
MAY 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 AV: mind the gap

3 NEWS

 Flashback cash

 Religion riskier than pornography

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 evilMule in kernel mode – an analysis of the
 network functionality of Sirefef

9 Like a bat out of hell

 TECHNICAL FEATURES

11 Malware design strategies for circumventing
 detection and prevention controls – part one

16 Mobile banking vulnerability: Android
 repackaging threat

20 END NOTES & NEWS

MOVING ON
Has AV run its course and is it time to move on?
Chad Loeven considers the arguments.
page 2

P2P DISTRIBUTOR
Win32/Sirefef (a.k.a. ZeroAccess) is one of
the most prevalent threats in the wild today. Its
main component is a kernel-mode driver, which
implements a kernel-mode P2P fi le distribution
system to deploy new malware components and
upgrade existing ones. Chun Feng describes
the design and implementation of this P2P fi le
distribution system.
page 4

FINDING THE HOLY GRAIL
A polymorphic batch fi le appears to be a holy grail
to some virus writers, perhaps because of how
insanely diffi cult it is to produce one. In spite (or
perhaps because) of the challenges, one virus writer
has managed it with BAT/Lymer. Peter Ferrie picks
apart the details.
page 9

2 MAY 2012

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, Google, USA
Richard Ford, Florida Institute of Technology, USA

‘Has AV run its course and is it
time to move on?’
Chad Loeven, Silicium Security

AV: MIND THE GAP
At every security conference you will meet a colleague
who surfs the Internet bareback, convinced that AV
provides such little protection that they might as well
plunge ahead and take their chances. They have their own
alternative strategies of running VMs, regular reimaging
or simply eschewing Windows altogether. While not
mainstream, such sentiments do raise a legitimate
question: has AV run its course and is it time to move on?

If you take ‘AV’ literally to mean a standalone anti-virus
application, there is a case to be made that, like disk
defragmenters, AV should be a feature, not a product.
Microsoft declared as much several years ago with the
release of Security Essentials.

If we use ‘AV’ as shorthand for ‘endpoint security suite’,
the case for the defence is much stronger. However, the
industry has a certain culpability for creating a false sense
of security. Tag lines such as ‘ultimate protection’ and
‘complete security’ are more compelling than an honest
statement that would read something like: ‘It will stop
most of the common threats that most users will come
across most of the time, but won’t do much if we haven’t
seen it before. You’re still better off running it than not.’

More than one vendor touts their ability to detect
unknown threats, even though AV-Comparatives showed
recently1 that no product was able to detect more than
61% of these threats.

Nevertheless, as Paul Ducklin has pointed out2, the leading
vendors all provide a level of protection and remediation
that users would be ill-advised to forego. The core

1 http://www.siliciumsecurity.com/2012/01/16/when-being-1-
means-a-42-failure-rate/.
2 http://nakedsecurity.sophos.com/anti-virus-is-no-good-discuss/.

weakness in these products is their reliance on signatures
and block lists – which are excellent for stopping what
is already known, but even behavioural signatures can
be bypassed by determined foes. Some vendors are now
pushing new approaches, like Indicators of Compromise,
yet these too are merely signatures by another name3.

Paul also raised a key point that gets little
acknowledgement from security vendors: while a
sophisticated threat actor can bypass signature-based
products more or less at will, the cost of doing business
has risen dramatically for cybercriminals4.

As an industry, we collectively push two falsehoods:

1. That our products provide the security the user needs.

2. That the cybercrime threat is pervasive and out of
control.

I believe that the second point is true for certain
industries and governments. I’ve sat with incident
response teams as they play whack-a-mole with
compromised machines. For them, the reality is that at
any given moment a certain number of their endpoints
will be compromised, often by sophisticated state-
sponsored attackers. As serious as that is, blanket
statements such as those that compare cybercrime to
the illegal drugs trade are counterproductive. As we
saw in the recent Carberp takedown, cybercrime can
be lucrative for some, but the risks are high, the costs
of operation higher, and the logistics and required
organizational skills are daunting for all but the most
well fi nanced and connected of criminal organizations.

Let’s keep up the good work and improve the industry
cooperation that keeps the heat on these groups. One
area we can improve is standardizing and formalizing
threat sharing. There are many good industry initiatives,
but the reality is that most threat data is still shared on
an ad-hoc basis, bilaterally and based on personal trust
relations. Let’s make sure we communicate to consumers
and enterprises the value of defence in including AV.

Let’s also change the message – every security product
has gaps and blind spots. To pretend otherwise is
counterproductive. Changing the message won’t detract
from the value of these solutions, but will give customers
a realistic expectation of what they are getting and what
their risks are. And remember: in our role as technologists,
we play just one part. Real security will come through
effective policy, legal action and political pressure on
jurisdictions that provide safe harbour to bad actors.

3 http://www.siliciumsecurity.com/2012/03/14/apt-and-bots-both-
matter/.
4 http://www.nytimes.com/2012/04/15/opinion/sunday/the-
cybercrime-wave-that-wasnt.html?src=recg.

http://www.siliciumsecurity.com/2012/01/16/when-being-1-means-a-42-failure-rate
http://nakedsecurity.sophos.com/anti-virus-is-no-good-discuss/
http://www.siliciumsecurity.com/2012/03/14/apt-and-bots-both-matter/
http://www.nytimes.com/2012/04/15/opinion/sunday/the-cybercrime-wave-that-wasnt.html?src=recg

3MAY 2012

VIRUS BULLETIN www.virusbtn.com

NEWS
FLASHBACK CASH
The Flashback Mac OS X botnet may have generated up to
$10,000 per day for its operators, according to researchers
at Symantec.

The researchers reverse engineered the various components
of OSX.Flashback.K in an attempt to determine the
motivation behind the attack, and found that an ad-clicking
component is loaded into Chrome, Firefox and Safari,
where it intercepts GET and POST requests from the
browser. The malware focuses on Google search queries and
redirects clicks from infected machines so that the attackers
receive the ad revenue.

Last year, Symantec’s researchers estimated that a botnet
measuring in the region of 25,000 infections could generate
its author(s) up to $450 per day through ad-clicking trojans.
Scaling this up to the 700,000 Mac machines that made up
the Flashback botnet at its height, the researchers calculated
that Flashback could easily have generated $10,000 per day.

The biggest Mac botnet seen to date seems to have hit
academia pretty hard, with Oxford University’s network
security team (OxCERT) reporting what was ‘probably the
biggest outbreak [they had seen] since Blaster’ – several
hundred Flashback incidents having been dealt with on
university systems and infections continuing to appear.
Manchester University in the UK also warned students and
staff about the trojan, saying that the majority of infections
were occurring within the university’s halls of residence.
The university’s Mac users were urged to install anti-virus
protection.

Eugene Kaspersky set the cat among the pigeons last month
when, referring to the spread of the Flashback trojan, he
declared that Apple was ‘10 years behind Microsoft in terms
of security.’ His comment sparked debate among members
of the anti-malware community as to the relative merits of
Apple versus Microsoft security policies and procedures
– but perhaps he had a point when it comes to Mac users
themselves. As Kurt Wismer put it in a Twitter comment:
‘It’s not surprising, but it is somehow amazing that people
are still arguing against running AV on their Macs.’

RELIGION RISKIER THAN PORNOGRAPHY
Religious-themed websites are among the most dangerous
on the Internet, according to Symantec’s 2011 threat report.

Religious and ideological sites were found to be carrying
more threats than pornographic sites – in fact, pornographic
sites slipped down to the bottom of the list of the top ten
most infected website categories.

More facts and fi gures can be found in the report at
http://www.symantec.com/threatreport/.

Prevalence Table – March 2012 [1]

Malware Type %

Autorun Worm 7.74%

Sality Virus 5.10%

LNK-Exploit Exploit 5.07%

Heuristic/generic Virus/worm 4.90%

VB Worm 4.84%

Iframe-Exploit Exploit 4.55%

Hotbar Adware 4.41%

Confi cker/Downadup Worm 4.09%

Encrypted/Obfuscated Misc 4.02%

Heuristic/generic Trojan 3.57%

Agent Trojan 3.44%

Adware-misc Adware 3.40%

Zbot Trojan 3.35%

Kryptik Trojan 3.07%

Downloader-misc Trojan 2.44%

Blacole Exploit 2.39%

Exploit-misc Exploit 2.14%

Slugin Virus 2.03%

WinWebSec Rogue 1.77%

Virut Virus 1.68%

Redirector PU 1.67%

FakeAV-Misc Rogue 1.60%

Pameseg Trojan 1.54%

Sirefef Trojan 1.46%

AutoIt Trojan 1.28%

Cycbot Trojan 1.18%

Pushbot Worm 1.18%

Virtumonde/Vundo Trojan 1.12%

Crack/Keygen PU 0.97%

Potentially Unwanted-misc PU 0.97%

Bumat Trojan 0.95%

Dropper-misc Trojan 0.81%

Others [2] 11.31%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.symantec.com/threatreport/
http://www.virusbtn.com/Prevalence/

VIRUS BULLETIN www.virusbtn.com

4 MAY 2012

EVILMULE IN KERNEL MODE –
AN ANALYSIS OF THE NETWORK
FUNCTIONALITY OF SIREFEF
Chun Feng
Microsoft, Australia

Win32/Sirefef (a.k.a. ZeroAccess and max++) is one of
the most prevalent threats in the wild today. The main
component of Sirefef is the kernel-mode driver, which
is dropped by a Sirefef dropper and replaces a chosen
Windows device driver. This kernel-mode component of
Sirefef is both complicated and advanced [1]:

1. It creates a ‘hidden volume’, which is used to store
additional malware components. This ‘hidden volume’
cannot normally be accessed.

2. It implements a disk-level hook to hide its presence on
the affected system – reading from the replaced driver
returns the original clean copy; writing to the replaced
driver won’t actually change the fi le.

3. It includes a self-defence mechanism to protect itself
against security-related software. Any process that
attempts to access Sirefef calls ExitProcess() and quits
[1, 2] .

However, the main payload is in the kernel-mode driver –
details of the network functionality utilized in recent Sirefef
variants haven’t been published to date. A detailed look into
the Sirefef driver reveals that it implements a kernel-mode
P2P (peer to peer) fi le distribution system that can be used
to deploy new malware components or upgrade existing
ones. This article focuses on the design and implementation
of this P2P fi le distribution system (hereafter referred to as
P2P system).

BYPASS WINDOWS FIREWALL
Before Sirefef starts executing its network functionality, it
attempts to bypass the Windows Firewall to make sure the
traffi c won’t be blocked. It does this by:

1. Sending an IRP_MJ_DEVICE_CONTROL request
with a particular I/O control code to device \Device\
ipnat, which is used by the Windows Firewall on
Windows XP (as a side effect, Network Address
Translation (NAT) is turned off).

2. Setting up a symbolic link between \Device\00000033
and a user-visible name for a device used by the
Windows Firewall on Windows Vista and later. The
symbolic link causes any attempt to access the original
device to be redirected to the new one

(\Device\00000033). The new device does not
interpret the control codes in the correct way, resulting
in the fi rewall not functioning properly.

PEER ORGANIZATION

In a P2P system, peer discovery is the key to supporting
the peer organization, so each peer can be aware of
other available peers and keep updated when others join
or leave. Sirefef’s peer discovery mechanism utilizes a
simple confi guration fi le. The Sirefef dropper drops a
confi guration fi le named ‘@’ to the hidden volume, e.g.
\??\ACPI#PNP0303#2&da1a3ff&0\@, where
\??\ACPI#PNP0303#2&da1a3ff&0 is the path of the
hidden volume. (When a host is infected with Sirefef, the
dropper posts infection information to a remote server
in a .cn domain, which presumably is used to collect
infection data and generate the peer confi guration fi le.) The
confi guration fi le is a binary fi le that contains a number of
eight-byte pairs – each pair has four bytes for the peer’s IP
address followed by four bytes for the timestamp (elapsed
time, in seconds, since the beginning of 1980) of the last
active time of the peer. When the Sirefef peer starts up, it
reads up to 256 pairs from the peer confi guration fi le ‘@’.
Each peer generates a unique 32-bit value derived from
ExUuidCreate() as its own peer ID, which is used in peer
communication (as discussed below).

The Sirefef peer listens on one TCP port for the incoming
command packet, and one UDP port for the incoming
peer status change packet. It updates its peer confi guration
based on the received peer status change packet. The same
hard-coded value (e.g. 5207) is used as both TCP port
number and UDP port number. Different Sirefef variants
may use different hard-coded values, and Sirefef peers only
communicate with other peers that are of the same variant
as their own, i.e. peers communicating with each other are
always listening on the same port number.

HANDLING ASYNCHRONOUS IRP

Sirefef uses Transport Driver Interface (TDI) to send
and receive TCP/IP packets in kernel mode. Since most
TDI operations are asynchronous, TDI IRPs need to be
handled asynchronously. Sirefef doesn’t use the commonly
used I/O completion routine to handle the completed IRP
asynchronously; instead it uses the I/O completion port,
which can handle many concurrent asynchronous I/Os more
quickly and effi ciently [3].

Sirefef adopts object-oriented implementations when
handling the IRP with the I/O completion port. It creates an
object in which it saves the connection-related information

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MAY 2012

(e.g. remote peer address etc.). To handle the IRP with the
I/O completion port, the IRP is populated as follows (also
shown in Figure 1):

1. IRP.CurrentStackLocation->FileObject->
CompletionContext->Port is set to a global I/O
completion port, so when the IRP is completed, it is
queued into this I/O completion port.

2. IRP.CurrentStackLocation->FileObject->
CompletionContext->Key is set to the pointer of the

Figure 1: Handling asynchronous IRP with I/O completion port.

aforementioned object as the I/O completion context.

3. IRP.Tail.Overlay.AsynchronousParameters.
UserApcContext is a ‘multiplexing’ of the TDI
operation and the corresponding buffer pointer for
this TDI operation: the lowest three bits indicate the
TDI operation and the highest 29 bits (the buffer
is allocated from the kernel memory pool, so it is
always eight bytes aligned, i.e. the lowest three bits
are always zero) are used as the pointer to an allocated
buffer (e.g. the sending/receiving packet buffer). For

VIRUS BULLETIN www.virusbtn.com

6 MAY 2012

some TDI operations – such as TDI_ACCEPT – the
buffer is not used and its pointer value is set to zero
(see Table 1).

Protocol Lowest
3 bits

Highest
29 bits

TDI_CONNECT(3) TCP 001(1) 0

TDI_LISTEN(4) TCP 001(1) 0

TDI_DISCONNECT(6) TCP 100(4) 0

TDI_SEND(7) TCP 011 (3) Pointer

TDI_RECV(8) TCP 010(2) Pointer

TDI_SEND_DATAGRAM(9) UDP 010(2) Pointer

TDI_RECEIVE_DATAGRAM(0xA) UDP 001(1) Pointer

Table 1: The multiplexing of UserApcContext.

A thread is created to keep scanning the I/O completion
port for any completed IRP. The thread calls the ‘dispatcher’
functions defi ned in the virtual function table (VTABLE)
of the object stored as IRP.Tail.CompletionKey in the
completed IRP. The ‘dispatcher’ function calls the
corresponding virtual function defi ned in the VTABLE
based on the TDI operation (the lowest three bits in IRP.
Tail.Overlay. AsynchronousParameters.UserApcContext).
The VTABLE structure used by the Sirefef object is defi ned
in Figures 2 and 3:

destructor() // 0

reserved() // 4, not used

dispatcher() // 8

on_TDI_connect_complete() // 0C

on_TDI_disconnect() // 0x10

on_TDI_recv_complete() // 0x14

on_TDI_send_complete() // 0x18

Figure 2: VTABLE for TCP-related TDI operations.

destructor() // 0

reserved() // 4, not used

dispatcher() // 8

on_TDI_recv_datagram_complete() // 0xc

on_TDI_send_datagram_complete() // 0x10

Figure 3: VTABLE for UDP-related TDI operations.

PACKET STRUCTURE OF THE P2P
PROTOCOL

Sirefef defi nes its own packet structure for the P2P protocol
used for peer communication. As depicted in Figure 4, all
the packets contain a packet header section and a payload

section. The header section has a fi xed length of 16 bytes
and the payload section has a variable length section (four
bytes aligned). The header section consists of four fi elds
(each fi eld is four bytes):

1. Key: the key used to encrypt/decrypt the packet.
Sirefef uses an algorithm (based on the RC4
algorithm) to encrypt/decrypt all the packets sent
between peers. The key is usually a hard-coded
constant, e.g. 0xCD6734FE (in little-endian byte
order).

2. Checksum: the CRC value used for integrity check
purposes. Usually this is the CRC value of the whole
packet (the CRC fi eld is fi lled with zeros when
calculating). Packets received with a bad checksum
value are discarded by the peer.

3. Command: this indicates which operation (request or
response) is made by the peer, which could be one of
the following four-byte strings (in little-endian byte
order):

 • getL

 • retL

 • getF

 • setF

 • srv?

 • yes!

 • news

 Different payload structures are defi ned for the
different commands – these are discussed later.

4. Payload length: the length (in bytes) of the payload
section.

Figure 4: The packet structure of the P2P protocol used by
Sirefef.

‘getL’ AND ‘retL’ COMMANDS

When a peer starts up, it sends a ‘getL’ command to 64
different remote peers for syncing purposes. The payload
section of the ‘getL’ command is only four bytes, which
contains the peer ID of the requesting peer (see Figure 5).

When the remote peer receives the ‘getL’ command,
it checks whether the request has come from itself by
comparing the peer ID in the packet with its own peer ID. If

VIRUS BULLETIN www.virusbtn.com

7MAY 2012

it hasn’t come from itself, it replies with a ‘retL’ command,
which contains its own confi guration information. The
payload section of the ‘retL’ command consists of two parts
(see Figure 6):

1. The peer confi guration information defi ned in the
fi le ‘@’. This starts with a four-byte ‘peer count’
fi eld which indicates the number of peer records that
follow. Each peer record is eight bytes long: four bytes
for the IP address and four bytes for the last active
stamp.

2. File information. A list of fi les (up to 16) is stored
in the hidden volume’s fi le store directory (e.g.
\??\ACPI#PNP0303#2&da1a3ff&0\U). It starts with
a four-byte ‘fi le count’ fi eld indicating the number
of fi le records that follow. Each record is also eight
bytes: four bytes for the fi le name (the fi le name is
converted to a hex number) and four bytes for the
timestamp (which is used as the version number) of
the fi le.

Thus, the total payload length is 8*(peer count + fi le count)
+ 8.

Figure 6: Packet structure of the ‘retL’ command.

‘srv?’ AND ‘yes!’ COMMANDS
When the remote peer receives ‘getL’ and replies with
‘retL’ to send the originating peer its own confi guration,
it also initializes a reverse sync request to sync from the
originating peer. The reverse sync command starts with
the command ‘srv?’. The packet structure of the ‘srv?’
command is depicted in Figure 7. The packet structure of
‘srv?’ is similar to ‘retL’, however it doesn’t include the
peer confi guration information1.

When the requesting peer receives the ‘srv?’ command from
the remote peer, it replies with the ‘yes!’ command.

1 File information fi led as sent is not used by the receiving peer in
current Sirefef variants.

The packet structure of the ‘yes!’ command is exactly the
same as that of the ‘srv?’ command – the receiving peer
replies with its own fi le information.

‘getF’ AND ‘setF’ COMMANDS

When the ‘retL’ or ‘yes!’ commands are received by the
peer, it initializes a fi le syncing process with the remote
peer. The receiving peer parses the received fi le information
and if a fi le doesn’t exist locally, or the version of the local
copy is older than the remote version, then it sends a ‘getF’
command to sync the fi le from the remote peer. The packet
structure of the ‘getF’ command is depicted in Figure 8. The
payload is only four bytes, which is the hex number format
of the fi le name to sync.

Figure 8: Packet structure of the ‘getF’ command.

The remote peer replies with a ‘setF’ command to send the
fi le content to the requesting peer. The ‘setF’ command
is split into multiple chunks since the whole size of this
command can be very large. First, it sends the 16-byte
header; the CRC in the header is only calculated on the
header itself and doesn’t include the fi le content, and the
payload length is the fi le length. Then the fi le content is sent
in a number of 0x4000-byte chunks.

Figure 9: Packet structure of the ‘setF’ command.

Figure 5: Packet structure of the ‘getL’ command.

Figure 7: Packet structure of the ‘srv?’ command.

VIRUS BULLETIN www.virusbtn.com

8 MAY 2012

When the requesting peer receives
the ‘setF’ command, it saves it with a
temporary fi lename ‘$<hex>’ in the fi le
store folder of the hidden volume (e.g.
\??\ACPI#PNP0303#2&da1a3ff&0\
U\), where <hex> is an eight-digit hex
number. It then sets the ChangeTime, LastAccessTime,
LastWriteTime of the fi le to 0xffffffff; and the CreationTime
is set to the same value as the timestamp in the remote peer.
So for a certain fi le, when it is synced from one peer to
another, the CreationTime value remains the same – i.e. the
CreationTime can be used as the fi le version number. Once
the timestamps of the fi le have been set successfully, the fi le
is renamed to ‘@<hex>’. The new copy of the fi le is loaded
by Sirefef if the hex number has the most signifi cant bit set
(i.e. the value of <hex> is above 0x80000000). Interestingly,
Sirefef uses ZwSetSystemInformation (SystemLoadGdiDriv
erInSystemSpace,…) to load the fi le. The fi le is loaded into
kernel memory space, then Sirefef calls the entry point code
explicitly to execute it.

‘news’ COMMAND

Sirefef peers use the ‘news’ command to send notifi cation
of other peers’ status changes.

When the ‘yes!’ command is received by a peer, it sends a
‘news’ command (UDP) to 64 peers in its peer confi guration
to inform them of the status change of the peer that sent
the ‘yes!’ command. The packet structure of the ‘news’
command is depicted in Figure 10.

The payload length of the ‘news’ packet is 12 bytes. The
fi rst four bytes are the IP address of the peer whose status
has changed, and the next four-byte Delta is the number
of elapsed seconds between the peer receiving the ‘yes!’
command and sending the ‘news’ command (usually it
should be 0). The last four bytes are a character, ‘@’ (ascii
0x40), with the other three bytes zero-fi lled.

When the ‘news’ command is received by a peer, the
receiving peer needs to update the last active timestamp of
the peer specifi ed in the ‘news’ command. If the peer’s last
active time is older than 120 seconds, then it updates the
specifi ed peer’s last active time as ‘CurrentTime - Delta’
then it broadcasts this ‘news’ command to all of the peers in
its peer confi guration.

CONCLUSION

Sirefef is one of the most complicated and advanced rootkits
seen in the wild to date. It implements a kernel-mode P2P
system which can be used to distribute and upgrade its
malware components without using a central server. This

distributed P2P malware distribution channel is hard to
disrupt, since there is no single takedown point. There are
clear signs that the authors of Sirefef are very experienced
kernel-mode driver developers, and that they have in-depth
knowledge of the Windows kernel – many undocumented
tricks have been observed in Sirefef and the code is both
robust and performance friendly. We believe Sirefef will
continue to be active and prevalent in the near future – we
will continue to track and analyse this threat as it develops.

REFERENCES
[1] ZeroAccess – an advanced kernel mode rootkit.

http://www.prevxresearch.com/zeroaccess_analysis.
pdf.

[2] Ször, P. Asynchronous harakiri++. Virus Bulletin,
October 2011, pp.11–13. http://www.virusbtn.com/
virusbulletin/archive/2011/10/vb201110-
asynchronous-harakiri.

[3] I/O Completion Ports. http://msdn.microsoft.com/en-
us/library/windows/desktop/aa365198(v=vs.85).aspx.

APPENDIX
The interaction procedure between peers is described in
Figure 11.

Figure 11: The interaction procedure between peers.

Figure 10: Packet structure of the ‘news’ command.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
http://www.virusbtn.com/virusbulletin/archive/2011/10/vb201110-asynchronous-harakiri
http://www.prevxresearch.com/zeroaccess_analysis.pdf

VIRUS BULLETIN www.virusbtn.com

9MAY 2012

LIKE A BAT OUT OF HELL
Peter Ferrie
Microsoft, USA

A polymorphic batch fi le seems like a holy grail to some
virus writers, perhaps because of how insanely diffi cult
it is to produce one. In spite (or perhaps because) of the
challenges, a virus writer has managed it with BAT/Lymer.

BACK TO BASICS

The virus begins by checking the fi rst parameter that was
used to run the program. If it is not a special string (a
variation of the virus writer’s name), then the virus will
create a new console window and run the virus there by
passing the special string. The second console window is
minimized. This allows the virus to run in what should be
the background, and the host code to run immediately. The
virus writer calls this technique ‘stealth’ execution. It seems
to be the fi rst time that the technique has been used for such
a purpose. However, the way in which the virus runs itself
might be considered a bug. The virus does not specify a
priority class when creating the second console window. As
a result, the virus runs with the same priority as the original
process.

The virus attempts to enable a command extension
that was introduced in Windows 2000 (despite several
references that state incorrectly that the changes were
introduced in Windows XP). There is no check that this
was successful. However, there are only two ways in which
it can fail. The fi rst is that the platform is simply too old
(i.e. Windows 95 or Windows NT). Secondly, it can fail
if the extension is disabled. This can be achieved in two
ways. First, the command processor can be launched with
the ‘/V:OFF’ switch. This is a local change that affects
only that copy of the process. The extension can also be
disabled if the ‘Software\Microsoft\Command Processor\
DelayedExpansion’ value in either the HKCU or HKLM
hive is set to zero. This is a global change that affects all
processes.

The code used to check whether the extensions are enabled
is something like this:

verify r 2> nul

setlocal enableextensions

if errorlevel 1 goto :eof

The ‘verify’ line will ensure that the error level is set to
zero. The ‘setlocal’ line will set the error code only if it fails
to enable the extensions. If the error level is non-zero, then
the code will exit.

%RANDOM TIME%
The virus retrieves the current time by writing the output of
the ‘time’ command to a fi le, reading it back, extracting the
minutes fi eld, and then placing the result in an environment
variable. It is not known why the virus writer didn’t simply
use the ‘%time%’ internal variable directly. The time value is
used to seed the random number generator in the virus, which
is a copy of the Microsoft Visual C random number generator
ported to the batch language. It is not known why the virus
writer didn’t use the ‘%random%’ internal variable instead.

VARIABLE VARIABLES
The virus places the name of each variable that it uses into
a pseudo-array (including the name of the pseudo-array
itself). Once that has been done, the virus constructs a new,
randomly generated name for each entry. The names are
between eight and 11 letters long, and the case of each letter
is chosen randomly. The code that selects the random letter
uses an unusual optimization. Normally, a virus would choose
a random number in the range of one to 26, to correspond
to the letters ‘A’ to ‘Z’, and then convert to lower case if that
is the chosen mode. However, this virus chooses a random
number in the range of zero to 63, and uses that value as an
index into a string. The string consists of the letters ‘A’ to ‘Z’
and ‘a’ to ‘z’, as expected, but some additional characters are
appended after each alphabet in order to increase the length
of the sequences to 32 characters. This is necessary because
an attempt to access a value beyond the end of a string will
return a null character, which could result in a variable with
no name if the null is the fi rst character. Since the mask is
larger than the size of the alphabet, the characters in the two
padding strings will be used occasionally, resulting in certain
characters appearing slightly more often than others. There
is also one space at the very end of the string, the reason
for which will be described below. The new names are used
when the virus constructs a new representation of itself.

TOKEN GESTURE
In order to create a new representation of itself, the virus
reads each line of virus code from the infected fi le, and then
writes it to a temporary fi le. The virus stops parsing after it
writes the line that contains the special string that is used
as the parameter when starting the virus. After the virus has
been extracted from the infected fi le, it reads each line from
the temporary fi le, tokenizes it, and then parses the content.
The virus knows how to interpret every component of every
keyword that it uses, and it could rebuild itself entirely if
only the batch tokenizer would cooperate.

Unfortunately for the virus writer, it does not cooperate. The
way in which the virus reads the virus code results in the

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

10 MAY 2012

replacement of variables with their values in many cases, and
these values are written to the temporary fi le. To work around
this, the virus uses specially encoded ‘rem’ lines in the
appropriate locations, to describe the format of the original
line. These all begin with the ‘_’ character, followed by the
text that should replace the value. The location of the value
depends on the line that is being parsed. For example, the ‘if’
lines will have a value inserted prior to any ‘~’ character. A
‘set’ line will have a value inserted after the ‘=’ character.

Since certain characters are considered to be ‘special’ in
batch fi les, they cannot be placed directly anywhere in the
code, including in the rem line itself. As a result, the virus has
to use an encoded form to represent them. The encoded forms
begin with a ‘#’ character, followed by a single letter that
represents the special character. The virus uses the letter ‘p’ to
represent the ‘%’ character, ‘x’ to represent the ‘!’ character,
the letter ‘t’ to represent the ‘^’ character, and the letter ‘c’ to
represent the ‘:’ character (although in this case, the letter ‘c’
is not checked, so any unused character could appear here).

SIZE DOES MATTER
The virus appears to have been optimized for small size
(ignoring the ‘time’ technique above), making the code
very dense and quite diffi cult to read in some places.
The minimum number of characters are checked when
comparing strings, including using an index into the string
in order to select a unique character instead of comparing
multiple leading characters. However, the virus writer
appears to have overlooked the fact that when accessing a
substring beginning with the fi rst character, the index is not
needed. For example, the line
if /i “!_atok:~0,4!” == “echo” (

could have been written as
if /i “!_atok:~,4!” == “echo” (

There are many lines like this. There is also a ‘rem _#p1’
line which would decode to ‘%1’, however the line that
follows does not contain any reference to a ‘%1’. Given the
line that follows, the ‘rem’ line indicates that the function
originally received its parameter in a different way. It has
no effect on the behaviour of the virus in its current form
because the line that follows does not require an encoded
‘rem’ line. However, if someone were to add a line that does
require an encoded ‘rem’ line at that location, then the line
would be replaced in an incorrect way.

IF YOU BUILD IT...
The virus produces one polymorphic representation of itself
per run, and uses that representation to infect all fi les that
it can fi nd. This makes it a slow polymorph. Each run can

take upwards of ten minutes to produce a new copy – which
makes it a very slow polymorph. The polymorphism has
three forms.

The fi rst form is a random number of spaces, from one to
four, before, between, and after every token. This is where
the trailing space from the alphabet string is used. Since the
tokenizer considers a space to be a delimiter, the virus cannot
embed a space in an encoded ‘rem’ line for that purpose. This
is because the line will appear to have two tokens instead of
one. A ‘rem’ line with two tokens has a special meaning for
the virus code, and the space character still cannot be used
in that case. The virus also cannot write a line that ends in
a literal space to the temporary fi le, because the tokenizer
will strip the space before writing the line. The solution that
the virus uses is to assign a line that ends in a space to an
environment variable, and use an index into the alphabet
string to read and write the space character indirectly.

The second form is a random mapping of letter case. Since
batch fi les are essentially case-insensitive, this allows for
a lot of fl exibility in appearance. The one exception to
that rule is for ‘if’ statements, but the ‘/i’ switch enables
case-insensitivity there, too. The ‘if’ statements are treated
in a special way by the virus. If the text to compare is
entirely alphabetic, then the virus uses the encoded ‘rem’
line, with a second token that matches the text, to indicate
that the text in the ‘if’ statement can have its case mapped
randomly. The second token in the encoded ‘rem’ line will
have its case mapped randomly, too.

The third form is the insertion of random ‘rem’ lines.
These lines do not begin with the ‘_’ character, so the virus
can identify them easily and ignore them when extracting
the virus code. The virus will produce a random number
of ‘rem’ lines, from zero to three, after each line of virus
code. Each of those lines will contain a random number
of components, also from zero to three. Each of the
components will be from zero to seven letters long. The
case of each of the letters is chosen randomly.

There is an implicit fourth form of polymorphism, the
description of which was begun above. Each variable name
in the virus code is replaced by a randomly chosen name.
The virus achieves this by searching each line of virus code
for each of the variable names.

After the new representation has been created, the virus
searches within the current directory for all fi les whose
suffi x is ‘bat’. If the sum of the fi le size and the virus size is
less than 60,000 bytes, and if the fi le is not infected already,
then the virus will attempt to prepend itself to the fi le. The
infection marker is for the second and third characters of the
fi rst line in the fi le to be ‘if’. This is intended to match ‘@if’,
but in a way that allows a random case mapping. The virus
does not pay attention to the fi le attributes (perhaps because

VIRUS BULLETIN www.virusbtn.com

11MAY 2012

that would require the use of an external program, and then
the virus would no longer be ‘pure batch’), so a fi le will not
be infected if it has the read-only attribute set.

LYME DISEASE
The virus has a fatal bug when run under Windows XP: the
line ‘set _out=!_out!%%~’, which is supposed to append
‘%~’ (the double ‘%’ is required in order to emit a single
‘%’), does not append anything. It is not known why this
happens, but it appears that a line cannot end with that
sequence of special characters. The bug appears to be in
Windows, not in the virus. If an additional character is
added to the line, then all of the characters are appended
correctly. If the virus had added that additional character,
and then removed it after the characters were appended,
then the virus would work on Windows XP, too. The bug
causes the virus to fail to parse anything, and then to delete
itself, because there is no new representation.

The virus has an ‘even more’ fatal bug when run under
Windows 2000 (the bug that exists in the Windows XP
command processor is present here, too). The line ‘set /a
_val1 += “_ind”’, which is supposed to select the case of
the randomly selected letter, does not make use of the ‘_ind’
variable. Instead, the value is always treated as a zero. This
might be considered to be a bug in Windows, rather than in
the virus, however the behaviour is undefi ned because the
documentation regarding the use of quotes is ambiguous
regarding this situation. The virus contains another line in the
same style, but without the quotes, so we can assume that this
is a bug in the virus. If the quotes were removed, and if the
fi x were applied as for the Windows XP case, then the virus
would work on Windows 2000, too. The bug causes the virus
to emit strings that are composed solely of the letter ‘A’.

The virus works correctly on Windows 7 without
modifi cation. This is especially interesting, because the
virus writer is known for producing very compatible
code. For example, most of his binary viruses still support
Windows 95. His more recent viruses ‘merely’ require
Windows NT. It is clear that he did not test this virus on
anything other than a relatively recent platform such as
Windows Vista (assuming that it works there – I did not try
it) or Windows 7. Perhaps he fi nally upgraded his machine.

CONCLUSION
It’s clear that some people have too much time on their
hands, to have found a way around all of the limitations
and quirks of the batch language, and produced a virus like
this. However, if we can’t stop them from writing viruses at
all, then we can at least be thankful that they’re not writing
something much worse than this.

MALWARE DESIGN STRATEGIES
FOR CIRCUMVENTING
DETECTION AND PREVENTION
CONTROLS – PART ONE
Aditya K. Sood and Richard J. Enbody
Michigan State University, USA

In this paper, we discuss some of the different techniques
that are used by present-day malware to circumvent
protection mechanisms.

1. DETECTING WINDOWS X86 EMULATOR
With the advent of Windows x64 systems, the x86 emulator
has been added to provide backward compatibility.
WOWx64 is an x86 emulator that allows 32-bit Windows
applications to run on 64-bit Windows. Malware writers
use an x86 emulator detection routine to get detailed
information about the environment in which the malware
is going to be executed. This is a critical step from
the attacker’s perspective because in order to trigger
successful DLL injection, a 32-bit process has to load
a 32-bit DLL, thereby avoiding collisions with 64-bit
DLLs. Malware writers harness the power of inbuilt

Figure 1: x86 emulator detection using ‘IsWOW64Process’
in ICE bot.

TECHNICAL FEATURE 1

VIRUS BULLETIN www.virusbtn.com

12 MAY 2012

APIs to call ‘IsWOW64Process()’ to detect the x86
environment. This function is called in conjunction
with ‘CreateEnvironmentBlock()’, which is present in
userenv.dll, to retrieve environmental information for a
specifi c user. The extracted information is passed to the
‘CreateProcessAsUser()’ function to create a process within
the security context of the targeted user. Figure 1 shows a
code snippet extracted from ICE bot.

2. ANTI-VIRTUAL-MACHINE CODE
This technique has been used widely by malware writers to
detect the presence of virtual machines. The primary aim is to
make analysis of the malware harder by shutting down some
of its functionality if a virtual machine is detected. There are
several techniques that can be used to detect the presence of a
Virtual Machine Environment (VME), as follows:

• Memory-specifi c techniques include Red Pill, which
is a proof of concept that utilizes the Store Interrupt
Descriptor Table (SIDT) to collect information about
the Interrupt Descriptor Table Register (IDTR). The
IDTR points directly to the Interrupt Descriptor Table
(IDT) and, based on the memory address, Red Pill can
detect the presence of a virtual machine. ScoopyNG [1]
is another proof of concept that scrutinizes the location
of the Local Descriptor Table (LDT), Global Descriptor
Table (GDT), Interrupt Descriptor Table (IDT) and
Store Task Register (STR) to determine the presence of
a virtual machine. It also runs additional checks using
VMware commands such as ‘get version’, ‘get memory
size’ and ‘emulation check’. Any of these techniques
can easily be deployed by malware to detect whether
the code is inside a virtual machine. Listing 1 shows the
output of ScoopyNG.

 VMDetect [2] uses an invalid opcode mechanism that
acts as a backdoor code to detect a virtual machine. It
uses the privileged ‘IN’ (reading from communication
ports) instruction to check if an exception occurs as
‘EXCEPTION_PRIV_INSTRUCTION’, and uses this
information to verify whether the code is executing
under VMware. However, these protections can easily
be subverted by disabling all the protection fl ags in the
VM confi guration fi les, as shown in Figure 2.

 Several samples of malware have been found using
one of these memory-based techniques to design an
anti-virtual-machine routine to subvert detection. (More
details about virtual machine detection and analysis can
be found at [3].)

• Virtual machines make a number of adjustments in the
Windows registry and create certain specifi c processes
that can be utilized to detect the presence of a virtual

machine environment. We have come across several
registry-based settings that can be used to harness
information about virtual machines. One of these is
very critical as it is very hard for analysts to work
around, as tampering with this key information could

C:\ScoopyNG>ScoopyNG.exe

##

:: ScoopyNG - The VMware Detection Tool ::

:: Windows version v1.0 ::

[+] Test 1: IDT

IDT base: 0x8003f400

Result : Native OS

[+] Test 2: LDT

LDT base: 0xdead0000

Result : Native OS

[+] Test 3: GDT

GDT base: 0x8003f000

Result : Native OS

[+] Test 4: STR

STR base: 0x28000000

Result : Native OS

[+] Test 5: VMware “get version” command

Result : VMware detected

Version : Workstation

[+] Test 6: VMware “get memory size” command

Result : VMware detected

[+] Test 7: VMware emulation mode

Result : Native OS or VMware without emulation mode

 (enabled acceleration)

:: tk, 2008 ::

:: [www.trapkit.de] ::

##

Listing 1: ScoopyNG in action.

Figure 2: Memory bypassing confi guration parameters.

VIRUS BULLETIN www.virusbtn.com

13MAY 2012

interfere with the booting state of the virtual machine.
Figure 3 shows the VMware detection check based on
SCSI/Disk info.

• VMware can easily be detected based on the Media
Access Control (MAC) address. This is not a widely
used technique because it is not diffi cult to tweak the
MAC address of a system. VMware can be detected in
this way because the fi rst 24 bits of the MAC address

defi ne the manufacturer of the machine. Generally,
MAC addresses for VMware machines always start with
‘00-05-69-xx-xx-xx’, ‘00-0c-29-xx-xx-xx’ or ‘00-50-
56-xx-xx-xx’. If the MAC address matches any of the
24 bits discussed above then it is a VMware machine.
Figure 4 shows VMware detection using this method.

• The Virtual Machine Communication Interface (VMCI)
[4] is another target that can provide details about the
running state of a virtual machine. VMCI provides an
effective communication interface between the virtual
machine and the host operating system. To detect
whether code is running inside a virtual machine,
malware writers can trace the installed VMCI device
on the system. Simply, the malware can open a handle
to the VMCI device(s) present on the system to verify
the presence of a virtual machine. Table 1 presents
the information that is required to query the VMCI
interfaces on Linux and Windows operating systems.

Operating system VMware VMCI details

Linux • Host machine: /dev/vmmon

• Guest machine: /dev/vmci

Windows • Host machine: \\.\vmx86

• Guest machine: \\.\VMCI

Table 1: VMCI details of VMware.

 Malware writers typically look for ‘\\.\VBoxGuest’ to
determine if a virtual box is present on the system.

3. INJECTIONS USING APC
DLL injection has been around for several years and is
used very effectively by malware writers. This technique is
used to inject an unauthorized DLL into the target process
at runtime to hook specifi c functions so that execution
fl ow can be redirected. Until now, malware writers have
explicitly used three standard techniques for performing
DLL injection: ‘CreateRemoteThread’, ‘SetWindowsHook’
and ‘Appinit_dlls’. However, recently APC-based DLL
injection has been seen in the wild. Both user- and
kernel-mode Asynchronous Procedure Calls (APCs) [5, 6]
are used to build robust malware. All the APC-based
routines require the _KAPC structure, which is called using
the ‘nt!KeInitializeApc’ call. The details are shown in
Listing 2.

The kernel-mode and user-mode functions executed
through the APC procedure are termed kernel-mode and
user-mode routines, respectively. APC-based DLL injection
can be used by both user-land and kernel-land rootkits, as
discussed in the following sections.

Figure 3: SCSI/Disk-based VM detection.

Figure 4: VMware detection based on MAC address.

VIRUS BULLETIN www.virusbtn.com

14 MAY 2012

3.1 User-mode APC injection
Malware writers defi ne a custom APC function that is
allowed to execute asynchronously in the context of the
target thread, provided that the thread is in a waiting
(alertable) state. User-mode rootkits use APC techniques
extensively to inject unauthorized code into target
processes. Generally, in every process the thread has
its own APC queue. Rootkits queue a malicious APC
for an alertable thread in the process. When the thread
receives a queued APC, its waiting state is over and it
processes the queued request, resulting in execution of
the malicious APC procedure. Before executing the APC
routine, a thread triggers one of the four waiting functions:
KeWaitForSingleObject, KeWaitForMultipleObjects,
KeWaitForMutexObject, or KeDelayExecutionThread. In
user-mode APCs, the primary calling routine is defi ned in
user mode so the APC procedure (implementation) has to
switch back to ring 3 for successful execution.

3.2 Kernel-mode APC injection

Kernel-mode APC injection is categorized into two types:
regular kernel-mode APC and special kernel-mode APC. In
regular kernel-mode APC, the target kernel-mode routine is
executed at passive interrupt request level (IRQL), whereas
special kernel-mode APC triggers the target kernel-mode
routine at APC IRQL. Both special and regular kernel-mode
APCs are asynchronous events that have the ability to direct
the fl ow of execution in threads from normal state to the
target kernel routine by taking them out of their waiting
states. The only difference is that regular kernel-mode APC
is executed in more restricted conditions.

The complete details of kernel-mode and user-mode APC
can be found in [7]. ZeroAccess [8] (and see p.4) is an
example of malware that has shown the usage of code
execution through APC. Listing 3 shows a simple prototype
of APC injection in action.

4. MUTEX-BASED DETECTION

Many malware writers use mutex-based detection
techniques to determine whether an operating system
has any security programs installed on it. A mutex [9] is
typically a mutual exclusion lock and is used to protect
the different resources and data from being accessed
concurrently. Malware writers defi ne the mutex routine
in the main entry point of the malware. The primary aim
is to detect whether any other installed program is using
that mutex. Generally, malware writers have knowledge
of the mutexes (unique mutex names) that are used by
different protection programs or anti-virus software
that may be installed on the system. In Windows-based
malware, the CreateMutex() API is used extensively to
detect the presence of any type of mutex in the system.
The entry routine defi ned in the malware code triggers this
API to scrutinize whether the mutex is already present in
the system. If the mutex exists, the API returns an error
message – which shows that protection programs have
already been installed on the running machine. Based
on this information, the malware stops its execution and
becomes dormant. Zeus, SpyEye, ICEX and several other
bots use this technique.

Mutexes are also used in bot wars. Based on mutex
information, one bot can kill another to increase its
kingdom of infections. In this case, the OpenMutex() API is
used to access the running mutex in the system. The kind of
API used for collecting mutex information from the system
depends on the malware writer’s choice. This functionality
has been seen in earlier versions of SpyEye, which had
an inbuilt Zeus-killing routine that used named pipes and
designated commands to kill the Zeus bot in the system.

nt!_KAPC

 +0x000 Type : UChar

 +0x001 SpareByte0 : UChar

 +0x002 Size : UChar

 +0x003 SpareByte1 : UChar

 +0x004 SpareLong0 : Uint4B

 +0x008 Thread : Ptr32 _KTHREAD

 +0x00c ApcListEntry : _LIST_ENTRY

 +0x014 KernelRoutine : Ptr32

 +0x018 RundownRoutine : Ptr32

 +0x01c NormalRoutine : Ptr32

 +0x020 NormalContext : Ptr32 Void

 +0x024 SystemArgument1 : Ptr32 Void

 +0x028 SystemArgument2 : Ptr32 Void

 +0x02c ApcStateIndex : Char

 +0x02d ApcMode : Char

 +0x02e Inserted : Uchar

NTKERNELAPI VOID KeInitializeApc (

IN PRKAPC Apc,

IN PKTHREAD Thread,

IN KAPC_ENVIRONMENT Environment,

IN PKKERNEL_ROUTINE KernelRoutine,

IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,

IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,

IN KPROCESSOR_MODE ApcMode,

IN PVOID NormalContext

);

nt!_KAPC_STATE

 +0x000 ApcListHead : [2] _LIST_ENTRY

 +0x010 Process : Ptr32 _KPROCESS

 +0x014 KernelApcInProgress : UChar

 +0x015 KernelApcPending : UChar

 +0x016 UserApcPending : Uchar

Listing 2: Details of _KAPC structure.

VIRUS BULLETIN www.virusbtn.com

15MAY 2012

5. EXPLICIT RUNTIME LINKING
To detect the presence of security programs in the Windows
operating system, malware writers use the de facto
standard of runtime dynamic linking of system DLLs.
This technique allows malware writers to design a generic
routine that calls the LoadLibrary() API to dynamically
load the target library into the address space of the calling
process. The GetProcAddress() API is used afterwards to
resolve the address of the loaded library in the system. The
detection routine is very simple. Since the malware writers
have information about the specifi c set of DLLs used in
sandbox programs, anti-virus software and many others,
if the required DLL is loaded through the LoadLibrary()
API, it means the system is equipped with the protection
software and the malware stops its execution and does not
interact with the system. If the required DLL is not found

#defi ne _WIN32_WINNT 0x0500

#include <windows.h>

#include <ntdef.h>

DWORD Trigger_APCInject(PCHAR sProcName,PCHAR
sDllName){

 DWORD dRet=0;

 Step 1 : Defi ne the NtMapViewOfSection by calling
GetProcAddress and GetModuleHandle

 to load the NtMapViewOfSection by importing ntdll.
dll

 Step 2 : Allocate buffer by calling
CreateFileMapping and defi ning the

 view of the fi le by calling MapViewOfFile

 Step 3 : Defi ne the PROCESS_INFORMATION and
STARTUPINFO structure using ZeroMemory

 Step 4 : At this point, create the suspended process
by using CreateProcess then call

 NtMapViewOfSection, LoadLibrary, GetProcAddress and
QueueUserAPC

 Step 5: Trigger the UnmapViewOfFile to release the
address space in the process that

 is occupied during mapped view of the fi le.

 }

int main(void){

 DWORD dwHandle= Trigger_APCInject(Target_Process_
for_Injection,DLL_To_Be_Injected);

 if(!dwHandle)

 puts(“[+] APC Injection Successfull”);

 else

 printf(“[-] APC Injection Fails -> %d!”,dwHandle);

 return 0;

}
Listing 3: Prototype of APC injection.

in the system, then the malware starts the infection process.
Figure 5 shows the idea behind this detection technique.

Figure 5: Detection-based explicit runtime linking.

In the fi rst part of this article, we have presented some of the
tactics used by malware writers to design code that is resistant
to the detection routines used by malware analysts. We will
continue the discussion in part two of the article, in which
we will look at advanced anti-debugging, polymorphism,
tactical encryption routines, subverting client-side protection
software, bypassing anti-virus solutions, etc.

REFERENCES
[1] ScoopyNG – The VMware detection tool.

http://www.trapkit.de/research/vmm/scoopyng/
index.html.

[2] VMDetect. http://www.codeproject.com/
Articles/9823/Detect-if-your-program-is-running-
inside-a-Virtual.

[3] Thwarting Virtual Machine Detection.
http://handlers.sans.org/tliston/
ThwartingVMDetection_Liston_Skoudis.pdf.

[4] VMCI SDK. http://pubs.vmware.com/vmci-sdk/.

[5] Asynchronous Procedure Calls.
http://msdn.microsoft.com/en-us/library/windows/
desktop/ms681951%28v=vs.85%29.aspx.

[6] Almeida, A. Inside NT’s Asynchronous Procedure
Call. http://www.ddj.com/windows/184416590.

[7] Windows Vista APC Internals.
http://www.opening-windows.com/techart_
windows_vista_apc_internals.htm.

[8] ZeroAccess Malware Part 3: The Device Driver
Process Injection Rootkit.
http://resources.infosecinstitute.com/zeroaccess-
malware-part-3-the-device-driver-process-injection-
rootkit/.

[9] Using Mutex. http://pic.dhe.ibm.com/infocenter/aix/
v6r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2
Fdoc%2Fgenprogc%2Fmutexes.htm.

http://www.trapkit.de/research/vmm/scoopyng/index.html
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://pubs.vmware.com/vmci-sdk/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951%28v=vs.85%29.aspx
http://www.ddj.com/windows/184416590
http://www.opening-windows.com/techart_windows_vista_apc_internals.htm
http://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/
http://pic.dhe.ibm.com/infocenter/aix/v6r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fmutexes.htm

VIRUS BULLETIN www.virusbtn.com

16 MAY 2012

MOBILE BANKING
VULNERABILITY: ANDROID
REPACKAGING THREAT
Seolwoo Joo and Changyeon Hwang
AhnLab Inc., Republic of Korea

Android is now the most popular smartphone platform. The
main feature of Android is openness. Android enthusiasts
often install ‘custom ROMs’ on their devices – modifi ed
versions of Android OS.

But from a security perspective, the openness of Android
can be dangerous. We have researched the Android
ecosystem and mobile malware, and have found a critical
security threat in the Android ecosystem.

Specifi cally, we were able to download a mobile banking
application from Google Play and inject a malicious
function into it using a repackaging technique. We then
proved that the repackaged app would be able to leak users’
banking information.

ANDROID ISSUE: REPACKAGING
Using a repackaging technique, source code can be added
to the APK (Android package) fi le. Resources can also be
changed. The process is as follows:

1. Unpack an APK fi le with apktool. Apktool is an
open-source reverse engineering tool for APK fi les.
It can decode resources and rebuild them after
modifi cations.

2. Decompile the Java source code with JAD. JAD can
extract source code from class fi les.

3. Modify the Java source and resources using Eclipse.

4. Rebuild the fi le using apktool.

5. Sign the code using jarsigner.

Figure 1: Sequence of repackaging.

ANDROID ISSUE: MARKET & UNKNOWN
SOURCES
There are several easy ways to distribute repackaged
Android apps.

Apps can be registered on the offi cial Android market
(Google Play), or on various third-party markets. There is
no technical test when an app is registered, so anyone who
has an account can register their app freely.

APK fi les can also be installed directly onto smartphones if
the ‘Unknown sources’ option is checked. This may cause a
very serious security problem.

Figure 2: Unknown source.

A malware writer could upload a malicious repackaged app
to a web page or send it by email. Android users installing
the app onto their smartphone won’t notice that it is a
repackaged app because it looks and behaves just like the
original one.

ANDROID MALICIOUS CODE EXAMPLES
USING REPACKAGING TECHNIQUES
Repackaging techniques that can be used on the Android
platform allow malicious code to be disguised as a normal
app. It is diffi cult to distinguish between repackaged
malicious code and a normal app because the repackaged
app usually appears to function in exactly the same way as
the legitimate one. Let’s take a look at some examples of
malicious code.

Geimini

Geimini is a trojan that is bundled into many valid Android
apps. The example shown in Figure 3 is a repackaged
version of the Monkey Jump 2 game that contains the
Geimini trojan – the icon is identical to that of the valid app.

Figure 3: Geimini icon.

The permissions that are required during installation are
shown in Figure 4.

TECHNICAL FEATURE 2

VIRUS BULLETIN www.virusbtn.com

17MAY 2012

If the installed malicious code is run, some private
information is sent to the attacker via a specifi c web page.
The information that is sent is as follows:

• List of installed applications

• List of applications that are running

• Network status

• SIM number and phone number

• SMS information

• Contacts information

• GPS information.

KungFu
The KungFu trojan has been around for a long time.
Recently, a new version of KungFu has been discovered

bundled with
repackaged versions
of the Angry Birds
Space game. The
repackaged malicious
app spreads mainly
through third-party
markets and, when
installed, has the
same icon as the
legitimate version of
the game.

The game can be
played as normal
– so it is unlikely that
users will detect the
infection.

The permissions that are required for installation differ
slightly between the malicious app and the legitimate app,
as shown in Figure 5.

The KungFu trojan uses the GingerBreak exploit to
gain root access to the device and install the malicious
code. Once the malicious app is installed, criminals
can send commands to compromised Android devices,
instructing them to download additional code or push
URLs to be displayed in the smartphone’s browser.
Infected devices become zombies under the control of
the criminals.

MOBILE BANKING VULNERABILITY

Banking apps handle critical fi nancial information, so
their security must be strong. We found that most of the
banking apps used in Korea are vulnerable to repackaging
threats.

Using a proof of concept, we will show how the password
for the digital signature certifi cates used in mobile banking
can be hijacked.

The process is outlined in Figure 6.

Figure 6: Process of repackaging.

Figure 4: Geimini permissions.

Figure 5: KungFu permissions and normal app permissions.

VIRUS BULLETIN www.virusbtn.com

18 MAY 2012

1. Save the banking app to a PC

First, the banking app is downloaded to a PC from
the Android device. We used ASTRO, which can be
downloaded (free of charge) from Google Play. It has
the useful function of backing up Android apps to an
SD card.

2. Decompile

Usually, decompiling PC applications is a complicated task,
but Android apps can easily be decompiled by using the
open-source tool apktool.

For this process we need only one simple command, as
shown in Figure 8.

3. Analysis and injection of malicious code

Once the code has been decompiled it can be analysed to
fi nd the part that relates to accessing the digital signature
certifi cate (knowledge of the Java language is required). We
found the code easily by searching the string that is shown
when the user inputs the wrong password. Figure 9 shows
the code that processes the password.

The ‘c’ which is a member of ‘com.sf.secure.ui.crypto.
SignCertPasswordWindows’ has the password.

197 : iget-object v1, p0, Lcom/softforum/xecure/
ui/crypto/SignCertPasswordWindow;->c:Ljava/lang/
String;

The SendMsg() function is added so that the string
can be sent to the attacker, and two lines are inserted
(as highlighted in Figure 9) to call the function into
the code phase. The SendMsg() function is shown in
Figure 10.

Figure 10: The SendMsg function.

In the same way, a criminal would be able to hijack the
user’s sensitive information including their account number,
login details etc.

This banking app does not have permission to send SMS
messages, so the permission is added by inserting
‘Android.permission.SEND_SMS’ into the
AndroidManifest.xml fi le, as shown in Figure 11.

Figure 7: ASTRO – application backup.

Figure 8: Decompiling the banking app using apktool.

Figure 9: The code that handles the password.

VIRUS BULLETIN www.virusbtn.com

19MAY 2012

4. Build & code sign

The modifi ed code can then be rebuilt using apktool, as
shown in Figure 12.

The code can be signed to build the APK by using jarsigner,
as shown in Figure 13.

5. Install malicious app

There are many ways to install the malicious app on the
victim’s device. In this example, adb – which is included in
the Android SDK – is used for installation (see Figure 14).

RESULT

When the victim launches the repackaged app, every
function will work normally, but the password for the digital
signature certifi cate will be sent to the criminal. Since the
app appears to work as normal, the victim won’t notice that
anything is wrong.

Figure 15: Repackaged banking app and password.

CONCLUSION

User information can be leaked through repackaged mobile
banking apps. Criminals are able to steal victims’ money
using stolen user credentials. This could become a very
serious problem because the number of users of mobile
banking is growing rapidly. It is important for the security
industry to fi nd ways of protecting mobile banking apps
from repackaging attacks such as this – as well as fi nding
ways to protect other apps that deal with sensitive user
information.

Figure 11: Modify the XML permissions.

Figure 12: Rebuilding the app using apktool.

Figure 13: Code signing using jarsigner.

Figure 14: Installation.

MAY 2012

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

TakeDownCon Dallas takes place 4–9 May 2012 in Dallas, TX,
USA. Other TakeDownCon events take place 25–30 August in
Baltimore, MD, and 1–6 December in Las Vegas, NV. For more
information about each see http://www.takedowncon.com/.

The 21st EICAR Conference takes place 7–8 May 2012 in Lisbon,
Portugal. For details see http://www.eicar.org/17-0-General-Info.html.

The CARO 2012 Workshop will be held 14–15 May 2012 near
Munich, Germany. For more information see http://2012.caro.org/.

CONFidence 2012 will take place 23–24 May 2012 in Krakow,
Poland. For details see http://2012.confi dence.org.pl/virus-bulletin.

EC-Council Summit Boston takes place 4–7 June 2012 in Boston,
MA, USA. Other summits take place 11–14 June in San Antonio,
CA, and 20–23 August in San Jose, CA. For details of each see
http://www.eccouncil.org/training/advanced_security_training/cast_
summit.aspx.

The MAAWG 25th General Meeting will be held 5–7 June 2012
in Berlin, Germany. MAAWG meetings are open to members and
invited guests only. For questions and invite requests see
http://www.maawg.org/contact_form.

NISC12 will be held 13–15 June 2012 in Cumbernauld, Scotland.
The event will concentrate on ‘The Diminishing Network Perimeter’.
For more information see http://www.nisc.org.uk/.

The 24th annual FIRST Conference takes place 17–22 June 2012
in Malta. For details see http://conference.fi rst.org/.

The 9th CISO Summit & Roundtable takes place 27–29 June
2012 in Prague, Czech Republic. See http://www.mistieurope.com/.

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA. For more information see http://www.blackhat.com/.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. For more information see
http://usenix.org/events/.

SOURCE Seattle 2012 takes place 13–14 September 2012 in
Seattle, WA, USA. A call for papers has been announced, with
a deadline date of 25 June. For more information see
http://www.sourceconference.com/seattle/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. Online registration is now available. Full details can be found
at http://www.virusbtn.com/conference/vb2012/.

Ruxcon takes place 20–21 October 2012 in Melbourne, Australia.
A call for papers has been announced, with a deadline date of
15 July. See http://www.ruxcon.org.au/

Hacker Halted USA will take place 25–31 October 2012 in
Miami, FL, USA. http://www.hackerhalted.com/

SOURCE Barcelona 2012 takes place 16–17 November 2012 in
Barcelona, Spain. For details see http://www.sourceconference.com/
barcelona/.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
Details will be revealed in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please address any queries to
conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/conference/vb2013/
http://www.virusbtn.com/conference/vb2012/
http://www.blackhat.com/
http://www.takedowncon.com/
http://www.eicar.org/17-0-General-Info.html
http://2012.caro.org/
http://2012.confidence.org.pl/virus-bulletin
http://www.eccouncil.org/training/advanced_security_training/cast_summit.aspx
http://www.maawg.org/contact_form
http://www.nisc.org.uk/
http://conference.first.org/
http://www.mistieurope.com/
http://usenix.org/events/
http://www.sourceconference.com/seattle/
http://www.ruxcon.org.au/
http://www.hackerhalted.com/
http://www.sourceconference.com/barcelona/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

