(o]
~
[o)]
P
©
5]
()]
o
zZ
]
@

BULLETIN

CONTENTS

2

20

COMMENT

Aggravating adware and sinister spyware

NEWS
Three (days) is the magic number
2.594.00 is not the magic number

US early warning centre opens

VIRUS PREVALENCE TABLE

VIRUS ANALYSES
In limited distribution only

It’s Zell(d)ome the one you expect

TECHNICAL FEATURE

Problems in static binary analysis — part 1

PRODUCT REVIEW
AhnLab V3Net

END NOTES & NEWS

MAY 2005

IN THIS ISSUE

HAPPY ‘B-DAY’

The beginning of March 2005 saw ‘B-day’: another
rash of Bagle variants, with at least five new
variants appearing during the course of one day.
Gabor Szappanos describes one of the new brood:
Bagle.BI.

page 4

EVOLUTIONARY TALES

As an unusual example of self-compiling malware
and a novel misapplication of artificial intelligence,
W32/Zellome is an interesting specimen. Peter
Ferrie and Heather Shannon have the fascinating
details — including the reason why Zellome is
heading for extinction.

page 7

IN THE SPOTLIGHT

More than two years have passed since VB’s last
review of AhnLab’s V3Net, so Matt Ham decided it
was about time to put it through its paces once again
and find out how the product has matured.

page 16

@Spam supplement

This month: anti-spam news & events; challenges in
spam filter evaluation.

VIrus

COMMENT

‘If the AV industry is
slow to respond to
attackers and their
new motives and
techniques, it will
fail to protect its
customers.’

Ken Dunham, iDEFENSE Inc.

AGGRAVATING ADWARE AND
SINISTER SPYWARE

Adware and spyware have become a serious problem in
the last two years. The anti-virus industry has been slow
to respond, creating a new niche for security products,
such as Ad-Aware and Spybot Search and Destroy, to fill
the gap.

According to various end-user licence agreements and
software distributions, adware and spyware can be legal.
However, many corporations and individuals have found
that these programs are unwanted and that they are
difficult to identify and remove. Just because it is legal, it
is not necessarily ethical or proper to allow such
installations of code. Today, the average system
administrator faces a barrage of these threats without any
solid technical solutions to protect a large network.

In 2002, iDEFENSE identified 333 adware/spyware
threats. That number rose to 1,304 in 2003 and to 8,804
in 2004. While individuals can fight off the most
common threats with anti-adware/spyware utilities,
corporations with extensive computer networks are left
wondering how best to tackle the problem.

An informal survey administered through the AVIEN

forum and the administrators of various large networks
revealed that the anti-adware/spyware software solutions

Editor: Helen Martin
Technical Consultant: Matt Ham
Technical Editor: Morton Swimmer

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
lan Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

available today are significantly lacking the features that
large corporations require. While recent products have
attempted to address the problem, administrators do not
feel that they can trust these new products or that they
have the necessary integration and control measures to
be able to run them on their networks in conjunction
with required anti-virus efforts.

Even if an integrated, centralized, trusted solution
emerged today, it would take time for organizations to
implement it. Meanwhile, adware and spyware runs
rampant on corporate machines worldwide. A recent
DNS cache poisoning incident proves this point.

In February 2005, attackers hacked into multiple servers,
poisoning the cache of DNS servers to which they had
gained unauthorized access. This spread to lower-level
servers within the DNS network to poison other servers.
Attackers then manipulated various domains and IP
addresses to host hostile code, which was mostly adware
and spyware, and in one case, a backdoor Trojan.

This incident impacted thousands of computers and large
networks globally. Internet Explorer users vulnerable to
either MS04-013 or MS05-002 were infected silently
with more than 17 MB of code. This code contained
more than 45 different variants of code within 17
different families. If the end user clicked on a few dialog
boxes that appeared during various installations
following the attack, even more adware and spyware was
downloaded on the computer.

The DNS cache poisoning incident was a highly
organized, sophisticated, multi-stage attack designed for
financial criminal gain. Multiple trends in both the
commercial and malicious code worlds have
demonstrated that money is now the motive for many
hackers. This indicates that more sophisticated and
organized criminal attacks will take place in 2005. If the
anti-virus industry is slow to respond to attackers and
their new motives and techniques, it will fail to protect
its customers.

iDEFENSE carried out a basic test for adware/spyware
detection. We scanned very common adware and
spyware with 13 updated anti-virus programs, Ad-Aware,
and Spybot Search and Destroy. The results: Ad-Aware
detected 100 per cent, Spybot Search and Destroy 92 per
cent, and on average, anti-virus programs detected only
31 per cent of the threats (ranging from 0—67 per cent).

With money as the motive behind adware and spyware,
and some less than reputable companies on the scene, we
expect the problem to worsen in 2005. The anti-virus
industry needs to respond rapidly to new threats and
provide solid, integrated, centralized solutions to new
problems as they emerge.

NEWS

THREE (DAYS) IS THE MAGIC NUMBER

Virus Bulletin is very pleased to announce that this year the
VB conference will run in a three-day format, with the
VB2005 conference programme beginning at 14.00 on
Wednesday 5 October. The change has been made as a
result of feedback from VB2004 and a record number of
submissions for this year’s conference. VB2005 in Dublin
will feature a truly packed programme, with an outstanding
line-up that includes additional papers in all tracks —
Corporate AV, Technical AV and both corporate and
technical spam. The full programme can be found at
http://www.virusbtn.com/conference/.

2.594.00 IS NOT THE MAGIC NUMBER

A red-faced Trend Micro has apologised to its customers for
the release of a faulty update file that caused chaos for
thousands of computer users worldwide.

Official Pattern Release 2.594.00, released in the morning
of Saturday 23 April (Japanese time), caused 100% CPU
usage, system slow down, and in some cases complete
system failure on machines running Windows XP SP 2 and
Windows 2003 Server. Although Trend staff removed the file
from the Active Update list just 90 minutes later, the
company estimated that it had already been downloaded
between 300,000 and 350,000 times and support staff are
reported to have received in the region of 370,000 calls
about the problem. The fault was blamed on insufficient
testing of the pattern file in the rush to add detection of the
Rbot family of worms. To add to its woes, Trend’s share
price took a knock, falling 4.7 per cent, and it is expected
that the incident will have an adverse effect on the
company’s second quarter results.

US EARLY WARNING CENTRE OPENS

The Cyber Incident Detection Data Analysis Center
(CIDDAC) has announced the opening of its National
Operations Center at the University of Pennsylvania.

The non-profit organization aims to set up an automated
real-time threat reporting system, which will enable it to
issue early warning alerts to its member companies and
provide information to law enforcement agencies. The
Center will gather data from its member companies via a
network of intrusion monitoring machines known as
Real-time Cyber Attack Detection Sensors. As soon as a
threat is detected CIDDAC will issue an alert to member
organizations and law enforcement agencies. Crucially, the
identity of the reporting companies will remain confidential.
Enterprise-level membership of CIDDAC is priced at
$10,000 per annum. See http://www.ciddac.org/.

VIRUS BULLETIN

Prevalence Table — March 2005
Virus Type Incidents Reports
Win32/Netsky File 35,968 59.88%
Win32/Sober File 7,861 13.09%
Win32/Bagz File 7,167 11.93%
Win32/Bagle File 6,006 10.00%
Win32/Zafi File 802 1.34%
Win32/Funlove File 504 0.84%
Win32/Mydoom File 427 0.71%
Win32/Dumaru File 372 0.62%
Win32/Mabutu File 227 0.38%
Win32/Lovgate File 157 0.26%
Win32/Valla File 114 0.19%
Win32/Klez File 103 0.17%
Win32/Bugbear File 81 0.13%
Win32/Pate File 57 0.09%
Win95/Tenrobot File 39 0.06%
Win32/MyWife File 33 0.05%
Win95/Spaces File 25 0.04%
Win32/Mytob File 19 0.03%
Win32/Elkem File 17 0.03%
Win32/Swen File 14 0.02%
Win32/Myfip File 13 0.02%
Psyme Script 10 0.02%
Hiac Macro 7 0.01%
Lunch Macro 6 0.01%
Class Macro 4 0.01%
Win32/Ganda File 4 0.01%
Cap Macro 3 0.00%
IEStart Script 3 0.00%
Hope Macro 2 0.00%
Redlof Script 2 0.00%
Win32/Kriz File 2 0.00%
Win32/Magistr File 2 0.00%
Others!" 19 0.03%
Total 60,070 100%
IThe Prevalence Table includes a total of 19 reports across
15 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

Vb

VIRUS BULLETIN

VIRUS ANALYSIS 1
IN LIMITED DISTRIBUTION ONLY

Gabor Szappanos
VirusBuster, Hungary

March 2005 started with ‘B-day’: a new rash of Bagle
variants. At least five different variants appeared during the
course of one day, with a couple of hours elapsing between
the individual bursts of new variants. This continued until a
website that was hosting the email addresses used by the
worm was shut down. This website played a crucial role in
the worm’s infection cycle, its removal effectively stopping
the worm from spreading.

Early samples of (the dropper part of) the worm were
observed in unencrypted form, but later variants were
packed with a modified version of the PeX exepacker (as
this was available in source code, it would not have been
difficult to modify). The second stage unpacker code was
unchanged, but the first stage code (which unpacks the
second stage) had been modified slightly in order to avoid
detection by some anti-virus scanners.

This article describes one of the specimens of this new
batch: Bagle.BI. The other variants are very similar — in
fact, the dropper-downloader components are basically the
same (with the exception of the first unpacked one), only
repacked to bypass detection. The worm component varies
slightly, but in most cases it is only the string constants that
have been changed.

THE WORM

The worm is a 29,700-byte executable. It listens on port 80
for incoming connections.

On execution, the worm part runs through Bagle’s usual
anti-Netsky routine. First it creates a series of Netsky-
related mutexes to prevent them from running:
MuXxXxTENYKSDesignedAsTheFollowerOfSkynet-D
‘D'r’'o'p’'p’e’d’'S'k’y’'N'e’t’
-00axX|-+S+-+k+-+y+-+N+-+e+-+t+- | XxKOO—-
[SkyNet .cz]SystemsMutex
AdmSkynetJk1S003
_ —>>>>U<<<<—_
-00]xX|-S-k-y-N-e-t-|Xx[00-
Then it attempts to delete several Netsky-related registry
startup keys from both HKCU and HKLM:

My AV Jammer2nd
Zone Labs Client Ex FirewallSvr
9XHtProtect Mslnfo’

Antivirus SysMonXP

Special Firewall Service ~ EasyAV

service PandaAVEngine
Tiny AV Norton Antivirus AV
ICQNet KasperskyAVEng
HtProtect SkynetsRevenge
NetDy ICQ Net

However, when doing this, the worm uses an incorrect
registry location:

SOFTWARE\WMicrosoft\Windows\CurrentVersion\Ru 1n
As a result, this counterattack is unsuccessful.

Then the worm installs itself on the system and registers
itself for startup in the (bogus) ‘HKCU\SOFTWARE\
Microsoft\Windows\CurrentVersion\Ru1n’ key. The worm
checks whether it was started with the ‘-upd’ switch — if so,
it terminates the windlhhl.exe process. If it is not running
from the Windows system directory as windlhhl.exe, the
worm copies itself there, executes this copy and terminates
the original program.

Then the worm checks whether smtp.earthlink.net is
accessible. If it is not, it removes the registry key
‘HKCU\SOFTWAREUertrtt’, and exits. It also exits at this
point if the worm is executed after 10 August 2006.

Next, a dummy download thread is started. The code is the
same as in the downloader component, except that the
download list contains only the dummy location
‘http://localhost/script1.php’. Since this code is repeated in
the downloader component, it is redundant here. The fact
that this code was not removed from the worm component
suggests that this compound was developed from reused
code parts, in a hurry, without careful design.

Finally, the worm enters an endless loop. In this loop it
restores its (bogus) registry startup key, and performs the
address download routine.

The worm downloads the file ‘http://oceancareers.com/z/
sss2.php’ (after purging the URL cache), saves it into the
Windows directory as EML.EXE and extracts the email
addresses from its content. The extract routine is almost the
same as in Bagle.BI’s spam tool (which is described later),
except that the upper limit for the email addresses is 450
characters here, rather than 500.

The address is invalidated if it contains the string ‘D3’ or
‘d3’, or one of the following:

@eerswqe help@ linux samples
@derewrdgrs info@ listserv abuse
@microsoft nobody@ certific panda
rating@ noone @ sopho cafee
f-secur kasp @foo spam
news admin @iana pegp
update icrosoft free-av @avp.

v

anyone @ support @messagelab noreply

bugs @ ntivi winzip local
contract@ unix google root@

feste bsd winrar postmaster @

gold-certs@

The messages are sent out in different threads, with a
maximum of 15 threads.

The message body is contained within <htmI><body> and
</body></html> tags, and could be one of the following:

® new price

® price

® -br>The password is

®
Password:

The message attachment is the ZIP-packed dropper
component. The name of the ZIP archive is one of the
following:

price price_new
price2 price_08

08_price
newprice

new_price
new__price

The name of the dropper within the ZIP archive is
doc_0O1.exe.

THE DROPPER

The 34,304-byte dropper part of Bagle.BI creates a copy
of itself in the Windows System directory as
WINSHOST.EXE. Then it creates startup keys in the
registry:
Shell_TrayWnd=winshost.exe
Under two locations:
HKCU\SOFTWAREWicrosoft\Windows\Current Version\Run
HKLM\SOFTWAREWMicrosoft\Windows\CurrentVersion\Run

Next, it drops the 18,944-byte WIWSHOST.EXE (the
downloader component) into the Windows System folder.

Finally, it finds the Explorer process running in the memory,
writes the downloader component in the Explorer address
space, and starts a new thread on this copy. This way, even if
running a firewall, the user is fooled into believing that the
Windows Explorer starts the Internet communication, and
tends to allow it. This method is applied if the operating
system is at least Windows 2000 (i.e. the major version is at
least 5). Otherwise, the dropped downloader is loaded as a
DLL, and executed this way.

THE DOWNLOADER

The downloader part of Bagle.BI starts by modifying the
HOSTS file, overwriting its original content to block more

VIRUS BULLETIN

than 120 anti-virus-related host names, thus disabling access
to anti-virus definition update sites (a full list can be found
at http://www.virusbtn.com/articles/virusbulletin/analysis/
2005/05_4-7.xml).

Once it has done that the downloader stops 110 services

that belong mostly to anti-virus and firewall programs (the
full list can be found at http://www.virusbtn.com/articles/
virusbulletin/analysis/2005/05_4-7.xml). This method is
applied if the operating system is at least Windows 2000 (i.e.
the major version is at least 5).

Next the Trojan starts a thread which, in an endless loop,
removes the registry entries of some common anti-virus
programs, thus preventing their successful installation. It
deletes the following keys from HKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run:

Symantec NetDriver Monitor APVXDWIN
ccApp KAVS50

NAV CfgWiz avg7_cc
SSC_UserPrompt avg7_emc
McAfee Guardian Zone Labs Client

McAfee.InstantUpdate.Monitor

The following registry keys are removed entirely from
HKLM\SOFTWARE:

Symantec Panda Software
McAfee Zone Labs

Another thread is started, which scans all fixed drives
recursively, searching for two files from two lists. The files
on the first list are deleted, while the files from the second
list are renamed.

KasperskyLab
Agnitum

The first file list seems to be unfinished, since it consists of
only one filename: mysuperprog.exe. It is likely that this list
is being kept for further development.

According to the second list the following renaming of files
occurs:

CCSETMGR.EXE -> CICSETMGR.EXE
CCEVITMGR.EXE -> CCIEVTMGR.EXE
NAVAPSVC.EXE -> NAVIAPSVC.EXE
NPFMNTOR.EXE -> NPFMINTOR.EXE
symlcsvc.exe -> slymlcsvc.exe
SPBBCSvc.exe -> SPIBBCSvc.exe
SNDSrvc.exe -> SNDI1Srvc.exe
ccApp.exe -> ccAlpp.exe
ccl30.dll > ccll30.dll
cevrtrst.dll -> cevlrtrst.dll
LUALL.EXE -> LUALIL.EXE
AUPDATE.EXE -> AUPDIATE.EXE
Luupdate.exe -> Luupldate.exe

Vb

VIRUS BULLETIN

LUINSDLL.DLL -> LUIINSDLL.DLL
RuLaunch.exe -> RuLalunch.exe
CMGrdian.exe -> CMIGrdian.exe
Mcshield.exe > Mcshlield.exe
outpost.exe -> outplost.exe
Avconsol.exe -> Avclonsol.exe
Vshwin32.exe -> Vshwlin32.exe
VsStat.exe > VslStat.exe
Avsynmgr.exe -> Avlsynmgr.exe
kavmm.exe -> kavl2mm.exe
Up2Date.exe -> Up222Date.exe
KAV.exe -> K2A2V.exe
avgce.exe -> avgc3c.exe
avgemc.exe -> avg23emc.exe
zonealarm.exe -> zonealarm.exe
zatutor.exe -=> zatutor.exe
zlavscan.dll -> zlavscan.dll
zlclient.exe -> zo3nealarm.exe
isafe.exe -> zatubtor.exe
cafix.exe -> zl5avscan.dll
vsvault.dll -> zlclibent.exe
av.dll -> isSabfe.exe
vetredir.dll > cbaSfix.exe

Note that the end of the list does not make sense. It seems
that the source and destination lists are updated separately,
without considering their correlation.

Next, the Trojan stops two other services, wscsve and
SharedAccess. However, the latter has already been
included in the earlier list of stopped services.

The same procedure is included in the Trojan code again,
which is called twice in a row, to stop the processes
separately. Moreover, in order to do this, the necessary
functions from ADVAPI32.DLL are imported again, despite
the fact that they are already available from the earlier stop
process loop. Additional unused procedures are also left in
the Trojan code.

Afterwards the downloader stops the following (mostly
anti-virus-related) processes in a separate thread in an
endless loop:

AVXQUAR.EXE AUTOTRACE.EXE
ESCANHNT.EXE AUTOUPDATE.EXE
UPGRADER.EXE FIREWALL.EXE
AVXQUAR.EXE ATUPDATER.EXE
AVWUPD32.EXE LUALL.EXE
AVPUPD.EXE DRWEBUPW.EXE
CFIAUDIT.EXE AUTODOWN.EXE

UPDATE.EXE NUPGRADE.EXE
NUPGRADE.EXE OUTPOST.EXE
MCUPDATE.EXE ICSSUPPNT.EXE
ATUPDATER.EXE ICSUPP95.EXE
AUPDATE.EXE ESCANHO95.EXE

Finally, the downloader thread starts, which, in an endless
loop (waiting six hours between each full loop) attempts
to download the next component from 154 web locations
(a full list of the web locations can be found at
http://www.virusbtn.com/articles/virusbulletin/analysis/
2005/05_4-7.xml).

The downloaded file is saved in the Windows directory as
_re_file.exe, and is executed. Before each download the
URL cache is cleared in order to fetch the latest content on
the websites — in case one of the files has been updated.

The last four bytes of the downloaded file serve as a
checksum using a CRC32 algorithm. When the download
is complete, the checksum is compared with the one
calculated from the downloaded file. If the two do not
match, the downloaded file will not be executed.

THE SPAM TOOL

The websites used by these Bagle variants were mostly
empty. However, they were used actively during ‘B-day’ to
seed the new variants. Only two of the sites showed any
significant content.

Originally, ‘http://www.astergut.at/zo2.jpg’ carried a
simple downloader, which attempted to download
‘http://www.comtecl.de/pr22222.jpg’. The latter was a
spam tool, but it was soon removed. Then the spam tool
was moved to take the place of the downloader.

Another site, ‘http://www.yamdiamonds.com/zo02.jpg’,
became active later, carrying the same spam tool — which
was probably one of the main reasons behind the Bagle
hysteria. All the trouble a poor virus writer has to go
through to get a good list of email addresses!

Both the downloader and the spam tool are equipped
properly with the checksum at the end, so they are very
likely to be the creations of the Bagle gang.

The spam tool collects addresses and sends them to a
website. In order to run only once on an infected system,
it marks its presence by creating a registry key,
‘HKCU\Software\zseewr’, with value ‘zseewr’. If this is
found, the hard drive scanning routine will be skipped.

Then the tool searches all local drives for email addresses
and looks for files with extensions .wab, .txt, .msg, .htm,
.shtm, .stm, .xml, .dbx, .mbx, .mdx, .eml, .nch, .mmf, .ods,

v

.cfg, .asp, .php, .pl, .wsh, .adb, .tbb, .sht, .xls, .oft, .uin, .cgi,
.mht, .dhtm and .jsp.

From these files, it grabs anything similar to email
addresses (i.e. strings containing the character ‘@’ and

which are longer than five bytes and shorter than 500 bytes).

Then a maximum of 50 threads are started that validate

the collected addresses. First the tool checks whether the
domain part of the address can be resolved, then it checks
whether it is a forbidden or invalid address by searching
the following strings: ‘@.’, “.@’, *., ‘rating@’, ‘f-secur’,
‘mts @lebanon-online.com.lb’, ‘news’, ‘update’,
‘anyone@’, ‘bugs@’, ‘contract@’, ‘feste’, ‘gold-certs@’,
‘help@’, ‘info@’, ‘nobody@’, ‘noone@’, ‘kasp’,

‘admin’, ‘icrosoft’, ‘support’, ‘ntivi’, ‘unix’, ‘bsd’, ‘linux’,
‘listserv’, ‘certific’, ‘sopho’, ‘@foo’, ‘@iana’, ‘free-av’,
‘@messagelab’, ‘winzip’, ‘google’, ‘winrar’, ‘samples’,
‘abuse’, ‘panda’, ‘cafee’, ‘spam’, ‘pgp’, ‘@avp.’, ‘noreply’,
‘local’, ‘root@’, ‘postmaster@’.

Validated addresses are copied in encrypted form to a global
memory location.

When all validating threads are finished, the addresses that
have been collected are posted to the website
‘http://eaglehousing.com/images/1/out.php?a=upl’. The tool
then sets the registry key to signal that the machine has
already been searched.

Finally, the spam tool creates and launches a batch file,
which removes the tool from the infected system.

CONCLUSION

The Bagle.BI compound followed a rather complicated
infection cycle, which at first sight does not make much
sense.

The worm downloads a list of target email addresses, then
sends out a dropper which drops a downloader, which
downloads files from predefined websites. Basically, the
worm is being sent to web addresses that are in the control
of the virus writers. In the first stage, most of these sites
carried new Bagle variants and a network of infected hosts
was built up, with the hosts waiting for an update to appear
on any of the download sites.

In the second stage the sites carried email address collector
tools, which provided the virus author(s) with email
addresses gathered from the network they created.

So the virus authors have ended up with a large network of
infected hosts and a large collection of verified email
addresses — probably two of the most highly-prized
possessions for virus writers nowadays. Long gone are the
days, when virus writers’ sole purpose was to see the names
of their creations on CNN.

VIRUS BULLETIN

VIRUS ANALYSIS 2

IT’S ZELL(D)OME THE ONE YOU
EXPECT

Peter Ferrie and Heather Shannon
Symantec Security Response, USA

It was a Tuesday and it was sunny outside, but I was inside
waiting for my email client to finish retrieving messages. It
was stuck on one mail that had a huge attachment: a sample
of W32/Zellome.

W32/Zellome arrives as an email attachment. It seems to
exist only to demonstrate its polymorphic engine, since the
worm component is messy and platform-dependent.

EXTREME PROGRAMMING

The polymorphic engine takes an idea that was first used by
W32/Apparition, but takes it much further. W32/Apparition
carried its own Pascal source code, which it dropped on
machines on which a Pascal compiler was found. Apparition
would insert garbage instructions into that source code, before
directing the compiler to compile it. Zellome, by contrast,
carries the compiler as a component of its polymorphic
engine. Additionally, Zellome’s polymorphism is
implemented in an unusual way: by using a genetic algorithm.

NATURAL SELECTION

Evolutionary algorithms, also known as genetic algorithms,
are based on the idea of biological evolution. By combining
characteristics from a predefined set (genes), and altering
parts of them randomly (mutation), new offspring is
produced with new characteristics. The less fit of these tend
not to pass their genes on to succeeding generations. At
least, that’s the idea. There have already been viruses that
have used this technique, including W32/Simile (see VB,
May 2002, p.4).

Zellome uses a genetic algorithm for a different purpose.
Traditionally in this analogy, the virus is treated as a
species, replications of the virus represent individuals, and
“fitness’ is the ability to survive in an environment
populated by hostile anti-virus software. For Zellome, the
genetic algorithm is not a model of virus replication; rather,
it is just a computational technique used to produce a
polymorphic decryptor. The species is a set of functions,
and ‘fitness’ is how close the function comes to producing
the required output.

Ultimately, we come to the question: why use a genetic
algorithm in the first place? This is difficult to answer,
because the results are, essentially, no different from the
output of a standard polymorphic engine. It is really no

®

VIRUS BULLETIN

more difficult to detect than normal polymorphic code.

It is highly obfuscated, but it has constant characteristics. It
is effective against emulators, with its many iterations and
heavy floating-point usage, yet its extremely ugly compiled
code is a giveaway.

INCUBATOR

The virus author calls the polymorphic engine an
‘incubator’. Whenever the incubator is run, it begins by
randomly displaying a message box identifying the virus
author’s name and his choice of the virus name (however,
the engine is simply a modified version of a free tool
written by someone else). Next, it will check if it was run
from the %windows% directory. If it was not run from
there, it will copy itself to the %windows% directory as
‘incubator.scr’ and create ‘incubator.txt’ that contains the
name of the original file. Then the incubator executes itself
from the %9windows% directory and then deletes the file
named in the ‘incubator.txt’ file.

KEPT AFLOAT

Before generating a new worm, the incubator encrypts the
worm code that is stored in its .data section. The basic
encoding scheme substitutes an 8-bit value, x, with a 32-bit
float value, E(x), where E is a random quadratic function.
The .C, .D and .E variants of the worm also preprocess the
data with another polymorphic engine (the same one used in
W32/Zelly.B, created by the same virus author), before
applying the substitution encoding.

With the worm encoded as an array of floats, the incubator
now needs a decryption routine to decode the encoding.
There are several ways to do this: one could use hash tables,
construct an interpolating polynomial, or use some
algebraic manipulation to solve the quadratic equation.
Instead, however, Zellome does it the hard way: it uses a
genetic algorithm to ‘grow’ a decryptor. It generates random
arithmetic expressions, then mutates and combines them
until it finds one that happens to undo the encryption
function for the 256 possible input values. This is a
time-consuming task that can take anywhere from five
minutes to half a day.

Once it finds a decryptor, Zellome generates C source code
containing the encoded worm and a short decryption loop,
interspersed with about a megabyte of garbage code.

WHAT’S COOKING?

Zellome starts the incubation process by generating an
initial population of 16,384 expressions. The basic elements
of the expressions are:

* binary operators: *, +, -, /

 unary functions: exp, sin, sqrt

* constant float or integer values

* pi (just another constant)

e avariable, ‘X’, representing the input to the function

An expression is represented as a list of 256 tokens, thus the
size of the generated decryptor is limited.

No filtering is done on these expressions: duplicates,
synonymous expressions, and obviously unsuitable
candidates such as constant functions, are all allowed.

RANDAMN

Due to an improperly seeded random number generator, the
initial expressions are not actually as random as they should
be. It is possible for the incubator to generate the same list
of initial expressions in subsequent runs, depending on the
value of an uninitialized variable that is passed to srand(). It
still produces a different decryptor each time, because the
encryption function is generated before this call to srand().

DARWINIAN EVOLUTION

The incubator then begins the process of creating new
generations from this initial population.

First, the current generation is checked for a suitable
decryptor function. It estimates the fitness of each
expression, and saves the value for later use. The ‘fitness’ of
a candidate is the sum of absolute distances from the target
values, multiplied by -0.01. Expressions that produce any
extraordinary values (such as infinity or ‘not a number’) are
assigned a fitness of -FLT_MAX, effectively eliminating
them from further consideration. Particularly promising
expressions are checked against each possible input. If the
resulting values all fall within 0.5 of the target output, a
decryptor function has been found, so control passes to the
source generation routine.

If a decryptor is not found, Zellome proceeds to select the
next generation.

The population is kept constant at 16,384 individuals.

* 15 per cent are unmodified members of the current
generation, including the three fittest specimens.

* 50 per cent are mutated individuals from the current
generation.

* 35 per cent are new ‘children’, constructed by combin-
ing existing expressions.

When Zellome selects an expression for propagation,
mutation, or breeding, it chooses four at random, then picks

v

the fittest of the four. Duplicates are allowed, so the same
expression may be used more than once.

The following kinds of mutation can occur:
* Replace one constant with another
* Replace a subexpression with a new random expression

* Change the order of arguments (for example, change
1/X to X/1)

» Simplify constant expressions (for example, replace
sqrt(4.0) with 2.0)

» Replace an operator or function with another (for
example, change sqrt(X) to sin(X))

» Switch subexpressions (for example, change (X + 1.0)
*2.0to (X +2.0) * 1.0)

To keep the expression size from running over the
256-token limit, large expressions (those with more than
64 tokens) are not subject to mutation, except for constant-
substitution.

To ‘breed’ two expressions together, Zellome selects a
subexpression from one parent, and replaces it with a
subexpression from the other parent. There is a five per cent
chance that the offspring will be mutated.

For example:
Ist parent: (sqrt ((X)/(5)))
Subexpression: (X)/(5)
2nd parent: ((sqrt (X)) /(2.649156))
Subexpression removed: ((sqrt (X))/(...))
Offspring: ((sqrt (X)) /((X)/(5)))

This process continues up to 10,000 generations. In
practice, about 50 to 150 usually suffice to find a decryptor,
though it can take much longer.

In testing, it was observed that all of the decryptors found
by this method contained a sqrt() subexpression. This

may be explained by the quadratic encryption function:
intuitively, if you want to invert Ax"2 + Bx + C, it makes
sense to start by taking the square root of the input. By
contrast, only 25 per cent of the decryptors contained sin():
periodic functions are unlikely to be useful when inverting
polynomials.

GETTING RESULTS

The incubator creates a file, ‘result.c’, in the current
directory. It writes a constant preamble declaring some
functions and global variables, emits the decryption code to
a buffer (to be written to the file later), and writes a series of
random functions that contain array assignments and
garbage code.

VIRUS BULLETIN

The array assignments initialize a buffer with the encoded
worm. (These values are treated as floats during the
decryption computation, but they are initialized as an array
of integers, probably to prevent rounding error.) Zellome
does the assignments in random order. After it writes the
decryptor function, the remaining array assignments access
the buffer through a pointer to a random location in the
middle of the array; the purpose of this obfuscation is not
clear, but one possible explanation is that it is to make it
more difficult to see that one assignment belongs to the
same region of memory as another assignment.

The garbage code consists of function calls, arithmetic
expressions, assignments to local variables, ‘if” statements
with random conditions, and ‘for’ loops that execute up to
1,000 times. A function call may optionally be enclosed in
an ‘if” or ‘for’ block, or both, but not if the function contains
or calls any necessary code, such as an assignment function.
This ensures that all of the non-garbage code is called
exactly once.

Rather than assigning random names to functions and
variables, Zellome observes the following naming
convention:

[#### — local variable
p##H##H# — parameter
d#### — array assignment or decryption function
f#### — other function
if##### — inline function
where the ####s are numbers assigned in increasing order.

(This systematic naming convention, together with the
constant appearance of parts of the code, suggest that the
author’s design goals did not include concealing the source
code from detection.)

MALFUNCTION

Functions take up to seven arguments with random types.
They always return a value: there are no void functions. The
return values are either saved to dummy variables, or
discarded; they are not relevant to the decryption process.

Function calls can be any of the following:
e other random functions in the source file
* sqrt, exp, sin, abs, acos, asin, atan, atof, cos
e rand, srand
 fopen (but not fclose)
* malloc (allocating up to 65535 bytes — but not free)

e stremp, strlen

Vb

10

VIRUS BULLETIN

e SetCurrentDirectoryA, CreateDirectoryA, CopyFileA,
DeleteFile A, MoveFileA

The code ignores any errors returned by any of these
functions. Since the parameters are well-formed, none of
the functions would cause an exception to occur, so there
is no need for critical error detection. However, the use of
CreateDirectoryA() does create random directories, and
the use of DeleteFileA() and MoveFileA() could, in
exceptional circumstances, result in the deletion or
renaming of real files.

Nestled in the middle of this random code, there is a
surprisingly readable, un-obfuscated decryption loop which
applies the decryption expression, saves the decoded worm
to a stack buffer, and transfers control to the worm.

GET BUFF

Curiously, the code generator allocates a 10,000,000-byte
buffer to contain this decryptor code, though the decryptor
part itself is only a few hundred bytes long, and the entire
source file is seldom longer than 1,500,000 bytes. It is
possible that the goal was to generate more of the source
‘genetically’, but the design was scaled back to a smaller
sub-problem: use a genetic algorithm to generate a
numeric expression, but produce the rest of the code
through normal means.

To give structure to the code, Zellome creates a series of
call trees, each containing an arbitrary number of garbage
functions, and one non-garbage function as a leaf node. It
emits each tree to the file separately, first declaring each
function that appears in the tree, then writing the functions,
in breadth-first order, starting from the top of the tree.

Finally, it generates a top-level tree that calls all of the
others — first the assignment parts, then the decryptor part.
The root node for this tree is supposed to be WinMain, but
due to a bug, this is not always the case. When it generates a
new node for the call tree, it first decides whether the node
will be a garbage function, and only later checks whether it
should be WinMain. If it creates the non-garbage function
as the root node of the last tree, the tree-generation routine
thinks it has finished, so it exits without producing
WinMain. In this case, the source will not compile.

DROP YOUR BUNDLE

The incubator drops the compiler files at this point, in order
to compile the produced source code. The .A and .B variants
are missing one key file, though (mspdb60.dll), so unless
the file is present already on the system, all compilations
will fail. When compiling, the incubator uses compiler
switches chosen at random from a set that it carries.

The compiler switches that are used cover different areas.
There are switches for code optimization (optimize for size,
or for speed, or disable optimization entirely); for the
expansion of inline functions (all, some, or none); for the
emitting or omitting of frame pointers; for the presence or
absence of exception handling; and the type of exception
handling, if present.

Finally, the incubator will either compress the file with the
copy of UPX that it carries, or append the incubator to the
created file, but not both, then run the result. Since there is
no detection of multiple instances, new replicants will
continue to be generated for as long as the incubator is part
of any replicant.

THE WORM HAS TURNED

The worm component begins by retrieving the list of APIs
that it will use, some of which are not used, including two
which are critical to prevent multiple copies of the worm
running at the same time.

It copies itself to the %system% directory as ‘bigfish.scr’,
then hooks the execution of Task Manager. This is done by
creating the registry key ‘HKLM\Software\Microsoft\
Windows NT\CurrentVersion\Image File Execution
Options\taskmgr.exe’, and the value ‘Debugger’, whose data
are set to point to the copied file.

This technique was first described by the virus writer

GriYo as ‘Execution redirection’, and published in the
eighth issue of the 29A virus-writing magazine. The idea is
that Windows NT-based systems run the process named in
the ‘Debugger’ value, expecting it to control the application
that is named in the key. The worm does not run the original
file afterwards. This change continues to work in Safe
Mode, so it is necessary to rename the file instead, in order
to run it manually.

To improve the chance of being executed, the worm

also attempts to create a value in the ‘HKLM\Software\
Microsoft\Windows\CurrentVersion\Run’ key, which it
names ‘bigfish’, and whose data also point to the copied
file. However, the use of the seemingly incorrect API
(RegSetValue() instead of RegSetValueEx()) causes
Windows to create a subkey instead of a value. The result
is that there is no execution via that method on any platform
apart from Windows 2000. Perhaps this is the platform
that the virus author uses, which is why he didn’t notice
the problem.

REGISTER NOW

After hooking the registry, the worm queries the registry
value ‘HKCU\Software\Microsoft\Internet Account

v

Manager\Default Mail Account’, then uses that value to
query the ‘Accounts’ key for the ‘SMTP Server’ value. This
server will be used to send mail, if possible.

The email attachment can arrive in one of two forms. One
form is simply the worm file, the other form includes the

polymorphic engine as appended data. If the polymorphic
engine is present, the worm will detach it into the current

directory and execute it at this time.

The worm always uses the name ‘incubator.scr’ for the
detached file. The detached file is an independent
component and executes without reference to the worm file.

In any case, the worm will encode itself into base64 format
— perhaps surprisingly, using the standard dictionary
algorithm. It might be considered surprising because an
alternative algorithm was published in the seventh issue of
the 29A magazine, which, at only 59 bytes in length, is
smaller than the base64 dictionary itself. In fact, the

worm code is taken from another virus by another author,
with only a few modifications (single subject, etc.), but the
same bugs.

The worm collects email addresses from two sources, and
keeps a list of every email address that it finds. The worm
does not avoid duplicated addresses. The first source of
addresses is the file referenced by the registry key
‘HKCU\Software\Microsoft\WAB\WAB4\Wab File Name’.

JUST BROWSING

The second source is the browser cache directory, within
which all subdirectories will be searched for files whose
extension is one of ‘htm’, ‘asp’, or ‘xml’. For any such file
found, if its size is between 512 bytes and 80 kilobytes, the
worm searches within the file for the ‘mailto:” string.

A number of bugs exist in this code — the most important of
which is that, while parsing the file, the buffer pointer is
updated to skip any address that was found, but the variable
that holds the number of remaining bytes is not adjusted
correspondingly. This can cause the routine to crash if at
least one address exists, because the buffer pointer will fall
off the end of the buffer. The crash is intercepted by the
worm code, though, so the worm will continue to execute,
but exit the address collection routine.

If the routine does not crash, potential addresses are
examined for the presence of disallowed characters. If any
such characters are found, then the worm will adjust the
pointer in its collected address list to allow the next
address to overwrite the invalid one. However, if no other
addresses exist in the same file, then a bug causes the next
address to be appended to the invalid address, instead of
overwriting it.

VIRUS BULLETIN

HELO WORLD

After looking for email addresses, the worm attempts to
resolve the address of the SMTP server. There is a critical
bug here, which is the result of an incorrect assumption
about the layout of certain networking structures. The worm
assumes that the hostent structure, returned by the
gethostbyname() API, is followed immediately by the
address list. In fact, this is true for all Windows versions
prior to Windows XP. In Windows XP/2003, there is a null
pointer at that location. Thus, in all variants prior to .E, if
run on Windows XP/2003, the code crashes at this point and
never sends mail. However, on any earlier version of
Windows, the code does work correctly. Additionally, the
‘incubator.scr’ file will still be running, if it was present.

In the event of a successful resolution, the worm will connect
to the SMTP server. It was intended that the worm would
check the return values from the server, however some of
the branch instructions were removed, leaving compare
instructions whose results are ignored. These compare
instructions relate to the client initiation. The most likely
reason for their removal is that the worm’s domain string is
malformed, and the worm author might not have worked out
why a server would not return the expected response.

The worm chooses a random number prior to sending the
message. This random number would be used to select
between different sender addresses, subjects, message
bodies and attachment names, however all of the conditions
point to the same respective texts. This results in an email
that always appears to come from ‘Don Quijote y Sancho
Panza’, with subject ‘juas juas cuidadin con el

juas juas juas peaso de bicho que lleva el attach!!!
juas juas!!! ;D

Vallez\29a

(which translates roughly as ‘heh heh heh what a tiny bug is
carrying the attachment!!! heh heh!!!”), and an attachment
name of ‘soyunpeasodebichooooooo.scr’ (roughly ‘I am a
tiny buuuuuuug.scr’). The attachment will be the worm file.
The worm will send a single email, but to multiple
recipients. The recipients are all addresses found in the
address book, and no more than 40 of the addresses found in
files. After sending the email, the worm will exit.

CONCLUSION

As an unusual example of self-compiling malware and a
novel misapplication of artificial intelligence, Zellome is an
interesting specimen, but its many bugs and painfully slow
execution time prevent it from working as a practical worm.
In evolutionary terms, this species is heading for extinction.

Vb

12

VIRUS BULLETIN

TECHNICAL FEATURE

PROBLEMS IN STATIC BINARY
ANALYSIS - PART |

Aleksander Czarnowski
AVET Information and Network Security, Poland

After reading Eric Uday Kumar ef al.’s article ‘DOC —
answering the hidden ‘call’ of a virus’ in last month’s issue
of Virus Bulletin (see VB, April 2005, p.7), I decided to
share some of my thoughts on the problems related to
performing analysis based on binary disassembly.

The background material presented in this article was
collected during the development of our own executable
binary audit solution. While such an audit is aimed at
identifying dangerous code constructs and vulnerabilities,
many of the techniques used are similar or even identical
to those used in malware analysis.

INTRODUCTION

Static binary analysis techniques are becoming more
advanced every year, and members of the security
community are finding an increasing number of uses for
these techniques. A good example is the use of binary
analysis in the application security audit process.

In recent years we have also seen a great improvement in
the tools supporting binary analysis — IDA Pro and
OllyDBG spring to mind just to name some of the key
players. Since these applications provide analysts with
broad functionality — and in many cases an additional
programming interface — the idea of using them as a
foundation for more specific analysis tools seems a rational
approach. After all, why reinvent the wheel?

Basing tools on IDA Pro is a very popular technique due
to the fact that analysts have two options for extending its
functionality: through IDC scripts or through plug-ins
(using IDA Pro SDK).

IDC scripts are often used during analysis of encryption
code: IDC is great for decrypting code that has been
encrypted with simple encryption loops, like those based
on the XOR algorithm.

For more advanced tasks plug-ins seem to be a more
suitable option. Here, IDA Pro is used as a foundation and
specialized plug-ins are written for particular tasks in binary
analysis (as described in [1], for example). A set of tools

for binary analysis based on IDA is also available for
security analysts [2].

Finally, a third approach — based on analysing a binary
object through analysis of its disassembly form — has been
demonstrated by the authors of DOC [3]. The aim of this

article is to describe some of the problems that may be
encountered in developing tools based on static analysis
and in the use of their output. For simplicity we assume
limited user interaction during the generation of the
disassembly listing.

SYSTEM LOADER VS DISASSEMBLER
LOADER

Some readers might remember the discussion about the
DOS EXE header signature when the INT 21h handler was
disassembled. It turned out that EXE files could start with
MZ or ZM bytes — prior to the full disassembly of the INT
21h handler there had been speculation that files with other
signatures were treated differently. It soon became clear
that the handler’s author wasn’t sure how bytes are stored
in memory on x86 architecture so he did two checks for
those bytes instead of one. This story demonstrates that
even relatively simple system loaders can have bugs and
specific behaviour that is not necessarily included in
system documentation.

Today, executable objects are more complex, as are process
loaders. This has some important implications for the
analysis process.

Static analysis tools like disassembler must not only
calculate the entry point properly, but also simulate some
of the system loader actions. Many malware and copy
protection schemes are based on different quirks in system
loaders and the inability of disassemblers (read: IDA Pro)
and debuggers (read: OllyDBG and SoftICE in the Windows
environment) to load those files properly for analysis. This
is the first problem we will analyse.

A good demonstration of the techniques mentioned above
is in 0x90.exe, which was published as part of a challenge
[4]. It is worth mentioning that submissions for this
challenge also use dedicated IDA plug-ins to fight with
obfuscated code.

I love this example as there are very few files around which
are not malware and yet include so many different
anti-analysis protection techniques. When an analyst is
given a new binary object he usually tries to run it through
his set of analysis tools. The 0x90.exe example is interesting
because many popular tools (such as IDA Pro, OllyDBG,

"

Warning

L] E Can't read input file [file structure emar?], anly part of file will be loaded...
-

Figure 1: 0x90.exe loading in IDA Pro prior to version 4.8.

v

dumpbin and biew) have problems inspecting the file. Prior
to version 4.8, IDA Pro would hang for a few minutes
before displaying the warning message shown in Figure 1.
Figure 2 shows the result of loading the file into /DA Pro 4.8
(the most current version of IDA Pro at the time of writing).

i

Warning

'E Create a segment [00E 27000-FODZ1DFF, sl 00000003):
L3 can't allocate warrap chunk for the zegment.
Presz F1 for mare information.

| ok | [Heb

Figure 2: Warning message displayed on loading 0x90.exe in
IDA Pro 4.8.

Here we come to the first limitation that has a direct
influence on every process based on external disassembly: if
we cannot load the binary into the analysis tool, we cannot
perform any further actions on it.

On the subject of the Windows environment, it is also
important to simulate the initial stack in order to perform a
proper static analysis.

To demonstrate an example of using the stack layout
provided by the system loader we will use the shortest
assembly language program for the Win32 platform. The
listing in Figure 3 is written in and can be compiled using
the MASM32 package.

.386
.model flat, stdcall.

code

start:
ret

end start

Figure 3: The smallest, fully functional Win32 application.

This sample demonstrates how processes can be terminated
without calling the TerminateProcess() function. To
understand how this ‘RET’ trick works we need to load the
file into a debugger. Figure 4 shows the call stack for this
application using OllyDBG. If the static analysis tool is not
able to simulate the true execution environment provided by
the system loader we might have some problems in
achieving proper analysis results.

Coming back to our 0x90.exe example, it is important to
analyse how it was protected against so many tools. Again,
the secret lies in the difference between the real system
process loader and those provided within tools like IDA Pro
or OllyDBG. For further analysis we will use PE Editor
from PE Tools 1.5 [5]. Take a look at figures 5 and 6 — all

VIRUS BULLETIN

OllyDbg - small.exe - [CPU - main thread, module small]
. File Wew Debug Plugins Options Window Help

S x] »[n] o+ ¥]+ L]E[M[T[wE]c]/[K]
5 03 RETH # | Registers [FPUI
po4pleel| B8 DB B8 — |En ooapoens
op4pionz| B8 DB B8 S o —
fa4plEEz| B8 DE @@ ED¥ FLUBEESS ntdll.KiFastSystemCal et
oB401884) B0 DB @a EEX FFFOFEEE
BE4B1EEs| B8 DB B8 ESP @@12FFC4
oE4pions| B8 DB B8 EBF G@12FFF@
oE4pipeT| B OB B8 S8 co1 FRFFFFFF
Return to FCE1604F (kerne|32.7C21604F)| Cn1 7ootgvss ned L. 7oo107as
ELE @@d@lEEE =mall.<ModuleEntryPoint

% 7CE1E04F| RETURN to kerne 2. FCB1604F
TCTET IR At d [[7CITET:

812FFCC| FRFFFFRF
012FF06| 7FFOFB2G
012FF04| SES4AEED
012FFOE| B@1ZFFCE
812FFOC| 824F37C0
812FFEG| FFFFFFFF|End of SEM chain
0012FFE4| 7CBI99FE| SE handler
0012FFES| 7C816D58| kerne |32, 7CE16068
812FFEC| BEAABR0A
012FFFD| DEREEREE
0 12FFF4| AERAEREA
012FFFS| BE4a1608| snal L <Hodu LeEntryPoint >
8 12FFFC

Figure 4: Call stack for Figure 3 code in OllyDBG.

bogus values for particular header fields are ringed. If you
inspect Figure 6 closely you can also see that a non-standard
ImageBase value is used — this field is not set to the

Image File Header, Editor; @

Image File Header Informations [HEX]

Machine 014C E] |COFF Table Size | 00455068
Murnber OF Sections 0004 Size of Optional O0ED
Time/Date Stamp | 851C3163 [_] Characteristics S16F E]
|P0inter ko COFF 74726144

[ok][Cancel]

Figure 5: Bogus values in the 0x90 header.

Image Optional Header Editor [z|
Image Optional Header Informations [HEX]
Magic 010B | Major SubSyster Yersion 0004
Major Linker Version 02 | Minor Subsystem Yersion 0000
Minar Linker Yersion 19| Win32 version Value 00000000
Size OF Code 00000200 Size OF Image 00049000
Size OF Init Data 00045400 Size O Headers 00001000
Size of UnInit Data | 00000000 Checksum 00000000
Entry Point 00002000 Subsystem o003 E]
Base OF Code 0oooi000 DLL Flags ooog
Base Of Data 00002000 Size Of Stack Reserve 00100000
Image Base 00DEQODD Size OF Stack Commit 00002000
Section Alignment 00001000 Size Of Heap Reserve 00100000
File Alignment 0oooi000 Size OF Heap Commit 00001000
Major 05 Version 0001 Loader Flags ABDBFFDE
Minor 03 Yersion 0oog MNumber OF Rva and Sizes | DFFFDODE
Major Image Version [ulululu]
Minar Image Yersion 0ooo

Figure 6: Using Loader Flags and Number of RVA sizes to protect the

binary against debugger loaders and disassemblers.

14

VIRUS BULLETIN

standard 00400000 address (this will not make analysis with
IDA or OllyDBG harder, however I suspect that some tools
may always assume the default value without checking the
real ImageBase value).

When analysing a binary object we need to understand its
format fully. Another trick used in 0x90.exe to make its
analysis harder with static methods can be seen by
inspecting the section table.

As illustrated in Figure 7, the value of the Raw Size field
for the NicolasB section is bogus and causes some
disassemblers to try to allocate enormous buffers to store it
in memory. This is why IDA Pro fails to load the file. Only
after correcting the Raw Size value for this section is it
possible to load the file into /DA Pro and biew.

@ =

Sections Editor rz|
Sections Informations [HEX]
Mame Wirtual ... | Wirkual OFfset | Raw Size Raw Offset | Characteristics
CODE 00001000 00001000 00001000 00001000 E00000z20
DATA 00045000 00002000 00045000 00002000 0000040
EFEFADFF
.idata 00001000 00048000 00001000 00047000 0000040

Figure 7: Inspection 0x90.exe section table.

HOW IS YOUR PROCESS LOADING
TODAY?

When analysing program flow control it is important to
follow it correctly. An obvious method for static analysis is
to find the code entry point and go further from there. In the
case of dynamic analysis the most trivial method is to place
a breakpoint opcode (0xCC on [A32 architecture) on the
first byte that is pointed to by the header field, as entry point
and execute code.

Unfortunately both methods can fail due to the fact that the
system loader can perform additional actions before passing
control to the binary.

We can see the process of loading and running PE/EXE
by the system loader using even a very simple debug loop
like the one provided in [6]. If the binary is importing
functions from external DLLs, the DLL initialization code
will be executed before passing control flow to the binary
entry point.

There is also another possibility due to the fact that
Windows assumes that every application needs kernel32.dll.
This results in kernel32.dll being loaded every time a
process is to be executed. We can observe this behaviour if
we load the example from Figure 3 under the control of a
debugger. I used OllyDBG’s ‘Executable modules’ option

(ALT+M) to produce the output shown in Figure 8. It is
possible to modify kernel32.dll to execute additional code.

I Executable modules |Z||E|E|
Base Size Entry Mare /:

88401608 snal L Cismasn32~ksiazka~small.exe
FLE6aAEE | BOAFEAEE| FCEPEB436| kerne 132 5.1,2688, 2186 ([Ci~WINDOWS-system32~kerns132.d01
FLI6aAEE | B9PB2088| FCO13156| nedlL 5.1.26868,2188 ({ Ci~WINDOWS-system32~ntdll.dLL

File version Path

v

Figure 8: System loaded DLLs when import table is empty.

The way to avoid these problems is to analyse the import
table of the binary first. By using table entries we can
analyse the libraries that would be loaded and executed by
the system loader. Note that the aforementioned problems
have impacts on both dynamic and static analysis. If we
miss a particular DLL in our disassembly analysis the
results might be flawed.

IS YOUR DISASSEMBLY CORRECT?

In fact, flawed results of analysis based on disassembly are
not usually caused by missing a particular library during the
disassembly process, but rather due to obfuscated code or
incorrect assumptions made by the disassembler.

It is important to note that some code constructions that we
usually classify as obfuscation can be generated by a compiler.
For example, we are used to calling functions using ‘call’
and returning using ‘ret’/‘ret n’ instructions. Unfortunately
compilers do not always generate code in this way.

call j__RTC_Initialize
call j__setargv
cmp _ _defaultmatherr, 0
jnz short loc_416B3E
[...]
j__RTC_Initialize proc near ; CODE XREF: mainCRTStartup
jmp _RTC_Initialize ;use jmp to call function
j__RTC_Initialize endp
[..]
_RTC_Initialize proc near

push ebp

mov ebp, esp
[...]

mov eax, [esi]

test eax, eax

jz short loc_417A08

call eax ;use register for pointing destination
;address

[...]

mov eax, 1

retn

Figure 9: Calling functions with jmp and call eax.

Figure 9 shows code generated by Microsoft Visual
Studio.NET 2003 for C++ project with Debug settings. If
we were to remove the comments stating that this code is
called from mainCRTStartup, we could misidentify this
code as some part of a simple anti-disassembly trick. This is
due to the following:

v

* The procedure starts with an unconditional branch
instruction (JMP) and there is no RET instruction at the
end of this procedure.

 The procedure to which the JMP instruction points
starts with the typical PUSH EBP/MOV EBP,ESP
prologue — there is nothing special about this code with
the exception of how we got here with help of the
CALL/JMP trampoline. Searching code for PUSH
EBP/MOV EBPESP is a very simple, yet effective,
method of discovering procedures — even if there is no
direct CALL instruction that points to the PUSH EBP
address as in our example.

* The procedure is calling another procedure and
dynamically calculating the address which is stored
in the EAX register — in some cases without code
emulation or single stepping/tracing we might not be
able to calculate the correct address.

MORE PROBLEMS

Compilers are not the only source of problems. From time
to time developers decide to change a convention. A good
example is the hot-patching technology used by Microsoft.
Breaking disassembly and stack analysis with code
obfuscation techniques will be discussed next month in the
second part of this article. In the second part we will also
take a look at some emulation and tracing techniques used
in binary object analysis.

BIBLIOGRAPHY

[1] Greg Hoglund and Garry McGraw, Exploiting
Software: how to break code, Addison-Wesley 2004,
ISBN 0-201-78695-8.

[2] BinDiff: http://www.sabre-security.com/products/
bindiff.html.

[3] Eric Uday, Aditya Kapoor and Arun Lakhotia,
‘DOC — answering the hidden ‘call’ of a virus’,
Virus Bulletin, April 2005, p.7.

[4] Scan of the Month 33: http://www.honeynet.org/
scans/scan33/.

[5] PE Tools 1.5: http://www.uinc.ru/files/neox/
PE_Tools.shtml.

[6] Writing the Debugger’s Main Loop:
http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/debug/base/
writing_the_debugger_s_main_loop.asp.

[7] IDA Pro: http://www.datarescue.com/.
[8] OllyDBG: http://home.t-online.de/home/Ollydbg/.

VIRUS BULLETIN

DU BL0I5N

VB2005 DUBLIN
5-7 OCTOBER 2005

Join the VB team in Dublin, Ireland for the
anti-virus event of the year.

What: e 40+ presentations by

world-leading experts

e | atest AV technologies

e Emerging threats

e User education

e Corporate policy

¢ | aw enforcement

e Anti-spam techniques

e Real world anti-virus and
anti-spam case studies

¢ Panel discussions
e Networking opportunities

e Full programme at
www.virusbtn.com

Where: VB2005 takes place at the lively
Burlington hotel, Dublin, Ireland

When: 5-7 October 2005
Price: Special VB subscriber price €1085

Don’t miss the opportunity to experience
the legendary craic in Dublin!

BOOK ONLINE AT

* WWW.VIRUSBTN.COM *
% 4y

Vb

16

VIRUS BULLETIN

PRODUCT REVIEW
AHNLAB V3NET

Matt Ham

AhnLab’s V3Net was last reviewed in VB more than two
years ago (see VB, January 2003 p.18) — since when there
have been considerable changes within the product.

AhnLab is based in South Korea. When I lived there eight
years ago the Internet was just starting to become popular
worldwide, but South Korea proved to be faster on the
uptake than most. The government was keen, housing
tended to be clustered together and there was an existing
high technology manufacturing base — all of which were
conducive to the development of high-speed Internet
access. As a result, the Internet infrastructure in the
country is among the best in the world — which is, of course,
a double-edged sword considering the viruses, spam and
other assorted unpleasantnesses that such a status brings
with it.

It is not surprising, therefore, that anti-virus is not the only
security offering from AhnLab. The company’s flagship
product is V3Net, which is available both for servers and
desktops (both products were inspected in this review).
However, the company also produces a wide range of
products under the Security ASP banner, most of which are
accessible through network connections rather than direct
downloads or retail purchases.

The marketing material for Security ASP suggests that

this offering may be aimed more towards ISPs and
corporate users than for sale directly to end users. It offers
web-accessible scanning for spyware, viruses and general
security holes. There is a dedicated scanner for keyloggers,
as well as heuristics and device driver hooks — this is the
most dedicated, yet limited, malware scanner I have ever
seen aside from those designed for a single virus.

Some of the product features are noted as having been
designed for use in online games — this is the first time |
have seen online gaming mentioned as an area in which
security vendors are competing (but, given the popularity
of such pastimes in South Korea, and the propensity for
games players to seek advantages through any means, it is
not at all surprising).

Although this range of additional security products is not a
surprising area of expansion for a company such as AhnLab,
I was surprised that these functions were not tied into V3Net
and the whole sold as a combined suite. In fact, further
investigation showed that the AhnLab Security Pack for
Desktops does integrate personal firewall and anti-virus
functionality, with ‘additional features’ which turn out to be
data deletion and encryption tools. There is also a shareware
Palm scanning product available for download.

WEB PRESENCE AND DOCUMENTATION

AhnLab’s main website is at http://www.ahnlab.com/,
though those unfamiliar with hangul would do well to use
the pages located at http://info.ahnlab.com/english/. Chinese
and Japanese versions of the site also exist, AhnLab being
certified to supply mainland China.

The website offers the usual fodder of a corporate anti-virus
site, but with a distinct skew away from the usual marketing
product details. Unfortunately, there is a slightly irritating
requirement to fill in personal details for each evaluation
file required. This is the case even when documentation or
sales materials are requested (the latter in particular seems
to be a counterproductive move).

Electronic versions of the software were used exclusively
during the review process, thus no hard copy documentation
was available. The availability of help files was very

mixed, the area in which they were most notably lacking
was during the installation process and while using the
Configuration Wizard or standalone Configuration
application. These applications would benefit from at

least a few hints as to what is affected by the choice of
various options.

In contrast, the help function within V3Net itself is very
good indeed. In the majority of those instances where I was
left scratching my head as a result of confusing
configuration choices, the help function was able to clarify
matters. The help index has been created sensibly — offering
a useful selection of the more frequently required subjects
rather than the more common overload of keywords.

INSTALLATION AND UPDATE

Lab tests were performed using V3Net for Windows Servers
on Windows 2003 Advanced Server. This package totalled
17.5 MB. The XP version, which was also tested for
updating and interoperability with other anti-virus
applications, was slightly larger at 18 MB.

The installation process is less involved than in many
products, there being very few choices to make at any
stage before the transfer of files has been completed.
This allowed ample time for such delights as reading the
licence agreement.

The contents of the licence agreement were much as
expected, though there were a couple of rather more
detailed caveats than those seen in the past. For one, the
product is not guaranteed to work with new or updated
operating systems — which, if Windows Update is used,
could be any operating system at all.

The licence agreement goes even further by absolving
responsibility specifically for damage caused by ‘computer

v

Configuration Wizard

virus, worm, spyware, Trojan horse, adware and scum
discovered after the date of production of the software
product.” Such denials of responsibility have always

been common in licensing agreements industry-wide,
though they seem to have become increasingly paranoid in
recent years.

After the product has been licensed or specified as a trial
version, the installation location is chosen and V3Net
installs — the updater being added at a separate stage. At this
point the user can choose whether to run the updater or
perform a system scan.

This altogether standard part of the installation process is
followed by the rather less usual Configuration Wizard
(see figure above), which sets server parameters. This
commences with the setting of a Protection level. The
default level is Medium, with other options available by
means of a slider bar. The effects of manipulating the bar
are visible in more exact terms in the dialog box, though in
some cases scrolling is required before the information
becomes visible. The dialog in which this information is
supplied is of fixed size, which does not help matters.

Default operation is with scanning enabled for all files,
including archives, Internet accesses and startup programs.
Some files are excluded, however, though it is not
immediately apparent which ones. Disinfection will occur
automatically, with the exception of archives. The on-access
scanner will restart itself if terminated for any reason, and
V3Net uses self-protection of some unexplained nature.
Strangely, midday on Thursday is the default time for
scheduled scans.

The three other setting available at this point are High, Low
and Customized. The High setting removes all exceptions
for scanning and implements a daily scheduled scan. The

VIRUS BULLETIN www.virusbtn.com

Low setting is very much more limited, scanning only local
files and not offering automatic disinfection or a scheduled
scan. If any of these preset configurations are chosen, the
Configuration Wizard exits after confirmation.

The Customized option will be of much more interest to
most administrators. This allows control over all the
aforementioned fields independently. Many of the choices
are self-explanatory and unsurprising, though others are
much more interesting.

For example, when faced with a file which is infected and
executing, the plan of action is less clear than simply
detecting a file as infected and disinfecting it. An object
which is in the process of execution may result in memory
resident infection capability if it is left alone, but may cause
users to gnash their teeth in frustration if it is shut down
automatically to disinfect. Both of these actions are
selectable, in addition to offering the user a choice as to
whether to abort the program, or to force a reboot during
repair in case memory is already infected.

A similar level of control is offered when dealing with
compressed file formats. There is an option to scan all 27
that are supported by the engine, though each of these formats
can be selected/deselected individually for scanning, should
an administrator have reason to be so discriminating.

On-access scanning is also subdivided as to which objects
are valid targets for detection. File accesses are, of course,
the default. However, the bulk of the remaining choices
seem to be subsets of this, since files selected from
Explorer, downloaded files, Microsoft Olffice files and files
registered through use of the Start menu all seem to be
included already.

Scanning of specific areas when the screensaver is running
does not fall so much into the category of on-access
scanning so much as a very specific scheduled scan — but it
may be activated here. Somewhat bizarrely, the page comes
with a warning that functions to protect web browsers will
not be effective if a web browser is not installed on the
machine. Aside from being blindingly obvious, it would
seem a challenge to find a Windows server that did not have
browser functionality of any sort.

After these selections have been made, scheduled scans can
be set up. For the purpose of the majority of these tests,
however, the default setting of medium was used unless
otherwise stated.

As stated previously, updating was tested on a Windows XP
box using the V3Net Pro product. Installation here was
essentially identical to that offered on the server platform.
The update process may be performed from local folders or
the AhnLab servers, the latter of which were used. Proxying
is supported. In practice, the first update was very large,

MAY 2005 @

17

18

VIRUS BULLETIN www.virusbtn.com

taking some four or five minutes over an ADSL line. This is
explained, at least in part, by the fact that the updates
contained numerous engine modifications — a copious
number of downloaded DLLs being a sure sign of this.

Downloads from the AhnLab sites over my UK-based
connection were mostly quite sluggish, however, so the
speed of download seems to be more a matter of bandwidth
than the size of the update. Either way, the download times
for subsequent signatures were almost unnoticeable.

FEATURES

Once installed the presence of V3Net is obvious thanks to a
desktop icon and a tray icon. The latter can hardly be
missed, since it flashes yellow, cyan and green while active.
Port blocking, general configuration, updates and the main
program may all be invoked from here. Port blocking was
not mentioned at any stage prior to its discovery here, so the
feature came as something of a surprise. By default, port
blocking is off, with no details supplied as to what happens
when it is turned on.

The status of on-access scanning may also be set directly
from the flashing icon. Deactivating scans for Internet
downloads and startup programs does not affect this display,
it is purely dependent upon whether file access scanning is
activated. Deactivating this function leaves the icon
flashing, but in monochrome. By default, however, the scan
will be reactivated after 60 minutes.

Additions to the Start menu are also present, being divided
between V3Net itself and the Smart Update Utility. The
latter may be launched or removed from here. V3Net may
also be launched or removed, and the Configuration
function (which is not to be confused with the
Configuration Wizard) and the previously unmentioned
AhnReport are available too. With any luck AhnReport
should remain unused by most users, since it is a utility for
creating very detailed information about the location,
updates and configuration of V3Ner — its use is primarily
for providing information to AhnLab should troubleshooting
be required.

The Configuration application offers numerous tweaks to
the product settings in addition to the Configuration Wizard
invoked during installation. It seems odd that both
applications exist, since the Configuration application
would seem to easily replace most, if not all, of the
functions of the Wizard.

A screenshot of the application in action (above) is fairly
self-explanatory. The Easy Configuration option is simply a
repeat of the slider-scale part of the Configuration Wizard.
The Advanced Scan settings view, on the other hand,
subdivides the general on-access scan into its components

Secuy Waning Repar Failed to find the activities log from the last scan.

which can be toggled independently. This area confirmed
my suspicions that setting the Startup area scan is
considered to be a part of the default on-access process,
making its presence as a separate dialog more confusing.
It is possible, therefore, to set the scanning of Startup
items in two places with one setting having no influence
upon the other.

Port blocking is also explained somewhat more by
inspection of the control dialog. By default this is set to

off, but since there are no designated ports to block, turning
it on will have no effect. In order for ports to be blocked
the user must create either a blacklist or a whitelist of ports
manually. The help function in V3Net lists those ports
which should not be blocked in order that vital functions
are not interfered with, though these are not present
automatically in the whitelist of the port blocker, which is
an unhelpful omission.

The main V3Net application is where the bulk of the activity
is based once configuration has been set. This is in the
standard windowed view, with a left-hand pane for
selecting one of six views, which then appears in the larger
right-hand pane.

Functions are also available through drop down menus and
icons towards the top of the interface, though the majority
of these duplicate functions that are available elsewhere.
Exceptions are the help function and links to various bits of
information from the AhnLab website (specifically, the virus
information, virus calendar and home pages of the site).

One notable and unusual addition to this upper area is
Quick Scan. This allows a scan to be performed through the
use of command line options, the default being ‘C: /a /s’,
which will scan all files recursively on the C drive. It takes
little inspiration to work out that this is using the commands
as arguments to a command line scanner. Indeed, if /7’ is
typed in as the argument, the list of command line options
and the command line scanner name, V3Medic.exe, are
revealed. The functionality is very limited, but this is a
convenient interface for the fastest and most basic of scans.

@ MAY 2005

The six views available are Home, System Scan, Event Log,
Scan Log, Quarantine Station and Security Warning Report.
Home supplies information on the status of the program,
such as last update, results of the last scan and scheduled
scans or updates. Schedules may be adjusted through links
available here.

On-access scanning status in its various categories and port
blocking are shown as on or off, though again these may be
adjusted via links. In fact, all of these links lead to the
Configuration application, mentioned previously as part of
the installed Start menu programs.

The System Scan view, on the other hand, is a standard
tree-based scanner. Customised scan lists may be set up
for it, though the selecting of areas does not seem to offer
files, only directories. This can be circumvented by using
the Quick Scan option, though the scanning of files in
long, convoluted paths is beset with problems using
either method.

The view for the Event Log is one of those areas which
remains dull until something woeful happens. During
testing the only warning events noted were concerned with
failure to connect to updates or the Internet in general on the
isolated lab machines. The Scan Log likewise remains
uninteresting unless viruses are present.

The descriptions given in the log file provide such
information as the requirement for registry fixes in addition
to file deletion or disinfection. However, there are no
immediate instructions as to which registry setting must be
altered. In most cases, of course, this will not have a major
impact if the files are deleted, and lack of details can be
seen as a space saving feature.

In cases such as W32/Blebla.B, however, the log also notes
that the registry must be fixed or EXE files may no longer
run correctly. Despite this warning, the files are removed if
disinfection is selected. The situation here is rather
complex, but the results of this disinfection could be
catastrophic. This is a common problem with the scanners
offered by many vendors.

The Quarantine Station view is very much self explanatory,
leading to the Security Warning Report as the final part of
the interface. This performs a basic security scan for issues
which are commonly used by worms.

If a weakness is detected, information is provided including
a link to the appropriate patch. The list of vulnerabilities is
not large and lack of an automatic update mechanism could
be considered a failing. With the Windows platform having
numerous ways in which it can update itself automatically,
however, AhnLab can easily be excused in this case. As
might be expected, an unpatched lab machine triggered
several alerts in this area, while a net-attached Windows XP

VIRUS BULLETIN

Security Warning Report

& Pint [1h Propetties [Save s Fie

Results Prioi.. Check points Actions totake

€ Critical Middle ‘Weeakness in Windows Messenger Service remote code e Please un the patch from Related informatiort to resolve this wuinera,

D Citical Middle Weakness for bulfer overflow in Windows Help and suppe... Please un the patch from Related informatirt to resclve this vulnera...
€ Citical High Cumulative Patch for Micrasolt Intermet Explorer Plezse tun the patch from Related infomation” to resolve this vulnera

O Citical High Cumulative Secuity Update for Intemet Expiorer (332834) Please un the patch fiom Related informatior to resolve this wuinera,

D Citical High ASN.1 Vulnerabilty Could Allow Code Exeeulion (828028) Please run the patch from Related information to resolve this vulner..

€ Citicsl High Weakness for Windows Authenticode confimation Please tun the patch from Related infomation’ to resolve this vulner.

O Citical High Weskness in RPCSS senvice cods skecution Please un the patch from Related information” to resolve this vulnera

© Sefe High Checkina for vulnerabiltes in the Windows SM TP

O sefe High Checkingfor vuinerabillies caused by DS attacks using
O sefe High Checkinafor vulnerabilties of Windows Help function buf

Secuiity Warning Report Properties

© Safe High Checking for vulnerabilis of Parsing in Dok Express 4511 Vulnerabilly Could Allow Code Execution (328028]
O sefe Middle Checking for vulnerabiliies in M5 Windows XP Help igh
O safe High Checking for the shared folder temp(C:temp) Critical

|21 inirude can oblain the system access permission using the vunerabill
[Please tun the patch from Related information to resolve this vulnerabilt

SP2 machine, set to automatically download from the
Windows Update site, showed no known security issues.

CONCLUSIONS

One of the major impressions left by V3Net is that it is a
complex product, offering a great deal of flexibility in the
ways in which it is configured. With the server product
selected for testing, the level of complexity was an
expected side-effect of the requirements of an administrator.
However there is much the same level of complexity in the
XP version of the software, and an average user may well
be confused by the options available. One might expect
most such users to use the Configuration Wizard and not
the other Configuration application, where matters are
considerably simpler.

The lack of configuration help files is a little more of a
concern, though where help is available it is very much
improved over that experienced in the last review of V3Net
— and comprehensive too. The translation team at AhnLab
are also due some praise, since the odd translations in the
product seen two years ago, have now vanished completely.

Overall, the product has matured well and it has performed
increasingly well in VB’s Comparative tests. I just hope that
AhnLab’s attention to security in online games will enable
me to do some lengthy ‘research’ in that area.

Technical Details

Test environment: Identical 1.6 GHz Intel Pentium machines
with 512 MB RAM, 20 GB dual hard disks, DVD/CD-ROM and
3.5-inch floppy drive running Windows XP Professional or
Windows 2003 Server Web Edition 5.2. Athlon XP1600+ machine
with 1 GB RAM, 80 MB hard disk, DVD/CD-ROM and ADSL
internet connection running Windows XP Professional Service
Pack 2.

Developer: AhnLab, 6th F1, CCCM Bldg, 12 Yeouido-dong,
Yeoungdeungpo-gu, Seoul 150-869, Korea; email
customer @ahnlab.com; website http://info.ahnlab.com/english/.

®

20

VIRUS BULLETIN

END NOTES & NEWS

The sixth National Information Security Conference (NISC 6)
will be held 18-20 May 2005 at the St Andrews Bay Golf Resort
and Spa, Scotland. For more information see http://www.nisc.org.uk/.

AusCERT 2005 takes place 22-26 May 2005 in Gold Coast,
Australia. Programme details and online registration are available at
http://conference.auscert.org.au/.

The third International Workshop on Security in Information
Systems, WOSIS-2005, will be held 24-25 May 2005 in Miami,
USA. For full details see http://www.iceis.org/.

The 7th Protecting Critical Information Initiative (PCII)
Convention takes place 6 June 2005 in London, UK. PCII is aimed
at both public and private sectors and will cover a variety of
information assurance-related topics including electronic and physical
information threats, best practice, financial and legal reporting
pressures, disaster recovery and contingency planning. For full details
see http://www.pcii-initiative.co.uk/index.htm.

The 3rd annual BCS IT Security Conference takes place on 7
June 2005 in Birmingham, UK. The conference focuses on identity
theft, hacking, cyber-terrorism, network forensics, secure web services,
encryption and related topics. See http://www.bcsinfosec.com/.

NetSec 2005 will be held 13-15 June 2005 in Scottsdale AZ, USA.
The programme covers a broad array of topics, including awareness,
privacy, policies, wireless security, VPNs, remote access, Internet
security and more. See http://www.gocsi.com/events/netsec.jhtml.

A SRUTI 2005 workshop entitled ‘Steps to Reducing Unwanted
Traffic on the Internet’ takes place 7-8 July 2005 in Cambridge,
MA, USA. The Usenix-sponsored workshop aims to bring academic
and industrial research communities together with those who face
the problems at the operational level. For more information see
http://www.research.att.com/~bala/sruti/.

Black Hat USA takes place 23-28 July 2005 in Las Vegas, NV,
USA. The deadline for submitting paper proposals is 1 May 2005;
registration for the event is now open. For details see
http://www.blackhat.com/.

The 14th USENIX Security Symposium will be held 1-5 August
2005 in Baltimore, MD, USA. For more information see
http://www.usenix.org/.

The Network Security Conference takes place 19-21 September
2005 in Las Vegas, NV, USA. The conference is designed to meet the
education and training needs of the seasoned IS professional as well
as the newcomer. For details see http://www.isaca.org/.

The 15th Virus Bulletin International Conference, VB2005, will
take place 5-7 October 2005 in Dublin, Ireland. The programme
for the three-day conference can be found on the VB website. For
more information or to register online see http://www.virusbtn.com/.

RSA Europe 2005 will be held 17-19 October 2005 in Vienna,
Austria. For more details see http://www.rsaconference.com/.

WORM 2005 (the 3rd Workshop on Rapid Malcode) will take
place 11 November 2005 in Fairfax, VA, USA. The workshop
will provide a forum to bring together ideas, understanding and
experiences bearing on the worm problem from a wide range of
communities, including academia, industry and the government.
The organisers are currently seeking submissions from those
wishing to present at the workshop. Full details can be found at
http://www1.cs.columbia.edu/~angelos/worm05/.

The eighth Association of Anti-Virus Asia Researchers
International Conference (AVAR 2005), takes place in Tianjin,
China on 17 and 18 November 2005. The theme of this year’s
conference will be “Wired to Wireless, Hacker to Cybercriminal’.
The organizers are currently seeking submissions from those
wishing to present at the conference, the deadline for submissions
is 10 June 2005. For more details see http://aavar.org/

Infosecurity USA will be held 6-8 December 2005 in New York,
NY, USA. The conference will take place 68 December, with the
accompanying exhibition running 7-8 December. For more details
see http://www.infosecurityevent.com/.

ADVISORY BOARD

Pavel Baudis, Alwil Software, Czech Republic

Ray Glath, Tavisco Ltd, USA

Sarah Gordon, Symantec Corporation, USA

Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, Network Associates, USA

Joe Hartmann, Trend Micro, USA

Dr Jan Hruska, Sophos Plc, UK

Jakub Kaminski, Computer Associates, Australia
Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Network Associates, USA

Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia

Péter Szo6r, Symantec Corporation, USA

Roger Thompson, PestPatrol, USA

Joseph Wells, Fortinet, USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including
first-class/airmail delivery: £195 (US$358)

Editorial enquiries, subscription enquiries,
orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material
herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2005 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.

Tel: +44 (0)1235 555139. /2005/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

o

@Spam supplement

CONTENTS

S1 NEWS & EVENTS

S1 FEATURE

Challenges in spam filter evaluation

NEWS & EVENTS

UN DISCUSSES SPAM

The United Nations (UN) has revealed that discussion at the
third meeting of its Working Group on Internet Governance
focused on spam, network security and cybercrime. The
consensus among participants was that, although the topic of
spam is not yet officially on the international agenda, it must
be discussed as a matter of priority. The question of how to
deal with spam and protect the Internet was discussed, with
emphasis on the need for a multifaceted and multi-layered
approach. A number of proposals were put forward, ranging
from drafting model legislation to more informal models of
collaboration. The Working Group will put together a report
“for consideration and appropriate action’ which will be
submitted to the UN Secretary General in July 2005 ahead
of the second phase of the World Summit on the

Information Society (WSIS), which takes place in November.

EVENTS

INBOX IT takes place 1-2 June 2005 in San Jose, CA,
USA. The event will focus on all aspects of email including
spam, phishing, zombies, outbound controls, encryption and
the latest in new security technologies and techniques. More
information is available at http://www.inboxevent.com/.

CEAS 2005, the Second Conference on Email and Anti-Spam,
will be held 21-22 July 2005 at Stanford University, CA,
USA. For more details see http://www.ceas.cc/.

TREC 2005, the Text Retrieval Conference, will be held
15-18 November 2005 at NIST in Gaithersburg, MD, USA.
The conference includes a new track on spam. For more
details see the following article and http://trec.nist.gov/.

FEATURE

CHALLENGES IN SPAM FILTER
EVALUATION

Gordon V. Cormack
University of Waterloo, Canada

[This year, for the first time, the Text Retrieval Conference
(TREC) will include a track on spam. The organizers of the
spam track are looking to establish measures that will
increase the availability of appropriate spam filter
evaluation techniques. Here, track coordinator Gordon
Cormack describes the challenges in spam filter evaluation. |

Do spam filters work? Which is the best one? How might
filters be improved? Without standards, one must depend for
the answers to these questions on unreliable evidence such
as subjective impressions, testimonials, incomparable and
unrepeatable measurements, and vendor claims.

You might think that your spam filter works well and
couldn’t be improved. Are you sure? You may think that the
risk of losing important mail outweighs the benefit of using
a filter. Could you convince someone who holds the other
opinion? If I told you that my filter was 99 per cent
accurate, would you believe me? Would you know what I
meant? Would you be able to translate that 99 per cent into
the risk of losing an important message?

The 2005 TREC Spam Evaluation Track will address some
of these questions. Filters will be evaluated, but our purpose
is not to crown the ‘King of Filters’; rather it is to establish
measures and evaluation techniques that are appropriate for
ongoing filter evaluation, comparison, and improvement.

To this end, participants will submit filters to be tested in a
controlled environment, and evaluated using standard
measurements. Through this effort we will begin to discover
what works and what doesn’t — not only in terms of filtering
techniques, but also in terms of measurement techniques.

CHALLENGES IN FILTER TESTING

In order to evaluate a filter, it is necessary to subject it to
some sort of test and to measure the outcome. The design
of appropriate tests and measurements presents several
challenges. In particular, a good filter test should meet
three criteria:

MAY 2005 @

S1

SPAM BULLETIN www.virusbtn.com

* The test should model real filter usage as closely
as possible.

* The test should evaluate the filter using measurements
that reflect its effectiveness for its intended purpose.

e The test should avoid uncontrolled differences and
yield statistically valid results.

REAL FILTER USAGE

A user’s incoming email messages are received by the
filter, which places them into one of two files: the ham file
or the spam file. The recipient reads the ham file regularly,
rejects any spam messages (which have been misfiled by
the filter), and reads or otherwise deals with the remaining
ham messages. The user may also report the misfiled spam
to the filter. Occasionally they may search the spam file for
ham messages that have been misfiled and report these
misfilings to the filter. The filter may use this feedback,

as well as external resources such as blacklists, to improve
its effectiveness.

A filter test must capture or simulate the components of
this setup:

* Incoming mail used in a test situation should emulate
the mail that really is delivered — that is, it should be
chronological, contain ham and spam addressed to
the same recipient, contain its original header
information, and should not be reformatted or contain
any annotations added by the mail client or the user.

* In areal-world situation the user may report some or all
ham and spam misclassifications to the filter. Some
delay may be involved. The filter may not solicit or
accept user feedback. Some of the user’s feedback may
be wrong. Users may be involved in more complicated
feedback protocols. They may maintain whitelists and
blacklists, or tweak any number of filter parameters
in a (generally uncontrolled) effort to improve its
performance. The filter may separate the messages into
three, or ten files instead of two, with different user
behaviour for each. A filter test must take these
variables into consideration.

* The filter itself must be amenable to testing. Many
filters lack interfaces that make it easy to identify or
simulate the incoming email stream, placement of
messages in folders, user feedback and configuration,
and interaction with external resources.

INTENDED PURPOSE

A perfect filter would place all ham in the ham file and all
spam in the spam file. In reality, however, some fraction of

s2 @ MAY 2005

the spam will be delivered to the ham file (this is the spam
misclassification fraction, or smf), and some fraction of the
ham will be delivered to the spam file (the ham
misclassification fraction, or hmyf). The effectiveness of a
filter may be characterized (in part) by these two fractions —
in both cases the smaller the better.

Spam misclassification is an annoyance. After all, the
purpose of the filter is to block this stuff, so smf indicates
the extent to which the filter is not doing its job. Ham
misclassification is more than an annoyance. It introduces a
risk that you will lose an important message, so hmf also
indicates the extent to which the filter is not doing its job.

A state-of-the-art filter might exhibit smf = 1.5 per cent and
hmf = 0.05 per cent. That is, it would eliminate 98.5 per
cent of the spam at the expense of eliminating one in every
2,000 ham messages. The impact on the user of eliminating
that one message in 2,000 depends on:

» How likely it is that the recipient will retrieve it from
the spam file, or receive the same message by a
different channel.

* The consequences of losing the message — the impact
of a missed advertisement from one’s travel agent
is likely to be considered less serious than that of a
missed message informing the recipient about a
flight cancellation.

ACCURACY

Magazine testers are fond of single-number scores that
purport to characterize the overall ‘goodness’ of whatever
is being tested. For spam filtering in particular, it is
inappropriate, but all too common, for testers and their
reports to conflate these two measures of effectiveness into
one: accuracy.

Accuracy is defined as the fraction of all messages (ham or
spam) that are not misclassified. Unfortunately, this
measure is, essentially, useless for filter evaluation.
Consider our hypothetical filter (where smf = 1.5 per cent,
hmf = 0.05 per cent) — what is its accuracy? Or consider a
filter claimed to be 99 per cent accurate — what are its smf
and hmf? The answer, in each of these cases, is: without
further information we do not know.

In order to deduce accuracy from hmf and smf we must
know the proportion of ham and spam delivered to the filter.
If the messages received by our user are 80 per cent ham
and 20 per cent spam, the accuracy is:

(1 - [0.8*hmf] - [0.2*smf]) = 99.66 per cent

If the user receives 20 per cent ham and 80 per cent spam,
the accuracy drops:

(1 - [0.2*hmf] - [0.8*smf]) = 98.79 per cent

Has the filter’s performance changed? Of course not. The
only difference is the ratio of incoming ham/spam.

Deducing hmf and smf from accuracy is even more dicey.
With 80 per cent incoming spam, ‘99 per cent accuracy’
might mean hmf = 0.01 per cent and smf = 1.3 per cent,
which is pretty good, or it might mean hmf = 3.0 per cent
and smf = 0.5%, which is very poor (no user would tolerate
losing one in 33 legitimate messages).

OTHER MEASUREMENTS

The effectiveness of a filter may be captured as four counts,
shown in the contingency table below, where a denotes the
number of correctly classified ham messages, b is the
number of incorrectly classified spam messages, c is the
number of incorrectly classified ham messages, and d is

the number of correctly classified spam messages. High
values of @ and d are good; high values of b and ¢ are bad:

True Classification
Filter Classification | Ham Spam

Ham a b

Spam c d

There is a remarkably large number of ways in which these
four values can be combined, but only a few make sense as
measures of filter effectiveness. The three measures
discussed above are defined as:

hmf = c/(a+c)
smf = b/(b+d)
accuracy = (a+d)/(a+b+c+d)

Other measures, such as (spam) precision = d/(c+d), or
weighted accuracy = (w,a + w,d)/(a+b+c+d) suffer the
same defect as accuracy — they measure the incoming

ham/spam ratio as much as the performance of the filter.

Many vendors report, by a variety of names, the fractions
b/(a+b+c+d) or c/(a+b+c+d) — that is, spam or ham
misclassifications as the fraction of all messages received.
However, these values under-report the true
misclassification fractions and, like accuracy, conflate
effectiveness with ham/spam ratio. I will not justify these
fractions with names, other than to note that they are not
false positive and false negative rates, as often claimed. The
terms false positive and false negative come from
established methods used in medical testing, which are
based on signal detection theory. If we think of spam as
diseased email and of ham as healthy, false positive rate is a
synonym for hmf; false negative rate is a synonym for smf.
Any other use of these terms is incorrect.

The performance of a filter may be evaluated using curves
that indicate the filter’s performance under varying
conditions. The TREC organizers intend to compute

SPAM BULLETIN www.virusbtn.com

learning curves, which show the change in hmf and smf as
messages are processed and user feedback is accumulated.
Receive Operating Characteristic (ROC) curves will also be
computed; these will plot the trade-off between hmf and
smf for filters with adjustable sensitivity.

WHAT IS SPAM?

It seems odd that we have progressed this far without
defining spam. In order to achieve precise measurement,

we must have a precise definition. Given a definition, we
need a way of adjudicating whether or not each message
meets the definition. We call the result of this adjudication a
‘Gold Standard’ — it is not quite the “True Classification’
required for the contingency table, but it is as close to it as
we can reasonably get. The quality of evaluation depends on
three factors: setting a precise definition that realistically
approximates the operational one, adjudicating messages
with respect to this definition, and assessing the magnitude
and impact on evaluation of adjudication errors.

TREC'’s tentative definition for spam is: ‘unsolicited,
unwanted email that was sent indiscriminately, directly or
indirectly, by a sender having no current relationship with
the recipient’. Under this definition, viruses are considered
spam, as are ‘unable to deliver’ messages resulting from
spam sent with a forged sender address. Political or
religious bulk mail would be considered spam under this
definition, provided the sender had no relationship with the
recipient, and the recipient didn’t want it. While we believe
that this definition is reasonable, the important thing for
testing purposes is that the definition is fixed and amenable
to adjudication.

Given this (or any) definition of spam, a gold standard must
be constructed for the incoming messages in the test. If the
messages are archived, a person may examine them later and
render an opinion as to whether or not each message meets
the definition. As in a court of law, this opinion should be as
to whether or not the message meets the definition, not as to
whether or not the definition is appropriate.

Our definition of spam includes the relationship between
sender and recipient, and the welcomeness of the message
to the recipient. Therefore, one recipient’s ham may be
another’s spam. This is not to say that spam is whatever the
recipient thinks it is. The definition remains invariant, but
the recipient may be in the best position to assess these two
aspects of the definition.

THE GOLD STANDARD

It is impractical to read tens of thousands of email messages
for the purpose of adjudication. The process would be

MAY 2005 @ S3

S4

SPAM BULLETIN www.virusbtn.com

time-consuming, tedious and error-prone and would likely
yield a higher misclassification rate than that of the filters
being tested.

An alternative, that is used all too frequently, is to assume
that the user’s feedback is correct — that every ham and
spam misclassification is reported. If this assumption were
true, it would be a simple matter to construct a gold
standard. One would simply capture the filter’s judgements
and correct them according to the user’s feedback.

This approach can result in egregious evaluation errors.
First, both hmf and smf will tend to be under-reported —
either because the user failed to notice, or because they
noticed but failed to provide the appropriate feedback. It is
not unreasonable to assume that one per cent of all spam
misclassifications go unreported.

This under-reporting is of little consequence in evaluating
the current filter, but as a gold standard the error is
disastrous. Suppose the current filter had hmf = 0.05 per
cent and smf = 1.5 per cent, that the ham/spam ratio was
20/80, and that the user failed to report one per cent of all
spam misclassifications. In the gold standard, 0.06 per cent
of all messages adjudicated as ham would, in fact, be spam.
A filter comparable to the current one, with hmf = 0.05 per
cent, would have a reported hmf = 0.11 per cent — more than
double its true error rate.

An iterative process can lead to a vanishingly low rate of
undetected misclassifications in the gold standard. One of
the techniques above is used to create a preliminary gold
standard, G,. One or more different filters are run on the
same messages, using G to simulate user feedback. Cases
of disagreement — where the filter classifies the message as
spam but G, says the message is ham, or vice versa, are
captured. These cases of disagreement are adjudicated and,
where the adjudication disagrees with G they are corrected
to form G. This process may be repeated to form G, and so
on to G,. The only messages that could potentially remain
unadjudicated are those agreed upon by all filters.

For TREC, we use G_| to simulate the feedback of an ideal

user and G, as the gold standard for evaluation. Ideally,

G, , =G, but a small amount of disagreement is acceptable

as it affects only the simulated feedback, not the calculation
of hmf and smf.

SCIENTIFIC CONTROL AND STATISTICAL
VALIDITY

The sales pitch for one spam filter states:

‘While most commercial solutions only claim a mere 95%
accuracy (1 error in 20), a majority of [our] users
frequently see around 99.95% (1 error in 2000) and can

@ MAY 2005

sometimes reach peaks as high as 99.991% (2 errors in
22,786, as with one particular user).’

Unfortunately, it is meaningless to compare accuracy, or
even a more useful measurement, unless the filters are
compared in similar circumstances; that is, with comparable
test configuration, email to be filtered, user responses, spam
definition, and adjudication. One way to make these factors
comparable is to make them identical. Another way is to
choose the email, users, etc. at random from some common
source population. In both situations, we declare as
significant only those differences that are unlikely to be

due to chance. Statisticians use p to denote the estimated
probability that an observed difference is due to chance,
and the threshold p < 0.05 is commonly used to declare a
result significant.

However, it is easy to lie with statistics. I just flipped a coin
and it came up heads five times in a row. The probability of
that happening is 1/32, so I’ve proved that the coin is unfair
(p < 0.03) right? Wrong. Because what I really did was to
flip a coin repeatedly until it came up the same five times in
arow. But I only had to flip seven times in total until the
last five were heads. Remarkable? No. There are 128 ways
that seven coins can land and 16 of them involve five-in-a-
row. So my seven-coin result yields p < 0.13 — slightly
lucky but no evidence against the coin’s fairness. The next
time [tried it took me 17 attempts. Statistics are not useful
unless you predict the result in advance and the results of all
tests are considered, not just the ‘significant’ ones, or the
ones that agree with your prediction. As a matter of policy,
TREC reports the results for all systems in all tests; the
testimonial above does not.

SETTING THE STANDARDS

Current spam filter evaluation techniques are riddled with
inaccuracies and pitfalls. The 2005 TREC Spam Evaluation
Track aims to provide a standard evaluation of current and
proposed spam filtering approaches, to establish an
architecture and common tools and methodology for an
open-ended network of evaluation corpora (public and
private), and to lay the foundation for more general email
filtering and retrieval tasks. As a step towards achieving
these goals, TREC will test spam filters in a controlled
environment using a framework with standard components
and measures. Through this effort we hope to begin to
discover what works and what doesn’t — both in filtering
techniques, and in measurement techniques.

[TREC 2005 takes place 15—18 November 2005 at NIST in
Gaithersburg, MD, USA. Participant guidelines for the
Spam track at TREC 2005 and the Spam Filter Evaluation
Kit are available at http://plg.uwaterloo.ca/~gvcormac/
spam/. |

