
JULY 2009

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Same malware, different code

3 NEWS

 Spam away

 Jobs for the naughty boys

 Spammer to serve time

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 Can you spare a seg?

6 Kernel mechanics of Rustock

 FEATURES

15 Early warning approaches to combat   
 typosquatting

18 The challenges of collecting and monitoring  
 URLs that point to malware

21 PRODUCT REVIEW

 Norman Network Protection Appliance

25 COMPARATIVE REVIEW

 Anti-spam comparative review July 2009

30 END NOTES & NEWS

SQUATTERS’ RIGHTS
Typosquatting takes advantage of the typographical 
mistakes often made by users when entering a 
website address into a web browser. Amit Verma 
discusses a two-step approach to combatting the 
problem, prioritizing the registration of domain 
typos and detecting typos entered into Internet 
browsers and email clients.  
page 15

ON PATROL
Since 2005, the Malware Patrol Project has been 
cataloguing URLs used in phishing scams and 
distributing block lists for the most popular proxies 
and anti-spam systems. André D. Corrêa describes 
the challenges of collecting and monitoring 
malicious URLs.
page 18

ANTI-SPAM CERTIFICATION
In VB’s second 
round of anti-spam 
comparative testing 
and certifi cation the 
all-important question 
was whether the high achievers from the fi rst test 
could maintain the same high standards this month. 
Martijn Grooten has the results of a test in which 
more products were tested against a larger spam 
corpus and with stricter benchmarks.
page 25



2 JULY 2009

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

SAME MALWARE, DIFFERENT 
CODE
As Dijkstra once said, ‘The effective exploitation of 
his powers of abstraction must be regarded as one of 
the most vital activities of a competent programmer.’1 
Malware operators and their sponsors understand this 
advice and are pushing the concept of abstraction to the 
next level. The gangs profi ting from malware attacks 
do not really care about programming languages or 
anti-debugging tricks; they are interested in software that 
is relatively bug free and that matches their requirements 
(enabling them to steal passwords from game XYZ, send 
spam, etc.). Sometimes we need to take our heads out of 
the petri dish and stop over-analysing the programming 
detail. In more than one sense, the point isn’t how the 
code works, it’s what it does that matters.

Many of us are aware of the Waledac family of malware, 
which has now been around for several months. This 
threat is used to send massive amounts of spam. It 
communicates using a peer-to-peer network and spreads 
through malicious websites that use fast fl ux DNS server 
entries in order to make blocking by IP address more 
diffi cult. Does that description sound familiar? Exactly 
the same words could have been used to describe the 
Storm worm. This highlights an interesting problem 
we are facing increasingly frequently: similar malware, 
similar operations, but a completely different code base.
1 Dijkstra, E.W. The Humble Programmer, 1972.

Rogue anti-virus programs have been prolifi c in the last 
12 months. They are usually installed by other malware 
and generate income for their operators by scaring users 
and leading them to believe that the only way to clean 
their computer is by sending money to an unknown 
company. Once again, we have identifi ed dozens of 
different code bases for rogue anti-virus programs. 
Some of them are programmed in Visual Basic, some 
in C++, Delphi, and so on. The intent is the same, the 
information displayed to the user is the same, and the 
extorted money probably ends up in the same pocket.

It has become clear that the organizations behind 
malware operations are prepared to sponsor complete 
rewrites of their malware. This may be to repair previous 
programming errors or design limitations, but they are 
also doing it to keep one step ahead of the research 
community and to evade anti-virus detection. It takes 
days, if not weeks, for a skilled reverse engineer to 
analyse and understand a piece of malware completely. 
Thus deploying completely new code will slow down 
investigative work considerably.

We need to take a step back from simply looking at 
compiled code. We have to focus on fi nding a model 
that will express program functionalities and intents. By 
deducing and classifying the intent of a program (or at 
least part of it), we might have a chance of identifying 
the relationship between malicious programs that are 
part of the same operation and built for the same purpose 
but which use different code. 

This task will be very hard to accomplish and we cannot 
expect fl awless results, but any effort in this area would 
be a step in the right direction. For example, Dullien and 
Porst2 have developed a platform-independent language 
to represent disassembled code. While this approach gives 
results that are too detailed to be effective in creating a 
generic description of a program’s intent, it does show that 
independent representation is attainable. The next step is 
to create a model that is easily extractable from compiled 
code and reliable enough to recognize similarities in the 
intent of the gang using variable binaries as part of their 
operation. One way to develop this model would be to 
include both algorithmic information from the code and 
data it is using as parameters.

It follows logically that it will be even more diffi cult 
to decide whether two programs using different code 
bases have the same intent. Yet in practice we can (and 
do, almost routinely) deduce malicious intent behind 
unknown code. We miss a trick or two by focusing on 
the crime scene and forgetting the criminal.

2 Dullien, T.; Porst, S. REIL: A platform independent intermediate 
representation of disassembled code for static analysis, 2009.

‘The intent is the 
same, the information 
displayed to the user 
is the same, and 
the extorted money 
probably ends up in 
the same pocket.’
Pierre-Marc Bureau, Eset



3JULY 2009

VIRUS BULLETIN   www.virusbtn.com 

NEWS
SPAM AWAY
Observant readers will notice the absence in this month’s 
issue of the VB Spam Supplement. Almost six years after its 
introduction the Spam Supplement has been retired because 
the distinction between spam and malware is becoming 
increasingly blurred and there seems little reason to 
continue to segregate the subjects. VB will continue to cover 
spam and anti-spam issues, but from now on these articles 
will be integrated into the rest of the magazine. 

JOBS FOR THE NAUGHTY BOYS 
Lord West, the UK’s Parliamentary Under-Secretary for 
Security and Counter-terrorism, raised the hackles of 
security experts last month when he outlined some of the 
steps taken to beef up the UK’s cyber defence strategy. Lord 
West claimed the UK was ahead of the rest of the world in 
its cyber security strategy, and went on to reveal that the 
government had recruited a team of former hackers for its 
new Cyber Security Operations Centre. In an attempt to 
justify the appointments, he said that the government had 
not employed any ‘ultra, ultra criminals’, but would be 
calling upon the expertise of former ‘naughty boys’.

Commentators across the security industry have questioned 
the wisdom of employing former script-kiddies (a group 
whose technical abilities have never been hailed as anything 
other than fl aky) and giving them responsibility for national 
security. What appears to be lacking in the cyber defence 
strategy outlined so far is any attempt to harness the 
expertise of those who really know what they are talking 
about – seasoned computer security professionals.

SPAMMER TO SERVE TIME
Prolifi c spammer Alan Ralsky is facing up to 87 months in 
jail after pleading guilty to his part in a pump-and-dump 
stock spam scam. Ralsky and his son-in-law are believed 
to have masterminded the scam, in which spam was used 
to artifi cially boost interest in Chinese penny stocks – the 
scammers would then trade in their shares when the value of 
the stock reached its highest point. Ralsky pleaded guilty to 
conspiracy to wire fraud, mail fraud, money laundering and 
CAN-SPAM offences. He and his accomplices are estimated 
to have made $3 million from the scam in just 18 months.

Ralsky reportedly once admitted sending more than 70 
million messages a day, and in 2003, just prior to the 
CAN-SPAM Act coming into force, he said that the passage 
of the US bill through the House of Representatives had 
‘made [his] day’ – referring to what was considered the 
relatively lax nature of the bill which put the onus on the user 
to opt out of mailings. No doubt anti-spam campaigners will 
be delighted that Ralsky has fi nally had his come-uppance.

Prevalence Table – May 2009

Malware Type %

Dropper-misc Trojan 19.03%

Waledac Worm 17.95%

Agent Trojan 13.71%

NetSky Worm 8.30%

Invoice Trojan 6.94%

Virut Virus 5.97%

OnlineGames Trojan 2.73%

Iframe Exploit 2.61%

Mytob Worm 2.59%

Mydoom Worm 2.05%

Downloader-misc Trojan 1.83%

Basine Trojan 1.49%

Heuristic/generic Misc 1.47%

Suspect packers Misc 1.14%

Inject Trojan 1.06%

VB Worm 0.88%

Bagle Worm 0.81%

Zlob/Tibs Trojan 0.74%

Delf Trojan 0.68%

Lineage/Magania Trojan 0.66%

Mabezat Virus 0.52%

Zbot Trojan 0.47%

Small Trojan 0.45%

Alman Worm 0.44%

Zafi  Worm 0.42%

LDPinch Trojan 0.41%

Autorun Worm 0.40%

Edibara Trojan 0.38%

Sality Virus 0.36%

Cutwail/Pandex/Pushdo Trojan 0.31%

Heuristic/generic Trojan 0.29%

Encrypted/obfuscated Misc 0.26%

Murlo Trojan 0.24%

Others[1]   2.37%

Total  100.00%

[1]Readers are reminded that a complete listing is posted at 
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index


VIRUS BULLETIN   www.virusbtn.com 

4 JULY 2009

CAN YOU SPARE A SEG?
Peter Ferrie
Microsoft, USA

Peter Ferrie resumes his series of analyses of viruses 
contained in the EOF-rRlf-DoomRiderz virus zine (see also 
VB, September 2008, p.4, VB, October 2008, p.4 and VB, 
November 2008, p.4).

NON-OPTIMIZATION TRICKS
We begin with a virus that was named ‘H2T3’ by its 
author. This virus infects fi les on the FreeBSD platform. 
Interestingly, the virus is split into two parts. The fi rst part 
is written in assembly language, and exists solely to pass 
some important constants to the second part, which is 
written in C. 

The assembly language part is not optimized at all. For 
example, a MOV and an ADD could be replaced by an 
LEA; some arithmetic involving two constants could be 
achieved with one combined constant, etc. Even the calling 
convention that was used in the fi rst part results in an 
extra instruction to balance the stack, but this is perhaps 
an indication of the quality of work by virus writers these 
days. It is unclear even why the fi rst part exists, since the 
constants could be calculated just as easily in C.

Seek and ye shall fi nd
The virus begins by searching for regular fi les within the 
current directory. For each fi le that is found, the virus 
attempts to retrieve the fi le attributes and change them to 
writable. The fi le is skipped if either of these operations 
fails. If both operations succeed, then the virus attempts 
to open and map the fi le. If the open fails, then the virus 
restores the fi le attributes and returns. If the mapping 
fails, then the virus attempts to unmap an invalid region 
– fortunately for the virus writer, this invalid unmapping 
does not cause an error.

However, the virus is extremely trusting of the contents 
of the fi le. It assumes that the fi le is in ELF format before 
proceeding. The assumption goes so far that a fi eld inside 
the supposed ELF header is used by the virus, without 
checking that the fi le is large enough to support the 
presence of that fi eld. A suffi ciently small fi le will cause 
the code to crash. In fact, a truncated ELF fi le, or a fi le 
with a suffi ciently large value in the e_phnum fi eld, among 
other things, will cause the virus to demonstrate 
the same effect, since the code contains no bounds 
checking of any kind.

Of course, these are minor quibbles.

Image-conscious code
The virus is interested in ELF fi les that are executable, 
not infected already, and whose ABI specifi es a FreeBSD 
fi le. The virus does not check the target CPU for the fi le, 
perhaps assuming that any fi le on the current system is 
designed to run on that system. The virus then searches 
within the Program Header Table entries for all loadable 
segment entries, and keeps track of the one with the lowest 
virtual address. This value is used as the ending address for 
the virus code in the fi le to infect. What the virus intends 
to fi nd is the entry with the physical address of zero, which 
is the fi le header, and which corresponds to the image base 
address. The virus is simply performing the search in a 
different way.

Headers and footers
The virus also searches within the Program Header Table 
entries for a PT_PHDR (Program Header Table segment) 
entry. If one is found, then the virus replaces it with a 
loadable segment entry. This loadable segment will contain 
the virus code. The segment is set to the size of the virus, 
and its starting location is calculated to end just before the 
loadable segment with the lowest virtual address that was 
located earlier. The host’s original entrypoint is saved in 
the virus code, and a new entrypoint is set to the location of 
the virus code in memory. The virus sets the last byte of the 
e_ident fi eld to 1, as an infection marker. This has the effect 
of inoculating the fi le against a number of other viruses, 
since a marker in this location is quite common. Finally, the 
virus appends its code to the fi le.

The ‘problem’ with adding a new loadable segment to a fi le 
is that it can be seen easily in a memory map. Anyone who 
is familiar with the fi le in question will know that it has 
been changed.

Trimming the fat
In ordinary circumstances, the Program Header Table 
segment entry is redundant, since a fi eld exists in the 
ELF header that points directly to it. The only missing 
information in the ELF header is the size of the program 
header table. However, this value can be calculated by using 
other fi elds from the ELF header. This is the reason why the 
virus uses that entry.

After all fi les in the directory have been examined, the virus 
returns control to the host.

CAVEAT EMPTOR
Along similar lines is a virus from a different author. This 
one was named ‘Caveat’ by its author and was written 

MALWARE ANALYSIS 1

http://www.virusbtn.com/pdf/magazine/2008/200809.pdf
http://www.virusbtn.com/pdf/magazine/2008/200810.pdf
http://www.virusbtn.com/pdf/magazine/2008/200811.pdf
http://www.virusbtn.com/pdf/magazine/2008/200811.pdf


VIRUS BULLETIN   www.virusbtn.com 

5JULY 2009

entirely in C – demonstrating that it can be done, though 
it does inject some assembly language code into the fi le to 
perform some essential operations. The virus infects fi les on 
the Linux platform. Despite the different authors, this virus 
shares many characteristics with the ‘H2T3’ code.

Misplaced trust

The virus begins by searching for fi les within the current 
directory. For each fi le that is found, the virus attempts 
to open and map the fi le. Unlike ‘H2T3’, if the mapping 
fails, this virus closes the fi le without attempting to unmap 
anything. However, this virus is equally trusting of the 
contents of the fi le. Like ‘H2T3’, this virus assumes that the 
fi le is in ELF format before verifying this fact. A fi eld inside 
the supposed ELF header is used, without checking that the 
fi le is large enough to support its presence. A suffi ciently 
small fi le will cause the code to crash. A truncated ELF fi le, 
or one with a suffi ciently large value in the e_phnum fi eld, 
among other things, will also cause the virus to crash, since 
the code contains no bounds checking of any kind.

Missing the mark

The virus is interested in ELF fi les which are executable, for 
the Intel x86-based CPU, and whose ABI is not specifi ed. 
The virus does not check for an infection marker, because 
the marker is actually the absence of something instead of 
the presence of something. This will be explained below.

If a fi le is found to be infectable, then the virus rounds 
up the fi le size to a multiple of 4KB, and saves the host’s 
original entrypoint. The rounding is required to ensure that 
the virus body will be completely mapped into memory 
later. Again, this will be explained below.

Note to self

There are two variants of the virus. Both search within the 
Program Header Table entries for the loadable segment that 
corresponds to the image base address. They also search for 
a PT_NOTE entry. However, the fi rst variant ignores any 
PT_NOTE entry that appears before the image base address 
entry in the Program Header Table. This might be considered 
an optimization to avoid parsing the entries twice (since the 
entrypoint calculation requires the image base address), but 
some fi les will not be infected as a result. It could also be 
considered a bug, since the entrypoint calculation could be 
delayed until after the parsing has completed.

Force of h-ABI-t
In the case of the fi rst variant, if an acceptable PT_NOTE 
entry is found, then the virus shrinks the Program Header 
Table by the size of one entry, to make space for the fi rst 

part of the virus loader. With the PT_NOTE entry removed, 
the corresponding .note.ABI-tag section is unreferenced 
and available to be replaced. The virus overwrites the 
.note.ABI-tag section with the second part of the virus 
loader, and changes the host entrypoint to point to the fi rst 
part. Since there is usually only one PT_NOTE entry in a 
fi le, its removal means that it cannot be found again. Files 
that do not contain a PT_NOTE entry will not be infected, 
obviating the need for an infection marker.

Stacking the deck
In the case of the second variant, the virus also searches for 
PT_PHDR and PT_GNU_STACK entries. The virus shrinks 
the Program Header Table by the size of these entries to 
make space for the entire virus loader. The virus changes 
the host entrypoint to point to the loader. With the removal 
of those entries, any subsequent examination of the fi le will 
not fi nd suffi cient space for the loader. As a result, such fi les 
will not be reinfected, obviating the need for an infection 
marker.

The easy way or the hard way
After the loader has been copied to the fi le, the virus extends 
the fi le to the multiple of 4KB that it calculated earlier, then 
appends the virus code. The loader works by calling the 
mmap() function to map into memory the virus code from 
the end of the fi le. Since the mapping requires an aligned 
base as a starting address, the virus must either place itself 
at exactly such an aligned address (the simplest case, as 
we see here), or the size of the mapping must be increased 
appropriately to potentially span two pages, and the virus 
code must be aware of the possibly non-zero offset within 
the fi rst page where the virus body resides (which does not 
increase the fi le size to the same degree, but which increases 
the complexity of the algorithm and requires more code).

This method of memory-mapping the virus code avoids the 
loadable segment problem described above. Of course, the 
mapped memory might be still considered to be suspicious. 
The virus author described a workaround for this by 
allocating a new memory region and copying the virus body 
there before unmapping the old copy.

CONCLUSION
At fi rst glance, the technique of replacing the .note.ABI-tag 
section in ELF fi les might appear to be similar to the .reloc 
overwriting technique in Windows PE fi les. However, there 
are far more differences than similarities, since ELF fi les 
have fewer restrictions regarding section placement, among 
other things. In a sense, this kind of cavity infection could 
be considered just another ‘hole’ that is being exploited. 



VIRUS BULLETIN   www.virusbtn.com 

6 JULY 2009

KERNEL MECHANICS OF 
RUSTOCK
Chandra Prakash
Sunbelt Software, USA

This article provides details of the kernel-mode operations 
of a recent (March 2009) version of Rustock, concentrating 
on the changes from its previous version. The previous 
version referred to in this article (Rustock.C) was detailed 
in an earlier issue of Virus Bulletin [1]. This article also 
describes the functions of the Rustock dropper that drops 
the rootkit driver.

DROPPER UNPACKING

The outer layer 1 of the dropper is packed with the 
well-known UPX packer. Layer 1 UPX unpacking results in 
a Win32 command line executable with _wmain as shown 
in listing 1.

UPX0:00401920 _wmain proc near

UPX0:00401920 call sub_401928

UPX0:00401925 xor eax, eax

UPX0:00401927 retn

UPX0:00401927 _wmain  endp

UPX0:00401927

UPX0:00401928 sub_401928 proc near

UPX0:00401928 jmp short loc_401995
 .
 .

UPX0:00401995 loc_401995:

UPX0:00401995 pusha

UPX0:00401996 or eax, 0FFFFFFFFh

UPX0:00401999 xor eax, 0FFFFFFFFh

UPX0:0040199C push 2DB7h

UPX0:004019A1 push offset loc_401957

UPX0:004019A6 retn

Listing 1.

The _wmain routine is a layer 2 inner custom unpacking 
routine which contains a lot of PUSH RETN instruction 
sequences. Listing 2 shows a snippet of the layer 2 
unpacking routine.

0040197D push offset loc_4019A7; Start of encrypted 

       ; code

00401982 pop ebx

00401983 lea esi, dword_420000; Starting   
      ; decryption location

00401989

00401989  loc_401989:

00401989 add eax, 0B1788E5Ch; Decryption key

     ; different for every dword

0040198E mov edx, [ebx]

00401990 xor edx, eax; Simple XOR decryption

00401992 push edx

00401993 jmp short loc_401941

00401941

00401941 loc_401941:

00401941 pop dword ptr [esi]; Write decrypted dword

00401943 lea ebx, [ebx+4]

Listing 2.

Listing 3 shows the start of the decrypted code after 
layer 2 unpacking. The decrypted code obtains the 
location of the process environment block (PEB) using 
the FS:[30] register. From PEB it retrieves the address of 
InitializationOrderModuleList in order to fi nd the 
kernel32.dll load virtual address. This is used to resolve the 
import addresses of the GetProcAddress, LoadLibrary and 
ExitProcess APIs. These APIs are in turn used to load more 
libraries, e.g. advapi32.dll, and resolve functions from them.

00420000 8b4c2404 mov ecx,dword ptr [esp+4]

00420004 call 0420009

00420009 pop ebp

0042000a sub ebp,9

0042000d mov eax,dword ptr fs:[00000030h]

00420013 mov eax,dword ptr [eax+0Ch]

00420016 mov eax,dword ptr [eax+1Ch]

00420019 mov eax,dword ptr [eax]

0042001b mov eax,dword ptr [eax+8]; Getting

  ;Kernel32.dll load address from PEB

Listing 3.

DROPPING THE ROOTKIT DRIVER
The next step is to load the rootkit driver into a shared 
memory. Using the CreateFileMapping API, the dropper 
creates a system paging fi le named ‘shared memory section 
object’. The user-mode name of the section object is ‘Global\
5B37FB3B-984D-1E57-FF38-AA681BE5C8D9’. It then 
uses the virtual address return from the MapViewOfFile API 
to copy the rootkit driver into the shared memory. 

Next, beep.sys is used as the fi rst goat driver to install the 
rootkit driver. The dropper copies the beep.sys driver into a 
temporary fi le. The path to the temporary fi le is obtained 
using the GetTempPath and GetTempFileName APIs. The 
dropper uses the SCM APIs OpenSCManager and 
OpenService to get a handle to the beep service and then calls 
the ControlService API to stop it, if it is already running. It 
overwrites the beep.sys driver with its own Rustock driver 
and starts the beep service later using the ControlService API. 

The dropper checks whether the driver has started 
successfully by opening a named event object created by the 
Rustock driver. The API used is OpenEvent and the name 
of the event object is ‘Global\{60F9FCD0-8DD4-6453-
E394-771298D2A471}’. The open event is tried several 
times with one-second sleep intervals until it is successful. 

MALWARE ANALYSIS 2



VIRUS BULLETIN   www.virusbtn.com 

7JULY 2009

After the retries, the original beep.sys driver is restored 
from the temporary saved location. If the open event fails, 
the dropper uses the null.sys driver as the next goat driver, 
repeating the same steps. If using null.sys does not succeed 
either, then it creates a driver named ‘glaide32.sys’ in 
%SystemRoot%\System32\drivers and uses it to start the 
Rustock driver.

DRIVER AND DROPPER INTERACTION

After fi nal unpacking in the Rustock driver, when code 
near the original entry point is reached, ZwOpenSection 
is used to open the named shared memory section object 
that was previously created by the dropper. In the driver, 
the kernel-mode section object is opened with the name 
‘\BaseNamedObjects\5B37FB3B-984D-1E57-FF38-
AA681BE5C8D9’. After opening the section object, it calls 
the ZwMapViewOfSection API to get the driver buffer from 
which to copy. The driver buffer is written to disk with a 
uniquely generated name that contains all hexadecimal 
numbers. The driver name generation is described in listing 4.

00010388 push edx

00010389 rdtsc

0001038B xor eax, rdtscValLoc

00010391 ror eax, 5

00010394 add eax, edx

00010396 add rdtscValLoc, eax; eax has driver name

0001039C pop edx

0001039D retn

Listing 4.

The driver service name in the registry is generated 
using the format specifi er \registry\machine\system\
CurrentControlSet\Services\%x to sprintf API. The 
driver fi le path is generated using the format specifi er 
\SystemRoot\System32\drivers\%x.sys. The driver is set up 
in the registry as a SERVICE_SYSTEM_START service. 
Note, this is the same driver as beep.sys was overwritten 
with. The driver is written to disk by direct access to the 
NTFS driver, bypassing all fi lter drivers to evade on-access 
detection [1]. After writing the driver to disk and setting up 
the driver registry service confi guration, the shared memory 
buffer is deallocated using ZwUnmapViewOfSection. This 
newly written driver will be started after the next reboot.

SIMILARITIES WITH RUSTOCK.C

The following are the similarities between this version of 
Rustock and the version presented in [1].

1. The decryption and decompression routines are the 
same at all stages, both for the Rustock driver and for 
the injected bot dll.

2. The number of threads started and the function of each 
thread remain broadly the same.

3. Both versions load private ntdll in order to obtain the 
SSDT index of hooked functions.

4. Both versions register a process creation notifi cation 
routine using PsSetCreateProcessNotifyRoutine 
to search for services.exe process create events for 
injecting APCs.

5. Both versions create a new thread that overwrites its 
own driver to disk every fi ve seconds.

6. Both versions hook the registry key parse procedure 
in the kernel to hide the rootkit driver service key. 
Normally, the parse procedure in the kernel is 
registered by the Confi guration Manager with the 
Object Manager.

7. Both versions hook the ZwCreateKey, ZwOpenKey and 
IRP_MJ_CREATE dispatch routine of the NTFS driver.

8. Both versions send the APC1 routines to inject waitable 
threads in the context of services.exe.

CHANGES IN APC2
Before the APC2 routine for injecting bot dll is delivered, 
it communicates with the PCI bus device to get two 
DWORDs. One DWORD identifi es the vendor and device 
ID of the bridge between the PCI bus to host and the other 
identifi es the device ID of the bridge between the PCI 
bus and ISA bridge [2, 3]. The vendor and device IDs 
corresponding to these DWORD pairs are shown in Table 
1 [4]. If a match occurs with any of these pairs, APC2 is 
not delivered [1]. Pair 1 corresponds to VMware and was 

Vendor ID Device ID

Pair 1 
71908086
71108086

8086 - Intel 
7190 - 440BX/ZX AGPset 
host bridge

8086 - Intel 
7110 - PIIX4/4E/4M 
ISABridgeA

Pair 2
12378086
70008086

8086 - Intel 1237 - PCI & memory

8086 - Intel
7000 - PIIX3 PCI-to-ISA 
bridge (Triton II)

Pair 3
71928086
71108086

8086 - Intel
7192 - 440BX/ZX chipset 
host-to-PCI bridge

8086 - Intel
7110 - PIIX4/4E/4M 
ISBridgeA

Pair 4
11308086
1112AAAA

8086 - Intel
1130 - Host-hub interface 
bridge / DRAM Ctrlr

Unknown

Table 1: Vendor and device IDs.



VIRUS BULLETIN   www.virusbtn.com 

8 JULY 2009

checked on VMware versions 5.5, 6.0 and 6.5. It is more 
than likely that the malware uses these vendor and device 
IDs to detect VMware.

The code snippet used to obtain the device and vendor IDs 
corresponding to the fi rst DWORD is shown in listing 5.

mov edx, 0CFBh ; In dx set PCI mechanism control 

  ; (PMC) register port number 0xCFB

in  al, dx ; Read value from PMC register

or  al, 1 ; PCI CONFIGURATION ACCESS MECHANISM 

  ; SELECT (PCAMS):

 ; Set PCI Confi guration Access Mechanism #1

 ; The CONFADD and CONFDATA registers (see below)

 ; are only accessible when PCAMS = 1

out dx, al ; Enable PCI Confi guration Mechanism #1

xor ebx, ebx

QRY_PCI_VENDOR_DEV_ID_LOOP:

mov eax, ebx

shl eax, 8 ; Set up device number and function number

bts eax, 1Fh ; Set bit 31. Note device no. is always 0

mov dl, 0F8h

out dx, eax ; Output to port 0xCF8, the PCI  

  ; confi guration address (CONFADD) register

mov dl, 0FCh

in  eax, dx ; Read port 0xCFC, the PCI Confi guration

  ; data (CONFDATA) register

mov esi, eax

inc ax

jz  short INVALID_VALUE_READ_FR_PORT

mov eax, ebx  ; Reached here if vendID and devID are

   ; valid for the given device num and 

   ; function num at bus 0

shl eax, 8

add eax, 80000008h; Set PCI Confi g address offset 0x8

mov dl, 0F8h

out dx, eax

mov dl, 0FCh

in  eax, dx  ; Here it is reading DWORD from CONFDATA

   ; at PCI address offset 0x8

 ; The DWORD contains four bytes as below

 ; byte at offset 0xB - broad classifi cation

 ; byte at offset 0xA - sub-classifi cation

 ; byte at offset 0x9 - register programming interface

 ; byte at offset 0x8 - ignored

shr eax, 8 ; Ignoring byte at offset 0x8

cmp eax, 60000h ; 0x060000 is such that

 ; 06 - PCI bridge (broad classifi cation)

 ; 00 - bridge to CPU host (sub-classifi cation)

 ; 00 - register programming interface

 ; Hence it identifi es a PCI host bridge device

jz  short FOUND_VALID_VENDOR_DEV_ID

INVALID_VALUE_READ_FR_PORT:

inc bl ; Here by incrementing bl which is byte sized

 ; it is scanning all device numbers and 

 ; function numbers

 ; Note device number is four bits and so is 

 ; the function number

jnz short QRY_PCI_VENDOR_DEV_ID_LOOP

xor esi, esi

FOUND_VALID_VENDOR_DEV_ID: 

Listing 5.

The logic for obtaining the device and vendor ID 
corresponding to the second DWORD is identical except for 
the comparison part, as shown in listing 6.

cmp eax, 60100h   ; 060100 is a such that

  ; 06 - PCI bridge (broad classifi cation)

  ; 01 - ISA bridge (sub-classifi cation)

  ; 00 - register programming intf

  ; Hence it indentifi es a PCI ISA bridge device.

jz  short loc_1116D

cmp eax, 68001h  ; 068001 identifi es PCI “other” 

 ; bridge device

Listing 6.

CREATING TCPIP HOOK 
The Rustock driver creates a TCPIP hook by using 
the device name \Device\Tcp. First, the device 
object of the tcpip.sys driver is obtained by using the 
IoGetDeviceObjectPointer API. Next, the driver object 
member of the device object structure is used to get the 
address of the original IRP_MJ_INTERNAL_DEVICE_
CONTROL dispatch routine, where the hook is placed. 
During the creation of this TCPIP hook it allocates 
two buffers of size 5,220 (0x1464) and 3,200 (0xC80) 
bytes from a non-paged pool. It also creates an event 
notifi cation object. The purpose of these buffers and the 
notifi cation object is to store data from the TCPIP hook 
function and then notify delivery to bot dll, as described in 
DispatchFunction3 and DispatchFunction4 below.

HELPER FUNCTIONS FOR TDI 
COMMUNICATION
Rustock uses a nice modular approach, defi ning a set of 
helper functions that are parameterized, rather than using 
duplicated code due to differences in parameters. Some of 
these helper functions relating to TDI communication are 
described below [6]. These helper functions are called from 
more than one location from various dispatch functions 
called to serve requests from the bot dll.

ReturnLockedMDLForUserBuf proc

; Remarks

; Returns MDL after locking a user-mode buffer.

; User-mode buffer is passed in requests from bot dll

; Input Parameters

; [ebp+8] - UserBufVirtAddr



VIRUS BULLETIN   www.virusbtn.com 

9JULY 2009

; [ebp+C] - UserBufLength

; [ebp+10] - LOCK_OPERATION (IoReadAccess/

; IoWriteAccess etc.)

; Return value

; Locked MDL pointer in eax

000131A0 xor esi, esi

000131A2 push esi ; Irp

000131A3 push esi ; ChargeQuota

000131A4 push esi ; SecondaryBuffer

000131A5 push dword ptr [ebp+0Ch] ; UserBufLength

000131A8 push dword ptr [ebp+8] ; UserBufVirtAddr

000131AB call ds:IoAllocateMdl

000131B1 mov edi, eax ; Store MDL pointer in edi
 .
 .

000131BD push dword ptr [ebp+10h] ; LOCK_OPERATION

000131C0 push 1 ; AccessMode = UserMode

000131C2 push edi ; MDL

000131C3 call ds:MmProbeAndLockPages ; Lock 

    ;user-mode buffer
 .
 .

000131E1 mov eax, edi ; Return MDL pointer in eax

ReturnLockedMDLForUserBuf endp

Listing 7.

PrepareAndSendIrp proc

; Remarks

; In regard to the bot dll requests, this function 

; prepares TDI IRPs for the TCPIP.sys driver. It fi lls 

; in MDL, Next Stack Location parameters and then 

; sends it to the TCP driver. IRP completion and post 

; processing cleanup is also handled.

; Input parameters

; eax - control structure such that:

; [eax+20h] = allocated KEVENT object

; [eax+30h] = reusable IRP pointer

; [eax+38h] = placeholder for output 

;  IRP->IoStatus.Information
;

; Return value

; NTSTATUS in eax copied from local var ‘status’
;

; Local vars

; [ebp-8] - PMDL MemoryDescriptorList

; [ebp-4] - NTSTATUS status
;

00012D1C mov esi, eax

00012D1E mov edi, [esi+30h] ; Get IRP
.
.

00012D28 lea ebx, [esi+20h]

00012D2B push  ebx ; KEVENT object

00012D2C mov [ebp+MemoryDescriptorList], eax

00012D2F call ds:KeInitializeEvent

00012D35 mov eax, [esi+30h] ; Get IRP pointer

00012D38 mov eax, [eax+60h]

 ; IRP->Tail.Overlay.CurrentStackLocation

00012D3B sub eax, 24h ; IoGetNextIrpStackLocation

00012D3E mov dword ptr [eax+1Ch], offset 
TcpIrpCompleteionRoutine; 

 ; Set IO_STACK_LOCATION.CompletionRoutine

00012D45 mov [eax+20h], ebx ; Set IRP Event object 

 ; in IO_STACK_LOCATION.Context

00012D48 mov byte ptr [eax+3], 0E0h ; Set

 ; IO_STACK_LOCATION.Control

00012D4C mov ecx, [esi+14h]   ; TCP DeviceObject

00012D4F mov edx, edi         ; IRP

00012D51 call ds:IofCallDriver ; Call TCPIP driver
.
.

00012D86 mov eax, [edi+1Ch]

; Irp->IoStatus.Information

00012D89 mov [esi+38h], eax

00012D8C mov eax, [edi+18h] ; Irp->IoStatus.Status

00012D8F mov [ebp+status], eax
.
.

00012D92 mov esi, [ebp+MemoryDescriptorList]
.
.

00012D99 test byte ptr [esi+6], 2 ; Compare 

 ; MDL_PAGES_LOCKED fl ag

00012D9D jz short LOC_DONT_UNLOCKPAGES

00012D9F push esi  ; MemoryDescriptorList

00012DA0 call ds:MmUnlockPages; Unlock pages

00012DA6 LOC_DONT_UNLOCKPAGES:

00012DA6 push esi  ; Mdl

00012DA7 call ds:IoFreeMdl
.
.

00012DAF push edi  ; Don’t free IRP. Reuse it!

00012DB0 call ds:IoReuseIrp

00012DB6 mov  eax, [ebp+status]; Return 

; NTSTATUS in eax
.
.

PrepareAndSendIrp endp 

Listing 8.

ZwCreateEvent HOOK
In contrast to the previous version of Rustock, 
which hooked ZwTerminateProcess, this one hooks 
ZwCreateEvent for communication between the user-mode 
bot dll and the driver [1].

NTSTATUS

 ZwCreateEvent(

  OUT PHANDLE  EventHandle,

  IN ACCESS_MASK  DesiredAccess,

  IN POBJECT_ATTRIBUTES  ObjectAttributes,

  IN EVENT_TYPE  EventType,

  IN BOOLEAN  InitialState

  );

In the ZwCreateEvent API the DesiredAccess parameter 
value 0x0DC17E241 is used to delineate messages from bot 



VIRUS BULLETIN   www.virusbtn.com 

10 JULY 2009

dll versus other normal calls to this API. If ZwCreateEvent 
was invoked from bot dll, as indicated by the DesiredAccess 
value, then EventHandle contains a structure describing 
the input/output parameters. The layout of this structure is 
shown in listing 9.

ZwCreateEventHook proc

; Remarks

; This hook is used for Rustock bot dll and

; driver communication. The communication structure

; (RustockBotDllDrvComm) layout is:

; +0x0 FunctionIndex     // Index into function array

; +0x4 InputBuffer       // Input buffer

; +0x8 InputBufferSize   // Input buffer size

; +0xC OutputBuffer      // Output buffer

; +0x10 OutputBufferSize // Output buffer size
;

; Input parameters

; [ebp+8] - OUT PHANDLE EventHandle

; [ebp+C] - IN ACCESS_MASK DesiredAccess

; [ebp+10] - IN POBJECT_ATTRIBUTES ObjectAttributes

; [ebp+14] - IN EVENT_TYPE EventType

; [ebp+18] - IN BOOLEAN InitialState
;
.
.

00012849 cmp [ebp+DesiredAccess], 0DC17E241h

00012850 jnz short CALL_ORIGINAL_ZwCreateEvent

; When bot dll encoded value doesn’t match, call

; original ZwCreateEvent function

00012852 call ds:IoGetCurrentProcess

00012858 cmp eax, [ServicesEPROCESSValue]

0001285E jnz short CALL_ORIGINAL_ZwCreateEvent

; If not services.exe, handle requests through

; original ZwCreateEvent function
.
.

00012864 push 1 ; Alignment

00012866 push 14h ; Size of RustockBotDllDrvComm

00012868 mov esi, [ebp+EventHandle]

0001286B push esi ; Pointer to RustockBotDllDrvComm

0001286C mov edi, ds:ProbeForRead

00012872 call edi ; Check if structure is readable

00012874 push 1 ; Alignment

00012876 push 14h ; Size of RustockBotDllDrvComm

00012878 push esi ; Pointer to RustockBotDllDrvComm

00012879 mov ebx, ds:ProbeForWrite

0001287F call ebx ; Check if structure is writable

00012881 cmp dword ptr [esi], 0Ch ; Check function

; index bound

00012884 jnb short LOC_SET_ERROR_RETURN ; Only 11

; functions are registered. More validation

; on InputBuffer and OutputBuffer done next 
.

000128A4 mov eax, [esi] ; eax has FunctionIndex

000128A6 push esi ; address of

; RustockBotDllDrvComm

000128A7 call ZwCrtEvtDispFuncsArr[eax*4] ; Call

; dispatch function based on FunctionIndex
.
.

000128CD CALL_ORIGINAL_ZwCreateEvent:

000128CD push [ebp+InitialState]

000128D0 push [ebp+EventType]

000128D3 push [ebp+ObjectAttributes]

000128D6 push [ebp+DesiredAccess]

000128D9 push [ebp+EventHandle]

000128DC mov eax, OrigZwCreateEventAdr

000128E1 call dword ptr [eax]
.
.

LOC_SET_ERROR_RETURN:
.
.

ZwCreateEventHook endp

Listing 9.

DISPATCH FUNCTIONS IN ZwCreateEvent 
HOOK
There are 11 dispatch functions that can be called from 
ZwCreateEvent hook. These are used for communication 
between bot dll and the driver and their general details are 
described below. Any disk I/Os in these dispatch functions 
are done by direct access to the NTFS driver.

DispatchFunction1

This function is used to overwrite the existing Rustock driver 
with a new one sent from the bot dll. The new driver buffer 
and its size are passed in the InputBuffer and InputBufferSize 
parameters of the RustockBotDllDrvComm structure.

DispatchFunction2

This dispatch function deletes its own driver from the disk.

DispatchFunction3

This function is used for copying to user-mode data that was 
fi ltered in the Rustock TCPIP hook in TCP_SEND. When 
the data is ready, the TCPIP hook calls KeSetEvent and this 
function waits on that event (see listings 10 and 16).

DispatchFunction3 proc
.

00012954 push ebx   ; Waitable Event Object

00012955 call ds:KeWaitForSingleObject ; Wait 

 ; for notication from TCP hook
 .
 .

00012975 mov ecx, ebx        ; FastMutex

00012977 call ds:ExAcquireFastMutex ; Get copy lock 

 ; to sync with TCP hook before copy

0001297D mov eax, BufferAddrToCopyFrom

00012982 mov ecx, ebp ; Set up buffer length in ecx
 .
 .

0001298A mov esi, eax ; Set up source buffer

0001298C mov [edi+OutputBufferSize], ecx ; Set 

 ; output buffer size



VIRUS BULLETIN   www.virusbtn.com 

11JULY 2009

0001298F mov edi, [edi+OutputBuffer] ; Set 

 ; output/destination buffer

00012992 mov edx, ecx

00012994 shr ecx, 2

00012997 rep movsd  ; Copy in chunks of dwords

00012999 mov ecx, edx

0001299B and  ecx, 3

0001299E rep movsb ; Copy remainder in chunk of bytes
.
.

000129AD call ds:ExReleaseFastMutex; Copy done, 

 ; release copy lock
.

DispatchFunction3 endp

Listing 10.

DispatchFunction4

This function returns to bot dll the process name captured 
in the TCPIP hook, which sent the data in a certain format 
through TDI_SEND (see listing 16).

DispatchFunction5

This function is called on request from bot dll for creating 
a new unique TCPIP connection control structure. This 
control structure is an array of 16 DWORDs that contains, 
for example, the address of reusable IRPs (see listings 8, 12 
and 13), TDI connection context handles, TDI fi le objects 
etc. There is an array of 10,000 such control structures. 
When bot dll requests the driver through dispatch functions 
relating to TCP activity, the bot dll sends in its input 
parameter an index into the array of control structures. 
Listing 11 shows a common routine used to obtain the 
address of the control structure using the array index.

GetCtrlStructByIndex proc

; Remarks

; This function returns address of TCPIP control 

; structure from an array of these structures

; Input parameter

; eax - Index into the array of control structures

000133CE cmp  eax, 2710h ; compare to 10000

000133D3 jle   short LOC_VALID_ARRAY_INDEX

000133D5 xor   eax, eax ; return NULL

000133D7 retn

000133D8 LOC_VALID_ARRAY_INDEX:

000133D8 mov  ecx, MasterArrCtrlStructs

000133DE mov eax, [ecx+eax*4] ; return pointer to 

; control structure by array index

000133E1 retn

GetCtrlStructByIndex endp

Listing 11.

DispatchFunction6

This is used to clean up a control structure allocated in 
DispatchFunction5. The index of the control structure 
to deallocate is passed in the InputBuffer. The cleanup 

includes sending TDI disconnect, closing TDI transport 
address, TDI connection context, freeing IRP and 
deallocating the control structure (see listing 12). 
DispatchFunction6 proc
.

00013459 mov  eax, esi  ; Set index of control struct  
; in eax

0001345B call GetCtrlStructByIndex

00013460 test eax, eax

00013462 jz   short loc_13475

00013464 push eax ; Pass address of control struct

00013465 call SendDisconnAndDeAllocCtrlStruct
.

DispatchFunction6 endp

SendDisconnAndDeAllocCtrlStruct proc

; Input parameter

; [ebp+8] - Control structure
.

00012DF6 mov     esi, [ebp+8]

00012E23 mov     eax, [esi+30h]; IRP

00012E26 mov     eax, [eax+60h]

 ; IRP->Tail.Overaly.CurrentStackLocation

00012E29 sub     eax, 24h

 ; IoGetNextIrpStackLocation

00012E2C mov     byte ptr [eax], 0Fh

 ; IRP_MJ_INTERNAL_DEVICE_CONTROL

00012E2F mov     byte ptr [eax+1], 6 

; TDI_DISCONNECT
.

00012E52 mov     eax, esi

00012E54 call    PrepareAndSendIrp ; Send

; disconnect remaining cleanup done next
.

SendDisconnAndDeAllocCtrlStruct endp

Listing 12.

DispatchFunction7

This function is used to connect to a remote host. The 
InputBuffer contains an array index of the control structure 
and IP address and port to which to connect. Figure 1 shows 
a portion of netstat output showing Rustock connected to 
the SMTP port on several remote hosts.

DispatchFunction7 proc
.

00013066 mov ecx, [eax+30h]; IRP

00013069 mov ecx, [ecx+60h]

 ; IRP->Tail.Overaly.CurrentStackLocation

0001306C sub ecx, 24h 

 ; IoGetNextIrpStackLocation

0001306F push esi

00013070 mov byte ptr [ecx], 0Fh 

 ; IRP_MJ_INTERNAL_DEVICE_CONTROL

00013073 mov byte ptr [ecx+1], 1 

 ; TDI_ASSOCIATE_ADDRESS

00013077 mov esi, [eax+14h] ; Get TCP device 

 ; object from control struct

0001307A mov [ecx+14h], esi



VIRUS BULLETIN   www.virusbtn.com 

12 JULY 2009

; Set IO_STACK_LOCATION.DeviceObject

0001307D mov esi, [eax+0Ch] ; Get TDI

; ConnContext

; FileObject from control struct

00013080 mov [ecx+18h], esi ; Set 

; ConnContext in 

; IO_STACK_LOCATION.FileObject
.

0001308D call PrepareAndSendIrp; Send IRP
.

00013154 sub eax, 24h

00013157 mov byte ptr [eax], 0Fh 

; IRP_MJ_INTERNAL_DEV_CTRL

0001315A mov byte ptr [eax+1], 3 ; 
TDI_CONNECT
.

0001316A lea ecx, [ebp+tdiConnInfo]

0001316D mov [eax+8], ecx 

; TDI_REQUEST.RequestConnectionInfo

00013170 lea  ecx, [ebp+tdiConnInfo]

00013173 mov  [eax+0Ch], ecx 

; TDI_REQUEST.ReturnConnectionInfo

00013176 mov  [eax+10h], ebx 

; TDI_REQUEST.RquestSpecifi c=0 (ebx)
.

0001317C call PrepAndSendIrp; Send IRP
.

DispatchFunction7 endp

Listing 13.

DispatchFunction8
This function is used to send data using TDI_SEND. The 
index of the control structure and data to send is passed in 
the InputBuffer.

DispatchFunction8 proc
.

00013206 xor ebx, ebx

00013208 push ebx

; 0 - IoOperationRead

00013209 push edi

0001320A push [ebp+arg_4]

0001320D call ReturnLockedMDLForUserBuf; Get

; Locked MDL for read

00013212 cmp eax, ebx

00013214 jz short ErrorExit
.

00013228 mov ecx, [esi+30h]

0001322B mov ecx, [ecx+60h]

0001322E sub ecx, 24h; IoGetNextIrpStackLocation

00013231 mov byte ptr [ecx], 0Fh

; IRP_MJ_INTERNAL_DEVICE_CONTROL

00013234 mov byte ptr [ecx+1], 7 ; TDI_SEND
.

; From Control Struct get TCP DeviceObject and TDI 

; ConnContext FileObject to fi ll in corresponding 

; fi elds in IO_STACK_LOCATION
.

; Set TDI_REQUEST_KERNEL_SEND.SendFlags

00013247 mov [ecx+4], edi

; Set TDI_REQUEST_KERNEL_SEND.SendLength

0001324A mov ecx, [esi+30h]

; Get IRP from Control Struct

0001324D mov [ecx+4], eax ; Set IRP->MdlAddress

00013250 push dword ptr [esi+3Ch]

00013253 mov eax, esi

00013255 call PrepareAndSendIrp
.

DispatchFunction8 endp

Listing 14.

Figure 2 shows a screenshot of data sent through 
DispatchFunction8.

DispatchFunction9

This function is used to receive data using TDI_RECEIVE. 
The index of the control structure is passed in the 
InputBuffer and the address of the receive buffer is passed 
in the OutputBuffer. 

DispatchFunction9 proc
.

0001328B push 1 ; 1 - IoOperationWrite

0001328D push edi

0001328E push [ebp+buffer]

00013291 call ReturnLockedMDLForUserBuf ; Get Locked

; MDL for write

00013296 test eax, eax

00013298 jz short ErrorExit
.

000132AF mov ecx, [esi+30h]

000132B2 mov ecx, [ecx+60h]

000132B5 sub ecx, 24h; ; IoGetNextIrpStackLocation

000132B8 mov byte ptr [ecx], 0Fh

; IRP_MJ_INTERNAL_DEVICE_CONTROL

000132BB mov byte ptr [ecx+1], 8 ; TDI_RECEIVE

.

; From Control Struct get TCP DeviceObject and TDI 

; ConnContext FileObject to fi ll in corresponding 

; fi elds in IO_STACK_LOCATION

Figure 1: netstat output showing Rustock connected to the SMTP port on 
several remote hosts. 



VIRUS BULLETIN   www.virusbtn.com 

13JULY 2009

.

000132CB mov dword ptr [ecx+8], 20h

; TDI_REQUEST_KERNEL_RECEIVE.ReceiveFlags=TDI_

RECEIVE_NORMAL

000132D2 mov [ecx+4], edi

; TDI_REQUEST_KERNEL_RECEIVE.ReceiveLength

000132D5 mov ecx, [esi+30h] ; ; Get IRP from Control

; Struct

000132D8 mov [ecx+4], eax ; Set IRP->MdlAddress

000132DB push dword ptr [esi+3Ch]

000132DE mov eax, esi

000132E0 call PrepareAndSendIrp
.

DispatchFunction9 endp

Listing 15.

Figure 3 shows the memory dump of the receive buffer after 
a series of single-byte receives. Note that every data-sent 
packet sent or received by Rustock is delimited by CRLF 
(0xd 0xa) by sequence.

DispatchFunctions 10 and 11 return some state 
information upon request from bot dll.

TCPIP HOOK

The TCPIP hook is mainly on two TDI requests: TDI_
SEND and TDI_CONNECT (see listing 16). The hook 
on TDI_SEND checks for the ‘RCPT TO:’ ASCII string 
at the beginning of sent data. If a match occurs, the string 
between angular brackets (left anchor ‘<’ and right anchor 
‘>’) is extracted and copied to a memory buffer and then an 
event is signalled for DispatchFunction3. Also, after fi nding 
the matching data this hook obtains the process name of 
the process sending the data and stores it in a memory 
buffer for DispatchFunction4. This ‘RCPT TO:’ string fi eld 
appears to correspond to the recipient’s email address in the 
SMTP protocol [5].

The part of the hook relating to TDI_CONNECT monitors 
the number of connection attempts to SMTP port 25 on 

a per-process basis [5]. The EPROCESS of the 
process requesting connect is stored in an array 
of maximum size 400. Every time the process 
makes an attempt to connect the connect count is 
incremented using EPROCESS as the key. If the 
connect count exceeds 200, the connect IRP is 
completed right away with NT status STATUS_
UNSUCCESSFUL (0xC0000001), which returns 
failure to the user-mode application attempting to 
connect. 

HookTCPDevCtrlDispFunc proc

; Input Parameter

; [esp+8] - DeviceObject

; [esp+C] - Irp

.

00012A91 mov ebx, [esp+Irp]

00012A95 cmp byte ptr [ebx+20h], 0 ; Check

; Irp.RequestorMode is Kernel
.

00012A9B mov edi, [ebx+60h]

; Irp->Tail.Overlay.GetCurrentStackLocation

00012A9E mov [esp+8+Irp], edi

00012AA2 jz CheckTDI_CONNECT; Jump if RequestorMode

; is Kernel

00012AA8 cmp byte ptr [edi+1], 7; TDI_SEND

00012AAC jnz CheckTDI_CONNECT; Jump if MinorFunction

; != TDI_SEND
.

; If MinorFunction==TDI_SEND and TCP send buffer range 

; is >= 10 and < 100 bytes, then check for “RCPT TO:” 

; at the buffer start (esi) as below

00012AE8 cmp dword ptr [esi], 54504352h; 

; Compare buffer to “RCPT”

00012AEE jnz CheckTDI_CONNECT

00012AF4 cmp dword ptr [esi+4], 3A4F5420h

; Compare buffer+4 to “ TO:”
.

00012B17 add esi, 8; Increment esi past “RCPT TO:”

; In the remaining send buffer, extract an ASCII

; string between ‘<’ and ‘>’ delimiters
.

00012BA7 push offset SomeNotfEvtObj1 ; Event

00012BAC call ds:KeSetEvent ; If matching string

; found, set event for DispatchFunction3
.

CheckTDI_CONNECT:

00012BBD cmp byte ptr [edi+1], 3 ; TDI_CONNECT

00012BC1 jnz short CallTCPOrigDevCtrlFunc ; Jump if

; not TDI_CONNECT
.

00012BCF cmp word ptr [eax+6], 2

; TA_ADDRESS.AddressType == TDI_ADDRESS_TYPE_IP

00012BD4 jnz short CallTCPOrigDevCtrlFunc

00012BD6 cmp byte ptr [ebx+20h], 0

; Check Irp.RequestorMode

00012BDA jz short CallTCPOrigDevCtrlFunc ; Jump if

; Irp.RequestorMode == Kernel

00012BDC cmp word ptr [eax+8], 1900h

Figure 2: Screenshot of data sent through DispatchFunction8.

Figure 3: Memory dump of receive buffer after a series of single-byte 
receives.



VIRUS BULLETIN   www.virusbtn.com 

14 JULY 2009

00012BE2 jnz short CallTCPOrigDevCtrlFunc ; Jump if

; port != 25 (0x19)
.

00012BED call CheckPortConnAttmptsFrThisProc; This

; function returns TRUE if max number of connection

; attempts for the current process is >= 200.

00012BF2 test eax, eax

00012BF4 jz short CallTCPOrigDevCtrlFunc; If

; function returned NON-ZERO complete request with

; STATUS_UNSUCCESSFUL

00012BF6 and dword ptr [ebx+1Ch], 0

; Irp.IoStatus.Information = 0

00012BFA mov esi, 0C0000001h ; STATUS_UNSUCCESSFUL

00012BFF xor dl, dl ; PriorityBoost

00012C01 mov ecx, ebx ; IRP

00012C03 mov [ebx+18h], esi

; IRP.IoStatus.Status=STATUS_UNSUCCESSFUL

00012C06 call ds:IofCompleteRequest ; Request is

; completed here and NOT sent to lower driver.

00012C0C mov eax, esi

00012C0E jmp short FunctionExit
.

00012C10 CallTCPOrigDevCtrlFunc:
.

00012C10 push ebx

00012C11 push [esp+0Ch+DeviceObject]

00012C15 call OrigTCPDevCtrlDispFunc
.

FunctionExit:
.

HookTCPDevCtrlDispFunc endp

Listing 16.

REFERENCES

[1] Prakash, C. Your fi lters are bypassed: 
Rustock.C in the kernel. Virus Bulletin, November 
2008, p.6. http://www.virusbtn.com/pdf/
magazine/2008/200811.pdf.

[2] 82434LX/82434NX PCI, CACHE AND 
MEMORYCONTROLLER (PCMC). 
http://datasheet.digchip.com/227/227-3-008971-
2434NX.pdf.

[3] PCI 2.2 local bus specifi cation. 
http://www.ece.mtu.edu/faculty/btdavis/courses/
mtu_ee3173_f04/papers/PCI_22.pdf.

[4] PCI vendor and device lists. 
http://www.pcidatabase.com/.

[5] Simple Mail Transfer Protocol. 
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_
Protocol.

[6] TDI drivers. http://msdn.microsoft.com/en-us/
library/aa505007.aspx.

VB2009 GENEVA
23–25 SEPTEMBER 2009

Join the VB team in Geneva, Switzerland for the 
anti-virus event of the year.

What:  • Three full days of presentations by  
    world-leading experts

   • In-the-cloud technologies

   • Automated analysis

   • Anti-spam testing

   • Rogue security software

   • Online fraud

   • Web 2.0 threats

   • Legal issues

   • Last-minute technical presentations

   • Networking opportunities

   • Full programme at    
    www.virusbtn.com

Where: The Crowne Plaza, Geneva, Switzerland

When:  23–25 September 2009

Price:  VB subscriber rate $1795

BOOK ONLINE AT 
WWW.VIRUSBTN.COM

GENEVA
2009

http://www.virusbtn.com/pdf/magazine/2008/200811.pdf
http://datasheet.digchip.com/227/227-3-008971-2434NX.pdf
http://www.ece.mtu.edu/faculty/btdavis/courses/mtu_ee3173_f04/papers/PCI_22.pdf
http://www.pcidatabase.com/
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://msdn.microsoft.com/en-us/library/aa505007.aspx
http://www.virusbtn.com/conference/vb2009/


VIRUS BULLETIN   www.virusbtn.com 

15JULY 2009

EARLY WARNING APPROACHES 
TO COMBAT TYPOSQUATTING
Amit Verma
Symantec, India

Typosquatting is a practice that takes advantage of the 
typographical mistakes (typos) often made by users 
when entering a website address into a web browser. For 
example, ‘virustbn.com’ is a typo of ‘virusbtn.com’ in 
which the letters ‘b’ and ‘t’ are interchanged [very easily 
done! - Ed]. 

The low cost of domain registration makes it inexpensive 
for malicious users to register multiple domains that 
are very similar to those of popular brands, but which 
incorporate the sort of typographical error that might be 
made by a user when entering the URL. These domains are 
then used to host advertisements and pornographic material, 
to distribute malware, or are set up for phishing. 

A similar practice of email typosquatting has also 
emerged, which involves registering common misspellings 
of domain names and setting up mail servers on them to 
listen for client connections. If a user happens to misspell 
the domain name while typing an email address, the mail 
is sent unintentionally to a nefarious recipient. This can 
lead to data loss from organizations. 

Typosquatting can also prove harmful for important 
events such as the US presidential elections wherein 
candidates raise funds for election campaigns through their 
websites. Candidates’ websites often have domain names 
of considerable character length. If a contributor mistypes 
the website address – which is not unlikely considering 
its length and given that the domain name may not have 
been encountered previously – he might be taken to a site 
controlled by a typosquatter from which his personal and 
fi nancial details may be stolen. Furthermore, an increasing 
number of children are spending time on the Internet, and 
they are particularly susceptible to this kind of attack.

There is a need for effective techniques to combat this 
Internet-borne threat. Auto-completion in browsers and 
email clients mitigates the risk to some extent (recognizing 
the initial characters typed by the user and automatically 
fi lling in the rest, thus reducing the risk of the user 
mistyping the URL), but it is ineffective for URLs which 
have not previously been encountered by the browser. The 
effectiveness of URL reputation-based techniques is also 
limited given the highly dynamic nature of the content 
posted on typosquatted domains. 

In this article, a two-step approach is discussed which 
prioritizes the registration of domain typos and effectively 

FEATURE 1
detects typos entered into Internet browsers and email 
clients. The rest of the article is organized as follows: 
the next section discusses a probabilistic typographical 
analysis technique that determines the relative frequency of 
occurrence of typos based on users’ typing error patterns. 
This is followed by a discussion of a proposed metric 
named Probabilistic String Similarity Index (PSSI), which 
is a modifi ed form of the above approach to effi ciently 
detect typos at browsers, email clients and the like. The 
article closes with a description of the specifi c areas in 
which such techniques could usefully be applied.

PROBABILISTIC TYPOGRAPHICAL 
ANALYSIS

The fi rst step towards preventing typosquatting should be 
taken by the entity registering a new domain. Ideally, in 
addition to registering the new domain, it should register 
as many typos and look-alikes of the original domain as 
possible so that even if users mistype the domain name, 
they will be redirected to the intended website. However, 
a typical fi ve- to seven-character domain name has nearly 
400 potential typos – and even large organizations would 
struggle to register all of those as domains. As the number 
of characters in the domain name increases, the number 
of possible typos grows exponentially. Also, some typo 
domains may, intentionally or unintentionally, already have 
been registered by others. 

What is needed is a way to identify the typos that have 
a higher likelihood of occurring compared to others so 
that the registering of ‘unwanted’ domain names can be 
prioritized. This can be done using a schema to rank typos 
based on their frequency of occurrence.

The following are the kinds of typographical error that are 
usually exploited by typosquatters:

1. Skip letter: a character is skipped. For example: 
www.vrusbtn.com.

2. Double letter: a character is typed twice. For 
example: www.virussbtn.com.

3. Reverse letter: two successive characters are 
interchanged. For example: www.virustbn.com.

4. Missed key: a character is mistyped with an adjacent 
key on the keyboard. For example: 
www.viruabtn.com – here ‘a’ is typed instead of ‘s’.

5. Inserted key: an extra character is inserted while 
typing. For example: www.virusdbtn.com.

6. Missing dot: sometimes the dot is omitted as in 
http://wwwvirusbtn.com.



VIRUS BULLETIN   www.virusbtn.com 

16 JULY 2009

7. Any combination of the above: multiple 
typographical errors can occur, although the 
odds of this are quite a lot lower.

We propose a technique of ranking typos based on 
the probabilistic analysis of typed data. An estimate 
of the probability of each of the typographical 
errors mentioned above can be determined by an 
algorithmic analysis of data gathered from typing 
test tools. Alternatively, data can be collected 
from Internet users by the use of Human-Based 
Computation (HBC) games. These probabilities can 
be used further to calculate the rank of a domain typo 
as given below.

Using error probabilities to calculate 
rank of a typo

The following probabilities are collected from an analysis 
of typed data:

– Pr(Skip letter) - Ps(a), ….Ps (z), Ps (a | x)….Ps (f | s)

 where Ps(a) is the probability of skipping character ‘a’ 
and Ps(a|x) is the probability of skipping ‘a’ given that ‘x’ 
was the previous character.

– Pr(Double letter) - Pd(a), ….Pd (z), Pd (a | x)….Pd (f | s)  

 where Pd(a) is the probability of entering ‘a’ twice and 
Ps(a|x) is the probability of entering ‘a’ twice given that 
‘x’ was the previous character.

– Pr(Reverse letter) - Pr(a | x), ….Pr (x | a)…..

 where Pr(a|x) is the probability of interchanging ‘a’ with 
‘x’, etc.

– Pr(Missed) - Pm(w | s), Pm (d | s), Pm (a | s), Pm (x | s), 
... 

 where Pm(w|s) is the probability of missing ‘w’ given 
that ‘s’ was the previous character.

– Pr(Skip | Missed) is the probability of a ‘Skip’ error given 
that a ‘Missed’ error has occurred.

For example, let us consider the domain name ‘virusbtn’. 
Using the probabilities above, the rank of the typo 
‘vrustbn’, in which character ‘i’ is missed, and ‘b’ and ‘t’ 
are interchanged, is calculated as:

– Rank(vrustbn) = Pr(Skip) * Ps(i) * Pr(Missed | Skip) * 
Pm(b | t) * C   

where C is a normalization factor.

Figure 1 shows a block diagram for a method that generates 
and ranks the typos for a given domain name using the 
probabilistic ranking technique.

An approximate probabilistic model was formulated with 
this approach to rank typos. Figure 2 shows the results for 
the domain www.virusbtn.com.

Figure 2 (a) shows the top 20 typo domains (out of 
762) for www.virusbtn.com. The domain numbered 13 
in Figure 2 (a) existed at the time of conducting this 
experiment. Figure 2 (b) shows the overall probability 
values of the top typo domains. Note that these results 
do not take into account additional information such 
as the top-level domain – for example,‘c0m’ (character 
‘o’ replaced with zero) will not be a possible typo. The 
demarcation between the overall probabilities of typos 
can be made fi ner by using a more accurate probabilistic 
model.

Using the model, institutions whose sites may be prone 
to typosquatting can obtain a prioritized list of frequently 
occurring unwanted domains. They can then register those 
domains or try to buy them from others. Alternatively, 
typo domains which cannot be registered (for any reason) 
can be monitored using visual similarity methods for 
content that matches that of the legitimate website (which 
may be a sign of a phishing site). For optimized monitoring, 
the relative probabilities of the typos can be used to 
determine the frequency with which the typo domains 
should be monitored.

TYPO DETECTION AT BROWSERS
Another step towards preventing typosquatting is to 
monitor the URLs typed by users into their browsers and 
email clients. 

The goal here is to be able to effectively detect common 
typos at the browser, web proxy or Internet gateway. To 
accomplish this, a user-specifi c whitelist can be constructed 
using email client and browser histories, favourite links, 

Figure 1: Method for probabilistic ranking of typographical 
errors.

Probabilistic algorithm

Users’ typing 
data

Typo 
generator

Probabilistic 
ranking 

algorithm

Data
mining

Ranked list 
of typos

Domain 
name



VIRUS BULLETIN   www.virusbtn.com 

17JULY 2009

safe site lists and the like. This can be supplemented with 
lists of popular banking/trading/commerce websites that can 
be provided by security vendors. A possible approach could 
be to generate typos for each entry in this whitelist and add 
the top ranked typo domains for each to the restricted site 
list of a browser. If a user makes a typographical mistake 
in typing any domain in the whitelist, he can be given an 
appropriate warning message. Given the relative ranks of 
various typo domains, various policies can be introduced. 
For example, all typos up to rank 10 can be blocked; 
warnings can be given for typos up to rank 50; and typos 
ranked greater than 50 can be allowed since they are less 
likely to be typosquatted domains. Another policy could 
be to block all typos up to rank 20 (strict monitoring) if 
the user has a frequent record of visiting the corresponding 
URL(s).

The probabilistic approach to fi nd relative probabilities 
can also be modifi ed to cater to typo detection at the 
users’ end. To eliminate the need for storing possible 
typos, a string similarity metric is proposed which takes 
into account both the string Hamming distance and 
the probabilities of typographical errors. This metric 
eliminates the need to keep a list of typos of popular URLs 
at the browser and thus typo detection can be carried out 

more effi ciently. The following is the equation of 
such a metric called Probabilistic String Similarity 
Index (PSSI):

∑ ∑
∀ =

∆ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Alignments
String

M

i i
e P

HDHDSSPSSI
1

21
1log),(

Where: 

- PSSI(S
1
, S

2
) is the probabilistic distance between 

two strings S
1
, S

2

- HD is the Hamming distance of a particular string 
alignment

- M is the number of misplaced character groups

- HD∆ is the Hamming distance of the ith misplaced 
character group

- P
i
 is the probability of an error corresponding to 

the ith misplaced character group

For example:

PSSI(virusbtn, vrusbtn)  = 1*1*log(1/0.5) = 0.301

PSSI(virusbtn, virusbtm) = 1*1*log(1/0.8) = 0.097

The greater the absolute value of PSSI(S
1
, S

2
), the 

greater the distance between the two strings S
1
 and 

S
2
, and the lesser the chance that S

1
 is mistyped as 

S
2
 by a user. The whitelist described earlier can be used to 

calculate the PSSI value on the fl y between the user-typed 
URL and the ones in the whitelist. The user can be warned 
if he types a URL with a PSSI value above a certain 
threshold.

CONCLUSIONS
We have discussed how probabilistic typo analysis 
techniques can be applied in the security domain – to 
prioritize the registering of unwanted domain names and 
to effi ciently detect typographical errors entered into web 
browsers. 

Along similar lines, email client plug-ins can be developed 
which can help prevent email typosquatting. This 
methodology can also be leveraged for parental control, 
wherein typos of popular children’s websites can be 
generated on the fl y, with the most likely typos added 
automatically to the restricted sites list of a browser. 

Since anti-spam and anti-phishing techniques also involve 
the detection of typos of popular brands in the contained 
links, this technique could also play an important role in 
enhancing anti-spam and anti-phishing engines.

Figure 2 (a): ranked list of typos for www.virusbtn.com;
 (b): ranked typo list along with probabilities.

(a) (b)

HD HD



VIRUS BULLETIN   www.virusbtn.com 

18 JULY 2009

THE CHALLENGES OF 
COLLECTING AND MONITORING 
URLS THAT POINT TO MALWARE
André D. Corrêa
Malware Patrol, Brazil

The Malware Patrol project [1] is a fully automated and 
user-contributed system for collecting, analysing, blocking, 
alerting and monitoring URLs for the presence of malware. 
Since 2005 it has been cataloguing URLs used in phishing 
scams and distributing block lists for the most popular 
proxies and anti-spam systems. Every URL collected is 
visited daily to make sure the list is reliable and up to date.

FROM THE GROUND UP
In June 2005 a discussion took place on the GTS mailing 
list (a Brazilian security group hosted by Nic.br) regarding 
URLs pointing to malware. List members began submitting 
addresses, encouraging network administrators to block 
their users’ access to them to prevent infections. It was no 
surprise that a couple of days later nobody knew which 
URLs were still active and what kind of malware they 
hosted. With this in mind, the Malware Patrol project was 
set up – initially operating under the name ‘Malware 
Block List’.

Since the beginning, the goal of the project has been to 
provide a central point for the collection, analysis and 
monitoring of URLs pointing to dangerous fi le extensions, 
and also to distribute, free of charge to non-commercial 
users, up-to-date lists of infected addresses.

A rudimentary system was developed initially just to merge 
URLs and create a few block lists. It quickly became 
necessary to visit the addresses to make sure their status 
hadn’t changed. Another important feature introduced 
during the fi rst few weeks was the possibility of user 
contributions either via a web form or by forwarding 
suspect emails directly to a specially crafted mailbox.

EXTRACTING URLS
With the modernization and proliferation of phishing 
scams, fraudsters keep fi nding new and interesting ways 
to obfuscate the URLs included in their messages. URL 
obfuscation is indispensable as a means to trick users into 
downloading and installing malware. We fi nd a vast variety 
of techniques being used to hide URLs, but there are also 
still a lot of ‘newbie’ phishers sending simple HTML email 
messages with URLs hidden by ‘href’ tags. Common 
obfuscation methods include using ‘short URL’ services, 

FEATURE 2
domain names that look legitimate except for the addition 
of a couple of letters or numbers, long URLs that begin 
with credible names, use of the ‘@’ symbol (e.g. 
http://www.yourbank.com@example.com) and hexadecimal 
URL encoding. More advanced phishers are using 
JavaScript to create URLs during onClick(), multiple HTTP 
redirects, browser/crawler detection, Content-Disposition 
pages and fake anti-virus/anti-malware sites.

It is easy to envisage the technical and social engineering 
aspects of phishing scams evolving a lot more, becoming 
even more sophisticated and dangerous for end-users.

The constant evolution of obfuscation methods means 
that the project’s URL extraction system must undergo 
constant development and improvement. One of the most 
recent threats that is forcing a profound change in the URL 
extraction system is the use of Content-Disposition [2, 3]. 
This feature is discussed in RFC 2183 (August 1997) and 
RFC 2616 (June 1999). Basically it is an extension of the 
MIME protocol that instructs the user agent on how to 
work with an attachment. Using Content-Disposition it 
is possible to point users to a non-dangerous URL (e.g. a 
PHP fi le) and from there send executable fi les or infected 
documents. It is an important security threat because 
proxies and content-fi ltering systems won’t block users’ 
access to PHP fi les, for instance, whereas they would deny 
access to EXE fi les.

This is a complicated issue for the Malware Patrol 
project due to the fact that URLs are fi ltered based on fi le 
extension. With a limited amount of processing power 
and bandwidth available there is a need to concentrate on 
dangerous URLs. Processing non-dangerous extensions, 
like PHP or ASP fi les, dramatically increases the CPU and 
bandwidth requirements.

YET ANOTHER BLOCK LIST
Common sense says we already have enough DNSBLs and 
block lists out there, so why bother running another block 
list? Well, the fi rst ‘Real-time Blackhole List’ was created by 
Paul Vixie in 1997 [4]. Since then, DNSBLs and URL lists 
have become more sophisticated and focused on specifi c 
aspects, but none of them concentrate on URLs that point 
to malware. More importantly, most URL lists become 
outdated very quickly. There is a need for an accurate list of 
addresses that point to malware and the only way to maintain 
such a list is to visit every URL daily to verify its status.

Lots of factors can change the status of a URL. One of the 
most common situations involves malware being hosted 
on free web accounts. Such free accounts have a limited 
bandwidth allowance, and when that is exceeded access to 
the account is denied. Therefore, if a binary receives lots of 



VIRUS BULLETIN   www.virusbtn.com 

19JULY 2009

hits it can quickly become unavailable, but will be reachable 
again in a few hours or the next day when the free hosting 
provider puts it back online.

Another important driver of status change is the renewal of 
malware from the hosting providers. Sometimes domain 
or hosting administrators act when alerted about malicious 
binaries on their servers and remove them. Among the 
most criticized issue of DNSBLs and URL lists is the slow 
response to removal requests. These requests are taken 
seriously by the Malware Patrol. Having a system that 
automatically validates all addresses in the database every 
day makes the removal process very fast and reliable.

Moreover, there are other good reasons to run a block 
list of malicious URLs including: current usage of 
Content-Disposition, distribution of binaries not yet 
classifi ed by anti-virus solutions, alerting system 
administrators of malware hosted on their servers and 
cooperation with security groups.

NOT SO DANGEROUS EXTENSIONS
In addition to the common dangerous extensions everybody 
is blocking today, including but not limited to exe, pif, bat, 
scr, cmd, reg, com, etc., there are the ‘not so dangerous 
extensions’. Those cannot be blocked by default on 
proxies and content fi lters but pose serious threats to users. 
Examples include pdf [5], swf and png [6] fi les for which 
critical bugs were found recently. This is another strong 
motivation for using an up-to-date URL block list. These 
days, it is no longer possible to trust fi le extensions.

DETECTING NEW MALWARE
Approximately 20% of the samples collected by the 
project every day are pieces of malware that have not yet 
been classifi ed by anti-virus vendors. This is an important 
threat for users that rely solely on anti-virus systems for 
protection. Currently, when a sample is not identifi ed as 
malware by the anti-virus software we use, it goes through 
a scoring system. This system evaluates some important 
characteristics of the binary including: domain name 
and fi le name patterns, fi le extension, use of packers and 
cryptors, presence of strings, URLs or IRC commands, etc.

When a binary has a high score, the sample is sent to 
partner anti-virus vendors for analysis and classifi cation. 
The project has already identifi ed a lot of new malware. 
Most of the malware found on phishing sites are trojans 
targeting fi nancial institutions.

Sandbox systems are not used for active malware analysis 
due to the complexity involved in automating these systems 
and the large amount of hardware resources required.

MALWARE VS. POC

Occasionally, some binaries and source code are crawled 
but their classifi cation as malware is not obvious. It is 
important to differentiate malware targeting innocent users 
from software used for teaching or research purposes. 
In this category we can include: proofs of concept for 
vulnerabilities or bugs, hacktools, spamtools and even 
spyware. Although these can certainly be used for malicious 
purposes, they are not convenient for phishing scams. 
Proofs of concept are usually distributed in their source 
code format, needing compilation to run; hacktools and 
spamtools are attacking tools but have limited value when 
installed in a victim’s machine; and fi nally spyware may not  
be considered malware in the strict sense of the term.

Special attention must be paid to the rogue anti-virus, 
anti-spyware, anti-malware and scareware [7] that are 
proliferating on the Internet. Users are easily convinced to 
download and use them. Some of the current scams direct 
users to fake sites that appear to run an anti-virus scanner 
on the victim’s machine. The scanner reports numerous 
(non-existent) viruses or trojans on the system and claims 
that they can only be removed if the victim pays for the 
(rogue) software licence.

ALERTING AND REMOVING MALWARE 
FROM THE NET

When malware is found, it is important to notify system and 
network administrators and urge them to remove it from the 
Internet as soon as possible and to investigate the related 
criminal activity. This is done by the alert system that sends 
email messages to domain and ASN administrators and to 
the CSIRT responsible for the top level domain name of the 
domain hosting the malware.

It is disappointing that fewer than 15% of the alerts elicit 
a response. Although there are many Internet documents 
and RFCs [8] specifying the email addresses to be used 
by domain administrators, the majority of those addresses 
bounce, leaving no way of contacting the administrator.

Administrators should pay more attention and domain 
registrars could play an important role in educating and 
enforcing the existence of the abuse mailbox. This is 
necessary so that alerts and important information can be 
sent to administrators. Those mailboxes also need to be 
checked frequently – most of them bounce because they 
are full.

Many huge service providers take an annoying approach 
to abuse mailboxes. They simply respond with a default 
message pointing to a web form that must be fi lled in to fi le 
a complaint. Although it is understandable that enormous 



VIRUS BULLETIN   www.virusbtn.com 

20 JULY 2009

volumes of messages (mostly spam) are sent to those 
addresses, this approach doesn’t work when security groups 
are trying to cooperate and it is not permitted by any RFC.

After a few weeks of running the malware alert system an 
unexpected side effect was noticed: the alert mailbox started 
receiving spam and phishing scams.

COOPERATING WITH THE SECURITY 
COMMUNITY

The cooperation and exchange of information with 
security groups and professionals is essential for any 
project that captures and redistributes data. The Malware 
Patrol is open to establishing working relationships with 
any serious security group that can send and/or wants to 
receive information regarding malware and phishing scams. 
Some of the groups that already cooperate with the project 
include: CAIS - RNP [9], Team Cymru [10], Web of Trust 
[11], SURBL [12], the now ceased CastleCops project, as 
well as more than 10,000 personal contributors.

Although the project has many spam traps established, 
contributions from users and security professionals are also 
very important to capture the most recent phishing scams. 
There are two contribution channels available: a web form 
that can be fi lled in with suspect URLs and an email address 
to which suspect messages can be sent, which extracts URLs 
and puts them in a queue for later analysis. The exchange of 
information with security groups is mostly done via email.

Other ways of acquiring URLs that are used or are 
under development include: monitoring mailing lists and 
newsgroups related to information security, botnets and 
hacking, web crawling and IRC monitoring bots.

KEEP CRAWLING

New URLs go to a queue that is visited by an automated 
crawler every hour. The crawler visits the addresses and 
grabs binaries, if available. If no binary is found, it verifi es 
the HTTP status code and HTML output generated by 
the web server. The crawler can follow many levels of 
redirection via HTTP and HTML and can also handle most 
of the Content-Disposition scenarios.

Every URL in the database has a status that varies from 
infected to not available, not found, invalid Content-Type 
and others. Those addresses are visited every day to check 
that their status hasn’t changed. The only way to keep the 
block lists accurate is to frequently visit all addresses. There 
is also a need to impersonate different browsers because 
some fraudsters use browser detection to prevent crawlers 
from grabbing their binaries.

BLOCK LISTS FOR EVERYONE

For end-users, the most important information produced 
by the project is the block lists. Today we have 29 different 
formats available for non-commercial use. They include 
popular open-source software like: Squid, SpamAssassin, 
Postfi x, Firekeeper, DansGuardian and even ClamAV. 
There are two types of list: the ‘regular’ list, which includes 
protocol, host name, domain name and directories; and 
the ‘aggressive’ list that just includes protocol, host name 
and domain name, therefore blocking access to the entire 
infected domains.

File names and extensions of malware are never disclosed 
to end-users. The project also refuses to exchange malware 
samples without a really good reason to do so.

THERE ARE 60 MINUTES IN EVERY HOUR

Most list downloads are made by automated scheduled 
jobs and it is easy to fi gure out that administrators like the 
minute zero of every hour to run those jobs. This causes 
a tremendous overhead on web servers during the three 
or four minutes before and after the turn of the hour. It is 
strongly advisable to set schedules to run at other times 
when the system is running lower on CPU usage. This also 
helps to prevent download timeouts that can lead to broken 
or incomplete block lists.

SERVERS AND SOFTWARE

Excluding the anti-virus scanners used to identify and 
categorize malware, all other software employed by the 
project is open source. Servers are hosted in three distinct 
data centres and run Linux Slackware [13] or FreeBSD 
[14]. MySQL is used for the database. The crawlers run 
multi-threaded on Perl and C, Apache and LIGHTTPD are 
used for web servers and Exim for SMTP, running the URL 
extraction system.

WHAT’S NEXT?

Malware Patrol is a not-for-profi t project that runs on 
volunteer efforts, user contributions and donations. With 
limited hardware, software and fi nancial resources, there is 
a need to concentrate efforts on service availability and data 
integrity. Meanwhile, the improvements queue is always 
growing. Important developments scheduled for the coming 
months include: installing new hardware to support the 
growing number of users, integration with browser plug-ins, 
creation of a DNSRBL, improvements to crawlers and URL 
extractors, and creation of thumbnails of the emails and 
sites used in phishing scams.



VIRUS BULLETIN   www.virusbtn.com 

21JULY 2009

New list users, contributors and security groups are always 
welcome.

Also, users and companies that fi nd the service useful are 
encouraged to make a donation to help keep the project 
going.

CONCLUSION

For the last four years the Malware Patrol project has 
been collecting, monitoring and distributing lists of URLs 
that point to malware. The project provides an additional 
security tool for system and network administrators in the 
daily task of keeping users safe. End-users and the security 
community are always responsive to reliable tools and 
information sources.

The phishing scam landscape is constantly evolving 
and although anti-virus solutions and user education are 
important ways to help prevent infections and the losses 
caused by malware, it is also necessary to closely monitor 
the evolution of these threats.

REFERENCES

[1] Malware Patrol. http://www.malwarepatrol.net/.

[2] The Content-Disposition Header Field. 
http://www.ietf.org/rfc/rfc2183.txt.

[3] Hypertext Transfer Protocol - HTTP/1.1. 
http://www.ietf.org/rfc/rfc2616.txt.

[4] DNSBL - Wikipedia. http://en.wikipedia.org/wiki/
DNSBL.

[5] Adobe - Security bulletins and advisories. 
http://www.adobe.com/support/security/.

[6] Multiple vulnerabilities in libpng. 
http://www.us-cert.gov/cas/techalerts/
TA04-217A.html. 

[7] Wikipedia - Scareware. http://en.wikipedia.org/
wiki/Scareware.

[8]  Mailbox names for common services, roles and 
functions. http://www.ietf.org/rfc/rfc2142.txt.

[9]  CAIS - RNP. http://www.rnp.br/cais/.

[10]  Team Cymru. http://www.team-cymru.org/.

[11]  Web of Trust. http://www.mywot.com/.

[12]  SURBL. http://www.surbl.org/.

[13]  Linux Slackware. http://www.slackware.com/.

[14]  FreeBSD. http://www.freebsd.org/.

NORMAN NETWORK 
PROTECTION APPLIANCE
John Hawes

This month’s product review marks something of a 
departure for VB, as we take a break from our usual diet 
of desktop anti-virus products and security suites to take a 
look at one of the growing fi eld of hardware-based security 
solutions. The security appliance market seems to have 
become a boom area of late, with just about every security 
fi rm worth its salt introducing an appliance solution to 
provide its services in a single package. Dedicated fi rewalls, 
spam fi lters and web fi lters, as well as integrated blends 
offering a selection of these features, all jostle for position 
in the marketplace, all looking for the unique selling point 
which will set them apart from the crowd. In this month’s 
review we will be looking at a dedicated anti-malware 
solution: Norman’s Network Protection Appliance.

PRODUCT AND VENDOR
Norman has been around since pretty much the dawn of 
time as far as computer security and anti-malware goes. 
Founded in 1984 (as the company’s website points out, 
some two years before the fi rst PC virus and four years 
before the fi rst virus was discovered in the company’s native 
Norway), the company quickly went global and over the 
next decade or so developed a variety of security solutions 
and services, before merging with the brains behind the 
classic ThunderByte anti-virus product. Norman’s Virus 
Control product line has been a stalwart in VB100 testing 
since its inception over ten years ago – one of an elite few 
to achieve a pass in the fi rst ever certifi cation (see VB, 
January 1998, p.10) and maintaining a splendid reliability 
ever since. 

Alongside its venerable fl agship product line, the company 
has continued to innovate in a number of areas, with 
pioneering work at corporate server and gateway level in 
the early days, followed up by early entry into the spheres 
of personal fi rewalls and anti-spam. The Sandbox solution 
– which evolved from internal emulation in the Norman 
scanner into a standalone, automated malware analysis 
system – was a revolution when it fi rst appeared and 
remains cutting edge (as anyone who has joined a crowd of 
entranced onlookers at a demonstration of its abilities can 
attest). The inclusion of the advanced Sandbox technology 
in the company’s anti-malware scanner, and the resulting 
high levels of signature-less detection of new malware, 
have made the engine a favourite for inclusion in OEM and 
multi-engine products, many of which are now also regulars 
in VB testing.

PRODUCT REVIEW

http://www.malwarepatrol.net/
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2616.txt
http://en.wikipedia.org/wiki/DNSBL
http://www.adobe.com/support/security/
http://www.us-cert.gov/cas/techalerts/TA04-217A.html
http://en.wikipedia.org/wiki/Scareware
http://www.ietf.org/rfc/rfc2142.txt
http://www.rnp.br/cais/
http://www.team-cymru.org/
http://www.mywot.com/
http://www.surbl.org/
http://www.slackware.com/
http://www.freebsd.org/
http://www.virusbtn.com/pdf/magazine/1998/199801.pdf
http://www.virusbtn.com/pdf/magazine/1998/199801.pdf


VIRUS BULLETIN   www.virusbtn.com 

22 JULY 2009

The company’s online presence at www.norman.com has 
undergone a fairly drastic overhaul of late, and provides 
a wealth of information in a slick and accessible format. 
The Network Protection solution is fairly new to market 
and is currently being heavily promoted, with a prominent 
advertisement in the form of an animation showing a 
machine sliding rapidly into place – apparently a metaphor 
for the system’s easy implementation. A selection of 
related information is provided on the website, including 
registration for a trial version, detailed product overview 
sheets and a full manual. A link provides details of a recent 
accolade for the product: a ‘Best in Antimalware Solution’ 
prize from Network Products Guide.

The appliance is available either pre-installed, with a choice 
of fairly standard set-ups of either Dell or HP hardware, 
or as a software version, provided complete with operating 
system as a CD or iso image download. For those opting 
to use their own hardware, the minimal specifi cations are 
fairly exacting, thanks to the rather specifi c demands of the 
networking and RAID design and the need for reliability. 
Thus the software version is unlikely to suit anyone 
trying to save pennies by recycling an old system, but the 
self-install option is provided for those organizations with 
fi xed policies on hardware sourcing; in addition to the HP 
and Dell specs also available directly from Norman, an 
acceptable design of IBM hardware is approved.

The version provided for this review was the full hardware 
set-up, installed on a Dell box, so we didn’t get to try 
the complete installation process, but as a pre-confi gured 
system it seemed likely to be fairly straightforward; 
the guidance in the manual mainly covers correct 
implementation of network cards, with the bulk of the 
set-up on a fi xed, option-free path.

The shipped machine came with a clear and straightforward 
quick-install guide, which looked ample to steer us through, 
but we also took along a copy of the manual in case of 
need. The manual is provided both as a complete guide and 
as a tailored version for purchasers of the full hardware 
appliance, leaving out all the unnecessary information on 
initial installation. With plenty of support on hand, we took 
the box into the test lab and prepared to fi re it up.

INSTALLATION AND SET-UP

Following the instructions in the admin guide, a network 
layout was planned but nothing plugged in until the initial 
stages of IP address confi guration were completed. During 
the initial stages of our anti-spam testing regime we spent 
many hours setting up a selection of appliance products, 
and experienced a wide variety of initial set-up processes 
required to get a machine activated and integrated into a 

network. It was interesting to see just how many different 
ways there are of getting a piece of hardware confi gured out 
of the box – some require full direct access with a keyboard 
and monitor, others demand access via a pre-confi gured 
IP address, while a few are even accessed via a good 
old-fashioned null-modem cable. At least one appliance 
on the market is capable of picking up an address from 
DHCP and displaying it on an LED front panel, allowing 
the administrator to access it with no special tweaks to 
his network. In Norman’s case, the initial stage required 
console access with a keyboard and monitor, which should 
present little diffi culty to the average corporate admin with 
a KVM switch handy.

The boot-up showed the system to be based on Debian 
Linux, with a slick and attractive splashscreen identifying 
it as a Norman product. With the initial stages of booting 
complete, a simple text-based process led us through the 
low-level confi guration: the keymap used, a password for 
the root user, hostname and IP address for the management 
interface, speed confi guration of the additional interfaces, 
and time zone. With this complete and details confi rmed, 
the machine was rebooted before being ready for remote 
control via the management link. The manual urges readers 
not to boot up the machine before connecting it to the 
network, but being dedicated troublemakers we ignored 
this advice and tried various confi gurations of switching 
on and off and plugging network cables in and out, without 
upsetting the system at all. Of course, such behaviour is not 
recommended and we would urge readers always to pay 
attention to instructions from their solution providers.

Once up and running again, and connected to the chosen 
management network, a web interface is accessed via a 
browser, which is fairly standard for appliances. This one 
seemed smooth and stable, with none of the awkward load 
time or wobbly, error-prone controls we have observed 
in some of the appliances run as part of our anti-spam 

http://www.norman.com/


VIRUS BULLETIN   www.virusbtn.com 

23JULY 2009

testing. On initial 
access, the appliance 
runs through a 
second stage of 
confi guration, this 
time focusing on 
the protection side 
of things, starting 
with the selection 
of a password and 
confi guration of 
access controls for 
the confi guration 
interface itself, 
restricting access to 
specifi c IP addresses 
or subnets. 

A licence key 
is required for 
activation, and then a 
selection of settings 
screens are run 
through, including 
a separate setting 
for each of the 
protocols covered 
by the system. The 
protocols covered 
include HTTP, FTP, TFTP, SMTP, POP3, SMB/CIFS, RPC 
and IRC, and each can be scanned at a different level, with 
traditional signature scanning, the sandbox, and looking 
inside archives all available. Other options include how 
long to keep known bad URLs blocked, and a confi gurable 
message to display to users trying to access a blocked site. 
This can take the form of either a customized message on 
a standard web page or a bespoke web page at the location 
of your choice. Some control of logging and email alert 
messaging is also provided, and updating can be set to a 
range of periods or left entirely manual. All in all, barring 
the time spent getting hold of a licence key to activate 
– which would normally be provided along with the shipped 
product – and despite some time spent messing around with 
settings and trying unsuccessfully to confuse the system, 
the whole set-up from initial boot to fully operational 
status took less than half an hour, much of which was spent 
waiting for reboots and rummaging for network cables of 
the right length.

MALWARE PROTECTION AND CONTROL
With the machine set up more or less to our liking, it was 
time to see how it went about protecting networks. The 
design of the product is brilliantly simple; apparently 

inspired by a demanding commission from a food 
manufacturer (requiring protection from malware in a 
sealed and certifi ed environment where changes to either 
software or network confi guration were highly undesirable), 
the Norman appliance sits invisibly between two network 
nodes, its two interfaces simply passing all data through 
and keeping an eye on the stream as it goes by, blocking the 
transfer of anything identifi ed as a danger. So we simply 
slid the machine in between the hubs of two subnets, moved 
the cable connecting them to one interface on the appliance, 
inserted another in the second interface to complete the link, 
and sat back to watch.

After an invisible judder as the network adjusted itself 
to the new layout, connection between the two subnets 
seemed entirely unaffected and data transfer between 
them continued virtually uninterrupted. Checking the 
management GUI showed that traffi c was being watched 
and throughput levels recorded, and attempts to pass 
malware samples from the outer zone to the protected 
subnet were immediately blocked. It all seemed very easy 
and painless.

We tried a variety of transfers via various protocols, 
and all seemed to function along much the same lines, 
with network latency barely noticeable as traffi c fl owed 



VIRUS BULLETIN   www.virusbtn.com 

24 JULY 2009

smoothly through the system. Even with large fi les and 
the most thorough settings, little slowdown was observed, 
and malicious items tucked into archives were noticed as 
the fi nal few packets made their way across the network. 
Compared to more proxy-oriented appliances, which may 
require full download to the appliance before scanning, then 
transfer to the target system once fi les have been approved, 
this invisible bridging set-up provides much smoother and 
quicker connectivity. The system automatically blocks 
access to web domains found to contain malware, showing 
a warning message instead, while other protocols simply 
present a ‘not found’ or ‘access denied’, again keeping the 
specifi c path blocked for a confi gurable period. If desired, 
the URL blocked message shown for the HTTP protocol 
could even be confi gured to display a standard 404 message, 
thus erasing all evidence from the user’s point of view that 
the appliance is monitoring traffi c to their network.

Going back into the confi guration system to tweak settings 
provided the same set of controls run through in the initial 
set-up, with the main area being the level of scanning 
imposed on each supported protocol, with the option to 
ignore all traffi c over a given protocol if so desired. The 
most signifi cant option here is whether or not to use the 
Sandbox facility. We found this gave a signifi cantly better 
level of detection, particularly for the newest samples, 
without excessive increase to the connection overhead. 
There is also a simple way to exclude certain systems or 
network segments from fi ltering, and a set of options that 
allow scanning to be disabled, passing all traffi c through 
unhindered, or to completely block all traffi c – the so-called 
‘panic button’.

The remainder of the controls 
provided in the interface covered 
the logging and reporting of 
traffi c and incident data. One area 
that seemed to be missing was 
the option to adjust the low-level 
settings of the appliance 
operating system itself, but 
little needs doing here in most 
situations. Rather oddly, when we 
went back in via the console and 
hacked some changes to the IP 
address to connect to a different 
network for management, we 
found that the web GUI did not 
register the change but continued 
reporting the old address (perhaps 
because we hadn’t restarted 
the system), but no ill effects 
were observed and everything 
continued to operate smoothly.

REPORTING FEATURES
The main function of the GUI, once the basic settings 
have been adjusted as required, is to provide information 
on traffi c and incidents, and it provides a useful selection 
of tables and graphs which present all the necessary 
information clearly and logically.

The ‘Quick status’ page provides an overview of the system 
set-up and settings, details of the product and update 
versions, a summary of the network interfaces and how they 
are running, the number of fi les processed and those found 
to be malicious, and the settings of the scanner on a per-
protocol basis. The ‘System monitor’ gives more detailed 
information on CPU and memory usage, uptime, product 
and update versions, and network load, accompanied by 
some nice graphs which chart changes in load over time. 
The other sections show statistics on traffi c passing through 
the system, and on threats spotted and blocked, with 
detailed logs of all detected threats and malicious URLs, 
and full data on systems hosting and targeted by malware. 
All of this information can be confi gured to cover specifi c 
periods and levels of verbosity, and exported to plain logs.

One of the most interesting features here is the Sandbox 
log area. Where a malicious item has been run through 
the Sandbox system, detailed information is logged on the 
behaviours spotted when executed in the emulator. This 
data, including information on how a fi le has been packed 
or encrypted, what changes it makes to the fi lesystem, what 
network activity it attempts and more besides, is also made 
available to the administrator. These reports always make 
for fascinating reading, and are of great value in identifying 



VIRUS BULLETIN   www.virusbtn.com 

25JULY 2009

malicious items and tracking down any activities they may 
have perpetrated before being caught. With automated log 
retrieval and parsing, the data can be used to keep other 
parts of the network secure by updating fi rewall rules and 
other security systems.

Email and SNMP options allow alerts to be sent to 
administrators without keeping an eye on the interface, 
again with fairly in-depth confi guration of what level of 
data is recorded, where it is sent and how. With the logs 
saved on the local system, administrators can of course 
also automate transfer of logs as required, using the 
underlying fully functional Linux system. This would 
allow a fairly detailed record of all activity passing 
between the appliance’s bridged interfaces, including what 
kind of malware was coming in, from where, and where it 
was headed when intercepted – all useful data for the alert 
security admin.

CONCLUSIONS
Having looked at a number of similar appliances in recent 
months, there were a few things that we expected to fi nd 
in Norman’s solution but which were lacking. Many 
products targeting the same sort of market offer online 
reputation databases to block known malicious URLs, 
detailed content inspection and control of user activity, 
for corporations to keep a tight rein on their employees’ 
web-browsing habits, confi gurable monitoring of specifi c 
applications and versions, and much else besides. 
Norman’s selling point is all about simplicity though. 
Its raison d’être is to block malware passing through the 
core protocols, and it does that with remarkably little 
effort on the administrator’s part. The plug-and-play ease 
of implementation also makes it very fl exible, happy to 
be installed in any part of the network rather than being 
limited to the gateway.

Being practically undetectable to the network it is 
protecting, up until the moment it blocks the transfer of 
a malicious item, makes it not only extremely easy to 
integrate into just about any network layout, but it also 
keeps the overheads to a minimum, barely impacting 
traffi c fl ow until it is needed. The integration of the 
Sandbox detection alongside the traditional signature 
scanning adds an extra layer of defence against new 
and unknown threats. Providing such simple and 
unproblematic malware protection, along with an 
excellent, again very straightforward control system, 
makes this an extremely user-friendly weapon in the fi ght 
against malware problems in business networks, as well 
as a powerful one. We look forward to investigating a 
wider range of appliances to see how they match up to this 
impressive effort from Norman.

ANTI-SPAM COMPARATIVE 
REVIEW JULY 2009
Martijn Grooten

VB’s fi rst anti-spam comparative review and certifi cation 
showed some interesting results (see VB, May 2009, p.S5), 
and the winners of VBSpam awards deserve full credit for 
doing so well. This month, the all-important question is: can 
they repeat their outstanding performance?

Prior to the fi rst anti-spam comparative review we ran a 
trial, during which the licence for one of the participating 
products expired. This product was confi gured to continue to 
work, yet the anti-spam engine was no longer being updated 
– indeed, when we looked at its performance, the spam 
catch rate gradually decreased over time. Apart from acting 
as a reminder of how important it is to renew licences, this 
served as a demonstration that spam changes over time and 
that anti-spam vendors need to ensure their engines are up 
to date and work against the latest spam threats. This is why 
we run a new anti-spam test every two months.

Nine products participated in this month’s test, seven of 
which were commercial products, while the other two were 
free and open source. Of the seven commercial products, 
two were hosted solutions, two were hardware appliances, 
one ran on a Windows Server machine and the fi nal two ran 
on Linux. Together they provide a good representation of 
the range of different options available when it comes to 
spam fi ltering within an organization.

THE TEST SET-UP
The set-up of this test was more or less the same as for the 
last test. The methodology is recorded at 
http://www.virusbtn.com/vbspam/methodology.

Some changes to the MTAs enabled us to run a test with 
a much larger email corpus and more products running 
in parallel; however, these changes do not affect the test 
set-up itself. As in the previous test, the Message ID was 
used to uniquely identify emails, and if such a header was 
not already present, the gateway MTA added one. Email 
that did not reach the back-end server within an hour was 
assumed to have been classifi ed as spam. During this hour, 
up to fi ve redelivery attempts were made for emails that had 
caused an error during the SMTP transaction.

Unlike in the previous test, the two products that ran on 
the gateway MTA, SpamAssassin and ClamAV, were sent 
emails in real time.

The products that needed to be installed on a server were 
installed on a Dell PowerEdge R200, with a 3.0GHz dual 
core processor and 4GB of RAM.

COMPARATIVE REVIEW

http://www.virusbtn.com/pdf/magazine/2009/200905.pdf
http://www.virusbtn.com/vbspam/methodology


VIRUS BULLETIN   www.virusbtn.com 

26 JULY 2009

Firstly, the emails received by VB employees – many of 
which discuss malware and spam – are particularly hard 
to fi lter. For example, we may see a legitimate message in 
which a spam domain is being discussed, and this message 
is classifi ed as spam by one or more products on the 
premise that it contains this very domain. While the mistake 
is understandable, these messages are ham and an ideal 
spam fi lter would not make this mistake.

Secondly, most products give the end-user and/or the 
system administrator the option to whitelist certain senders. 
While we encourage the use of such techniques in practice, 
we have not applied them in our tests: it would be hard, if 
not impossible, to perform whitelisting in the same way as 
an average end-user, plus it would put any products entering 
the test for the fi rst time at a disadvantage.

This is one of the main reasons why our certifi cation 
scheme emphasizes the relative performance of products 
compared to those of their competitors, rather than focusing 
on actual numbers. 

In the results reported below, ‘SC rate (total)’ represents the 
overall spam catch rate over the entire corpus of 745,404 
emails. ‘SC rate (Project Honey Pot corpus)’ represents 
the spam catch rate achieved within the Project Honey Pot 
corpus alone, and ‘SC rate (VB spam corpus)’ represents the 
spam catch rate achieved within the VB corpus alone. ‘FP 
rate’ represents the number of false positives as a proportion 
of the total number of ham messages, while the ‘FP rate of 
total VB mail corpus’ is the number of false positives as a 
proportion of the total number of messages contained in the 
VB mail corpus.

BitDefender Security for Mail Servers 3.0.2

SC rate (total): 98.23%

SC rate (Project Honey Pot corpus): 98.56%

SC rate (VB spam corpus): 89.36%

FP rate: 2.55%

FP rate of total VB mail corpus: 0.209%

Romanian company BitDefender won a gold 
VBSpam award for its Linux server product 
in the May 2009 test and its developers 
were keen to see if the product could repeat 
its performance. A fresh installation of the 
product, again as an extension to Postfi x, 
but this time installed on a server running 
SUSE11, was set up easily.

The spam catch rate of more than 98% is a huge 
improvement compared to the previous test and even the 
product’s performance on the VB spam corpus increased 
by more than fi ve per cent. Unfortunately, the false positive 

Ju
ly

 2
00

9

THE EMAIL CORPUS
As before, all of the emails sent to valid addresses on the 
virusbtn.com domain were sent through all of the products, 
in real time. This corpus consisted of 2,393 ham messages 
and 26,755 spam messages. The ‘golden standard’ for each 
email was decided upon by the recipient, with the exception 
of emails for which all products agreed: in these cases we 
assumed the products were correct. Emails that were reported 
as false positives were checked a second time, to make sure 
none had been misclassifi ed by the recipient as ham.

To increase both the volume and the variety of spam seen 
by the products, we have been working closely with Project 
Honey Pot. The Project Honey Pot team manages a large 
distributed network of spam traps and thus receives not 
only a large amount of spam, but also spam that refl ects 
the global variation in bogus email. For this month’s test 
they sent us part of their feed; the emails were assigned to a 
random valid address on the virusbtn.com domain and then 
relayed to the products in real time.

So that the products would not have any information about 
which emails were part of this feed (all of which, of course, 
were assumed to be spam) the Received-headers were 
rewritten, so that it appeared as if the email had been received 
by our MTA. Moreover, many spam emails are ‘personalized’ 
and thus contained the local-part and/or the domain of the 
original spam trap; these were replaced by the local-part of 
the newly assigned recipient and virusbtn.com respectively.

The Project Honey Pot feed provided us with 716,256 
additional spam emails, which meant an overall corpus of 
745,404 emails, 2,393 of which were ham. As the test ran 
for a period of almost three weeks (starting at 16:45h on 
5 June and fi nishing at 08:00h on 26 June) this meant that 
the products saw about 25 emails per minute or almost one 
email every two seconds.

It was interesting to see that all products performed better 
against the Project Honey Pot spam than against the VB 
spam; in most cases the difference in performance was 
rather signifi cant. We can only guess the reason for this, 
but it could well be caused by the nature of the spam VB 
receives: like most companies, we receive a large amount 
of commercial email, unsolicited and sent in bulk, yet 
somehow targeted. Emails like these don’t generally end up 
in spam traps and do not look like ‘typical’ spam, yet they 
are illegal and fi lters should be expected to block them.

FALSE POSITIVES
Anyone comparing the false positives reported in our 
test with those reported by other anti-spam tests or by 
the vendors themselves, will notice that our numbers are 
signifi cantly higher. There are several reasons for this.

http://www.projecthoneypot.org/
http://www.projecthoneypot.org/


VIRUS BULLETIN   www.virusbtn.com 

27JULY 2009

rate also increased to a level that just pushed the product 
outside the limits for a gold award; instead it wins a 
VBSpam Silver award this month.

ClamAV using Sanesecurity signatures

SC rate (total): 73.97%

SC rate (Project Honey Pot corpus): 75.04%

SC rate (VB spam corpus): 45.51%

FP rate: 0.38%

FP rate of total VB mail corpus: 0.031%

The signatures provided by Sanesecurity that can be plugged 
into the open source ClamAV anti-virus product were never 
meant to match the performance of dedicated anti-spam 
solutions. Rather, they are intended to work together with 
another solution to provide a layered spam fi lter. Still, the 
23% spam catch rate measured in May was disappointing 
for the developer despite a zero false positive rate.

The developer will be happy to hear that this month the 
product’s performance almost tripled to 74%, and even on 
the VB spam corpus it increased by 18% – and although 
these rates are insuffi cient to earn the product a VBSpam 
award, they indicate that the product is well up to its task 
as the fi rst step in a multi-layered spam fi lter. There were 
a handful of false positives this time, all of which were 
caused by legitimate emails mentioning a malicious domain 
or email address – and it would be fair to say that it would 
be rare for the majority of end-users to receive such emails.

FortiMail

SC rate (total): 99.11%

SC rate (Project Honey Pot corpus): 99.28%

SC rate (VB spam corpus): 94.38%

FP rate: 2.63%

FP rate of total VB mail corpus: 0.216%

Fortinet, based in Vancouver B.C., 
is a regular participant in the VB100 
anti-malware testing, so it came as little 
surprise that the company was eager to 
submit its FortiMail appliance for the 
anti-spam test. As with most hardware 
appliances, no software needed to be 
installed and after a short set-up process, the 
product was up and running.

Further confi guration, to fi ne tune the appliance, can be 
carried out via a web interface, while another web interface 
can be used by end-users to view their quarantined email 
or modify per-user settings. The web interface isn’t used 

purely to click buttons however: one of the most important 
tasks of a system administrator running an anti-spam 
solution is to fi nd out why certain emails were blocked and 
to prevent this from happening again. Those using Fortinet 
will have an easy task doing so, thanks to an extensive 
logging system: for every email received the logging system 
records which anti-spam tests were passed or failed.

With a stunning spam catch rate of 99.1%, FortiMail 
outperformed all of its competitors in this respect, and even 
on the VB corpus well over 94% of the spam was identifi ed 
correctly. On the downside, the product’s false positive rate 
was slightly higher than average and thus FortiMail debuts 
by winning a VBSpam Silver award.

Kaspersky Anti-Spam 3.0

SC rate (total): 97.54%

SC rate (Project Honey Pot corpus): 98.17%

SC rate (VB spam corpus): 80.81%

FP rate: 0.04%

FP rate of total VB mail corpus: 0.003%

Kaspersky is another VB100 regular that has 
joined the anti-spam test this month. The 
Russian anti-malware giant has been active 
in the anti-spam fi eld for a long time and the 
product we tested is the third generation of 
Kaspersky Anti-Spam (KAS).

A Linux product, we ran it on a SUSE11 
server as an extension to the Postfi x MTA. 
Installation was smooth and painless and the product was 
running just a few minutes after the download had fi nished. 
After that, its performance gave so few reasons to worry 
that not until I started writing this review did I have a reason 
to search for log fi les, upon which I happily discovered that 
the decision made for each email is indeed stored.

Administrators running KAS will have little reason to look 
in these log fi les for false positives though: out of almost 
2,400 ham messages sent to the product, only one was 
marked as spam. This unbelievably low false positive rate 
combined with a spam catch rate of over 97%, well above 
average, means that Kaspersky Anti-Spam is the deserving 
recipient of a VBSpam Platinum award. 

MessageStream

SC rate (total): 98.82%

SC rate (Project Honey Pot corpus): 99.21%

SC rate (VB spam corpus): 88.48%

FP rate: 1.59%

FP rate of total VB mail corpus: 0.130%

Ju
ly

 2
00

9

Ju
ly

 2
00

9



VIRUS BULLETIN   www.virusbtn.com 

28 JULY 2009

Unfortunately, despite a decent spam catch rate, the product’s 
false positive performance was disappointing, with a score 
of more than 6%. The majority of the misclassifi cations were 
emails that had been sent as mass-mailings. Regrettably, the 
product’s high false positive rate was enough to deny it a 
VBSpam award in this month’s test.

M+Guardian (Messaging Architects)

SC rate (total): 98.92%

SC rate (Project Honey Pot corpus): 99.12%

SC rate (VB spam corpus): 93.63%

FP rate: 0.79%

FP rate of total VB mail corpus: 0.065%

Messaging Architects was one of the 
fi rst companies to submit its solution, 
M+Guardian, for the anti-spam test and the 
confi dence its developers have shown in their 
product proved to be justifi ed: the product 
was the sole winner of a VBSpam Platinum 
award in the fi rst test. It was with interest 
that we assessed the results this month to see 
whether the product would be able to continue its excellent 
performance in the second test, with more spam, more 
products and stricter benchmarks.

Happily for Messaging Architects it did continue its 
excellent performance. A spam catch rate of almost 99% 
and a less than 1% false positive rate earn M+Guardian its 
second VBSpam Platinum award.

SpamAssassin 3.2.5

SC rate (total): 64.26%

SC rate (Project Honey Pot corpus): 64.72%

Total spam Project Honey Pot corpus VB corpus

True 
negative

FP FP 
rate

FP / 
total VB 
corpus

False 
negative

True 
positive

SC rate False 
negative

True 
positive

SC rate False 
negative

True 
positive

SC rate

BitDefender 2332 61 2.55% 0.209% 13133 729878 98.23% 10285 705971 98.56% 2848 23907 89.36%

ClamAV 2384 9 0.38% 0.031% 193391 549620 73.97% 178813 537443 75.04% 14578 12177 45.51%

FortiMail 2330 63 2.63% 0.216% 6640 736371 99.11% 5136 711120 99.28% 1504 25251 94.38%

Kaspersky 2392 1 0.04% 0.003% 18268 724743 97.54% 13134 703122 98.17% 5134 21621 80.81%

MessageStream 2355 38 1.59% 0.130% 8752 734259 98.82% 5670 710586 99.21% 3082 23673 88.48%

ModusGate 2234 159 6.64% 0.545% 34128 708883 95.41% 31313 684943 95.63% 2815 23940 89.48%

M+Guardian 2374 19 0.79% 0.065% 8006 735005 98.92% 6302 709954 99.12% 1704 25051 93.63%

SpamAssassin 2324 69 2.88% 0.237% 265516 477495 64.26% 252664 463592 64.72% 12852 13903 51.96%

Webroot 2335 58 2.42% 0.199% 25659 717352 96.55% 24310 691946 96.61% 1349 25406 94.96%

Ju
ly

 2
00

9

You would be forgiven for thinking that 
vendors submit their products for the 
anti-spam test purely for marketing reasons, 
but many developers are also keen to hear 
our feedback so that they can see how and in 
which areas their products can be improved. 
UK-based Giacom, which develops the 
hosted solution MessageStream, achieved a 
VBSpam Gold award in May, yet felt that its false positive 
rate could be reduced, resulting in its developers making 
some changes to its fi ltering for all of its customers.

These changes were rolled out halfway through this month’s 
test, but the number of false positives was already reduced 
to about 1.5% – well below average. This, together with a 
spam catch rate of almost 99%, means that MessageStream 
has achieved its second VBSpam Gold award in a row.

ModusGate

SC rate (total): 95.41%

SC rate (Project Honey Pot corpus): 95.63%

SC rate (VB spam corpus): 89.48%

FP rate: 6.64%

FP rate of total VB mail corpus: 0.545%

As someone with more than a decade of experience with 
various fl avours of Unix and Linux I sometimes think 
that Windows software works against my intuition. This 
prejudice, however, was quickly proven wrong when I 
installed ModusGate, an anti-spam solution produced by 
Canadian company Vircom. The product is available as a 
hardware appliance, but tested here as a software solution 
installed on a Windows Server 2003 machine. Set-up and 
installation were straightforward and the graphical interface 
was clear and easy to work with.

Ju
ly

 2
00

9



VIRUS BULLETIN   www.virusbtn.com 

29JULY 2009

SC rate (VB spam corpus): 51.96%

FP rate: 2.88%

FP rate of total VB mail corpus: 0.237%

The ancient, but still actively developed, open source 
SpamAssassin product took part in the fi rst anti-spam 
test, but failed to match the performance of most of its 
commercial competitors. It was suggested that this was 
because an old version of the product had been installed. 
With the latest version, 3.2.5, running on a fresh SUSE11 
Linux server, we were keen to see if this would have a 
positive effect on its performance.

Unfortunately, the spam catch rate was still lower than 65%, 
while the false positive rate actually rose to a higher level 
than previously. While the sa-update command, which is run 
every hour, suggests that nothing is the matter, it seems likely 
that the poor results are caused by an incorrect confi guration, 
one that can hopefully be fi xed before the next test.

Webroot E-Mail Security SaaS

SC rate (total): 96.55%

SC rate (Project Honey Pot corpus): 96.61%

SC rate (VB spam corpus): 94.96%

FP rate: 2.42%

FP rate of total VB mail corpus: 0.199%

Webroot’s hosted solution failed to win an 
award in the May test because its number 
of false positives was a lot higher than 
the benchmark – a problem caused by an 
incorrectly confi gured SPF test. The problem 
was easily fi xed, however, and indeed, the 
false positive rate of 2.42% measured in this 
month’s test is only slightly above the average.

The product also achieved a very decent 96.5% spam catch 
rate, and deserves extra credit for having the highest spam 
catch rate on the VB spam corpus. A VBSpam Silver award 
is thus well deserved and only a slight improvement of the 
false positive rate would enable it to do even better next time.

AWARDS
As in the previous test, the level of the awards earned by 
products are defi ned as follows:

• VBSpam Platinum for products with a total spam catch 
rate twice as high and a false positive rate twice as low 
as the average in the test.

• VBSpam Gold for products with a total spam catch rate 
at least as high and a false positive rate at least as low 
as the average in the test.

Ju
ly

 2
00

9

• VBSpam Silver for products whose total spam catch 
rate and false positive rates are no more than 50% 
worse than the average in the test.

To avoid the averages being skewed by one or more 
malperforming products, any product with a false positive 
rate of more than 10% and/or a spam catch rate of less than 
70% is removed from the computation of the averages. In 
this case, the SpamAssassin scores were removed, because 
its spam catch rate was well below 70%. This month’s 
benchmarks were then as follows:

• Platinum: SC 97.41%; FP 1.07%

• Gold: SC 94.82%; FP 2.13%

• Silver: SC 92.23%; FP 3.20%

The table opposite shows the scores for all of the products 
on test. The highlighted columns show the scores used for 
the benchmark calculations.

CONCLUSIONS
It was a relief to see the bugs that had caused some stress 
during the fi rst test had been solved. It is also good to see 
several of the products showing credible results and thus 
to get a better picture of which products really are the high 
performers in this fi eld. Still, the question remains as to 
whether these products can continue their performance in 
the next test, and it will be interesting to see the effect of the 
improvements and tweaks that will undoubtedly be made to 
other products. 

The next anti-spam comparative review will take place 
in August, with the results published in September 2009. 
The deadline for product submission will be 27 July. Any 
developers interested in submitting a product are encouraged 
to get in touch by emailing martijn.grooten@virusbtn.com.

FP rate

S
C

 ra
te

SpamAssassin

mailto:martijn.grooten@virusbtn.com


JULY 2009

VIRUS BULLETIN   www.virusbtn.com 

END NOTES & NEWS

30

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic
Dr Sarah Gordon, Independent research scientist, USA
John Graham-Cumming, UK
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, McAfee, USA
Joe Hartmann, Microsoft, USA
Dr Jan Hruska, Sophos, UK
Jeannette Jarvis, Microsoft, USA
Jakub Kaminski, Microsoft, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Microsoft, USA
Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia
Péter Ször, Symantec, USA
Roger Thompson, AVG, USA
Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues): 

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication. 

See http://www.virusbtn.com/virusbulletin/subscriptions/ for 
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon, 
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139  Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or 
damage to persons or property as a matter of products liability, 
negligence or otherwise, or from any use or operation of any methods, 
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance 
Centre Ltd. Consent is given for copying of articles for personal or 
internal use, or for personal use of specifi c clients. The consent is 
given on the condition that the copier pays through the Centre the 
per-copy fee stated below.
VIRUS BULLETIN © 2009 Virus Bulletin Ltd, The Pentagon, Abingdon 
Science Park, Abingdon, Oxfordshire OX14 3YP, England.  
Tel: +44 (0)1235 555139. /2009/$0.00+2.50. No part of this publication 
may be reproduced, stored in a retrieval system, or transmitted in any 
form without the prior written permission of the publishers.

The sixth Conference on Email and Anti-Spam (CEAS) will be 
held 16–17 July 2009 in Mountain View, CA, USA.  For details see 
http://www.ceas.cc/.

A Mastering Computer Forensics masterclass will take place 
22–23 July 2009 in Jakarta, Indonesia. For details see 
http://www.machtvantage.com/computerforensics.html.

Black Hat USA 2009 will take place 25–30 July 2009 in Las 
Vegas, NV, USA. Training will take place 25–28 July, with the 
briefi ngs on 29 and 30 July. For details see http://www.blackhat.com/.

The 18th USENIX Security Symposium will take place 12–14 
August 2009 in Montreal, Canada. The 4th USENIX Workshop on 
Hot Topics in Security (HotSec ’09) will be co-located with USENIX 
Security ’09, taking place on 11 August. For more information see 
http://www.usenix.org/events/sec09/.

The International Cyber Confl ict Legal & Policy Conference 
2009 will take place 9–10 September 2009 in Tallinn, Estonia. 
The conference will focus on the legal and policy aspects of cyber 
confl ict. For details see http://www.ccdcoe.org/126.html.

The 7th German Anti-Spam Summit takes place 14–16 
September 2009 in Wiesbaden, Germany (the event language will 
be English). For details see http://www.eco.de/veranstaltungen/
7dask.htm.

IMF 2009, the 5th International Conference on IT Security 
Incident Management & IT Forensics takes place 15–17 
September 2009 in Stuttgart, Germany. Experts will present and 
discuss recent technical and methodical advances in the fi elds of IT 
security incident response and management and IT forensics. For 
more information see http://www.imf-conference.org/.

SOURCE Barcelona will take place 21–22 September 2009 
in Barcelona, Spain. The conference will be run in two tracks: 
Security and Technology, covering security software, application 
security, secure coding practices, engineering, new tool releases 
and technology demonstrations; and Business of Security, covering 
critical decision-making, entrepreneurship, issues of compliance, 
regulation, privacy laws, disclosure and economics. For full details 
and registration see http://www.sourceconference.com/.

Hacker Halted 2009 takes place in Miami, FL, USA, 23–24 
September 2009. See http://www.hackerhalted.com/.

VB2009 will take place 23–25 September 2009 in Geneva, 
Switzerland. For the full conference programme including abstracts 
for all papers and online registration, see http://www.virusbtn.com/
conference/vb2009/.

The third APWG eCrime Researchers Summit will be held 13 
October 2009 in Tacoma, WA, USA in conjunction with the 2009 
APWG General Meeting. eCrime ’09 will bring together academic 
researchers, security practitioners and law enforcement to discuss all 
aspects of electronic crime and ways to combat it. For more details 
see http://www.ecrimeresearch.org/.

Malware 2009, the 4th International Conference on Malicious 
and Unwanted Software, will take place 13–14 October 2009 
in Montreal, Quebec, Canada. For more information see 
http://www.malware2009.org/.

The SecureLondon Workshop on Information Security Audits, 
Assessments and Compliance will be held on 13 October 2009 in 
London, UK. See http://www.isc2.org/EventDetails.aspx?id=3812. 

RSA Europe will take place 20–22 October 2009 in London, UK. 
For full details see http://www.rsaconference.com/2009/europe/.

The 17th general meeting of the Messaging Anti-Abuse Working 
Group (MAAWG) will be held 26–28 October 2009 in Philadelphia, 
PA, USA. Meetings are open to members and invited participants only. 
See http://www.maawg.org/.

AVAR2009 will be held 4–6 November 2009 in Kyoto, Japan. For 
more details see http://www.aavar.org/avar2009/.

http://www.ceas.cc/
http://www.machtvantage.com/computerforensics.html
http://www.blackhat.com/
http://www.usenix.org/events/sec09/
http://www.ccdcoe.org/126.html
http://www.eco.de/veranstaltungen/7dask.htm
http://www.imf-conference.org
http://www.sourceconference.com/
http://www.hackerhalted.com/
http://www.virusbtn.com/conference/vb2009/
http://www.ecrimeresearch.org/
http://www.malware2009.org/
http://www.isc2.org/EventDetails.aspx?id=3812
http://www.rsaconference.com/2009/europe/
http://www.maawg.org/
http://www.aavar.org/avar2009/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.virusbtn.com/
mailto:editorial@virusbtn.com


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


