & WData
4D44#A6616#64546#6A9AB

Page 5

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

FROM THE FIELD

4K - A Warning of Data Corruption

The recent furore over possible infections by the 4K (Frodo)
virus centred on the virus’ trigger date of 22nd September.
Newspaper, radio and television reports concentrated exclu-
sively on the most superficial aspects of the virus, i.e. its text
messages and their reference to J.R.R. Tolkien’s The Lord of
the Rings.

The fact that a bug in the code invariably caused the affected
machine to hang when an infected file was executed tended to
make most observers dismissive of the problem. As usual, the
dire warnings published by some sections of the computer
press prior to the trigger date were inaccurate both in their
prediction of the number of infected machines and also in the
description of the effects of infection.

This virus has been known to researchers for nearly a year now
and a preliminary report was published in the May 1990 issue
of the Virus Bulletin in which mention was made of this virus’
capacity to corrupt data files. No mention was made of this
fact in news coverage and VB received no reports from
elsewhere that it had been mentioned.

Since the corruption of data files by 4K can cause both
immediate and long term problems for affected users, more
detailed information concerning the specific effects of data-
file corruption has been gathered and is reported here so
that future misunderstandings and omissions may be
avoided.

File Infection

4K recognises both COM and EXE files by the unusual process
of summing the ASCII values of the three characters which
comprise the filename extension. If the total value of the
extension characters of an uninfected file is 223 (COM) or 226
(EXE) then infection will take place. It should be noted that
the individual characters are first AND’ed with 0DF hex to
convert lower case characters to upper case.

The total number of possible file extension which fit these
criteria has been calculated at 1284 (including inversions
and rotations) and several of them have been noted as
common data file extensions. Among these are OLD, MEM,
PIF and QLB which total 223, and DWG, LOG and TBL which
total 226.

The distinction between the two sets is important since the
virus necessarily distinguishes between the techniques
necessary to infect COM or EXE files and the amount of
corruption to the original file contents will be greater for EXE
(sum 226) type files.

The Effects

4K is a “stealth” virus and contains code which misinforms
DOS about the contents and length of infected files. This
means that while the virus is resident and active in system
memory, infected files will appear “clean” to the operating
system. This also means that such files will similarly appear
“clean” to any program using DOS services.

Corrupted data files, if copied to backup disks or tapes will
carry the virus with them. The effect of this is remarkably
similar to the dBASE virus which deliberately sets out to
corrupt data files (VB, December 1989).

While the virus is resident, all files will appear clean and
application programs will function normally. However, when
the virus is removed (by replacing all infected program files),
application programs will “see” the corruption introduced by
the virus and the effects will be unpredictable.

In one incident involving DWG (drawing) files, the application
program aborted with an error when a corrupted data file was
encountered on a clean system - although the program func-
tioned normally when the machine was re-infected for test
purposes.

In this instance (EXE type infection), various bytes within
what would have been the EXE header were altered by the
virus and the 4K of virus code was appended to the end of the
file. Since this first section of the file contained vital header
information, an error was encountered as soon as an infected
file was accessed and the application program aborted. EXE
infection from the 4K virus usually changes five fields within
the EXE header as follows:

WORD at offset 04H = Number of Pages

WORD at offset 0EH = Stack Segment value

WORD at offset 10H = Stack Pointer value

WORD at offset 14H = Instruction Pointer value

WORD at offset 16H = Code Segment value

The Cure

The original contents of these fields can be recovered from the
beginning of the appended section of virus code.

On EXE type files where the sum of the extension characters is
226, the original 28-byte header is stored at the beginning of
the virus code and may be identified by comparison with the
unmodified fields of the header.

The actual storage position will always be 4 bytes beyond a
paragraph boundary (i.e. divisible by 16) and will be near the
start of the last 4096 bytes of the infected file.

VIRUS BULLETINPage 6

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

Removing the virus code can easily be accomplished by
replacing the original header and truncating the file by exactly
4096 bytes.

A similar pattern is used for the infection of COM type files
where the sum of the extension characters is 223 but in this
case, only the first six bytes of the file are altered and need to
be recovered (although the original 28 bytes are saved exactly
as in EXE infection).

Obviously the effects of such data corruption are unpredictable
and will depend upon the type of information and how the
relevant application program accesses it. The DWG files
mentioned above contained graphic data and this may be
particularly sensitive to this type of corruption.

The extensions mentioned above were selected simply because
they are extremely common and may produce strange effects on
recently disinfected systems.

Among the COM type extensions:

* MEM is used by dBASE programs as variable storage and
may produce errors which could be difficult to trace.

* PIF files are used by various versions of Microsoft WIN-
DOWS and again, the effects will vary and could be
intermittent.

* QLB extensions are used by Microsoft’s QuickBASIC
environment libraries and infection here will usually
produce immediate errors when the programming environ-
ment is invoked with an infected library file.

* OLD is an extension used by many packages and along with
QLB it presents a special problem.

Corrupted Backups

The fact that corrupted data files may exist on backup
disks may be a problem when data integrity is paramount
but the virus code is unlikely to find its way back into the
processing stream and thus become “live” again.

However, when considering the OLD and QLB extensions
(and possibly others), there is a distinct chance of this
“dormant” code being reactivated. The QLB files for
example are actually in EXE format (with the familiar MZ
header word) but they do contain executable code which
remains untouched when the COM type infection of 4K is
introduced. Thus under certain circumstances, invocation of
QuickBASIC’s environment may execute the virus code and re-
install it in memory to begin the replication process all over
again.

The OLD extension presents even more risk since there are
several program optimisation utilities which rename an
original program file with an OLD extension prior to generat-
ing a modified file.

One of the best known to do this is the LZEXE file packing
program (see VB, June 1990). LZEXE is an excellent utility in
widespread use which produces significant reductions in size
when applied to ordinary EXE files. The reduction is done by
creating a self-extracting archive of the original program file
which unpacks itself in memory when it is run. The original
(unpacked) version of the file is renamed with an OLD
extension and the danger with 4K infection is that when the
packed file becomes infected, a user might delete it and
rename the OLD file back to EXE before either using it or
repacking it. In spite of the fact that files with an OLD
extension are infected as COM files, renaming an infected one
as EXE and trying to run it will re-infect a system.

With infections caused by the 4K virus, it is therefore plain
that all files should be checked for infection and replaced with
clean copies if possible.

Since backups may be corrupted, a good, reliable, disinfec-
tion program is a must to recover damaged data files.
During tests to confirm some of the effects described in this
article, we had occasion to try four 4K disinfection programs;
two of them did not disinfect the target file correctly and errors
occurred even after the virus code was removed. The
relevant vendors have been informed of the problem.

Data Corruption

The corruption of data files reported here is almost
certainly an unintentional side-effect resulting from the
unusual technique which the 4K virus employs to
recognise COM and EXE files. In effect, the virus
attempts to ‘infect’ data files believing them to be
executable program files. The affected data files subse-
quently become corrupted. Note: the virus cannot
propagate by appending itself to pure data files. For a
virus to spread it must have an executable path.

There are only a handful of viruses which intentionally
attack pure data, the most significant of these being the
dBASE virus which attacks .DBF files and randomly
transposes bytes as the corresponding letters are entered
at the keyboard. The user will be oblivious to this action
as the corruption of the data being entered is not shown
on the screen, nor does it appear if corrupted data
backups are restored onto an infected processor. The
corruption can only be seen if the data is viewed in a
clean DOS environment. A detailed description of this
virus was published in VB, December 1989.

Corruption of data in this way poses a new threat to
the validity of backups to recover from computer
virus induced damage and emphasises the essential
requirement to test backups regularly and thoroughly.

Page 7

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

FOR MANAGEMENT

This is the first of a series of articles which examine different
aspects of microcomputer security. Here, the inherent weak-
ness of the PC operating system is highlighted and some
options to confound a determined intruder are examined.

PC Security Part I.
Controlling The Operating System

PCs are inherently insecure; by default, MS-DOS and PC-DOS
grant absolute authority to anyone who switches the microcom-
puter on. Most microcomputers incorporate no hardware
mechanisms and no privileged instructions to isolate users
from sensitive system processes. In effect, a microcomputer
running under DOS provides the user (regardless of his
identity) with total system privileges. The designers of the
personal computer and its operating systems never accounted
for security - microcomputers are intended to be ‘user friendly’
which, in turn, can make them ‘attacker friendly’.

The microcomputer operating system is insecure, a fact which
profoundly undermines any concept of ‘PC security’. With
current processor designs and operating systems, security
administrators should appreciate an inevitable and constant
state of ‘PC INsecurity’ and work to reduce associated risks in
a cost-effective manner (see Figure 1.).

There are three fundamental problems associated with
microcomputers, namely:

1) the hardware, operating systems, programs and data are
insecure;

2) personal computer equipment (including peripherals) is
accessible and easily removable, and;

3) sensitive, confidential and even classified data is increas-
ingly processed using this equipment.

Reducing System Insecurity

As described above, the critical concern is with system
security. Many ‘personal’ computers in business use are
wholly ‘impersonal’. With multiple users accessing standalone
and networked PCs, there is a need both to authenticate the
identity of each individual user and to enforce segregation (i.e.
to impose user ‘rights’). Otherwise, every user is permitted
‘world’ rights and anarchy (a state without government)
prevails. The process of imposing control over users is called
logical access control. There are a number of access control
products on the market, either in software, hardware or a
combination of the two.

Before discussing logical access control, it is important that a
fundamental tenet pertaining to current PC architecture is
understood:

Without integral hardware enforcement, it is impossible to
prevent a determined attacker from accessing or modifying
parts of the operating system and thus circumventing intended
security mechanisms. Software access control, in particular,
will be readily circumvented by a determined, technically
competent attacker. In a secure system the computer’s CPU
must not access the processor controlling the security mecha-
nisms other than through a single controlled I/O port. This
cannot be done with software because the security program has
to run on the same CPU upon which it is attempting to impose
controls.

PC Access Control

Access control is the technique for preventing an intruder from
accessing computer resources. In its simplest form (called
physical access control) this is done by means of locked doors
and a lock on the computer itself. On mainframes, which have
traditionally had a number of users, access control evolved as
an integral component of the operating system. On personal
computers, the demand for access control has been an after-
thought. Access control on mainframes is usually well regu-
lated and ranges from physical access to the terminals to the
strict enforcement of user names and passwords.

● DATA ❏ CORRUPTION ❏ DELETION ❏ UNAUTHORISED DISCLOSURE

● PROGRAMS ❏ CORRUPTION ❏ DELETION ❏ UNAUTHORISED EXECUTION

● PROCESSOR ❏ MALFUNCTION ❏ THEFT ❏ DAMAGE/DESTRUCTION

● MEDIA ❏ MALFUNCTION ❏ LOSS/THEFT ❏ DAMAGE/DESTRUCTION

● PERIPHERALS ❏ MALFUNCTION ❏ THEFT ❏ DAMAGE/DESTRUCTION

Figure 1. Microcomputer vulnerabilities

VIRUS BULLETINPage 8

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

The architecture of most microcomputers does not support
privileged and unprivileged instructions, nor ownership of
different areas of memory. This makes it impossible to design
provably secure access control systems.

Attempts have been made by numerous PC expansion board
manufacturers to provide secure hardware access control.
Unfortunately, it appears unlikely (with current processors)
that provably secure logical access control for the PC will
emerge. Expansion boards can offer adequate security provided
they are not removed from the the PC’s expansion board rack.
Unless carefully implemented, such ‘add-on’ security features
can also interfere with network operation, other expansion
boards, and software execution.

While well designed access control is better than none, a
determined intruder will not be prevented by any PC access
control product. Hardware access control is better than
software, but both methods are inherently insecure. Having
said this, logical access control is invaluable for imposing
control over general PC use, provided that users comply with
certain rules - the most important of which pertain to the use of
passwords. Also, potential users of such products should
consider the likelihood of a determined attack upon the system
(which will often be negligible) in any risk assessment.

Some points in selecting an access control product include:

* The system must prevent bootstrapping from a system floppy
disk. If it does not, an unauthorised user can bypass the
security mechanisms completely.

* Each user should be identified by a combination of a user ID
and a password. Passwords should be entered in half-duplex
(i.e. they must not appear on screen when entered). The user
ID and password must be accepted or rejected only in
combination, otherwise an attacker can establish whether or
not a user ID is valid. The system should enforce a minimum
password length (6 to 8 characters) and the maximum
number of characters allowed should be extensive enough to
enter a series of words. Passwords should have expiry dates
with periodic, mandatory changes to the password imposed
by the system on the user. The system should prevent re-use
of a password, which, obviously entails the storage of
redundant passwords.

* The system should automatically deny access if successive
(usually 3) incorrect attempts are made to enter the user ID/
password combination.

* The clock providing time and date should be separate from
the DOS clock. If this is not so, packages which allow access
only at certain times of day are useless, as the attacker can
change the DOS clock setting. The provision of a separate
clock is, of course, only possibly in hardware.

* A user should be assigned specific times of the week during
which he/she is allowed to log-on. This prevents night-time
browsing by ‘impersonators’ with a legitimate password.

* A user should have defined privileges (read, write, delete,
execute) as to the directories and programs which he/she can
access. Privileges should be defined and granted by the
security manager.

* An audit trail should be kept of which users have logged on
and when. The system log file must be secured against
deletion or modification by an attacker; it should thus be
stored in encrypted form. A comprehensive audit trail would
record system start-up (time/date/user account), session
initiation (log-in-time/log-out-time), program initiation and
termination (program name and run times) and access (data
file name(s)). This information can be used to reconstruct,
review or examine system abuse.

* The user should be allowed to ‘lock’ the computer by using a
password. The screen should be blanked when this sequence
is entered. This enables the user to leave the processor
active but unattended. Equally a single key should be
available to blank the screen in order to prevent onlookers
from seeing confidential information.

* A keyboard inactivity monitor should be provided. If nothing
has been typed for a predetermined time (10 minutes or so),
the PC automatically logs out.

* The security manager should be able to create new accounts,
change privileges etc. User passwords should not be chosen
by the security manager; the users should be responsible for
choosing passwords.

* Automatic encryption of sensitive files and passwords
should be provided. This should use a recognised provably
secure encryption algorithm such as DES. Faster, ‘DES-
alike’ algorithms may not be as secure. Unpublished
proprietary algorithms are often trivial and should not be
trusted unless technical details (which can be assessed for
security) are forthcoming.

* It is important that any access control package does not
interfere with hardware or software on the PC. Access
control packages often reach ‘deep’ into the operating
system and unforeseen complications can arise.

The most important point to remember is that PC access
control software and/or hardware is reliant on the user’s
compliance with the system and its procedures.

There is nothing to stop a legitimate user from revealing
(intentionally or otherwise) his user ID and password, thus
enabling an impersonator to gain access to the system. To a
lesser extent, this vulnerability of transferring access applies to
relatively sophisticated access control measures using tokens
(smart cards, swipe cards etc.) which rely on something

Page 9

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

‘owned’ as well as something ‘known’. Pub gossip, written
passwords stuck to the keyboard, ill chosen passwords and
even wilful complicity with an outside attacker are all threats
to such systems. (It should be pointed out that complicity with
an attacker will be the result of inadequate personnel security.
This re-emphasises the truism that the proverbial ‘chain’ is
only as strong as its weakest link.)

Biometric access control (something which the user ‘is’), in the
form of fingerprint and retina scanning (among other tech-
niques), provides substantially increased security over simple
passwords or token based systems because certain physical
attributes are impossible to transfer or duplicate. Having said
this, biometric methods are expensive and are rarely found in
the PC environment.

A widely held belief pertaining to access control products is
that they can provide guaranteed protection from computer
viruses. This is a highly contentious issue. The basic function
of access control is to restrict the system to a set number of
users and further restrict those users to certain actions which
may include inhibiting the import or execution of software.

Despite the inevitable shortcomings of logical access control it
is recommended as a way of imposing control over multi-user
PCs. Audit trails, in particular, are an effective way of making
each user accountable for his/her actions at any given time
which in turn tends to increase vigilance among a user group.

Secure Erasure

Insecure file deletion is the single most widespread risk to
confidential data.

The DOS command ‘DEL’ only deletes the first character of
the target file’s name from the directory but does not remove
its contents: it simply marks the clusters in which the deleted
material resides as ‘free’ in the FAT. (The same is true of the
Unix command ‘RM’). DOS cannot invoke data or programs
which have been deleted using the DEL command.

Many multi-tasking systems and even normal word-processing
packages use temporary areas on disk which are simply
abandoned when the program finishes executing. While not
accessible using systems commands this data residue can be
retrieved using disk utility programs such as Norton or PC
Tools. This is obviously a threat to confidential data.

Positive erasure of a file can be achieved using specialist
programs which change the polarity of each storage bit to be
erased. However, laboratory studies have shown that it is
possible to read information which has been overwritten once
due to physical effects such as residual magnetism. Satisfactory
security can thus only be achieved by positive erasure pro-
grams which can perform multiple overwrites. Positive erasure
programs should also enable visual verification that overwrit-
ing has occurred.

Encryption

A contrasting approach to ensuring data confidentiality
involves the use of encryption which is designed to deny
effective use of disclosed information.

Good encryption, used properly, is the most secure way to
protect confidential data against unauthorised disclosure.
Encryption offers a more fundamental form of protection than
access control systems which can be relatively simple for
computer specialists to defeat. Encryption has an additional
advantage of safeguarding confidential data from disclosure on
any magnetic media, whether it is being processed, in storage
or transit.

Cracking a properly implemented encryption code is an
immense task, governed by powerful laws of mathematical
intractability. Modern encryption methods are designed in such
a way that it is not possible, even knowing the precise method
used, to trace back the manipulations which have taken place
and thus simply ‘unravel’ the encryption. This is because the
basic tool, the encryption algorithm, works in conjunction with
an unpredictable key.

Encryption products can protect against unauthorised disclo-
sure and detect corruption or intentional modification to data
stored on disk. Changes to encrypted data (cyphertext)
implemented without the correct key will result in corrupted
plaintext. However, encryption cannot prevent either data
modification or destruction and critical data cannot be pro-
tected by encryption alone. Its function is to guarantee confi-
dentiality and reveal corruption/modification should it occur.

Most packages enable the user to enter and change keys and
encrypt and decrypt data, normally in the form of entire files.
There are a variety of software and hardware encryption
products available. Standard encryption involves the user
preparing a file, running the encryption program (using a key
known only to him) and producing unintelligible cyphertext.
The original file should be positively overwritten - good
encryption packages will do this automatically. The same key
can be used to decrypt the file. Provided that these programs
are designed for incorporation into batch files, file encryption
is a highly suitable solution for professional use.

Other methods utilise bulk-file encryption; as data is written to
disk it is encrypted and as it is read from disk it is decrypted
and passed to the requesting program. Bulk file encryption
usually necessitates the use of hardware devices which can
speed the encrypt/decrypt process by a factor of between 10
and 100 over software implementations. Bulk file encryption
often proves intolerably slow: some packages use ‘fast
algorithms’ but their security is usually inferior to that
provided by the Data Encryption Standard (DES). The choice
between software and hardware implementation is dependent
on individual specifications and requirements.

The problem with encryption is that it is critically dependent

VIRUS BULLETINPage 10

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

upon the reliability and integrity of the user.

Encrypted data is absolutely safe only if the key used to
encrypt the data is generated in a secure way and is in the right
‘trusted’ hands. All security is lost if the key is disclosed to
an unauthorised person.

The task of choosing, distributing and changing keys is known
as key management. An encryption key is transferrable in
much the same way as a password, which raises the spectre of
an attacker impersonating a legitimate user. However, data
stored on disk (whether hard disk or diskette) which has been
encrypted using a secure tested algorithm (DES or RSA) is
secure even in the face of a concerted attack (provided, of
course, that the key is not disclosed). Products containing
proprietary encryption algorithms should be regarded with
caution: the algorithms used are often trivially weak.

Conclusions

High security software options on the PC are limited and costly
in processing time. Embedded hardware can implement the
necessary controls without detrimentally affecting the compu-
ter’s processing and storage capacity.

Despite the inherent insecurity of the MS-DOS/PC-DOS
operating system, security management can impose sufficient
control over microcomputer systems for use in all but the most
hostile environments.

It is important that the limitations of both access control and
encryption are understood. Both techniques are designed to
ensure confidentiality; they do not provide guaranteed protec-
tion against program or data corruption although both methods
serve to reduce these risks.

Next Month

Cost-effective and proven methods to protect data and
processing equipment will be examined. Computer
security is often described as a balancing act between
confidentiality, integrity and availability (the acronym is,
of course, CIA). In fact, data integrity and availability is
the crucial concern to most commercial organisations.
Enhancing PC security and safeguarding data need not be
expensive and is as much a matter of common sense as
installing ‘high-tech wizardry’.

Figure 2. The many internal
interfaces of the personal com-
puter.

Securing the system depends upon
controlling the paths by which
users access system and program
functions.

Controls implemented at any level
can be circumvented by the
determined intruder following an
alternative path to his objective.

Although, it takes a degree of
technical competence to exploit
the inherent weakness of PC
operating systems, many experi-
enced users acquire the necessary
knowledge to do so.

(Diagram reproduced from Data &
Computer Security: Dictionary of
Standards, Concepts and Terms, 1987, D.
Longley and M. Shain, by kind
permission of Macmillan Scientific
Publishers Ltd.)

User

DEBUG
BASIC Autoexec
DBMS

Application Program Command Processor

DOS Service Routines

Basic I/O Routines
RAM

 ROM

Hardware Instruction Set

Page 11

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

KNOWN IBM PC VIRUSES (UPDATES)

Updates and amendments to the Virus Bulletin Table of Known IBM PC Viruses as of October 26, 1990. The full table was last
published in August 1990.

Entries consist of the virus’ name, its aliases, if any, and the virus type. This is followed by a short description (if available) and a 10 to
16 byte hexadecimal pattern to detect the presence of the virus using the ‘search’ routine of disk utility programs or, preferably, by
adding the pattern to the library of a virus scanning program. Offset (in hexadecimal) normally means the number of bytes from the
virus entry point to the location at which the pattern commences.

Type Codes

C = Infects COM files D = Infects DOS Boot Sector (logical sector 0 in each DOS partition)
E = Infects EXE files M = Infects Master Boot Sector (track 0, head 0, sector 1 on disk)
N = Not memory-resident after infection R = Memory-resident after infection
P = Companion virus

Seen Viruses

1024-B - CER: A minor variant of the Bulgarian 1024 virus, detectable by the string published in VB, September 1990.

1226 - CR: This Bulgarian virus is related to Phoenix, Proud and Evil. As in the case of its relatives, no search pattern is possible. (See article on
virus encryption techniques, pp.13-16.)

2100 - CER: This is a Bulgarian virus, related to the Eddie and Eddie-2 viruses and contains extensive segments of code common to both. The
previously published pattern for Eddie-2 (VB, August 1990) can be found within this virus, but they can be easily differentiated on the basis of
length.

Amstrad-852 - CN: Basically identical to the original 847 byte variant, only a text string has been changed. The Amstrad pattern in VB, August
1990, can be used to detect this variant.

Anthrax - CEMR: A multi-partite virus from Bulgaria, which infects the Master Boot Sector, as well as executable files. Infected files usually grow
by 1000-1200 bytes.

Anthrax 0E1F 832E 1304 02CD 12B1 06D3 E08E C0BF ; Offset 0 in MBS

Anti-Pascal - CN: This is a family of 5 Bulgarian viruses which overwrite or delete .PAS or .BAK files, should they find no .COM files to infect.
All five viruses are rare, even in Bulgaria, and fairly simple in structure. The length of the variants is in the range 400-605 bytes.

Anti-Pascal (1) D1E0 D1E0 80E4 0380 C402 8AC4 8BD8 32FF ; Offset variable
Anti-Pascal (2) 21BE 0001 5A58 FFE6 50B4 0E8A D0CD 2158 ; Offset variable

Dir - CR: A 691 byte Bulgarian virus which only infects files when the DIR command is issued. No other effects have been found.

Dir CD26 0E1F 580E 1FBE 0001 56C3 0E0E 1F07 ; Offset 04A

Evil - CR: This is a close relative of the Phoenix virus, but is shorter, 1701 bytes instead of 1704. It uses the same encryption method, which
renders the extraction of a search pattern impossible. (See article on virus encryption techniques, pp.13-16.)

Internal, 1381 - EN: Infective length is 1381 bytes. Virus contains the string:

INTERNAL ERROR 02CH.
PLEASE CONTACT YOUR HARDWARE MANUFACTURER IMMEDIATELY !
DO NOT FORGET TO REPORT THE ERROR CODE !

Internal 1E06 8CC8 8ED8 B840 008E C0FC E858 0480 ; Offset 0B1

Kamikaze - EN: This overwriting virus from Bulgaria is written in Turbo Pascal and is fairly large at 4031 bytes. Like other similar viruses it is not
a serious threat (see technical note on overwriting viruses, p. 3).

VIRUS BULLETINPage 12

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

Seen Viruses (contd.)

Korea - DR: A minor variant of the Korea virus probably compiledon a different assembler. It is not detected by the search pattern in VB,
August 1990. The amended search pattern detects both known versions of the virus.

Korea CO8E D88E D0BC F0FF FBBB 1304 8B07 4848 ; Offset 009

Microbes - DR: An Indian virus whose effects are not fully known, except that booting from an infected disk has been reported to cause some
computers to “hang”.

Microbes 042D 0400 A313 04B1 06D3 E08E C006 C706 ; Offset 014

MG - CR: A simple, 500 byte Bulgarian virus.

MG AA1F 1E07 585E 1EBB 0001 53CB 3D04 4B74 ; Offset 086

Nomenklatura - CER: Infective length is 1024 bytes and only files longer than 1024 bytes are infected. The virus infects on executing a program
or opening a file which means that a virus scanning program will infect all files on the system if the virus is in memory. The virus seems to have
no side-effects.

Nomenklatura B8AA 4BCD 2173 785E 5606 33CO 8ED8 C41E ; Offset 2DD

Proud - CR: This 1302 byte virus is a member of a Bulgarian family of 4 viruses, which also includes 1226, Evil and Phoenix. As they all use
the same encryption method, no search pattern is possible. (See article on encryption, pp. 13-16.)

Tiny Family - CR: This is a family of at least 10 Bulgarian viruses, which includes the shortest viruses now known. The viruses are not
related to the Danish ‘Tiny’ virus, but just like it they do nothing but replicate. The length of the variants is from 198 down to 134 bytes.

Tiny Family (1) CD32 B43E CD32 071F 5F5A 595B 582E FF2E ; Offset variable
Tiny Family (2) 2687 85E0 FEAB E3F7 931E 07C3 3D00 4B75 ; Offset variable

Trackswap - DR: A small Bulgarian boot sector virus which is awaiting analysis.

Trackswap FBA1 1304 48A3 1304 B106 D3E0 8EC0 06BD ; Offset 00E

VFSI - CN: A simple 437 byte Bulgarian virus.

VFSI 100E 1FB8 001A BA81 00CD 21BE 0001 FFE6 ; Offset 1A3

Reported Only

1605 - CER: This virus is reported to be related to the Jerusalem virus and to cause a slowdown of the system.

Black Monday - CER: This virus was reported in Fiji. It is 1055 bytes long, and contains the string “Black Monday 2/3/90 KV KL MAL”.

Christmas - CN: A 600 byte virus from Japan or Taiwan which will display the message “Merry Christmas to You!” on 25th December.
Reported to be targeted at NEC PC-9800 computers. Programs greater than 30,720 bytes are destroyed.

Invader - DCER: This Taiwanese multi-partite virus is reported to be related to the Plastique virus. It will play a melody 30 minutes after
activation.

Number One - CN: A primitive virus written three years ago and published in Burger’s Computer Viruses: A High Tech Disease.

Rat - ER: This Bulgarian virus has been reported, but the sample which is available for analysis does not replicate.

Saddam - This virus has been reported in Israel.

Scott’s Valley - CER: A 2131 byte virus, first reported in California.

Terror - CER: This Bulgarian virus has not been analysed yet, as it failed to replicate under testing conditions.

V2P2, V2P6, V2P6Z - CN: These three viruses are reportedly written by Mark Washburn, who is also the author of the 1260 virus, which is
less complex than these three.

Westwood - CER: This is reported to be the Jerusalem virus, substantially altered in order to prevent it from being detected by anti-virus
programs.

Wisconsin - CN: An 825 byte, .COM-infecting virus, which may delete .PAS files when it activates.

Page 13

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

FOR PROGRAMMERS
Fridrik Skulason

Virus Encryption Techniques

Several of the viruses known today use encryption and this
feature is likely to become even more prevalent in the future.
An encrypted virus consists of two parts, a short decryption
program and the encrypted main body of the virus. When an
infected program is run, the decryption routine executes first. It
decrypts the virus, possibly performing other tasks at the same
time, such as computing a checksum for the decrypted code to
check whether the virus has been tampered with.

Encryption is often used when sensitive or confidential
information is transmitted or stored, but virus writers use it for
different reasons, four of which are described here.

1 - Encryption - To Prevent Static Code Analysis

Static analysis of programs basically involves disassembling
them and examining the disassembled code for suspicious
instructions or blocks of code. Examples of suspicious code
include statements such as:

JMP F000:XXXX transfer control directly to the
ROM BIOS

INT 26H absolute disk write, bypassing the
file system.

Several programs have been written which attempt to analyse
code automatically and produce a warning when suspicious
instructions are detected. With a proper definition of “suspi-
cious instructions” they would indeed be able to detect most
viruses and Trojans. The problem with this type of program,
however, is the unacceptably large number of false positives
and negatives they generate. A false positive occurs when a
legitimate program happens to use one or more of the “suspi-
cious” instructions. This may happen in the case of utility
programs, such as the Norton Utilities, but also when cache
programs, operating system extensions and other similar
software are examined. A false negative, where a malicious
program is given a clean “bill of health”, is more serious.
This happens because the author carefully disguised the
suspicious instructions. Encryption is one of the methods used
to disguise suspicious instructions and its presence in virus
code often prohibits the use of static analysis programs.

2 - Encryption - To Prolong the Process of Dissection

Encryption makes analysis of the virus code more difficult, but
it usually does not add more than a few minutes to the time
required to analyse the virus. There is one notable exception to

this - the Whale virus, which is described on page 17-20,
where most of the code is dedicated to encryption in a
convoluted attempt to confound disassembly. The term
‘armour’ describes code designed to confound disassembly.

3 - Encryption - To Prevent Tampering

It is common for new virus variants to arise as a result of minor
changes to the original virus. The best example of this is the
Payday virus - it was produced by changing only a single bit.
Encrypting a virus makes it more difficult to change in this
way, as anyone planning to modify the virus must first decrypt
it, then make any necessary changes and re-encrypt it before
reassembling it.

4 - Encryption - To Evade Detection

In the first encrypted viruses such as Cascade, the decryption
code was identical in all files infected with the virus. A search
pattern could therefore be selected from the decryption routine.
Recent viruses make this impossible, by using self-modifying
encryption, so that no two samples of the same virus have any
usable hexadecimal search string in common.

A Note on Encryption

For any virus to function, regardless of encryption techniques,
it must decrypt itself before processing. This means that any
encryption technique used in virus code can always be broken
regardless of the sophistication of the encryption algorithm
used. This fact may explain why virus writers choose to adopt
such trivial encryption methods - time expended on devising
more sophisticated algorithms is effectively wasted.

The Encrypted Viruses

Having listed the various reasons for using encryption, we can
now turn our attention to the encrypted viruses known today
and describe them. Viruses generally use simple encryption
algorithms, which are easily reversible. A standard method
employs the XOR operation, where encryption and decryption
are performed by the same program code.

Pretoria

The Pretoria (16th June) virus uses a very simple encryption
algorithm, which consists of XOR-ing each byte with a fixed
value. This algorithm is equivalent to a simple substitution
algorithm. It is also easily reversible, as XOR-ing the en-
crypted byte with the same value as was used when encrypting
will yield the original value.

again: lodsb ; get a byte to decrypt
xor al,0a5h ; decrypt using key
stosb ; and store it back
dec bx ; finished ?
jnz again ; if not, continue..

VIRUS BULLETINPage 14

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

July 13th

This Spanish virus uses a method very similar to that used by the Pretoria virus, XOR-ing the virus code with a single value. As an
example of this method, the decryption procedure is included here. It is identical in all infected files and long enough for a search
pattern to be extracted from it.

Slow

The Slow virus uses a similar method, XOR-ing each byte with a fixed value, which is changed in each infected file.

mov cx,length_of_virus_body ; get length
again: xor [si],1bh ; decrypt one byte

inc si ; increase pointer
loop again ; until all bytes have been decrypted

Cascade

Cascade was the first virus to use encryption. The algorithm used is somewhat more sophisticated than the simple substitution algo-
rithm, as it consists of XOR-ing each byte twice with variable values, one of which depends on the length of the host program. Even
though the decryption routine is short, a search pattern can comfortably be extracted from it.

lea si,[bx+start_of_virus] ; where to start
mov sp,length_of_virus_body ; SP used as counter to make tracing difficult

again: xor [si],si ; XOR with counter variable 1
xor [si],sp ; XOR with counter variable 2
inc si ; increase one counter
dec sp ; and decrease the other one
jnz again ; until all bytes have been decrypted.

Datacrime II

As mentioned in the August 1990 edition, the Datacrime II virus uses encryption. This virus was also the first to use self-modifying
encryption, in the sense that the decryption/encryption routine modifies itself. This does not affect the extraction of a suitable search
pattern. In fact, the purpose of this modification is to prevent tracing through the decryption process using DEBUG or a similar utility
program. It could thus be described as an ‘armoured’ feature to prevent disassembly. The encryption method which is used is otherwise
quite simple - each byte is XOR-ed with a key which is rotated by one bit each time.

again: mov al,cs:[bx] ; get next byte to be decrypted
mov cs:[di],22h ; change the next instruction from xor al,dl to and al,dl
xor al,dl ; perform the decryption
ror dl,1 ; rotate the key
mov cs:[bx],al ; store the decrypted byte
inc bx ; increment counter
mov cs:[di],32h ; change the instruction back to an xor instruction.
loop again ; until all bytes have been decrypted

mov al;cs:[label] ; get the value used to encrypt...
xor al,90h ; ...this particular sample
mov si,offset label ; where to start the decryption
mov cx,length_of_virus_body ; number of bytes to translate

again: xor cs:[si],al ; perform the actual decoding
inc si ; and continue
loop again ; until all bytes have been decrypted

label: db 5bh ; this will then be a NOP instruction

If the code is traced using DEBUG it will not work as intended, as the XOR instruction is changed to an AND instruction before it is
executed. However, if the code is run normally, it will work, because when the instruction is changed it has already been fetched and
the XOR instruction is waiting in the pipeline even if it has at that moment been replaced by an AND instruction in memory.

Page 15

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

The 800 Virus

The 800 virus uses a simple encryption method, just XOR-ing with a constant value. However, one detail is unusual - the value is
obtained by XOR-ing together all words in the virus body. The decryption routine is long enough to provide a usable search pattern.

mov di,si ; start of virus body
xor dx,dx ; set key to zero
mov cx,length_of_virus_body ; length of virus (in words)
push cx ; and store it

again1: lodsw ; get one word of data
xor dx,ax ; and compute a key
loop again1
pop cx ; recover length of virus

again2: xor [di],dx ; decrypt a word
inc di ; increment counter by 2
inc di ; (the size of a word)
loop again2 ; until all words have been decrypted

Syslock

The encryption used by the Syslock virus is just a minor variation of the previous encryption methods. Like all the previous viruses
described so far, the encryption procedure is of sufficient length for the extraction of a usable search pattern. Note that this works only
when the number of words in the virus is even.

mov si,start_of_virus ; get start of virus
mov cx,length_of_virus_body ; and the length
nop
shr cx,1 ; convert from bytes to words

again: mov ah,cl ; get a key
mov al,cl ; which changes with every byte
xor ax,[key] ; and a constant
xor [si],ax ; and decrypt it
inc si ; increment counter
inc si
loop again ; until all bytes have been decrypted

1260 and Casper

The encryption routine used by these two viruses was described in the March 1990 edition of VB. As It represents a significant develop-
ment in encryption techniques, most of that previously published information is repeated here.

The encryption algorithm itself is very similar to the other methods described in this article, but it contains the following instructions:

mov ax,key_1 ; get the initial first encryption key
mov cx,key_2 ; and the second one
mov di,start_of_virus ; where to begin

label: xor [di],cx ; decrypt - step 1
xor [di],ax ; step 2
inc di ; point to next byte
inc ax ; increment the first key
loop label ; until all bytes have been decrypted

The significant advance consists of inserting various one-byte and two-byte non-functioning instructions between the instructions listed
above. This ‘garbage’ has no effect on the decryption process, but makes the extraction of a search pattern impossible. The
longest sequence present in all infected files contains just three bytes, which is far too short to be usable. To detect the virus some
additional information must be used, such as that the virus only infects .COM files and infected files start with a JMP to a location
1260 (or 1200 in the case of Casper) bytes before the end of the file.

VIRUS BULLETINPage 16

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

The 1260 virus uses an additional level of encryption as well, as described in the August 1990 edition.

The author of the 1260 virus, Mark Washburn of Minnesota, USA, is reported to have written several other viruses, which use even
more complex encryption methods. In fact, the encryption method used by 1260 is just one of the possible methods which might be
used by the simplest of his other viruses. Washburn has reportedly written three such samples, V2P2, V2P6 and V2P6Z.

Suomi

The Suomi virus also uses self-modifying encryption, but it is not as advanced as that used in 1260. The major difference is that
additional instructions are not inserted at random, but only at fixed places, indicated by the question marks in the following code
fragment. This makes the use of search pattern possible, provided that it is permitted to contain “wild-card” characters.

again: xor [bx+di],ax ; decrypt a word
jmp label ; skip over random data
nop ; a "padding" NOP inserted by MASM
? ; a variable "random" byte
? ; a variable "random" byte

label: sub di,2 ; point to next word
jnb again ; until all words are decrypted.

Proud, 1226, Evil and Phoenix

This family of four viruses from Bulgaria uses a new method for preventing the selection of a search pattern. No instructions are added,
but instead the instructions themselves change. The viruses all use the same decryption method, which is closely related to the one used
by the 800 virus.

mov r2,r1 ; beginning of virus code
xor r3,r3 ; zero key
mov r4,length_of_virus ; length of virus
push r4 ; and store it for later use

again1: xor r3,[r1+22h] ; obtain one word
inc r1 ; and point to the next one
inc r1
dec r4
jns/jge again1 ; until code has been xor-ed together
pop r5 ; restore length

again2: xor [r2+22h],r3 ; decrypt one word
inc r2 ; and point to the next one
inc r2
dec r5
jns/jge again2 ; until all words have been decrypted

Here r1,r2, r3, r4, and r5 stand for ax,bx,cx,dx,si or di, the selection of which register is used and where varies from one virus to
another. The conditional jumps can also be coded in more than one way.

Whale

The WHALE virus makes extensive use of encryption. Some parts of the code lie buried under several layers of encryption, and a
number of different encryption methods are used. At the top layer, the encryption depends on the particular mutation of the virus. The
methods include XOR-ing every byte, XOR-ing two bytes out of every three, adding a particular value to each byte, complementing
each byte and so on. Underneath this layer there is extensive use of XOR-ing with random numbers obtained from the PC timer chip. In
each case the random key used for a particular section is stored either as part of an XOR instruction or immediately following the call to
the decryption routine. All the encryption used in WHALE is trivial from a cryptographic point of view.

Page 17

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

VIRUS ANALYSIS
Jim Bates

WHALE...
A Dinosaur Heading For Extinction

By far the largest virus that researchers have yet seen was
recently uploaded to a bulletin board in the United States and
comprises just under 10K of code.

The virus has been called THE WHALE since that is the
“title” which appears within the code after the first level of
code decryption has been executed. Disassembling this code
has proven time-consuming and full analysis is incomplete due
to the pressures of other work on the various researchers
currently disassembling it. I am indebted to Dr. Peter Lammer
of Sophos and Morgan and Igor of MacAfee Associates for
access to their work on this and the report which follows
collates results from all these sources although any errors in
analysis or interpretation are entirely my own.

The FidoNet Message

Before describing the code in such detail as we have, mention
should be made of the “motherfish” message which was
posted anonymously to VIRUS ECHO on FidoNet and reported
in full in last month’s Virus Bulletin.

There are several discrepancies in this message which might
suggest that the sender was either not familiar with the code or
he was spreading disinformation. Since more than half the
virus code is concerned with confusing and misinforming
anyone trying to disassemble it, I incline to the latter theory.

The use of “motherfish” (which does not appear in the code)
in preference to “whale” is strange, and the reference to the
virus “learning” detection methods and being a “living,
breathing entity” is fanciful in the extreme and inaccurate.
That “the virus cannot be detected by present methods” is
incorrect, despite concerted attempts on the part of the
author(s) to make the virus undetectable. The use of the word
“disavow” is interesting since text within the code suggests
that the author comes from Hamburg where such a word seems
unlikely to be common parlance. However, the suggestion that
the code is modularly constructed is accurate, so unless this
was a guess we must assume that the sender has some knowl-
edge of the virus as a whole.

Heavyweight Confusion Coding

Following self-encrypting and “stealth” viruses, a new term
has been coined by a member of the Computer Crime Unit at
New Scotland Yard. “Armoured” virus code describes the

deliberate disinformation and confusion techniques noted in
FISH6 and WHALE. It is certainly appropriate in the case of
WHALE since the “armour” outweighs the “stealth”!

The WHALE virus is characterised by large sections of code
(estimated as at least 50 percent of the total) which involve
extremely convoluted processing around and across the debug
and single step interrupt handlers and accessing such hardware
as the Programmable Interrupt Controller. There is no other
reason for this than to confuse researchers trying to disassem-
ble the code.

Paradoxically, the presence of this ‘confusion’ code has caused
the research community to heave a sigh of relief. The reason
for this is quite simply that such code is costly in processing
time and when a machine becomes infected, processing speed
slows by up to 50 percent - the WHALE is simply carrying so
much programming weight (armour) that its very bulk is its
giveaway. (Rather like the dinosaurs, such viruses seem
doomed to extinction, Ed.)

A substantial amount of time and effort has been expended in
writing this virus and it could well have been undertaken by
more than one author. Program construction is modular and no
effort has been spared to make the code difficult for scanning
programs to detect.

‘‘Virus authors have at last reached
the predicted point at which their

code has to carry so much
protection that the parameters of
invisibility and mobility can no

longer be maintained.’’

Encryption Routines

Aside from the now accepted technique of self-encryption, this
virus scrambles the order of its subroutines and varies the
encryption algorithm used during file infection.

Also accepted as a “standard” technique now is the decryp-
tion/recryption process which is used to prevent detection of
the virus code in memory. This technique consists of maintain-
ing most of the resident virus code in memory in encrypted
form and only decrypting it just prior to processing. Once a
particular section has been executed a re-encryption routine is
called which collects a new pseudo-random key value and re-

VIRUS BULLETINPage 18

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

encrypts the code just executed before storing the new key and
continuing to the next part of the code. The result is that only a
small “window” around the code currently being executed is
actually “in plain view”, the remainder is variously and
randomly encrypted. This is obviously to forestall the possibil-
ity of a recognition pattern being used to identify virus code in
memory. The author(s) obviously likes this technique since it
is used at least 96 times throughout the code. This is another
part of the bulk that this unwieldy virus carries.

As with other recent viruses, there are several “undocu-
mented” system calls (most of which are now well docu-
mented within the technical community) but two have been
noted which may relate to specific software packages, possibly
of an anti-virus nature.

General Structure

There is still much work to be done in analysing this code.
However, we can say that this is a parasitic virus which infects
executables with an infection length of around 9416 bytes. The
actual appended length varies from infection to infection and
this is probably due to the insertion of some random junk and
alignment of code on paragraph boundaries.

No simple search pattern is possible because of the multiple
encryption techniques and modular scrambling. There are
considerable sections of self-modifying, self-checking and self-
switching code within WHALE. This last technique consists of
laboriously switching individual bytes within a specific
subroutine using pre-calculated XOR values. The result is a
sort of global XOR effect which can be used to switch between
two different routines or as a decrypt/recrypt process.

The code appears to install itself as resident within the first
available Memory Control Block and monitors system activity
during normal DOS processing.

Stealth techniques are used to fool DOS into reporting original
file sizes rather than the increased ones when files become
infected. This is done by intercepting the DOS Get File Size
function (23H) and checking whether the target file is infected
before returning either a true or modified file size to the calling
routine. (See also page 20.)

Infection Method

The virus’ method of detecting infection is still being analysed
but there is some evidence that several checks are made,
failure of any one of which will indicate that a file is not
infected.

The complexity of these checks means that a “sparse infec-
tion” method (i.e. not all files will be infected) may be
employed. This makes external detection more difficult but it
does reduce the virulence of the code and should mean that if
this specimen does appear in the wild, it is unlikely to exist for

long before detection and would therefore not spread too far.

One of the checks for infection seems to be that the hour field
in the file time must be equal to or greater than 16 (i.e. 4pm or
later) since the top bit of that field is modified within the
Function 57H (Get/Set file Date/Time) handler. This too may
limit the number of files suitable for infection.

Programming Style

There are several similarities with the FISH6 and 4K viruses
and this might indicate either a distinct development cycle by
the author(s) or simply that someone has copied useful code
and ideas from the earlier specimens. I incline to the former
view but whatever the truth of the matter, the similarity in file
infection technique provides a useful method of identifying the
presence of any of these three viruses.

However, it is reported from the United States that some
generations of WHALE may not display this similarity and
might therefore slip through this particular detection net.

The technique itself is discussed in the 4K data infection report
on page 4 of this issue and with the exception of the differ-
ences in infected length (and the as yet unconfirmed U.S.
reports), all three viruses show identical repetition of the
original host header information.

Generation Code

The external results of running the WHALE have so far
produced at least 27 different “generations” (the total number
of possible generations equals 30. Ed.) and each generation
appears to be the result of scrambling the order in which
subroutines are written to the target file as well as changing
both the encryption ‘lock’ and ‘key’.

There is a counting mechanism fairly close to the beginning of
the virus code which counts back from 0F0H (240 decimal) on
the dissection copy but the significance of this has not yet
become clear. Possibly sections of the virus yet to be dissected
may be invoked when the counter reaches zero.

Infection apparently takes place during a Function 4BH call to
DOS (Load and Execute) and thus affects COM, EXE, OVR
and other executable code which is run in this way.

At various times, the interrupt vector addresses for Interrupts
1H, 2H, 3H, 9H, 13H, 24H and 2FH are accessed and may be
modified for use by the virus code.

The main area of code subversion centres around the DOS
Interrupt 21H and this is intercepted and passed through a
function dispatcher routine. This dispatcher monitors 15
separate DOS functions including both types of Find First/Next
(11H, 12H, 4EH and 4FH), Open and Close file operations
(0FH, 3DH and 3EH) and various types of File Read and Seek

Page 19

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

The message reads:

THE WHALE IN SEARCH OF THE 8 FISH
I AM '~knzyvo}' IN HAMBURG

This is exactly as the message appears on screen and the
characters between the single quotes appear to be a name of
some sort.

Elementary cryptanalysis suggests that this name is probably
‘TADPOLES’ (which ties in with the ichthyological theme)
since this results from simply subtracting a value of 42
(decimal) from each character value. Whether the authors
actually do come from Hamburg (Chaos Computer Club? Ed.)
is not certain: since they are capable of producing this ludi-
crously silly code it is quite probable that they are pathological
liars as well.

Many researchers have conjectured that WHALE might be
designed to interact with other viruses (notably FISH6) but to
date, no evidence of this has been found either within the virus
code or by live testing with both viruses active on the same
processor.

Possible Motives for the Virus

As knowledge currently stands on this virus, it may well be an
extremely childish and malicious attempt to waste the time of
virus researchers across the world. In rather the same way that
the fire brigade can never ignore false alarms, the research
community cannot ignore even the simplest virus code.

Any virus code is potentially destructive and the perpetrators
should be aware that the Computer Crime Unit at New
Scotland Yard is now building a dossier of computer virus
incidents in the UK and will seek the extradition and prosecu-
tion of any virus writer who causes damage to data, programs
or processing equipment within the United Kingdom. Under
current legislation, conviction could carry a maximum five year
prison sentence*. If ‘TADPOLES’ reads this, he/they might
like to reflect on such a sentence.

The arrival of this virus caused initial consternation among
knowledgeable researchers but preliminary examination has
dispelled most of this concern. It is interesting to speculate that
in the WHALE, virus writers have at last reached a predicted
point where their code has to carry so much protection that the
original parameters of invisibility and mobility can no longer
be maintained with any reliability. Such bulky and processor
intensive code will generally reveal itself long before any
payload can be delivered.

Work will continue on disassembling and analysing this virus
until all the fine details are known and further reports will
appear as more information becomes available.

*Under the provisions of the United Kingdom Computer Misuse
Act, 29th August, 1990. Ed.

calls (14H, 21H, 27H and 42H). Other functions handled are
Get File Size (23H), Load and Execute (4BH) and Get/Set
Date/Time (57H). As is now expected of this type of code, the
DOS Critical Error vector is hooked during virus operation and
appears to be correctly restored after use.

‘‘The Computer Crime Unit at New
Scotland Yard is now building a

dossier on computer virus incidents
and will seek to extradite any virus
writer who causes damage to data,

programs or processors in the
United Kingdom.’’

Text Strings

As various layers of encryption are peeled back, two areas of
plain text are revealed. The first of these is written to a hidden
file in the root directory of the C: drive on a 1-in-4 random
chance. This file is named FISH- 9.TBL and contains a copy of
the boot sector of the drive, together with the following plain
text:

FISH VIRUS 9 A Whale is no Fish! Mind her Mutant
Fish and the hidden Fish Eggs for they are
damaging. The sixth Fish mutates only if the Whale
is in her Cave.

No other reference is made to this file from within the virus
code. The content indicates a juvenile mind at work.

The “sixth Fish” may refer to the FISH6 virus (and establish
another definite link) but this has yet to be established. Since I
haven’t yet disassembled FISH6, I would be interested to know
just how it got its name (why the ‘6’ ?). It is also interesting to
note that TBL is one of the data file extensions attacked by the
4K virus (see pages 4 - 5 and 20).

The second plain text section is displayed as a screen message
if the system date is between 19th February and 20th March
(consistent with the astrological star sign of Pisces the fish.
Ed.) in any year except 1991. Subsequently the system hangs
with a Divide Overflow message, necessitating a power down
reboot. This is the only trigger point noted so far but there is a
possibility that even these dates may be modified within
differing generations, resulting in unpredictable trigger dates.

VIRUS BULLETINPage 20

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

ADDENDUM
Dr. Peter Lammer

Jonah’s Journey

The parasitic virus WHALE is not only the bulkiest but also
the most convoluted specimen seen to date. WHALE uses
several techniques to make itself not only difficult to find using
anti-virus software, but also difficult to disassemble and
analyse. However, disassembly is still a relatively straightfor-
ward process using DEBUG and the virus has now been
disassembled in full.

WHALE includes several different anti-tamper measures. The
‘active’ obstacles range from disabling of the keyboard to
exercising the single-step and breakpoint interrupts as an
integral part of the code. The ‘passive’ traps include deeply
buried routines which use checksums on the ROM BIOS data
area and on WHALE’s own code to detect any use of
debuggers and breakpoints. If any sign of interference is found,
WHALE attempts to erase itself from memory: a demure virus,
which would die rather than be molested.

After removing some outer layers of active protection, one can
disassemble the entire contents of the virus with relative ease,
by invoking WHALE’s own decryption routines in a controlled
manner from DEBUG.

Many of the rumours regarding this virus are unfounded,
including the claim that the virus was undetectable using
conventional methods. While WHALE is distinctly slippery to
detect in memory, due to the constant application of random-
key de/re-cryption methods, it is relatively straightforward to
find in executable files.

When WHALE infects a file, it first makes a 1-in-2 random
choice whether or not to mutate and if appropriate then chooses
one of its 30 possible mutations at random. Otherwise the virus
replicates without mutating. Even when WHALE does not
mutate, the virus constantly changes in appearance due to
decrypt/recrypt routines in its code.

On disassembling WHALE’s file infection routine one is
reminded irresistibly of the legendary bird of paradise which,
when attacked, flies in ever-decreasing circles until it disap-
pears up its own fundament - from which position of safe
refuge it is said to bombard its pursuers with abuse and
excrement. WHALE performs a similar contortionist’s act in
memory in order to append itself to a COM or EXE file on the
disk; it re-modifies all of its self-modifying code, mutates
itself in memory and re-applies all of its various layers of
encryption until, poised in an impossibly precarious position, it
carries out a prearranged INT 21H function call to infect the
target file. It then has to use its new mutated code to decrypt

itself before it can return to its own depths and continue
processing the file infection subroutine.

WHALE does not appear at present to do anything more
significant than replicate, occasionally displaying fish-related
messages. In addition to the Piscean activation dates reported
on page 19, currently available copies contain a trigger date of
1st April 1991, after which no replication will take place. One
of WHALE’s confusion tactics is that on approximately one in
ten infections, it appends a randomly chosen amount of
garbage, up to 4 kilobytes, to the target file. Due to the way the
virus is written, it is possible for files with extensions other
than EXE and COM to become ‘infected’, exactly as described
for 4K on page 5. This means that WHALE could inadvertantly
have damaging effects on certain data or text files.

Another sign of sloppy programming is that when the virus
‘forges’ the lengths and time-stamps of files, it fails to
distinguish between those which are genuinely infected and
those which happened by chance to have a time-stamp ‘hours’
value larger than 15. If any file has a time-stamp hours value of
16 or more, WHALE will subtract 16 from this value (for
example when a DIR command is processed), regardless even
of whether the file is a program, let alone whether it is
genuinely infected. If the file is of type COM or EXE, WHALE
also subtracts 9216 from the reported length, again regardless
of whether the file genuinely has been infected. On infecting a
file, furthermore, WHALE sets the top bit of the hours field
high without checking whether this would set the value to
greater than 23 hours.

An interesting aspect of WHALE’s programming is that one
piece of self-modifying code makes the execution flow of
identical copies of the virus vary from one processor to
another. This depends on the length of the instruction queue.
The sequence is shown here in simplified form as:

mov bx, offset retpt
mov al,c3 ;opcode for 'ret'
mov cs:[bx],al
add ax,020C

retpt: int 3

It does not follow the same execution path on an 8088-based
PC as on an 8086 based one; the 8088 chip has a 4-byte
instruction queue, whereas the 8086 has a 6-byte queue. On an
8086 the ‘INT 3H’ instruction will already be in the queue
before it is modified to read ‘RET’, and will therefore execute
as ‘INT 3H’. On an 8088, by contrast, the instruction will be
modified before entering the queue and will therefore execute
as ‘RET’. It is unlikely that the author of the virus was aware
of this particular feature of his code.

All in all, it is improbable that WHALE will pose a practical
threat as a virus; it is too large and slows down performance of
any PC much too noticeably to spread undetected. It is also
relatively easy to detect using normal methods.

Page 21

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

PRODUCT REVIEW
Dr. Keith Jackson

HyperACCESS/5 - A Virus Filtering
Communications Package

HyperACCESS/5 is a communications software package which
incorporates virus screening. This review will concentrate on
the package’s anti-virus features rather than try to evaluate the
operation of the communications features. The review copy of
HyperACCESS/5 was provided on two 3.5 inch diskettes,
containing both MS-DOS and OS/2 versions.

Documentation

At 338 pages, the manual provided with HyperACCESS/5 is by
no means light reading, but it does cover most aspects of
operation in some depth. If specific information is required
then the manual probably contains a reference to it somewhere.
A four page table of contents, and a twenty six page index
(both very thorough) are included.

The HyperACCESS/5 anti-virus features were explained on
printed A4 sheets and in a README file. Detecting viruses
during file transfer is the subject of a patent application in the
USA by Hilgraeve Inc. (the developers of HyperACCESS/5)
under the title “In-transit detection of computer viruses with
safeguard”.

Installation

The manual states that HyperACCESS/5 can be installed either
on a floppy disk (of at least 720K capacity), or on a hard disk.
This is not true. If you attempt to install HyperACCESS/5 on to
a 720K disk, the message “Insufficient disk space. Approxi-
mately 56096 bytes short” is displayed. I assume that the
HyperACCESS/5 files have grown much larger in recent times,
and nobody has checked that the floppy disk installation
process still works.

Even though I chose only a minimal system (no OS/2 files, no
scripts or other non-essential files), the installation process
executed very slowly, and took a leisurely 19 minutes 15
seconds on a humble PC. Many HyperACCESS/5 files are
stored in compressed form, and have to be decompressed
during the installation process. This seems to take an inordi-
nate amount of time.

Once installed, it proved very easy to set up HyperACCESS/5
for communication via the telephone system. The menu
structure is very clear, and permits any desired set of commu-
nications parameters to be specified. I had no trouble in using
HyperACCESS/5 to dial several different computer systems.

Communications Facilities

As a quick summary of the communications facilities:

HyperACCESS/5 offers a dialling directory with up to 250
entries, and can transfer files using any of the Xmodem,
Ymodem, Ymodem-G, Zmodem, Kermit, Compuserve-B,
HyperProtocol (developed specifically for HyperACCESS), or
Text (ASCII) protocols. HyperACCESS/5 can access a system
automatically by learning the correct keystrokes from user
activity at the keyboard, has a powerful script language, a full
screen editor, and built-in anti-virus features.

The above is inevitably only a cursory description of what I
found to be a very full-featured communications program.

Anti-Virus Features

The anti-virus features offered by HyperACCESS/5 are
currently twofold:

1) While HyperACCESS/5 is receiving a file using one of the
file transfer protocols specified above, checks can be
invoked which detect viruses in the incoming file. If a virus
is detected in this way, a message appears in a window on
the screen of the computer receiving the file, offering to
terminate the file transfer. If no action is taken when this
message is displayed, then the default action is to terminate
the transfer anyway. This is an eminently sensible default
that permits safe unattended file transfer.

2) A utility is provided with HyperACCESS/5 which copies
files in exactly the same manner as the COPY command
provided with MS-DOS. This utility monitors the files which
are being copied, and tests for the presence of a virus. If a
virus is detected, then the copying process can be termi-
nated, and (optionally) the virus erased.

Testing Procedure

The obvious way to test the efficacy of virus detection during
file transfer is to set up HyperACCESS/5 on two computers
(each with a modem) and transfer files between them. How-
ever, after some thought, transferring virus infected files
through the telephone system, out of my direct control, did not
seem to be a very good idea. As an alternative, HyperACCESS/
5 can be setup to transfer files directly to another computer via
an RS-232 cable, and this was used as an inherently safer way
to transmit virus infected files. I used the Zmodem communi-
cations protocol to transfer virus infected files between two
PCs. As far as checking for viruses is concerned, the actual
communications protocol used seems to be irrelevant, as data
is only checked once it is known to have been received
correctly.

Detection Rate and Performance

HyperACCESS/5 proved to work as claimed, and samples of
the 1701, 1704, Jerusalem, South African, Valert and Vacsina

VIRUS BULLETINPage 22

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990

viruses were successfully detected. However, samples of the
Kennedy and PSQR viruses were not detected, and these
viruses were successfully transferred from one computer to
another. At this point I realised that although the vendor of
HyperACCESS/5 had sent a disk which supposedly contained
the latest virus checking files, the file for checking viruses
during file transfer was identical to the original version.
Somebody had sent the wrong version for review!

I did encounter technical problems while transferring files
between the two computers. On three separate occasions, the
computer using HyperACCESS/5 (which was acting as the
receiver) locked up to the extent that a power down was
needed to restart the computer. The other end of this file
transfer operation was using the Odyssey communications
package (from Micropack in Aberdeen). Odyssey was required
because HyperACCESS/5 would not operate from a 720K
floppy disk (see above). At no time did Odyssey lock up,
therefore the fault lies firmly with HyperACCESS/5. Given
this problem, and the aforementioned limited range of viruses
that could be detected, it is only fair to conclude that detection
of viruses during file transfer works, but needs some problems
ironing out, not the least of which involves distributing the
correct files.

The developers of HyperACCESS/5 use the virus pattern file
compiled for IBM’s scanning program (incorporated with the
full cooperation of IBM. Ed.). The version with which I was
provided was dated 20th April 1990 which rendered the
pattern file obsolescent. I decided that it would be fairer to test
the efficacy of virus detection using the copy utility provided
with HyperACCESS/5. This was dated 24th August 1990, and
provided a much more comprehensive list of 73 viruses (60
unique viruses and 13 variants) which it claimed could be
detected during file copying. (The most recent virus detection
files can be downloaded directly from Hilgraeve’s BBS in the
USA. Ed.)

The copy utility was tested by copying the VB test set of 97
parasitic viruses on a file by file basis from one floppy disk to
another. The results were extremely impressive. The only
viruses which were not detected were: AIDS, 1260, three of the
five variants of the Yankee virus, and five of the ten variants of
the Vienna virus. Apart from the usual problems of nomencla-
ture, all other viruses were detected correctly.

The naming system used by HyperACCESS/5 is heavily biased
towards numeric names for viruses e.g. the Valert (Tenbyte)
virus was called 9800:000, and the Fu Manchu, Jerusalem,
Kennedy, Perfume, Vcomm and Zero Bug viruses were all
referred to by their infective lengths (2086, 1813, 333, 765,
637 and 1536 bytes respectively).

When the HyperACCESS/5 copy utility detects a virus, the
user must specify whether or not to abort the copying process,
and whether or not to delete the original infected file. All this
happens on a simple question and answer basis.

The above quoted results are impressive in that HyperAC-
CESS/5 successfully detected 43 out of 47 parasitic viruses,
and 89 out of 99 variants of these viruses.

It should be noted that transferring a pure boot sector virus via
a modem is very difficult, as the infected boot sector has to be
extracted, transmitted, and then replaced on top of the boot
sector in the recipient computer. This constraint does not apply
to the newer multi-partite viruses which infect programs and
the boot sector (see VB, September 1990, p.3).

Checking for the presence of a virus during the transfer of a
file between two computers seems to have very little effect on
the rate at which files are transferred. So much so that given
the very short virus infected files that were being transferred in
the above tests, there was no perceptible slowdown. This is not
surprising, as the processor lets the serial port controller
chip(s) do most of the work during file transfers. Therefore,
further checks while waiting for data to be received will not
slow the operation down. The HyperACCESS/5 documentation
claims that up to 2400bps transfer speed, checking for viruses
has no effect on even the slowest of PCs. My tests confirm that
this is true. It is also claimed that on 286 and 386 PCs,
checking for viruses has no effect up to 19200bps transfer
speed. I have no means of testing this claim.

The utility which checks for viruses while they are being
copied took 24.5 seconds to copy 8 files from one part of a hard
disk to another. The MS-DOS COPY command copied the
same set of files in 5.7 seconds. The difference in speed
between the two transfer methods is therefore more than a
factor of 4. This means that the virus checking copy utility
should only really be used in circumstances where a virus is
suspected: e.g. copying files from a newly received floppy disk.
The virus checking copy utility is too slow for routine use.
Given the successful virus detection rate (see above), this slow
execution speed is a shame. It mars an otherwise excellent
product. (Obviously, faster processors such as the 286 or 386
will significantly improve file transfer rates. Due to the risks
involved, sacrificial machines and those used for evaluating
anti-virus software tend be the humblest of ‘work horses’. Ed.)

Compression

All of the above assumes that infected files will be transmitted/
copied in their standard form. Unfortunately, this is not always
true. To save time during transfer, files are often compressed
before transmission, and decompressed after transmission is
complete. The HyperACCESS/5 documentation warns that
virus infected files which have been compressed in this way
will not be detected and that compressed file(s) must be
checked separately after decompression. This applies regard-
less of which compression system is used (ARC, ZIP, LZH,
PAK and ZOO etc.). It would be possible to check files as part
of the transmission process, but this would necessitate
“unzipping on the fly”. (No comment. Ed.).

Page 23

VIRUS BULLETIN ©1990 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

November 1990 VIRUS BULLETIN

These problems are gradually being alleviated by the use of
MNP error correction/compression protocols at the modem
level. From level 5 upwards, MNP adds data compression at
the data transfer level, thus making external compression
unnecessary. HA/5’s own file transfer protocol, HyperProtocol,
has just been placed in the public domain as a free-standing
DOS module. This utility provides file compression on the fly
and error detection. Whether it will be adopted as widely as
MNP error correction is debatable.

Assessment

Assuming that the level of virus detection exhibited by the
copy utility can be repeated in virus detection during file
transfer, HyperACCESS/5 lives up to its claim to be a full-
featured communications package with built-in detection of
virus infected files.

Transmission of Executable Files
- A Hazardous Business

The hazard of downloading computer viruses or Trojans
from Bulletin Boards has forced many organisations to
forbid the use of BBS software. In fact, the systems
operators (SysOps) of reputable Bulletin Boards take
great care to screen software before it is made available
for download. In a recent incident on the CIX BBS, a
handful of people downloaded a Cascade infected
program; system monitoring enabled the recipients to be
traced and warned by telephone.

A far more serious incident occurred last February when
the Tenbyte virus was posted by accident to the
V-ALERT electronic mailing list. The virus was clearly
labelled as such and was intentionally downloaded by
more than 500 people within the space of a few hours. As
VB predicted, the Tenbyte virus has now appeared in the
wild in the United States. (VB, April 1990, pp.4-5.)

In the face of the threat of accidentally downloading or
receiving virus infected files, the use of virus ‘filtering’
provides a first line of defence, particularly for regular
users of BBSs or those who often transmit and receive
executable images. HyperACCESS/5 is the only product
of which VB is aware that claims to provide virus
filtering. The product successfully detected all of the
parasitic viruses which are a current threat in the UK.

However, communications packages which incorporate
filtering are restricted by certain inherent limitations.
Nearly all software which is destined for transmission is
compressed. There is a range of commercial and share-
ware compression utilities*. Searching for a virus in a
compressed file is possible, but becomes an impractible
proposition when the multiplicity of possible compression
techniques is accounted for. Furthermore, while filtering
packages may readily detect conventional ‘first genera-
tion’ viruses (by searching for hexadecimal patterns),
they are not suitable for detecting any form of virus which
uses self-modifying encryption.

Defence in-depth is simple commonsense. The use of a
filtering package followed by scanning using more
conventional anti-virus software would appear to provide
security - for the moment.

*Dynamic decompression, as offered by LZEXE, is
unsuitable for the transmission of untrusted software. It’s
use should be restricted to compressing clean EXE files
for storage on disk. (See VB, June 1990, p.12).

Technical Details

Product: HyperACCESS/5

Vendor: Firefox Communications Ltd., Aspen House, 9 Coventry
Road, Colehill, West Midlands B46 3BB, UK. Tel 0675 467244, Fax
0675 463504.

Developer: Hilgraeve Inc., Genesis Centre, 111 Conant Avenue, Suite
A, Monroe, Michigan 48161, USA, Tel: +1 (313) 243 0576.

Availability: IBM PC, PS/2, or 100 compatible with either a built-in
modem or an available RS-232 serial port, running under MS-DOS or
OS/2. A hard disk is not mandatory. Many different modems are
supported, including (but not exclusive to) those conforming to the
Hayes command set.

Version Evaluated: 1.1

Price: £175 for both DOS and OS/2 versions.

Hardware Used: An Amstrad PPC640 with a V30 processor, and two
3.5 inch (720K) floppy disk drives, running under MS-DOS v3.30.
Also an ITT XTRA (PC compatible) with a 4.77MHz 8088 processor,
one 3.5 inch (1.44M) floppy disk drive, two 5.25 inch floppy disk
drives, and a 32Mbyte Western Digital hard card, running under MS-
DOS v3.30. The modem used was a British Telecom PC424X (a
badged Dowty Quattro on a plug-in card), Hayes compatible, and
operable up to V22bis (2400bps).

Virus Test Suite: This set of 49 unique viruses (according to the virus
naming convention employed by VB), spread across 101 individual
virus samples, is the standard VB test set. It comprises two boot viruses
(Brain and Italian), and 99 parasitic viruses. The actual viruses used
for testing are listed below. Where more than one variant of a virus is
available, the number of examples of each virus is shown in brackets.
For a complete explanation of each virus, and the nomenclature used,
please refer to the list of PC viruses published regularly in VB:

405(2), 4K(2), AIDS, Alabama, Amstrad(2), Anarkia, Brain,
Cascade(10), Dark Avenger(2), Datacrime(3), dBASE, December
24th, Devils Dance, Eddie(2), FuManchu(3), GhostBalls, Hallochen,
Icelandic(2), Italian, Jerusalem(6), Kennedy, Lehigh, Macho-Soft,
MIX1(2), Number of the Beast, Oropax, Perfume, Prudents, PSQR,
South African(2), 1260, Suriv(8), Sylvia, Syslock(2), Taiwan,
Traceback(4), Typo, Vacsina, Valert, Vcomm, Vienna(10), Virdem,
Virus-90, Virus-B(2), VP, W13(2), XA-1, Yankee(5), Zero Bug,

VIRUS BULLETIN

Subscription price for 1 year (12 issues) including delivery:

USA (first class airmail) US$350, Rest of the World (first class airmail) £195

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Abingdon,
OX14 3YS, England

Tel (0235) 555139, International Tel (+44) 235 555139
Fax (0235) 559935, International Fax (+44) 235 559935

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield, CT 06877, USA
Tel 203 431 8720, Fax 203 431 8165

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, of from any use or operation of any methods, products, instructions or ideas contained in
the material herein.

This publication has been registered with the Copyright Clearance Centre Ltd. Consent is given for copying of articles for
personal or internal use, or for personal use of specific clients. The consent is given on the condition that the copier pays
through the Centre the per-copy fee stated in the code on each page.

END-NOTES & NEWS
The Virus Bulletin is hosting a two day conference on combating computer viruses, September 12-13th 1991. The venue will be the Hotel de
France, St. Helier, Jersey. The conference will be chaired by Edward Wilding (UK) and Fridrik Skulason (Iceland) and speakers include Jim Bates
(UK), Vesselin Bontchev (Bulgaria), David Ferbrache (UK), Ross Greenberg (USA), Jan Hruska (UK), John Norstad (USA), Yisrael Radai (Israel),
Ken van Wyk (USA) and Gene Spafford (USA). Several additional speakers will be confirmed in the final programme. Information from Petra
Duffield, Virus Bulletin Conference , UK. Tel 0235 531889.

CERT Advisory CA-9007 dated October 25th, 1990 warns of a VMS VAX system vulnerability (versions 4.0 to 5.4). It describes how non-
privileged users can acquire system privileges through the ANALYZE/PROCESS DUMP routine. CERT e-mail to cert@edu.cmu.sei.cert or
telephone USA 412 268 7090 (24 hour hotline).

The US National Institute of Standards & Technology (NIST) is considering the development of a government-industry consortium to combat
computer viruses. Contact Dennis Steinauer, NIST, Rm. A216, Technology Building, Gaithersburg, MD 20899, USA. E-mail to
steinauer=ecf.ncsl.nist.gov or telephone 301 975 3359.

Heriot-Watt University , Edinburgh, UK, hosts a one-day seminar ‘Computer Viruses: Protect IT’ on November 23rd, 1990. The programme will
address the appearance of stealth and armoured viruses and current software developments. Contact David Ferbrache, Department of Computer
Science, Heriot-Watt. E-mail (Internet)<david@cs.hw.ac.uk>, (Janet)<david@uk.ac.hw.cs>. Tel 031 225 6465 ext 553.

RG Software Systems , developer of Vi-Spy (VB, May 1990) is moving to a new headquarters. The company’s new address is RG Software
Systems, Inc., 6900 E. Camelback, Suite 630, Scottsdale AZ 85251, USA. Tel 602 423 8000, Fax 602 423 8389.

Briefing on Computer Viruses by Fred Cohen, London, November 13th 1990. Contact IBC Technical Services , UK. Tel 071 236 4080.

S & S Consulting Group , UK, is holding a two-day seminar on ‘The Virus Threat’, February 13th-14th 1991. Tel 0494 791900.

The following appeared in the UK’s Daily Star newspaper on 12th October 1990:

Speech goes to pot! RED-FACED diplomats are trying to find out who inserted a plea to legalise cannabis into a speech by Hong Kong
Governor Sir David Wilson. His commentary on the future of the British colony, which was delivered to newspapers on computer disks,
contained the surprise announcements: “Your PC is now stoned. Legalise marijuana.”

