
AUGUST 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Google+, privacy and the human brain

3 NEWS

 VB2011 call for last-minute papers

 Erratum: VBSpam comparative July 2011

 Phisher gets 12 years+ in jail

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 Frankie say relax

7 SpyEye bot – aggressive exploitation tactics

 FEATURES

12 A new trend in exploitation

15 IPv6 mail server whitelist declaring war on
 botnets

16 Relock-based vulnerability in Windows 7

21 END NOTES & NEWS

RELOCATION ON BOARD
The idea of a virus carrying (or calculating) a
relocation table allows virus writers to use a
high-level language and high-level APIs without
having to perform tricks with position dependence.
Peter Ferrie details two such viruses, Linux/Relax.A
and Linux/Relax.B.
page 4

WAR ON BOTNETS
Thanks to the introduction of IPv6, spammers
will have access to a much larger pool of unique
IP addresses, making it almost impossible for
anti-spam companies to maintain useful blacklists.
The ‘IPv6whitelist.eu’ was founded to try to solve
this problem. The project assumes that all computers
send out spam, unless they have been registered
on the whitelist. One of the project’s co-founders,
Dreas van Donselaar, explains more.
page 15

RELOCK REVIVAL
Through analysis of an old piece of malware,
researchers at the University of Verona have found
unexpected vulnerabilities in Windows 7 and have
demonstrated that with some slight tweaks,
W32/Relock will run smoothly on the latest OS.
page 16

2 AUGUST 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

GOOGLE+, PRIVACY AND THE
HUMAN BRAIN
Google+ has become the latest cool new social network
that everyone wants to try. More than 10 million users
joined the site in the space of just a few days – pretty
impressive even for a company like Google. Facebook
and Twitter had to wait years to build up such a large
number of users. For those who have not yet experienced
Google+, I would describe it as a mix between Facebook
and Twitter. You can follow whoever you want, you
add only the people you want, and you can create
different circles of contacts, so that every time you share
something you can select the circles with which you
wish to share it. You can even go ‘public’, sharing with
everybody, as in Twitter.

In the security industry we know the dangers of sharing
personal information and we never stop warning about
it. The idea of the circles in Google+ is a simple one
and a good one, making it very easy to share what you
want with the people you want. (While this is technically
also possible on Facebook, creating lists on Facebook
is a rather more diffi cult process and users tend to
share all of their information with all of their contacts.)
Overall, we are enjoying the ease of use of Google+, and
hoping that Google has learned from its past mistakes
(remember Buzz?).

However, there is still the issue of privacy. The following
is an excerpt from the Google+ terms of service:

‘By submitting, posting or displaying the content
you give Google a perpetual, irrevocable, worldwide,
royalty-free, and non-exclusive license to reproduce,
adapt, modify, translate, publish, publicly perform,
publicly display and distribute any Content which you
submit...’

The fact that people are worried about this and are
discussing it publicly (e.g. http://www.zdnet.com/blog/
projectfailures/google-plus-is-privacy-an-issue/13749),
and the fact that the site has some close competitors
(e.g. Facebook) means that Google will have plenty of
motivation to fi ght to win the trust of its users. But in
this battle over privacy the key is the user. Ultimately it
is the user who decides how exposed he/she wants to be,
and in this case, I’m afraid that the battle is already lost:
privacy no longer exists for most users.

It doesn’t matter how loudly we shout our warnings, all
users will reach the point where they will have to decide
between privacy and popularity – and in that moment
the majority of users seem to opt for popularity. Social
networks not only enable people to share thoughts, ideas,
photographs, videos and more, but they also make all
users equal. Anyone can talk, anyone can listen. This
was impossible before the Internet came along, and we
now have the opportunity for anyone to spread their
beliefs and ideas, to become popular and feed their
ego. In some cultures people compare the size of their
muscles as a show of status; in social networks users
compare the number of followers/contacts they have, or
in the case of Google+, the size of their circles.

At some point in their lives a lot of people dream of
becoming a ‘rock star’ (or the equivalent in their fi eld)
– gaining recognition from the masses – yet very few will
ever achieve such a status in real life. Social networks give
the opportunity to millions of ordinary people to build up
networks of followers – people will throw themselves into
Google+ hoping to become something they are not. And
thus the better privacy settings (or ones that are easier to
use) will actually translate into less privacy.

Is there a perfect solution? No. The only way to resolve
the issue once and for all would be to take away users’
freedom and clamp down on privacy – which is not a
viable option. We can only try to mitigate the problem
through education: give users enough information to
enable them to make their own decisions based on a
better understanding of the implications of being a ‘rock
star’. We know that a rock star’s life is not all glamour,
and our responsibility is to share that knowledge. No
more, no less.

‘In the security
industry we know
the dangers of
sharing personal
information and we
never stop warning
about it.’
Luis Corrons, Panda Security

http://www.zdnet.com/blog/projectfailures/google-plus-is-privacy-an-issue/13749

3AUGUST 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
VB2011 CALL FOR LAST-MINUTE PAPERS
VB is inviting submissions
from those wishing to
present last-minute papers at
VB2011 in Barcelona (5 to
7 October). Those selected
to present last-minute papers
will receive a 50% discount on the conference registration
fee. The deadline for submissions is 8 September 2011
(speakers will be notifi ed no later than 18 days prior to the
start of the conference). The full call for papers can be seen
at http://www.virusbtn.com/conference/vb2011/call/.

ERRATUM: VBSPAM COMPARATIVE JULY
2011
As a result of human error (and a reviewer in need of a
holiday), a number of mistakes regrettably crept into last
month’s VBSpam comparative review. An incorrect formula
was used to calculate products’ fi nal scores, making the
majority of scores slightly higher than they should have
been. With the correct calculations the pass/fail results
remain unchanged, although the order of FortiMail and
SpamTitan are reversed in the listings of products by fi nal
score, with FortiMail now achieving the third highest fi nal
score, and SpamTitan coming in fourth.

In addition, it was reported in the July review that in the
May review, OnlyMyEmail’s MX-Defender had missed four
spam messages. In fact, the product missed only two spam
messages on both occasions. VB apologises for the errors
and any inconvenience they may have caused. The correct
results are all now available at http://www.virusbtn.com/
vbspam/archive/test?id=164 and in the updated PDF at
http://www.virusbtn.com/pdf/magazine/2011/201107-
vbspam-comparative.pdf.

PHISHER GETS 12 YEARS+ IN JAIL
A Californian man has been sentenced to 12 years and
seven months in prison for his role in a phishing scam that
targeted more than 38,000 victims.

34-year-old Tien Truong Nguyen and two accomplices used
identities stolen from users of various fi nancial services to set
up lines of credit at instant credit kiosks at Wal-Mart stores,
fraudulently obtaining merchandise worth around $200,000.
When Nguyen was arrested in January 2007, police found
stolen banking and credit card information belonging to
38,500 victims as well as 20 web templates used to make
fake sites for eBay and a number of local banks.

Nguyen’s accomplices have also received prison sentences
in connection with the crime.

2011
BARCELONA
5-7 October 2011

Prevalence Table – June 2011 [1]

Malware Type %

Autorun Worm 8.57%

FakeAlert/Renos Rogue AV 6.25%

VB Worm 5.96%

Heuristic/generic Virus/worm 5.40%

Adware-misc Adware 5.12%

Sality Virus 4.81%

Confi cker/Downadup Worm 4.43%

Agent Trojan 3.60%

LNK Exploit 3.30%

Downloader-misc Trojan 3.05%

StartPage Trojan 2.84%

OnlineGames Trojan 2.61%

Virut Virus 2.08%

Ircbot Worm 1.99%

AutoIt Trojan 1.81%

Zbot Trojan 1.78%

Slugin Virus 1.78%

Heuristic/generic Trojan 1.71%

WinWebSec Rogue AV 1.53%

Crack/Keygen PU 1.45%

Dropper-misc Trojan 1.39%

Crypt Trojan 1.38%

Kryptik Trojan 1.36%

Injector Trojan 1.33%

Iframe Exploit 1.31%

Virtumonde/Vundo Trojan 1.30%

Alureon Trojan 1.26%

Cycbot Trojan 1.26%

Delf Trojan 1.23%

HackTool PU 1.16%

Qhost Trojan 0.93%

Bifrose/Pakes Trojan 0.86%

Others [2] 15.15%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/vb2011/call/
http://www.virusbtn.com/vbspam/archive/test?id=164
http://www.virusbtn.com/pdf/magazine/2011/201107-vbspam-comparative.pdf
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 AUGUST 2011

FRANKIE SAY RELAX
Peter Ferrie
Microsoft, USA

When a virus infects a fi le, it usually needs to know its
loading address so that it can access its variables. This is
done most commonly by using a ‘delta offset’. There are
two main types of delta offset: one is the difference between
the location where the virus is currently loaded and the
original location where the virus was loaded when it was
created; the other is the difference between the location of
the variable and the start of the virus code. One alternative
method is to append relocation items to the host relocation
table (if one exists), so that the addresses in the virus
code are updated appropriately by the operating system
itself. However, touching the host relocation table can be a
complex task, depending on the fi le format and its location
within the fi le. Another alternative is to carry a relocation
table in the virus body and use that to update the addresses
to constant values during the infection phase. This is the
method that is used by Linux/Relax.A. Linux/Relax.B uses
the same method, but in this case the relocation table is
generated dynamically.

ALL YOUR BASE

Both viruses begin by registering two signal handlers: one
to intercept invalid regular memory accesses (for example,
a pointer to unallocated memory), and the other to intercept
misaligned addresses or invalid mapped-memory accesses
(for example, in a fi le that is memory-mapped according to
its original fi le size, but which is then truncated by another
process). The viruses use the ‘int 0x80’ interface directly
here, because no external symbols have yet been resolved
(that is, the host has access to its own symbols, but the virus
does not know where they are yet). These two int 0x80 calls
are the only ones in the virus code. However, what might
be considered a bug exists here – if an exception occurs,
then the signal handlers are not restored to their default
values. Thus, if an exception occurs in the host (perhaps due
to the presence of the virus) and in the absence of another
registered signal handler, the signal handlers will run the
host entrypoint again – at which point further exceptions
seem likely to occur, so the signal handlers will run again
(and again, and again). The result is an infi nite loop.

At this point, Relax.A fi nds the image base of its host
(Relax.B does this the fi rst time that a function is called in
libc) by walking backwards one page at a time, beginning
at the start of its code, until ‘an’ ELF header is found. The
‘an’ here refers to the fact that that no verifi cation is made
that the signature belongs to an actual header, as opposed

to the (unlikely) case that the magic value happens to
appear at the start of a page. However, the signal handler
will intercept any problem relating to fake headers. This
lack of verifi cation could exclude certain fi les from being
infected, but this is a minor point. It would be possible to
inoculate fi les against these and similar viruses by placing
the fake signature in the right place, but the idea is a
little silly. The simplest approach would be to remove the
writable fl ag on the fi le, since the viruses make no attempt
to set it.

GET IT. ‘GOT’ IT? GOOD.
Once the header is found, the viruses search within the
Program Header Table for the segment that contains the
virus code. The virus code segment is identifi ed by fi nding
the loadable segment which has the lowest virtual address.
The viruses also search for the segment that holds the
dynamic linking information. The viruses search within
the tags in the dynamic segment for the one that describes
the Global Offset Table. If the third entry in the Global
Offset Table is non-zero then the viruses use that pointer
to search for the segment that holds the dynamic linking
information, and then search the tags within that segment
for the one that describes the Global Offset Table. The
Global Offset Table is a table of pointers. The third value
in the table is a pointer to the ‘_resolve’ symbol inside
the dynamic linker. If the dynamic linker is not required
(because the symbols have all been resolved statically
before the process started) then the value at that location
will be zero.

In either case, the viruses perform the same search for the
dynamic segment and another Global Offset Table, using
the fi fth entry in the current Global Offset Table. The new
table should point into libc. There is no requirement for it
to do so, but there is no other library that the loader would
need. The viruses search within the tags in the dynamic
segment for the symbol table and the string table. In order
to call external functions, the viruses need to resolve the
external symbols. To do so, they would normally need to
know how many symbols exist. They attempt to retrieve the
number of symbols from a hash table which is located by
searching the tags within the dynamic segment. The viruses
know about two hash table tags. If neither of these is found,
then they use a hack to calculate it by determining the
number of symbol structures that can fi t in the symbol table.

It is not known why the viruses determine the number of
symbols, except perhaps as a leftover from code that used
one of the hash tables correctly (see VB, August 2009
p.4 for details of how the hash table is used for symbol
resolution). They could perform the symbol search without
an upper limit (the symbols that the viruses need ought

MALWARE ANALYSIS 1

http://www.virusbtn.com/pdf/magazine/2009/200908.pdf

VIRUS BULLETIN www.virusbtn.com

5AUGUST 2011

to exist), and simply allow the signal handler to trap any
error. Since the virus is using a brute-force search anyway,
the performance is actually worse with the check for the
upper limit than it would be without it. The virus author
knows how to use the hash table correctly, but since the
viruses recognize two types of hash table, which have
different formats, there would need to be two parsing
algorithms.

Relax.A uses the gathered information to resolve the
address of a single function, mprotect(), while
Relax.B uses it for multiple functions. Further, Relax.B
waits until a function in libc is called for the fi rst time, and
then resolves the address of that function. Thereafter, the
proper address is used directly.

PROTECTION DETAIL

Relax.A uses the mprotect() function to make the code
section writable. Then the virus parses the relocation
table that it carries in its data section, searching for the
relocation items that correspond to external symbols. The
virus resolves the addresses of the external symbols that
it needs in order to infect fi les. The relocation table is in a
custom format, and is produced by a standalone tool that is
run after the fi le is compiled. The details of that tool are not
relevant here. After applying all of the required relocations,
the virus restores the section attributes, and then calls the
main virus body.

Relax.B does not carry a relocation table in its data section.
Instead, the virus disassembles its code at runtime and
creates the relocation table dynamically. As a result, the
mprotect() function is not needed by the virus. The virus
has no concerns about the code versus data problem, since
the entire virus body is known. Of course, if there were
any misinterpretation, it would have prevented the fi rst
generation of the virus from running at all, and thus would
have been detected instantly.

Since the viruses can run from any address thanks to the
relocation table, they are also able to make use of external
functions instead of calling the int 0x80 interface directly.
In this case, the viruses use the ftw() function to search for
fi les to infect instead of performing the fi le enumeration on
their own. The ftw() function accepts a pointer to a function
to be called for each item that is found. The infection
routine begins by attempting to open the item and map the
fi rst 4KB of the fi le. The viruses are interested in ELF fi les
that are at least 1KB long (this appears to be an oversight
given the size of the map above), but not more than 3MB
large. In contrast to all of the previous pieces of malware
from this virus author, the viruses are quite strict about the
fi le format:

• the ELF signature must match

• the size of the ELF header must be the standard value

• the fi le must be 32-bit format

• the fi le must use little-endian byte-ordering

• the fi le must be executable

• it must be for an Intel 386 or better CPU

• the version must be current

• the size of a program header table entry must be the
standard value

• there must not be too many program header table entries

• the program header table must fi t within the fi le

• the ABI must either not be specifi ed or it must be for
Linux

• the size of a section header table entry must be the
standard value

• the section header table must fi t within the fi le

• the fi le must not be infected already.

The infection marker for the viruses is the last byte of the
e_ident fi eld being set to 1. This has the effect of
inoculating the fi le against a number of other viruses
(including several by the same virus author), since a marker
in this location is quite common.

HOLE-Y WORK
The viruses search the Program Header Table for the
interpreter segment. The segment will be present if the
fi le uses dynamic linking. If the segment is found, then
the viruses check that it fi ts within the fi le, and that the
virus code can fi t in the space between the end of the
interpreter segment and the start of the next page (though
there is an off-by-one bug here such that an exact fi t will
not be accepted). There is an implicit assumption here
that the interpreter segment is in the fi rst page of the fi le.
The viruses also search for the loadable segment which
has the highest virtual address. If the interpreter segment
is not found, then the viruses will try to place their code
immediately after the Program Header Table, otherwise
they will try to place their code immediately after the
interpreter segment. There is an implicit assumption
here that the Program Header Table appears before the
interpreter segment. If the two elements are swapped,
then the virus will overwrite the Program Header Table as
a result.

The viruses initially increase the fi le size by 4KB and
create a hole at the chosen location (into which the virus

VIRUS BULLETIN www.virusbtn.com

6 AUGUST 2011

code will be placed). The bytes between the end of the
virus code and the start of the next page are zeroed.
There is a bug here in that some bytes in the following
page are also zeroed because the length is calculated
incorrectly. The viruses add 4KB to the fi le offset of the
Section Header Table, and to the fi le offset of each of the
entries in the table, to compensate for the size of the hole
that was inserted.

The viruses fi nd the Program Header Table entry that
corresponds to the fi le header, increase its physical and
virtual size by 4KB, and decrease its physical and virtual
addresses by 4KB. The physical and virtual addresses of
the Program Header Table and the interpreter segment
are also decreased by 4KB, to ensure that they remain
within the fi rst page of the fi le. All of the other Program
Header Table entries have their physical address increased
by 4KB.

The viruses increase the physical and virtual sizes of the
loadable segment with the highest virtual address by the
size of the virus data. They create a hole at the chosen
location, into which the virus data will be placed. The
viruses then increase by a corresponding amount the fi le
offset of each entry in the Section Header Table whose
previous offset was after the end of the affected loadable
segment.

The viruses parse their relocation table again, and for each
entry that is not an external symbol in the Relax.A code, or
for each entry in Relax.B (Relax.B does not carry relocation
information for the external symbols), the viruses apply
the appropriate relocation value in the newly infected fi le,
such that all of the addresses are made absolute according
to the host loading address. Of course, this requires that
the address is constant. It will not work if the fi le is a
position-independent executable. To achieve that would
require the use of a delta offset in order to locate the data
section in the fi rst place, and then to apply the relocations
dynamically to the entire virus body.

Finally, the viruses set the entrypoint to point to the virus
code, mark the fi le as infected, and then allow the search to
continue for more fi les.

CONCLUSION
The idea of a virus carrying (or calculating) a relocation
table is great for virus writers. It allows them to write the
code in a high-level language, and use all of the high-level
APIs that exist, without having to perform tricks with
position dependence or having to use Assembler to fi ddle
with the bits. Best of all, it doesn’t make any difference to
anti-virus vendors, because whether it’s high level or low
level, we can still detect it without any trouble.

VB2011 BARCELONA
5–7 OCTOBER 2011

Join the VB team in Barcelona, Spain for the
anti-malware event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Rogue AV

 • Botnets

 • Social network threats

 • Mobile malware

 • Mac threats

 • Spam fi ltering

 • Cybercrime

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Hesperia Tower,
 Barcelona, Spain

When: 5–7 October 2011

Price: VB subscriber rate $1795

BOOK ONLINE AT
WWW.VIRUSBTN.COM

2011
BARCELONA

http://www.virusbtn.com/conference/vb2011/index

VIRUS BULLETIN www.virusbtn.com

7AUGUST 2011

SPYEYE BOT – AGGRESSIVE
EXPLOITATION TACTICS
Aditya K Sood, Richard J Enbody
Michigan State University, USA

Rohit Bansal
SecNiche Security, USA

This paper sheds light on the exploitation techniques that
are used by SpyEye to spread infections. Last month,
we presented details of the SpyEye malware infection
framework [1]. In this article, we continue our research and
will discuss the SpyEye bot and the tactics used for stealing
information from victim machines.

1. UNDERSTANDING THE SPYEYE BOT
The SpyEye bot [2] has to be installed on the victim
machine to become a resident, and it is easiest to install
code at ring 3. Conceptually, the OS is divided into four
main rings starting from level 0 to level 3. The rings are
used to defi ne the access privileges within which code is
allowed to execute. Ring 0 protects the kernel. Code that
executes in ring 0 has very high privileges so malicious
code running in ring 0 can be particularly virulent. In
contrast, code executed in ring 3 is in the application
layer, and has fewer privileges than ring 0. However,
ring 3 rootkits can have signifi cant capabilities. Ring 3
rootkits can use ‘CreateRemoteThread’, ‘VirtualAllocEx’
and ‘WriteProcessMemory’ to inject malicious code into
running processes. It is also possible to enumerate and
modify fi les, processes and registry keys. At ring 3 the
rootkit can wait silently for keyboard strokes, and direct
all the information to a centralized server using an HTTP
communication interface. The SpyEye bot effectively runs
as a user-mode (ring 3) rootkit as illustrated in Figure 1.

Rootkits are a class of stealthy malware which can be
extremely diffi cult to detect because they sit between
applications and the operating system. A rootkit running
at ring 3 has the capability to hook application-level
processes. The SpyEye bot will hook functions when
a system call is initiated from an application. Rather
than executing the normal operating system functions,
malicious ones are hooked in. Hooking is effi cient because
dynamically linked libraries have predefi ned memory
addresses and locations. This means that the locations of
memory addresses are known and are not dynamically
generated. The SpyEye bot hooks specifi c DLLs such as
wininet.dll (Windows networking dynamic link library)
to tamper with the HTTP data that fl ows between a
victim’s browser and the target website. It also hooks the

nspr4.dll routine, which is a core library used by the
Firefox, Netscape and Flock browsers. The SpyEye bot
uses Windows’ built-in Application Programming Interface
(API) to execute hooking modules in the context of
running applications. Since all browser communication
occurs at a user-mode level it becomes easy for SpyEye
to perform modifi cations by manipulating function calls.
SpyEye basically performs two major operations on the
DLL:

• It completely removes and replaces the executable
binary or DLL from the system.

• It performs direct binary modifi cations in the memory
address space.

The hooking procedure is illustrated in Figure 2.

Figure 2: SpyEye bot hooking procedure.

Figure 1: SpyEye ring 3 execution.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

8 AUGUST 2011

The SpyEye bot monitors the types of applications
running on a victim’s machine and infects processes using
its maliciously designed plug-ins. As mentioned in [1],
the SpyEye bot can be customized because it supports
plug-ins that are specifi ed within the SpyEye framework.
The SpyEye bot can issue commands in real time to infect
specifi c application processes. SpyEye can easily hide
processes and even has the capability of escalating the
privilege level of a process. In addition, it can hide the
TCP/UDP port binding on a victim’s machine so that it
becomes hard to detect the communication taking place
between the bot and the backend collector. The SpyEye
bot’s rootkit functionality has resulted in robust control over
applications which, in turn, make it hard to detect.

2. SPYEYE – TACTICS AND TECHNIQUES
In this section we will discuss specifi c tactics used by
SpyEye to infect victim browsers and machines in order to
spread. The tactics that we will discuss have been noticed in
multiple versions and illustrate some stability in the SpyEye
framework.

2.1 Malicious plug-ins
SpyEye’s recent versions starting from 1.2.x have shown
a great improvement in designing customized plug-ins
based on requirements. In order to support this, the SpyEye
frameworks include a Software Development Kit (SDK)
which has self-defi ned APIs based on the framework. The
API calls bind a plug-in directly to the bot. There is no
restriction on the number of plug-ins that can be used with
the SpyEye bot. The design of customized plug-ins has
actually diversifi ed the infection pattern of SpyEye. Now
it is possible for a single plug-in to communicate directly
with the bot and send data back to the database. This
design has resulted in modular infections. In order to use
plug-ins with the backend collector, the SpyEye framework
requires certain modifi cations to the database. In fact, for
plug-ins the collector generates a new database every day.
Malicious plug-ins can perform operations based on the
attacker’s choice.

More technical details about specifi c plug-ins are discussed
in the next section.

2.2 Malicious web fakes
Web fakes are one of the most prominent tactics used
by SpyEye to circumvent the normal functioning of the
browser. Web fakes are fake authentication windows
generated by the SpyEye bot when a user visits a specifi c
bank website. For example, consider a victim who is

visiting a Bank of America website and his system is
infected with SpyEye bot. The bot generates fake windows
or pop-ups masquerading as Bank of America to fool the
user into entering authentication credentials. These are then
sent to the backend collector. As the SpyEye bot resides in
the system in a stealthy manner, it becomes easy to hook
processes. Web fakes are also defi ned and confi gured in a
raw format as text. The text is interpreted by the plug-in
and then commands are issued to the bot to infect browser
processes. The web fakes are generated as follows:

• Web fakes have a direct interface with the SpyEye
plug-ins. Once the bot is installed on the system, it
hooks system DLLs as explained in the previous section.

• As web fakes relate to HTTP communication,
SpyEye hooks all the functions in Wininet.dll so
that communication through the browser can be
modifi ed and monitored. This process works through
DLL injection (a technique used to execute code
in the memory space of another process by forcing
the process to load the attacker-specifi c DLL). This
technique is widely used by virus writers to keep
track of the activities in the system and for performing
modifi cations when required. Module hooking and
DLL injection work collaboratively to take control of
various processes.

• The data is transferred to the processes by the same
concept that is used by Windows OS, i.e. pipes.
Plug-ins issue commands to the SpyEye bot which
generates web fakes as described above and transfers
data to backend servers via HTTP requests.

SpyEye uses a well-defi ned SDK for generating web fakes.
The following functions are used:

• DLLEXPORT bool IsGlobal(): This function is called
by a plug-in itself at the start. It provides full access
for the plug-in to communicate with all the infected
processes so that it is possible for the plug-in to take
control of all the infected interfaces directly from the
source.

• DLLEXPORT void Callback OnBeforeLoadPage(IN
PCHAR szUrl, IN PCHAR szVerb, IN PCHAR
szPostVars, OUT PCHAR * lpszContent, OUT
PDWORD lpdwSize): This function is called by
plug-ins to set a hook on the HTTP/HTTPS request
so that the contents of the page can be reported back
to the centralized repository for analysing the type of
information going out of the network.

• DLLEXPORT void Callback
ProcessContentOfPage(IN PCHAR szUrl, IN
PCHAR szVerb, IN PCHAR szPageContent, OUT
PCHAR * szOut, IN OUT PDWORD lpdwSize):

VIRUS BULLETIN www.virusbtn.com

9AUGUST 2011

This function is used to infect the web page
dynamically. It again performs a hook immediately
before the page is about to render in the browser. It
provides an edge to update page contents and injects
additional web fakes into banking websites.

• DLLEXPORT void FreeMem(LPVOID lpMem):
This function is used to set the allocated resource free.

The list above provides a nice summary of how the SpyEye
framework’s standard APIs can be used for malicious
purposes. Figure 3 shows the list of functions that are used
by the SpyEye malware infection framework.

Figure 3: SpyEye SDK functions.

2.3 Anti-virus bot detection
The SpyEye framework has gone through a number of
developmental changes since the fi rst version was released.
It has added a new anti-virus capability – an anti-virus
module for third-party infection and self detection. This
module actually enhances the SpyEye operations because
the framework is capable of scanning the executables
without any outside instruction. It looks quite strange for
a malware framework to be using an anti-virus engine.
Since the bot has the capability to send the data back to the
collector module, it is also possible to scan the third-party
executables when an HTTP URL is sent by a bot to the

control panel. These features demonstrate the fact that
malware is getting cleverer. The virus detection module is
presented in Figure 4.

2.4 Bypassing NAT – SOCKS with back
connect

SpyEye has a built-in capability for supporting SOCKS
connections. This feature was introduced in SpyEye version
1.2.x. When infection takes place in victim machines,
it becomes hard to determine whether infected systems
have leased IP addresses or systems that are behind NAT
or fi rewalls. This feature helps in setting unanimous
port connections through a SOCKS proxy for transfer of
data between a victim machine and the control server.
Basically, SOCKS is a network protocol supporting HTTP
communication between client and server through the
implementation of proxy servers to create a tunnel from
a private network to the Internet. The SOCKS protocol is
platform independent and can be implemented with ease,
thereby supporting both Windows and *nix environments.
This technique gets around fi rewall security protection
because the HTTP traffi c is relayed from different ports.
The SOCKS proxy acts as a gateway. An IP authentication
mechanism and identifi cation protocol features are applied in
the SpyEye framework so that the bot works appropriately.
In addition, this protocol can be used to set up a stealth
tunnel between a SpyEye bot and the centralized servers.

The SOCKS server is started on the same server as that on
which the SpyEye framework is hosted. SpyEye uses the
code shown in Figure 5 for confi guring the SOCKS proxy
on the server side.

The bot communicates with plug-ins and data is
transferred directly to the SOCKS server, bypassing the

Figure 4: SpyEye anti-virus detection module.

VIRUS BULLETIN www.virusbtn.com

10 AUGUST 2011

NAT infrastructure. It works with insecure and secure
connections such as HTTP and HTTPS respectively.
Logging is also supported by the SOCKS server. Similarly,
SpyEye supports an RDP and FTP back connect module.
(Figure 6).

2.5 Web injects – manipulating the content
SpyEye is capable of injecting content into banking pages
in real time as they are displayed. A number of techniques
have been discussed in previous sections of this paper.
The web injections [3] are more destructive in practice
because they modify the content of the web page before
the actual web page is rendered in the browser. The web
injections occur on the client side. For example, a user with
a SpyEye-infected machine visits a banking site. As soon
as the website is about to load in the browser, the SpyEye
bot injects custom content into the same web page. As a
result, the content looks in line with the real web page,
thereby implying the authenticity of the rendered content in
the web browser. Internet Explorer and Firefox are injected
in an extensible manner by SpyEye. Figure 7 shows the
content injection.

2.6 Screen shot stealers and screen
scrapers
SpyEye has an inbuilt key-logging mechanism that is
perfectly designed for logging keystrokes from the victim
machine. Basically, we have noticed form-grabbing
activities by the SpyEye bot instead of complete keyboard
hooking. In the form grabbing, all the content from
HTML forms is stolen during the POST request and the
bot sends that information back to the backend database.
Form grabbing is one of the predominant features of
SpyEye because all the user’s monetary transactions and
login activities take place via form submission. In order
to perform effi cient form grabbing, the SpyEye bot hooks
into the browser dynamic link libraries and hooks the data
submission functions so that sensitive information can
be stolen from the victim machine. In addition to this,
SpyEye also uses a screen scrapping feature in which
the bot takes snapshots of the victim machine as the user
is inputting sensitive information and sends them to the
backend server [4] in a compressed format. Figure 8
shows how the snapshots of the system are retrieved at the
main panel.

2.7 X.509 certifi cates stealer
SpyEye has an inbuilt plug-in that is primarily designed
for stealing X.509 certifi cate information from victim
machines. Basically, this is accomplished through
Man-in-the-Browser (MitB) attacks. The SpyEye bot sits
in between the browser and the destination domain, and
since it has already hooked the HTTP communication
interface, the bot is able to extract information from the
certifi cates. This is done so that the bot can communicate
with the legitimate domain without any hassles from the

Figure 5: SpyEye SOCKS module.

Figure 6: FTP server for SpyEye back connect.

VIRUS BULLETIN www.virusbtn.com

11AUGUST 2011

victim browser. Apart from this, stolen certifi cates can
also be used to generate fake certifi cates for malicious
purposes. Figure 9 shows an implementation of the plug-in
that steals certifi cates from the Firefox communication
interface.

2.8 Distributed denial of service

SpyEye version 1.3.x has implemented the concept of
distributed denial of service through inbuilt plug-ins.

This functionality has been noted in the latest versions
of the malware as a protection against anti-SpyEye
detectors. Using this plug-in, the command and control
server forces the installed bots to start sending packets
against anti-detectors. Overall, the DDoS is achieved
by harnessing the power of the victim machine through
installed SpyEye bots.

Figure 10 shows how exactly the DDos.cfg plug-in is
confi gured in SpyEye. This plug-in is not very effective at

Figure 7: SpyEye’s web inject in action.

Figure 8: SpyEye – screenshot stealer.
Figure 9: Firefox – certifi cate collector.

VIRUS BULLETIN www.virusbtn.com

12 AUGUST 2011

conducting denial of service attacks in a distributed manner,
but the design could improve and become more robust in
the future.

CONCLUSION

In this article, we have presented SpyEye’s most frequently
used techniques. All the variants of SpyEye effectively
use these tactics to exploit victim machines for malicious
purposes.

The points discussed in this article demonstrate the
advancements that have taken place in third-generation
botnets.

REFERENCES
[1] Sood, A.K.; Enbody, R.J.; Bansal, R. SpyEye

malware infection framework.
http://www.virusbtn.com/virusbulletin/
archive/2011/07/vb201107-SpyEye.

[2] Sood, A.K.; Enbody, R.J. Hack In The Box – Spying
on SpyEye. http://secniche.blogspot.com/2011/05/
hackinthebox-ams-spying-on-spyeye.html.

[3] Malware at Stake (SpyEye & Zeus) Web Injects
– Parameters. http://secniche.blogspot.com/2011/07/
spyeye-zeus-web-injects-parameters-and.html.

[4] Malware at Stake, SpyEye Backend Collector.
http://secniche.blogspot.com/2010/08/spyeye-
backend-collector-generating.html.

Figure 10: DDoS confi guration.

A NEW TREND IN EXPLOITATION
Abhishek Singh, Johnathan Norman
Alert Logic, USA

Understanding the exploitation of a vulnerability is
important both for product security teams and for the
research teams that generate signatures for network
intrusion prevention/detection (NIS) devices.

Product security teams need to gain an understanding of
the vulnerable part of the code and provide an update, or
patch, to fi x the vulnerability. In order to create a signature
for an intrusion prevention/detection device, researchers
must gain an understanding of the vulnerability and then
derive the conditions that can lead to it being exploited.
When deployed, the signature will protect the vulnerable
application from being exploited via the network.

In order to develop a signature for traditional types of
vulnerabilities such as buffer overfl ows, format string
vulnerabilities and integer overfl ows, we have to refer to
the vulnerable code itself. Once the vulnerable portion of
the code has been identifi ed, it can be used to determine the
conditions that will lead to its exploitation, and a signature
can be generated based on those conditions. Recently,
however, we have observed a new type of exploitation
technique that makes use of improper implementation of
protocol specifi cations. This type of exploitation requires a
different type of analysis.

WHAT MAKES THIS TREND DIFFERENT?
Even though improper implementation of protocol
specifi cations can lead to traditional, well-defi ned classes of
exploitation such as integer overfl ow, buffer overfl ow, denial
of service attacks and remote code execution, exploitations
arising in this manner can be classifi ed as a new trend for
the following reasons:

• Rather than analysing the vulnerable source code
to derive the conditions that can be used to create a
signature for NIS devices, the proprietary protocol
specifi cation document must be consulted. This
document states the values for the arguments of a
command as well as when and how the values can
be used. The NIS signature is created based on the
information provided in the documentation.

• Traditionally, when testing for security issues, product
test teams fi nd a vulnerable function and then generate
various inputs for the function to test whether it can be
exploited. In the case of vulnerabilities that arise due
to the improper implementation of proprietary protocol
specifi cations, test cases must be constructed according

FEATURE 1

http://www.virusbtn.com/virusbulletin/archive/2011/07/vb201107-SpyEye
http://secniche.blogspot.com/2011/05/hackinthebox-ams-spying-on-spyeye.html
http://secniche.blogspot.com/2011/07/spyeye-zeus-web-injects-parameters-and.html
http://secniche.blogspot.com/2010/08/spyeye-backend-collector-generating.html

VIRUS BULLETIN www.virusbtn.com

13AUGUST 2011

to the values set by the protocol specifi cations and not
by the exploitation techniques.

• There have been repeated occurrences of exploitations
taking advantage of the improper implementation of
protocol specifi cations, as outlined in Table 1.

In the following sections we will present analyses of two
of the vulnerabilities listed here, CVE-2011-0654 and
CVE-2009-3103, in each case looking fi rst at the source
code and then using the protocol specifi cations to derive the
conditions upon which to base an NIS signature.

ANALYSIS OF MS11-019 CVE-2011-0654
CVE-2011-0654 was a zero-day browser election
vulnerability [1]. It exists in the way that the Common
Internet File System (CIFS) browser protocol
implementation [2] parses malformed browser messages.
Microsoft has issued a patch for the vulnerability.

Figure 1 shows the packet capture when the exploit code is
executed. It is obvious from the capture that the server name
is the malicious fi eld and is sending malicious bytes for the
exploitation of the vulnerability.

Figure 1: Packet capture for CVE-2009-3103 when
malicious bits are sent over the wire.

When an overly long ServerName fi eld is encountered, the
code in the _BowserWriteErrorLogEntry function allocates
a fi xed buffer of size 112 (0x70) bytes to store multiple
fi elds. Once the server name is copied, the remaining buffer
size is calculated as

Remaining_Buffer_Size = 112 – (length (Server_Name)*2)

Hence a ServerName fi eld that is 56 bytes long (including
the NULL terminator) would cause the remaining buffer
size to be zero.

Figure 2: Vulnerable section of the code.

Later in the code, as shown in Figure 2, the variable v19
is used in memcpy. As shown in Figure 2, v19 is equal to
v23>> -1. V23 is the variable Remaining_Buffer_Size. If
the variable v23 is decreased by one, v19 being an unsigned
integer becomes = 0xFFFFFFFF. The check ‘if (v19)’
becomes true and a large amount of data is copied to
memcpy, leading to an overfl ow. So, from the analysis of
the code, it can be inferred that in order to prevent such an
overfl ow the sever name must be less than 56 bytes.

However, if we refer to Microsoft’s protocol specifi cation, it
can be seen that the server name must, in fact, be less than
16 bytes and must be null terminated:

‘ServerName (variable): MUST be a null-terminated
ASCII server name and MUST be less than or equal to
16 bytes in length, including the null terminator.’ [2]

CVE ID of the
vulnerability

Trigger conditions

CVE-2009-3103 Vulnerable condition is triggered due
to the improper implementation of the
Server Message Block (SMB) command
negotiate protocol.

CVE-2009-3676 A denial of service vulnerability
exists in Microsoft Windows’ Server
Message Block (SMB) implementation.
Specifi cally, the vulnerability is due to
improper parsing of the NetBIOS Length
parameter. If the Length fi eld does not
match the size of the following SMB
message, an infi nite loop can result,
causing a denial of service condition.

CVE-2010-0270 Vulnerability in improper
implementation of the SMB Trans2
response for command type 0x32. If the
sum of the values of the ‘Data Count’
and ‘Data Offset’ fi elds is larger than the
total length of the SMB message header
and the SMB message data structure,
then an attack is underway.

CVE-2010-0477 Vulnerable condition is triggered when
the message size is greater than the
amount of data.

CVE-2011-0476 Vulnerability in improper
implementation of the SMB response
with command type =0x25. If the value
of the ‘TotalDataCount’ fi eld is larger
than the actual length of the message
data, the exploit is underway.

CVE-2011-0654 Vulnerable condition is triggered due
to the improper implementation of the
server name in Microsoft Windows
Browser Protocol.

Table 1: List of vulnerabilities caused by the improper
implementation of protocol specifi cation documents.

VIRUS BULLETIN www.virusbtn.com

14 AUGUST 2011

In this case a signature for an intrusion prevention/detection
device can be created that checks the length of the server
name in the Browser Election request – a server name
that is greater than 16 bytes indicates exploitation of the
vulnerability.

From the above analysis it can be seen that referring to
the proprietary protocol specifi cation is very important
when creating an NIS signature. The document provides
the correct values, whereas the analysis of the source code
provided a value which would have been incorrect to base
an NIS signature upon.

ANALYSIS OF CVE-2009-3103
Let’s look at the analysis of another zero-day vulnerability,
CVE-2009-3103. This is triggered due to an array indexing
error while parsing SMB packets containing SMB2 dialect
with an SMB Negotiate message [3].

In the source code the Process ID High (PIDHigh) value
is used, without any bounds checking, to index an array of
function pointers. This function pointer is later dereferenced
and called for further processing. So, by using the process
ID fi eld, an attacker can index into an array of function
pointers triggering the vulnerable conditions.

The analysis of the code does not provide an authoritative
condition that can be used to author an NIS signature.
However, if we check the publicly available proprietary
protocol specifi cation document for the legitimate values
for PIDHigh, it states that for a 16-bit process ID the value
must be 0 and for a 32-bit process ID the value is as per the
CIFS/1.0 protocol specifi cation:

‘PIDHigh (2 bytes): This fi eld MUST give the 2 high
bytes of the process identifi er (PID) if the client wants
to use 32-bit process IDs, as specifi ed in [CIFS] section
2.4.2. If a client uses 16-bit process IDs, this fi eld MUST
be set to zero.’ [4]

Further referring to the CIFS protocol [5], the PIDHigh
value is used only in the NtCreateAndX request. The
command value of NtCreateAndX is 0xa2. Since the values
are used in NtCreateAndX, for the command ‘Negotiate
(0x72)’ the value of PIDHigh must be 0.

Hence for network-level inspection devices, it must be
assumed that if the value of the SMB command is 0x72,
and if the value of PIDHigh is not equal to 0, the bits on
the wire are an exploit. Once again, this case demonstrates
that if we refer to the protocol specifi cation documents, the
conditions used to author an NIS signature can be derived in
an authoritative manner.

INFERENCE DRAWN
Protocol specifi cations and/or RFCs generally defi ne the
structure of a protocol and the fi elds that are associated
with it. In some cases proprietary protocol specifi cation
documents (or RFCs) can also defi ne ‘safe’ values,
including when and how these values are used.

The ideal approach to understanding any class of
vulnerability is to reverse the code and perform an analysis
of the vulnerability and then derive the conditions for a
signature. The new trend of exploitations which arise due to
the improper implementation of RFC/protocol specifi cations
require a complete change in the thought process of a
security researcher while performing the vulnerability
analysis. The new trend will force security researchers to
refer to protocol specifi cations, since they might contain the
right values to author a signature.

In some cases, such as CVE-2011-0654, analysis of source
code alone can lead to incorrect values being included in
NIS signatures. In cases such as CVE-2009-3103, source
code analysis is not suffi cient to determine authoritative
conditions for an NIS signature.

For product security testing teams, a complete change in the
design of test cases is required. Fuzzing tools will have to
be designed in such a way that the tool streams the values
enforced by the protocol specifi cations. If fuzzers use the
traditional technique of fi nding the vulnerable function and
generating various inputs to test if it can be exploited, they
will miss exploitations due to the improper implementation
of protocol specifi cations.

REFERENCES
[1] http://www.securityfocus.com/bid/46360/exploit.

[2] http://msdn.microsoft.com/en-us/library/
cc224428(v=prot.10).aspx.

[3] http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-3103.

[4] http://msdn.microsoft.com/en-us/library/
cc246231%28v=PROT.13%29.aspx.

[5] http://www.microsoft.com/about/legal/protocols/
BSTD/CIFS/draft-leach-cifs-v1-spec-02.txt.Figure 3: Packet capture for CVE-2009-3103.

http://www.securityfocus.com/bid/46360/exploit
http://msdn.microsoft.com/en-us/library/cc224428(v=prot.10).aspx
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3103
http://msdn.microsoft.com/en-us/library/cc246231%28v=PROT.13%29.aspx
http://www.microsoft.com/about/legal/protocols/BSTD/CIFS/draft-leach-cifs-v1-spec-02.txt

VIRUS BULLETIN www.virusbtn.com

15AUGUST 2011

IPV6 MAIL SERVER WHITELIST
DECLARING WAR ON BOTNETS
Dreas van Donselaar
SpamExperts, The Netherlands

Although estimates differ between sources, around 95% of all
email traffi c currently consists of spam. Despite there having
been some decreases in spam volumes recently1, we are not
likely to see a signifi cant drop in spam levels any time soon,
as spammers still earn a lot of money from their activities.
Highly organized gangs operating from numerous countries
make a professional living from sending spam and invest
serious amounts of money and resources into their businesses
to remain on top of their game – just like any legitimate
industry. Since spam is a global problem, it can be diffi cult to
track down and take legal action against these gangs.

A large proportion of spam is sent out by botnets. A botnet
consists of a network of many infected computers that
are controlled by a ‘bot master’ and may be used for any
type of online crime, including sending spam. Botnets are
generally made up of home computers whose owners do
not realize that their machines have been infected and are
being used as part of a botnet. Such infected machines can
send out thousands of spam messages per day, and until
the malware is cleaned from the computer, or the machine
is disconnected from the Internet, it will continue to send
spam via the control of the bot master.

Within the security industry, the spam problem is tackled
in a number of different ways. For example, anti-virus
companies provide software to detect the malware
responsible for turning computers into bots, and fi rewall
providers attempt to identify and block suspicious traffi c
coming from the computer. Anti-spam companies,
meanwhile, resort to different methods to try and stop these
bots from delivering spam.

Each computer on the Internet is assigned a unique number
which is used for all Internet communication, the so-called
IP address. When a computer visits a website or sends an
email, the IP address is revealed to the destination server.
Anti-spam companies monitor the activity of these IP
addresses, and if they suddenly detect a stream of spam
from a particular address, they add it to an IP blacklist. All
email from that IP address will then be blocked, stopping
the fl ow of spam to the recipient server. Removal of the IP
address from the blacklist must be requested manually once
the spam issue has been resolved.

There are a few problems with this method. First, spam
has to be detected before the system can make a proper

1 See http://www.virusbtn.com/virusbulletin/archive/2011/07/
vb201107-news1.

FEATURE 2
judgement as to whether or not to block the IP address.
Spammers often send out small bursts of spam messages
to try and keep the volume below the threshold that would
trigger such a listing. Secondly, spammers can keep
infecting new machines to gain access to new IP addresses
which have not yet been listed.

In total there are around four billion IP addresses in IP
version 4. Because there are an increasing number of
devices on the Internet in need of an IP number, this pool of
addresses is rapidly running out and will soon be exhausted.
To get around this problem, a new version of the numbering
system (IP version 6) has been introduced. To avoid running
out of IP space again, this new standard will create a pool of
approximately 340 undecillion (2128) addresses. It is hard to
comprehend such an enormous number, but to give an idea,
it’s greater than the number of stars in the sky.

Thanks to the introduction of IPv6, spammers will have
access to a much larger pool of unique IP addresses, making
it almost impossible for anti-spam companies to maintain
useful blacklists. It will be a lot harder to accurately stop
spam at an early stage, because there will be too many
different IP sources from which spam can be delivered.
Blacklists will grow too large for computers to handle
effi ciently, and spammers will be able to switch to a new
address as soon as the current one gets blocked.

IPV6WHITELIST.EU
The not-for-profi t project ‘IPv6whitelist.eu’ was founded
in 2010 in The Netherlands by Dreas van Donselaar
(SpamExperts), Ruud van den Bercken (XS4ALL Internet/
Stay-Secure) and Raymond Dijkxhoorn (Prolocation/
SURBL) to try to solve the quantity problem IPv6 introduces.
Until now the mechanism has been to assume that computers
don’t send out spam, and then to blacklist them when they
do. The Ipv6whitelist.eu project, however, assumes that all
computers send out spam, unless they have been registered
on the list. All IPv6 addresses are simply blacklisted unless
they appear on the whitelist – addresses must be added to the
whitelist manually via a simple web form.

The project is controversial because it goes against
the openness of the Internet by obliging mail server
administrators to register in a central database before
sending out email. The situation is turned around and
instead of the recipient deciding whether or not to accept
email from a specifi c system, the sender is now obliged
to specify that he/she would like to send email from a
specifi c system.

The initiative will only succeed if suffi cient recipient mail
servers enforce the requirement for senders to join the
IPv6 whitelist. If not enough recipients enforce the rule,

http://www.virusbtn.com/virusbulletin/archive/2011/07/vb201107-news1

VIRUS BULLETIN www.virusbtn.com

16 AUGUST 2011

senders will simply ignore it and not bother registering
their mail servers. The project currently only applies to
IPv6 addresses assigned to the Netherlands. Thanks to the
close collaboration of many IPv6-enabled access providers
and web-hosting companies in the Netherlands, a critical
mass of enforcing recipients has quickly been established,
ensuring that IPv6 senders are forced to comply.

Email from any mail server in the Netherlands which is
not yet registered to the central database is automatically
temporarily rejected by recipient mail servers until the
sending server has been registered (free of charge) via the
API or website. More often than not, unregistered servers
are hacked computers which are being used to send spam
without their owners’ knowledge.

In the long term, we foresee a signifi cant reduction in
spam originating from the Netherlands. Because this
is a completely cost-free system, there has been little
resistance from the market – people understand that the
small inconvenience of having to register their mail servers
resolves a major issue on the receiving side, keeping
incoming spam under control.

The system is vulnerable to abuse though, since spammers
could simply start registering their mail servers on the list
as well. Besides verifying that the registration has been
made by a human, there is no further control or judgement
on an IP whitelisting. The IP netblock owner does have the
option to delist certain IPs, if required. However, we do
not envisage a problem if spammers start registering IPv6
addresses – even if there are millions of bad registrations
that is still a very small number compared to the overall
IPv6 pool. Thanks to that reduction, anti-spam companies
can easily keep track of the reputation of sending servers as
they currently do.

At the moment the volume of spam is so high that anti-spam
companies will continue to play a vital role. The initiative
will ensure that the problem remains manageable, not only
now but also in the future.

All IPv6whitelist.eu software, APIs, systems and data are
open to the public. There is no commercial incentive and
the association is run by volunteers. Since the rollout of
IPv6 has only just started, the effect of the project on live
mail streams is currently minimal. However, because of
the early launch, easy adoption on the recipient side has
been ensured, and it is hoped that many more countries will
either join the project or launch similar initiatives. A critical
mass on the recipient side is the only requirement to be able
to force senders to make changes to their sending behaviour
– and there are no technical limitations or restrictions
involved in the registration process, meaning that there are
no barriers to making this a new standard requirement for
email senders.

RELOCK-BASED VULNERABILITY
IN WINDOWS 7
Andrea Fortunato, Marco Passuello, Roberto
Giacobazzi
University of Verona, Italy

The new security features introduced with Windows 7
prevent the relocation of an executable to a fi xed address.
Their aim is to make buffer overfl ow attacks harder, but
they indirectly make the use of OS relocation procedures
for hiding or obscuring information in fi les impossible,
since a variable relocation address makes it impossible to
reconstruct information while relocating executables. In this
paper we present a Windows 7 vulnerability related to the
PE Header ImageBase fi eld, which forces a relocation to
a fi xed address. This vulnerability is exploited to make an
old obfuscation technique compatible with Windows 7. The
technique, which is based on memory relocations, was fi rst
implemented in the W32/Relock virus.

INTRODUCTION TO RELOCK
In 2007 the virus writer roy g biv introduced W32/Relock
for Windows XP/2000 to demonstrate a new obfuscation
technique called ‘virtual code’, based on a peculiar use of
memory relocations for code stealthiness and polymorphism
[1–3].

This malware does not have self-replicating features
or network capabilities; it is an executable fi le infector
because it only affects executable fi les (excluding libraries)
recognized by detecting the Portable Executable (PE) format.
Once executed, the virus infects the targets contained in its
directory (and recursively in all subdirectories) but it does not
reside in memory after completing its operations.

Designed as a proof of concept, the virus was not intended
to be released into the wild to cause any damage. As such,
it does not contain a harmful payload but only a PE header
and a particular relocation table which represents an
encryption of the malware code (Figure 1).

At run time, the OS will apply the relocation items specifi ed
in the table, decrypting the code and restoring the original
malware. This avoids the use of a plain de-obfuscation
procedure inside the virus, transferring the de-obfuscation
duty to the OS instead, and making the malware highly
stealthy and hard to catch by signature analysis.

VIRTUAL CODE TECHNIQUE
The virtual code obfuscation technique relies on a particular
behaviour of the dynamic linker present in Windows

FEATURE 3

VIRUS BULLETIN www.virusbtn.com

17AUGUST 2011

XP, which relocates executables with an ImageBase
set to 0 (invalid) at the constant address 0x00010000.
This behaviour is an essential condition in order for the
obfuscating algorithm to work properly (Figure 2).

The basic idea behind virtual code can be summarized in
a sequence of decrements which are applied to the .code
section in order to set its bytes to zero, whilst symmetrically
inserting relocation items of types 1, 5 and 9 in the
relocation table of the virus. For simplicity, let’s focus
on the relocation type 1, which causes the addition of the
highest 16 bits of the difference between the base address
and the image base to the randomly chosen target byte.

Figure 1: The fi le rel.exe consists of a shrunken PE header with
the ImageBase set to zero and a huge relocation table. There is

no executable code.

Figure 2: Relocation mechanism occurring in Windows
XP/2000 when the ImageBase is set to zero: the executable

is relocated to 0x00010000.

Since this delta is always 0x00010000, the dynamic linker
will always apply a unitary increment, and for this reason
the obfuscation algorithm decrements the target byte by one
for each relocation item successfully created. The diagram
in Figure 3 illustrates this procedure.

Figure 3: Flow diagram of a simplifi ed version of virtual
code.

The following pseudo-code represents the core mechanism
of the obfuscation procedure:
1 while (virus code contains non -null byte){

2 generate random number R

3 if R < code size {

4 if byte[R] != 0 {

5 rel_item = R + 1000h

6 relocation_table .append(rel_item)

7 byte[R]= byte[R]--

8 }

9 }

10 }

The loop is executed until all the virus code is completely
zeroed. For each iteration, when a valid position is found,
the instruction at line 5 creates a relocation item of type

Select random position X in
virus body

byte[X]>0?No

YesLoop

byte[X]:=byte[X] - 1

Insert relocation item X
of type 1

VIRUS BULLETIN www.virusbtn.com

18 AUGUST 2011

1 by adding 0x1000 to the previously selected position,
and at line 7 the target byte is decremented to refl ect
the relocation item stored in the relocation table by the
instruction at line 6.

VIRTUAL CODE OBFUSCATION IN
WINDOWS 7
The advent of Windows 7 has seen the introduction of
effective security measures that can block relocation-based
obfuscation techniques: the execution of fi les with
ImageBase 0 has been disabled, with the error message
‘The parameter is incorrect’ appearing. We still need a fi xed
memory relocation but the presence of the Address Space
Layout Randomization (ASLR) prevents this, randomizing
the relocation address of the executable within its virtual
space. ASLR techniques are typically used to prevent
buffer overfl ow attacks [4] and their effectiveness relies on
there being only a very small chance that an attacker could
guess where randomly placed data and code are located.
Security is increased by increasing the search space: the
more entropy is present in the random offsets, the more
effective address space randomization becomes. Entropy
is typically increased by raising the amount of virtual
memory area space over which the randomization occurs.
It is widely believed that randomizing the address space
layout of a software program prevents attackers from using
the same exploit code effectively against all instantiations
of the program containing the same fl aw. To defeat the
randomization, attackers must successfully guess the
positions of all their targets, which is made harder by the
randomization of the address space layout each time the
program is restarted.

The effect of ASLR on Relock is to make virtual code
unusable: it is no longer possible to force the relocation of
an executable to a fi xed address and therefore, without a
constant offset, it is no longer possible to use virtual code to
polymorphically hide the viral code in the relocation table.
The only possible solution would be to include a plain-text
procedure in the dropped virus which would patch the virus
code at runtime to compensate for the difference between an
assumed loading address and the real base address selected
by ASLR.

FORCING FIXED ADDRESS RELOCATIONS
The search for possible solutions to the countermeasures
used in Windows 7 led to the analysis of the aligned values
for the ImageBase inside the kernel memory space. When
using OllyDbg to debug an executable with an ImageBase
set to the aligned upper bound (0xFFFF0000) of the kernel
memory space, we observed an unexpected behaviour of the

OS (Figure 4): the program is relocated to the fi xed address
0x00010000, thus obtaining the same vulnerability as that
present on Windows XP when the ImageBase is set to 0.

Subsequent analysis showed that the same effect
can be obtained using any value inside the interval
[0x7FFE0000;0xFFFF0000]: all aligned values for the
ImageBase in this range cause the relocation of the
executable to 0x00010000. This behaviour exists even with
ASLR enabled. Figure 5 shows how relocation addresses
grow almost linearly, except for a local randomness limited
to the 256 positions underneath the ImageBase. This holds
until the value 0x7FFE0000 is reached; from that moment
forward all values cause fi xed relocations to 0x00010000.

EXPLOITING THE IMAGEBASE: RELOCK
2.0

The knowledge of those particular values for the ImageBase
provides a method to obtain, at each run, the relocation of
the executable to a fi xed address. It is therefore possible
to reuse virtual code on Windows 7, with its advantages
in terms of stealthiness. Considering the characteristics of
this obfuscation technique, particular interest resides in the
value 0xFFFF0000, which produces a round delta equal to
0x00010000 - 0xFFFF0000 = 0x00020000.

Thanks to this vulnerability it is possible to fully restore
the functionality of the virus, thus obtaining a working

Figure 4: Canonical values of ImageBase (with ASLR
enabled) produce relocations to random addresses, whereas

the value 0xFFFF0000 forces relocation to the fi xed
address 0x00010000.

VIRUS BULLETIN www.virusbtn.com

19AUGUST 2011

implementation of virtual code once again. However,
this new version cannot use relocation types 1, 5 and 9
which were used in the original Relock since they are no
longer supported under Windows 7. Instead it uses type 3,
which will cause the entire delta value to be added to each
relocation item during the relocation phase.

In a similar manner to the original Relock, the obfuscation
procedure must decrement the corresponding RVA for
each relocation item successfully created. However,
the new algorithm is based on relocation items of type
3 and will therefore have to subtract all the 32 bits of
the delta (0x00020000), whereas the old Relock would
have subtracted only the higher 16 bits of its delta
(high[0x00010000] = 1). With this procedure all the four-
byte blocks whose hex values are greater than 0x00020000
(null blocks are excluded) will leave a remainder once the
obfuscation phase is concluded and all these remainders
constitute the .code section of the virus executable. For
this reason the .code section of this new version of Relock
will contain some bytes (in contrast to the original Relock
whose .code section was empty). These bytes will be

Figure 5: Relocation behaviour in Windows 7, an
ImageBase value chosen between 0x7FFE0000 and

0xFFFF0000 causes a fi xed relocation at 0x00010000,
while lower values cause random relocations within the 256

aligned addresses underneath the current ImageBase.

polymorphically different for each dropped version of the
virus thanks to the presence of random decisions relating
to the choice of the blocks to decrement. See Figure 6 for a
graphical representation of this procedure.

Figure 6: Diagram representing the execution fl ow of the
new virtual code obfuscation procedure.

The following pseudo-code represents a proposal for the
new version of virtual code:

1 choose N relocation item to create

2 while (N > 0) {

3 generate random number R

4 if R < (code size - 4) {

5 align R to 4 bytes

6 if dword[R] >= 20000 {

7 dword[R] = dword[R] - 20000

8 rel_item = R + 3000h

9 relocation_table .append(rel_item)

10 N--

11 }

12 }

13 }

The fi rst instruction chooses the number of relocation items
that will be generated by the new obfuscation procedure.

Yes

Loop n times

Select random 4-aligned
position X in virus body

No

dword[X]:= dword[X] - 20.000h

Insert relocation item
X of type 3

dword[X]
>=

20.000h
?

This value can be randomized, meaning that the relocation
table size will be different at each obfuscation and will
make the virus even more polymorphic.

Next, lines 3 to 5 generate a random number which
represents a position inside the virus body. Note that the
value 4 must be subtracted from the total virus size in order
to avoid selecting a dword in the last four bytes, which
would cause an overfl ow outside the virus body. At line 5
the chosen position is aligned to four bytes, hence avoiding
non-aligned overlapping relocations. The instruction at line
6 ensures that the dword at the selected random position is
greater than or equal to 0x20000, and only in such a case
does the instruction at line 7 subtract this amount from the
selected dword.

Finally, the instruction at line 8 generates the relocation
item of type 3 (by adding 0x3000), which is then stored
in the relocation table of rel.exe at line 9. This loop is
executed until the number of relocation items to generate is
decremented to zero.

The number of relocation items to produce is decided
randomly, which therefore has an important impact both
on the size of the fi le and on the time required for the
obfuscation procedure. The relationship between time
and number of items has been analysed in a series of tests
whose results are displayed in Figure 7. The function
maintains an acceptable growth rate as long as the number
of relocation items to produce does not exceed 200,000.
With higher values this function should assume an
exponential behaviour since the more items are produced,
the more bytes are brought to a zero value and this causes

a frequent number of failures in the compare check at
line 10.

CONCLUSION

The analysis of a relatively dated piece of malware
such as W32/Relock has shown that it is possible to
deeply understand the inner structure of an OS and fi nd
unexpected vulnerabilities in new OS releases. This has
both pedagogical and technical outcomes. Pedagogically, it
proves the importance of an accurate analysis of the code
of dated malware, which can be an incredible source of
inspiration both for understanding protection mechanisms
and for identifying possible unexpected vulnerabilities in
new OS releases.

The peculiar nature of Relock exploits a fl aw in the
relocation mechanism to dynamically rebuild the malware
code out of a relocation table in a polymorphic by
relocation code obfuscation. This idea has been restored
for Windows 7 where the discovery of sensible values for
ImageBase has led to the adaptation of Relock for the new
OS. During this process some important modifi cations
have been made to the structure of the virus, in particular
to the fi le header and to the obfuscation procedure
which has been altered to compensate for the removal of
relocation types 1, 5 and 9. Another important change to
the structure of the virus executable resides in the .code
section: instead of being empty, it contains the leftovers
from the obfuscating procedure. The stealth effectiveness
of the new Relock has not been compromised since
heuristic analysis conducted by a range of anti-virus
products gives the same results as the original malware.
In conclusion, these modifi cations have not compromised
the essence of the obfuscation algorithm and the virus runs
smoothly on Windows 7, bringing these relocation-based
obfuscation techniques to modern times.

REFERENCES

[1] Roy g biv. Virtual Code. October 2007.
http://eof-project.net/articles/roygbiv/vcode.html.

[2] Roy g biv. W32.Relock. 2009. http://eof-project.net/
sources/roygbiv/Win32.Relock.

[3] Ferrie, P. Doin’ the eagle rock. Virus Bulletin,
March 2010, p.4.

[4] Shacham, H.; Page, M.; Pfaff, B.; Goh, E.J.;
Modadugu, N.; Boneh, D. On the Effectiveness of
AddressSpace Randomization. ACM Conference on
Computer and Communications Security, CCS’04,
October 25-29, 2004, Washington, DC, USA.

Figure 7: Obfuscation procedure performances with
different sizes for the relocation table.

VIRUS BULLETIN www.virusbtn.com

20 AUGUST 2011

http://eof-project.net/articles/roy%20g%20biv/vcode.html
http://eof-project.net/sources/roy%20g%20biv/Win32.Relock/
http://www.virusbtn.com/pdf/magazine/2010/201003.pdf

 AUGUST 2011

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

21

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, Independent researcher, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, McAfee, USA

Roger Thompson, AVG, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 20th USENIX Security Symposium will be held 10–12
August 2011 in San Francisco, CA, USA. See http://usenix.org/.

The 8th Annual Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS 2011) will be held in Perth,
Australia 1–2 September, 2011. See http://ceas2011.debii.edu.au/.

(ISC)2 Security Congress takes place 19–22 September 2011 in
Orlando, FL, USA. The fi rst annual (ISC)2 Security Congress offers
education to all levels of information security professionals, not just
(ISC)2 members. For more information visit http://www.isc2.org/
congress2011.

Cairo Security Camp takes place 30 September to 1 October
2011 in Cairo, Egypt. This annual event targets the information
security community of the Middle East and North Africa. IT
professionals and security practitioners from throughout the region
are invited to attend. See http://www.bluekaizen.org/cscamp.html.

VB2011 takes place 5–7 October 2011
in Barcelona, Spain. For full programme
details including abstracts for each paper,
and online registration see

http://www.virusbtn.com/conference/vb2011/.

RSA Europe 2011 will be held 11–13 October 2011 in London, UK.
For details see http://www.rsaconference.com/2011/europe/index.htm.

The MAAWG 23rd General Meeting takes place 24–27 October
2011 in Paris, France. See http://www.maawg.org/.

The Hacker Halted Conference takes place 25–27 October 2011 in
Miami, FL, USA. The conference is preceded by the Hacker Halted
Academy (a range of technical training and certifi cation classes)
21–24 October. For more information about both events see
http://www.hackerhalted.com/2011/.

The CSI 2011 Annual Conference will be held 6–11 November
2011 in Washington D.C., USA. See http://www.CSIannual.com/.

The sixth annual APWG eCrime Researchers Summit will be
held 7–9 November 2011 in San Diego, CA, USA. The summit
will bring together academic researchers, security practitioners and
law enforcement to discuss all aspects of electronic crime and ways
to combat it. For more details see http://www.antiphishing.org/
ecrimeresearch/2011/cfp.html.

The 14th AVAR Conference (AVAR2011) and international
festival of IT Security will be held 9–11 November 2011 in Hong
Kong. For details see http://aavar.org/avar2011/.

Ruxcon takes place 19–20 November 2011 in Melbourne,
Australia. The conference is a mixture of live presentations,
activities and demonstrations presented by security experts from the
Aus-Pacifi c region and invited guests from around the world. For
more information see http://www.ruxcon.org.au/.

Takedowncon 2 – Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

Black Hat Abu Dhabi takes place 12–15 December 2011 in Abu
Dhabi. Registration for the event is now open. For full details see
http://www.blackhat.com/.

2011
BARCELONA

http://usenix.org/
http://ceas2011.debii.edu.au/
http://www.isc2.org/congress2011
http://www.bluekaizen.org/cscamp.html
http://www.virusbtn.com/conference/vb2011/
http://www.rsaconference.com/2011/europe/index.htm
http://www.maawg.org/
http://www.hackerhalted.com/2011/
http://www.CSIannual.com/
http://www.antiphishing.org/ecrimeresearch/2011/cfp.html
http://aavar.org/avar2011/
http://www.ruxcon.org.au/
http://www.takedowncon.com/
http://www.blackhat.com/
http://www.virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

