
JUNE 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

GLOBAL BANKING THREAT
With a modular architecture and sophisticated
functionality, Sinowal is a multi-component
banking trojan targeted at various web browsers
which threatens users of online banking systems
around the globe. Chao Chen delves into the
inner workings of each of the components of this
powerful malware.
page 11

SPARE CHANGE
In the last of his ‘Greetz from academe’ series, John
Aycock looks at change in the form of Android
update fl aws, as well as spare change under the
guise of academic funding.
page 22

BUG HUNTING FORMULA
Fuzzing – the most common approach to bug
hunting – is technologically and scientifi cally
well developed and well documented, yet simply
running some fuzzers isn’t enough to achieve the
desired outcome. Alisa Esage attempts to pin down
the secret ingredient for successful bug hunting.
page 23

2 COMMENT

 Share and share alike

3 NEWS

 Malware adds invisible skimmers to
 Macanese ATMs

 MALWARE ANALYSES

4 Wapomi

8 The curse of Necurs, part 3

11 Sinowal banking trojan

21 BOOK REVIEW

 Rogue Code

22 SPOTLIGHT

 Greetz from academe: Will research for food

23 FEATURE

 Fuzzing everything in 2014 for 0-day
 vulnerability discovery

26 END NOTES & NEWS

2 JUNE 2014

COMMENT

Editor: Martijn Grooten / Helen Martin

Technical Editor: Dr Morton Swimmer

Chief of Operations: John Hawes

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

SHARE AND SHARE ALIKE
We are at a fairly major milestone for VB, with this
month’s issue not only the 300th, but also the last in the
current monthly magazine-style format.

Last month, my colleague Martijn discussed some of
the changes that will come with the change in format,
expanding the scope and diversity of the material we
cover as well as increasing the frequency of publication
of new articles. That diversifi cation will also, we hope,
extend to the content of the VB conference, opening up
lines of communication and information-sharing on a
wider range of topics and including a wider portion of
the security community in the debate.

Alongside the conference and the magazine, there is of
course a third string to VB’s bow, namely our testing
and certifi cation activities, in which we have been
engaged from the very beginning. A glance at the fi rst
issue of Virus Bulletin, from July 1989, reveals a (rather
damning) technical review of Dr Solomon’s Anti-Virus
Toolkit; the fi rst VB100 comparative review appeared
in 1998, and our fi rst public comparative review of
anti-spam solutions was published in 2009.

The idea of sharing information unites all of these
activities. In the context of the magazine of the past, the
web content of the future, and both the presentations
and the inter-person, inter-company networking
opportunities of the conference, VB acts as a facilitator
for sharing amongst others. In the testing arena, it is VB
itself doing the sharing – sharing information both with
our readers and with the participants in the tests.

The results of our tests provide in-depth information
for users and potential users of the products we look
at, but just as importantly, testing provides product
developers with information on how well they are doing,
what issues their products may have, and even how they
should go about improving things.

We see the role of testing not merely as highlighting
good points and inadequacies, but also providing
concrete and actionable information that can help
make products better. As a small, but hard-working test
team producing large amounts of data, we have always
done our best to render that data digestible for the
general audience, but we have also always endeavoured
to provide product developers with more detailed
information where required, and where possible.

This is not always easy. Not so many years ago, when
polymorphic viruses were a more common sight, we
often had vendors missing single samples from our test
sets thanks to tiny and rarely occurring errors in their
detection methods. Our policy was, and remains, to
avoid sharing the offi cial test set samples of such items,
instead providing fresh copies replicated from them – if
we simply sent the single freak sample, we could not be
sure that detection had been fi xed properly, as opposed
to bodged into place for that one instance.

Of course, the replicated copies would not always (indeed
hardly ever) combine the exact set of features that caused
the original miss, and we would keep producing new
ones until we found another that did. Occasionally, this
meant churning out over a million replications before we
found one that would allow the developers to fi gure out
where they had gone wrong. A lot of work for a small
team, but we did it, and we still do where necessary.

The changes within VB are set to include a signifi cant
expansion of the test team, which should give us more
time to devote to improving the data our tests provide.
Of course, much of the extra manpower will rapidly be
absorbed by a range of new tests already in the pipeline,
as well as adjustments and expansions to the current set
of tests, but we hope soon to be able to provide a better
refl ection of the growing diversity of the security solution
market, and the diversity of the threat landscape, with
more comprehensive tests looking at protection in general,
regardless of the technology providing it. We also hope to
be able to combine data from multiple testing approaches
to measure the effectiveness of different combinations of
layered protection, and much more besides.

Information sharing is not a one-way street of course, and
we extend our gratitude to all our readers, correspondents,
test participants and conference attendees for their
feedback, advice, criticism and support over the years.

‘We hope soon to be
able to provide a better
refl ection of the growing
diversity of the security
solution market.’
John Hawes, Virus Bulletin

3JUNE 2014

VIRUS BULLETIN www.virusbtn.com

VB2014 SEATTLE
24–26 SEPTEMBER 2014

Join the VB team in Seattle, WA, USA for the IT
security event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Anti-malware tools & techniques

 • Network security

 • Hacking & vulnerabilities

 • Mobile threats

 • Spam & social networks

 • Cybercrime

 • Last-minute hot topic presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Westin Seattle

When: 24–26 September 2014

Price: $1895

 Early bird rate $1705.50 until 30 June

BOOK ONLINE AT
WWW.VIRUSBTN.COM

SEATTLE
2014

MALWARE ADDS INVISIBLE SKIMMERS TO
MACANESE ATMS

Police in the Chinese Special Administrative Region of
Macau have arrested two Ukrainian men who they believe
used specially crafted hardware to infect ATMs in the
territory, reports Brian Krebs1. According to local reports,
the malware that infected the ATMs was capable of reading
the PINs and data of the cards inserted into the machines – a
few days after the infection, the perpetrators would return to
the ATMs to harvest the stolen data and remove evidence of
the malware.

Malware that targets ATMs is not a new phenomenon. Last
year, ATMs in Mexico were infected with the ‘Ploutus’
malware, which was installed after attackers gained physical
access to the ATMs’ CD-ROM drives2. The malware would
essentially create a backdoor that could be operated from
the terminal. Anyone who knew a special code could then
use it to make the ATM dispense free money, even being
able to choose the amount and the denomination of the bills
dispensed.

Unlike ‘Ploutus’, the malware used in Macau (about
which very few details have been published) didn’t
cause the ATMs to dispense money – instead, it merely
recorded details of the cards that were inserted into the
machine. The malware didn’t require physical access to
the ATM either – it was installed by inserting a circuit
board into the card slot. And unlike in the case of ordinary
ATM skimming, no physical change was made to the
ATM, making it impossible for users to detect that
anything was wrong.

Although it is not known what operating system
the affected Macanese ATMs run on, it is slightly
worrying that research performed in April this year
showed that nine out of 10 ATMs still run on Windows
XP3 – which received its last ever security updates in
April. Although some of these devices run the embedded
version of XP, which is still supported, many others do
not.

Embedded devices, from routers to Internet-controlled
cameras, have become popular targets for cybercriminals,
and although security awareness among those
manufacturing these devices is growing, it is nowhere near
as good as it should be – which, as shown by this example,
can have rather serious consequences.

1 http://krebsonsecurity.com/2014/05/thieves-planted-malware-to-hack-
atms/.
2 http://blog.spiderlabs.com/2013/10/having-a-fi esta-with-ploutus.html.
3 http://www.zdnet.com/few-european-atms-upgraded-to-windows-7-
7000028173/.

NEWS

https://www.virusbtn.com/conference/vb2014
http://krebsonsecurity.com/2014/05/thieves-planted-malware-to-hack-atms/
http://blog.spiderlabs.com/2013/10/having-a-fiesta-with-ploutus.html
http://www.zdnet.com/few-european-atms-upgraded-to-windows-7-7000028173/

VIRUS BULLETIN www.virusbtn.com

4 JUNE 2014

WAPOMI
Raul Alvarez
Fortinet, Canada

It is fairly common, these days, to fi nd a cross-breed of
malware, combining trojan-like functionalities and the
fi le-infecting skills of a virus to make it more resilient to
attack.

Wapomi is a virus with trojan-like behaviour. Its original
variants were detected as long as a couple of years ago, yet
it is still very active. In this article, we will discuss some of
the malware’s functionalities that might shed light on why
Wapomi is still so active.

THE DROPPER

When an infected fi le is executed, it will drop and run the
main component of the malware, which contains the fi le
infection routine among others.

Initially, Wapomi gathers the strings that make up the
fi lename for the dropped fi le. The fi lename is randomized
in nature (e.g. ‘rCgCYG.exe’), and is pre-generated by the
previous infection process.

Once the strings for the fi lename have been gathered,
Wapomi parses the PEB to get the ImageBase of kernel32.dll.
There is no check to make sure it gets the right ImageBase.
Afterwards, the malware parses the MZ/PE header of
kernel32.dll (assuming that it is the right library) to get the
location of the export table.

This is followed by parsing
the function names within the
export table, and comparing
them against the following API
names: GetModuleHandleA,
GetTempPathA, lstrcat, WriteFile,
CreateFileA, WinExec and
CloseHandle.

Initially, the malware compares
the fi rst four characters of each
API name against every function
name in the export table. Once a
match has been found for the fi rst
four characters, the rest of the
characters are checked to make
sure it is indeed the right API
name. If the exact API name is
found, the malware resolves the
API address through the index
used by the function name.

Most modern malware uses hash algorithms to hide the API
names, but Wapomi uses none.

For the actual dropping of the fi le, Wapomi gets the
temporary folder using the GetTempPathA API. Then it
concatenates the fi lename to the folder name, using the lstrcat
API and producing the pathname ‘%temp%\ rCgCYG.exe’.
Afterwards, the fi le is created using the CreateFileA API.

Wapomi then parses the malware body to look for the
executable image which will be used for the dropped
fi le. It searches for the MZ header fi rst. The image of the
executable fi le is not encrypted or encoded in any way, it is
just a plain embedded image.

The malware then writes the executable image to the
‘%temp%\ rCgCYG.exe’ fi le, using the WriteFile API. Then
it closes it using the CloseHandle API.

Finally, Wapomi activates the dropped fi le using the
WinExec API.

THE DROPPED FILE

The dropped fi le, ‘%temp%\ rCgCYG.exe’, contains all the
malicious functionalities of the malware and is packed with
the compression utility ASPack.

After unpacking, it performs several steps of its preparation
routine, which includes getting the %temp% folder name,
the %system% folder name, and the module’s fi lename,
using the GetTempPathA, GetSystemDirectoryA and
GetModuleFileNameA APIs, respectively.

Figure 1: Decryption algorithm.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JUNE 2014

DECRYPTION
Next, the malware decrypts a block of 0x6CC (1,740)
bytes of data, using the algorithm shown in Figure 1. Every
DWORD passes through it.

The algorithm works as follows: a given DWORD is rotated
by a value in CL, which varies by a multiple of four. The
result is then XORed using a key (0x1BC94E09) that has
been generated from a previous infection. The value of the
result is negated and added both to the key and to the next
DWORD in the block.

ON-DEMAND PSEUDORANDOM
GENERATOR
Before we go further, let’s discuss the simple on-demand
pseudorandom generator that the malware uses for most
of its functionalities. The generated values can be used as
randomized fi lenames or simply to determine the length of
a given string. The following is a description of how the
generator works:

Initially, the malware calls the GetSystemTimeAsFileTime
API to get the current date and time of the system.

Then, the least signifi cant WORD of LowDateTime is used
as the seed to a call to the srand API. This is followed by
calling the rand API to generate the fi rst pseudorandom
WORD.

The malware uses the most signifi cant WORD of
LowDateTime as a seed to another call to the srand API.
Afterwards, another call to the rand API is used to generate
the second pseudorandom WORD.

The fi nal pseudorandom DWORD contains the fi rst WORD
as the most signifi cant WORD, and the second WORD as
the least signifi cant.

THREAD #1 (THE DOWNLOADER)
After the decryption, Wapomi creates a new thread using
the CreateThread API.

Within this thread, the malware uses the pseudorandom
generator to produce a DWORD value such as
0x1C123A16. The random DWORD value serves as the
fi lename, which is embedded in the string format ‘%s%.8X.
exe’, using a call to the wsprintfA API. A pathname, such as
‘%temp%\1C123A16.exe’, is generated after the call to the
wsprintfA API.

Another call to the wsprintfA API, with the string format
‘http://%s:%d/%s/%s’, produces a link such as
‘http://ddos.[REMOVED].net:799/cj//k1.rar’ (for safety,
part of the domain name has been removed).

Using the two generated strings, Wapomi tries to download
the fi le ‘k1.rar’ and save it as ‘1C123A16.exe’, using a call
to the URLDownloadToFileA API. (At the time of writing
this article, the link is no longer active.)

If the download has been successful, the malware will
execute the downloaded fi le using the WinExec API.

Besides ‘k1.rar’, Wapomi will also try to download the
following fi les: ‘k2.rar’, ‘k3.rar’, ‘k4.rar’ and ‘k5.rar’. For
every download attempt, the malware calls the
pseudorandom generator to produce a different fi lename.

This thread makes the malware an effective vehicle for
running a different piece of malware from its server. The
remote fi le (such as ‘k1.rar’) can be changed to any kind
of malware – for example, FakeAV, Zeus, a different virus,
or its own updated version – and the host machine will
instantly be infected with it.

THREAD #2
Meanwhile, in the main thread, the malware checks whether
the dropped fi le ‘%temp%\ rCgCYG.exe’ still exists, using
the PathFileExistsA API. If it does exist, the malware opens
it using the CreateFileA API. Then a section of virtual
memory is allocated with a size equivalent to the fi le’s
size, using the VirtualAlloc API. Afterwards, the dropped
fi le is copied into the newly allocated memory using the
ReadFile API.

Then the second thread is created. Within the context of this
thread, the malware initially determines the available drives
in the system by calling the GetLogicalDriveStringsA API.

Documents and Settings MSN Gaming Zone

Chinatelecom C+W NetMeeting

WINDOWS Outlook Express

WinNT Windows Media Player

System Volume Information Windows NT

RECYCLER WindowsUpdate

Common Files WinRAR

ComPlus Applications Thunder

InstallShield Installation Information Thunder Network

Internet Explorer AppData

Messenger Local Settings

microsoft Tencent

frontpage Baidu

Movie Maker

Table 1: List of names.

VIRUS BULLETIN www.virusbtn.com

6 JUNE 2014

Wapomi skips drives A and B. It also skips any drive
that has an invalid root path (DRIVE_NO_ROOT_DIR
type), and CD-ROM drives (DRIVE_CDROM type), by
determining the type of drive using the GetDriveTypeA API.

Once the drive has passed through the fi ltering, the malware
creates a new thread to process it. A thread, similar to
THREAD #3, is created to process every drive that the
malware can use.

THREAD #3 (THE VIRUS)
This thread is used to process the drive for infection.

Wapomi traverses each and every directory of a given
drive looking for fi les to infect. It does this using the
FindFirstFileA and FindNextFileA APIs. It checks for every
occurrence of each folder name in the host system against
the list of names shown in Table 1. (Note that these folder
names are part of the decrypted strings shown in Figure 1.)
If a folder name matches any from the list, it will skip the
infection routine.

For any given victim fi le, the malware checks if it has the
‘.exe’ extension. If it does, it will proceed with the infection
routine, otherwise, it will look for another fi le to infect.

PREPARING FOR INFECTION
To prepare the victim fi le for infection, the following series
of routines is performed:

Initially, the malware looks for DWORD markers, such as:
0x11111111, 0x22222222, 0x33333333 and 0x44444444,
and saves their location for later use.

This is followed by changing the attributes of the
victim fi le to FILE_ATTRIBUTE_NORMAL using
the SetFileAttributesA API. Then it opens it using the
CreateFileA API.

Next, it gets the fi le’s timestamp using the GetFileTime API.
This will be used later, after the fi le has been infected, to
restore the original timestamp of the victim fi le. Restoring
the timestamp minimizes the malware’s exposure – it would
raise suspicion if every executable fi le in the system had the
same timestamp.

The malware then maps the victim fi le into memory
using a combination of the CreateFileMappingA and
MapViewOfFile APIs. Any changes made in the mapped
version of the fi le will be refl ected in the physical fi le.

To make sure that the victim fi le is a valid executable,
Wapomi checks that it has the proper MZ/PE header. It
also checks that the fi le’s size is equivalent to the sum of
PointerToRawData and SizeOfRawData of the last section
of the fi le, to be sure that it is not corrupted.

PREPARING A NEW SECTION
Still within the mapped fi le, the malware calculates the
location at which the additional section header will be
placed. The new section header should be added straight
after the last section header. The malware checks that the
location of the new section header is free (it must contain
zeros). If it is not free, the malware will skip the infection
routine.

The malware tries to avoid overwriting the area of the new
section header, as that might corrupt the executable fi le.

In continuation, the malware generates a pseudorandom
value by rotating the value of the TimeDateStamp by
0x10, then XORing it to the value of the EntryPoint. This
pseudorandom value serves as the fi rst four bytes of the new
section name. The next two bytes of the section name are a
constant value (0x75A3), while the seventh byte is the result
of XORing from the fi rst to the sixth byte.

This is followed by calculating the necessary data for
the new section header, which includes the VirtualSize,
VirtualAddress, SizeOfRawData and PointerToRawData.
The new section’s characteristics are set to 0xE0000020
(CODE|EXECUTE|READ|WRITE).

Finally, the malware increases the number of sections by
one and updates the NumberOfSections fi eld in the PE
header.

After setting up all the information needed for the new
section header, Wapomi unmaps the victim fi le from
memory using a call to the UnmapViewOfFile API. Every
modifi cation to the mapped victim fi le is now refl ected in
the physical fi le.

RANDOMIZED FILENAME
As noted earlier, Wapomi drops a fi le with a randomized
fi lename. The fi lename is pre-generated based on the
previous infection. Every infected fi le contains a different
pre-generated fi lename. Running them simultaneously
will generate different copies of the same malware. The
following is a description of how the randomized fi lename
is generated (also see Figure 2):

After unmapping the victim fi le, the malware generates a
series of bytes in memory consisting of three sets of ‘a’ to
‘z’ characters, and three sets of ‘A’ to ‘Z’ characters.

Afterwards, the malware uses a simple algorithm to
scramble the characters. It uses a random number, generated
from a call to the rand API, to determine which characters
are to be swapped.

This is followed by generating another randomized
DWORD using the pseudorandom generator. The

VIRUS BULLETIN www.virusbtn.com

7JUNE 2014

pseudorandom DWORD is ANDed with 0x0000000F,
to determine the number of characters to be used from
the newly scrambled bytes. These characters, such as
‘twzvXX’, concatenated with the string ‘.exe’, are used for
the newly infected fi le. The length of the fi lename varies
based on the pseudorandom DWORD.

The randomized fi lename, ‘twzvXX.exe’, is embedded
into the malware code via markers, such as: 0x11111111,
0x22222222, 0x33333333 and 0x44444444, which were
determined earlier.

The string ‘twzv’ overwrites 0x11111111; ‘XX.e’
overwrites 0x22222222; ‘xe’ overwrites 0x33333333; and
fi nally, 0 overwrites 0x44444444 (see Figure 2).

INFECTION ROUTINE
After embedding the randomized fi lename, Wapomi expands
the size of the fi le to accommodate the new section, using a
combination of the SetFilePointer and SetEndOfFile APIs.

This is followed by writing 0x271 (625) bytes of malware
code – which contains the embedded randomized fi lename
– to the victim fi le, using the WriteFile API.

Afterwards, a copy of the original dropped fi le, which is in
memory, is also written to the victim fi le using another call
to the WriteFile API.

Then, Wapomi restores the victim fi le’s original timestamp
using the SetFileTime API. The infection is fi nalized by
closing the victim fi le using the CloseHandle API.

THREAD #4
Once every fi le in every folder has been checked, Wapomi
exits the execution of Thread #3 and transfers control to
Thread #2 – the one that spawned the third thread. Thread
#3 also exits after spawning the fourth thread.

NOT SO MALICIOUS DROPPED FILES
Within the context of the fourth thread, the malware calls
the SHGetFolderPathA API with the CSIDL_PROGRAM_
FILES parameter to get the current program fi les folder. The
standard installation is ‘C:\Program Files’. The string
‘\WinRAR\Rar.exe’ is concatenated with the generated
string, producing the path name ‘C:\Program Files\
WinRAR\Rar.exe’.

This is followed by generating a DWORD using the
pseudorandom generator. A generated DWORD, such as
0x317A552F, is concatenated with the %temp% folder
with the format ‘%s%.8x.exe’, using the wsprintfA API,
producing ‘%temp%\317A552F.exe’.

Afterwards, the malware copies ‘C:\Program Files\
WinRAR\Rar.exe’ to ‘%temp%\317A552F.exe’ using the
CopyFileA API. After a successful copy operation, the fi le,
such as ‘317A552F.exe’, in the %temp% folder, will look
suspicious. Without analysis, we might assume that it is a
malicious fi le that has been dropped by the malware.

Before the malware exits this thread, it deletes the
‘%temp%\317A552F.exe’ fi le using the DeleteFileA API.

Figure 2: Generating the randomized fi lename.

VIRUS BULLETIN www.virusbtn.com

8 JUNE 2014

If Rar.exe exists in the system, the malware checks
if the ‘%system\% c_31892.nls’ fi le exists using the
PathFileExistsA API. If it doesn’t exist, the malware
creates the fi le using the CreateFileA API, but leaves the
fi le empty.

DROPPED BATCH FILE
After all the threads have been executed at least once,
Wapomi generates another randomized DWORD, such
as 0x6507656E, using the pseudorandom generator. It
is formatted as ‘%s%.8x.bat’ using the wsprintfA API,
producing the pathname ‘%temp%\6507656E.bat’.

The malware creates the batch fi le using the CreateFileA
API, and fi lls it with the following data using the WriteFile
API:

:DELFILE

del ‘C:\Documents and Settings\[username]\Desktop\
rCgCYG.exe’

if exist ‘C:\Documents and Settings\[username]\
Desktop\rCgCYG.exe’ goto :DELFILE

del ‘C:\DOCUME~1\[username]\LOCALS~1\Temp\6507656e.
bat’

(Note: ‘[username]’ is the username of the infected
system.)

Then, Wapomi runs the batch fi le using the ShellExecuteA
API. Once executed, the batch fi le should be able to remove
both rCgCYG.exe (the main malware component) and itself
from the infected system.

This batch fi le is a cleanup routine that is commonly
employed by malware in an attempt to remove traces of
itself.

Note that removing the aforementioned fi les doesn’t rid the
system of the malware.

WRAP UP

Wapomi is commonly detected as a trojan or a worm due
to its fi le-dropping functionality. It is easy for this kind of
malware to be mistakenly identifi ed as such.

This malware is careful enough to avoid infecting fi les that
reside in common directories. It is also careful to avoid
corrupting executable fi les by checking the feasibility of
infection. But when we look at it closely, we can see that
the malware is simple and doesn’t employ any complicated
algorithms or techniques.

So the question still remains: why is Wapomi still in the
wild? Is it because it cleans up after itself? Or is there
another explanation for its persistence?

THE CURSE OF NECURS, PART 3
Peter Ferrie
Microsoft, USA

In the previous two parts of this series on the Necurs
rootkit [1, 2], we looked at what it does to hook the
system. This time, we will look at what those hooks
actually do.

TERMINATE WITH PREJUDICE

An early version of the rootkit created a TCP fi lter device,
and attempted to attach it to the top of the network stack
so that it would be the fi rst device to receive all requests. If
that attempt failed – which could happen if the subsystem
had not been initialized yet – the rootkit created a thread
that ran once every 100ms to attempt to register the device.
The thread ran until it succeeded. However, newer versions
of the rootkit do not create a TCP fi lter device, and the
associated code has been deleted – it is unclear as to why
this functionality has been removed.

The rootkit retrieves the Windows version information. It
checks for versions 5.1 (Windows XP) SP0-3, 5.2 (Windows
Server 2003) SP0-2, 6.0 (Windows Vista) SP0-2 and 6.1
(Windows 7) SP0-1. Windows 8 (6.2) and later are not
supported, which might prevent the rootkit from being able
to elevate the privileges of the calling process (see below).

The rootkit uses the NtQuerySystemInformation() function
to fi nd the base address of ntoskrnl.exe. It searches the
ntoskrnl.exe section table for the ‘PAGE’ section, and then
searches the entire section for a platform-specifi c sequence
of code. There is a bug in the search, which is that if the
fi rst n bytes of the search sequence happen to be the last
n bytes in the section, and if n is less than the length of
the sequence, then the search will access memory beyond
the end of the section and possibly cause a crash. If the
search sequence is found, the rootkit remembers the offset
of the sequence within ntoskrnl.exe. The search sequence
corresponds to the kernel-mode routine that terminates a
process. If the search sequence is found on Windows Vista
or Windows 7, the rootkit assigns itself a platform-specifi c
value for the offset within the token structure, which
might be used later to elevate the privileges of the calling
process.

The rootkit searches for the current thread handle in the
thread array that it carries, and then deletes the entry. This
action revokes the thread object’s access rights to the rootkit
functionality. At this point, the rootkit is fully installed but
it remains dormant until the user-mode component registers
itself with the driver.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9JUNE 2014

IRP
The rootkit supports multiple I/O control codes that the
user-mode component can supply. To communicate with
the rootkit, the user-mode component opens the ‘\Device\
NtSecureSys’ device, then sends the device an I/O control
request with a specifi c I/O control code and particular
parameters.

I/O control code 0x220000 is the ‘on’ switch. An
earlier version of the rootkit contained a date check
which restricted use of the interface to any date prior to
2011/11/01 – presumably to enforce the use of I/O control
code 0x220020 instead. However, this check has since
been removed. The I/O control code uses only simple
authentication: it is used with a buffer that is 12 bytes long,
where the fi rst DWORD is a key whose value is chosen
randomly, the second DWORD is the key XORed with
0xDEADC0DE, and the third DWORD is the key XORed
with the process ID. When this I/O control code is used,
the rootkit queries the process handle and saves it for later
use. This action ‘unlocks’ the rootkit and enables its full
functionality. Once the calling process object has been
registered, the method cannot be used again.

I/O control code 0x220020 is used with a buffer containing
a special sequence of data. The rootkit calculates the
MD5 hash of the data, and requires that the result is
0x377E10EFF125EF3D68DCEFD20EBAACAF. It is
currently not known what form the data takes, since at
the time of writing this article, no sample using the API
has been seen. If the hash matches the expected value, the
rootkit queries the process handle and saves it for later use.
This action also ‘unlocks’ the rootkit and enables its full
functionality. The method could be used as an ‘override’
access, since it can be used even after the registered
process object has been assigned, and causes the new caller
to become the registered process object. This is likely the
reason why no sample has been found that makes use of
it – as soon as one sample has been found that carries the
correct data, all versions of the rootkit become accessible
in the same way, and are thus vulnerable to being
uninstalled.

The following I/O control codes can be used only by the
registered process object:

• I/O control code 0x220004 is used to grant the current
thread object access rights to the rootkit functionality.

• I/O control code 0x220008 is used to revoke the
current thread object’s access rights to the rootkit
functionality.

• I/O control code 0x220014 is used with a buffer that is
four bytes long. It receives a hard-coded value, which
might be the version number (currently 0x11).

• I/O control code 0x22000c is used to request the path
name of the driver fi le (‘\SystemRoot\System32\
Drivers\<DriverName>.sys’).

• I/O control code 0x220010 is used to request the
registry path of the driver fi le (‘\Registry\Machine\
System\CurrentControlSet\Services\<DriverName>’).

• I/O control code 0x220018 is used to update the rootkit
driver fi le, by replacing it with the contents of the
supplied buffer.

• I/O control code 0x22001c is used to uninstall the
rootkit, by deleting the driver fi le and its associated
registry key.

• I/O control code 0x220024 is used with a buffer that is
two bytes long. It is used to assign the port on which
the rootkit listens for incoming network connections.

• I/O control code 0x220028 is used with a buffer that is
four bytes long. It is used to terminate a process using
the supplied process ID. If the termination routine
is found, the rootkit will call it directly. Otherwise,
the rootkit will use the documented APIs to request
termination, which might be disallowed.

• I/O control code 0x22002c is used to terminate a
process using the supplied process name.

• I/O control code 0x220030 is used to acquire
system-level privileges for the registered process.
The rootkit duplicates the access token of the system
process and attempts to assign it to the registered
process. If that fails – which can happen, for example,
if other security-related software refuses the request
– then the rootkit retrieves a pointer to the current
process object and a pointer to the primary access
token for the current process. The rootkit verifi es that
the offset within the token structure (which the rootkit
saved previously) matches the pointer to the primary
access token. If the token structure is at the expected
location, the rootkit increases the reference count to the
maximum value, then copies the token pointer directly
into the process token.

• I/O control code 0x220034 is used to construct the
list of registry values that the rootkit will check in the
registry callback. The list contains comma-separated
Unicode strings, which are converted to a multi-SZ list
and then written to the ‘DB1’ registry value. The entries
in the list are also converted to individual Unicode
structures, which are then sorted according to the value
of the code points. The rootkit supports up to 128
entries in the list.

• I/O control code 0x22003c is used to construct the
list of registry keys that the rootkit will check in the

VIRUS BULLETIN www.virusbtn.com

10 JUNE 2014

registry callback. The list contains comma-separated
Unicode strings, which are converted to individual
Unicode structures then sorted according to the value of
the code points. The rootkit supports up to 128 entries
in the list.

• I/O control code 0x220038 existed in a previous
version of the rootkit. It was used with a buffer that
was 36 bytes in length and was used to query the TDI
connection information for the specifi ed ID.

TCP FILTER DEVICE

The TCP device that was created in the early version of the
rootkit watched for TDI_CONNECT requests that were
not initiated by the registered process. It was interested
in connections on port 80 to IP addresses other than
127.0.0.1. The rootkit saved the name of the requesting
module and created a connection to 127.0.0.1 on the
listening port that was assigned earlier, before allowing
the original request to proceed. Since the original outgoing
connection was made by a process other than the rootkit, it
did not trigger unexpected fi rewall events. Thereafter, the
user-mode component of the rootkit could listen for data
received on the requested port. As mentioned previously,
the TCP device is not present in the more recent versions
of the rootkit.

FILESYSTEM DEVICE

The fi lesystem device watches for requests for open or
create, close, and write or set information, for a given
fi le. When a request to open/create a fi le is seen, the
rootkit checks if the thread handle is present in the
thread array that it carries. If the handle is present in the
array, the rootkit allows the request to proceed without
interference. Otherwise, if the fi lename refers to a fi le
that has been opened from within a subdirectory, the
rootkit requests the name of the subdirectory and prepends
that to the fi lename. If the fi le has not been opened
from within a subdirectory, the fi lename is used without
modifi cation.

The rootkit searches the fi lename for the last slash. If the
fi lename includes a stream name, it discards the stream
name and looks only at the fi lename. If the fi lename
matches either the name of the rootkit driver fi le or the
name of the registered process, the rootkit denies the
access request. If the fi lename matches the name of
the fi rst driver in the rootkit’s loader group, the rootkit
denies requests to replace the fi le, because it might also
be the rootkit fi lename, if a different version of the rootkit
is run.

If the request is to open or create a fi le whose name matches
the name of the fi rst driver in the rootkit’s loader group,
the rootkit saves a copy of the fi le object in an array that it
carries. The rootkit makes use of the array to deny all write
and set information requests for matching fi le objects. If
the fi lename is not restricted, then the rootkit searches for
a match among the entries from the ‘DB2’ fi le. If a match
is found, the rootkit denies requests to replace the fi le.
Otherwise, it saves a copy of the fi le object in an array that
it carries.

When a request to close a fi le is seen, the rootkit searches
for a match in its fi le object array. If no match is found, the
rootkit allows the request to proceed without interference.
If a match is found, the rootkit removes the entry from
the fi le object array. Interestingly, the search is allowed to
continue at that point, until the end of the array is reached.
It appears that the rootkit’s author forgot to add a break
from the loop.

PROCESS/THREAD CALLBACK
The process and thread callback begins by checking if the
callback was triggered by a process or a thread. If the object
is a thread, the rootkit determines the process that owns it.
If no process has been registered, if the target process object
is not referring to the registered process, or if the calling
process is the registered process, then the call is allowed to
proceed without interference. Otherwise, the rootkit checks
the requested operation.

If the request is to open the registered process, then the
rootkit disallows the following operations: suspend/resume,
set information, set quota, dup handle, VM read (a previous
version of the rootkit omitted this fl ag), VM write, VM
operation, create thread and terminate. If the request is to
open a thread within the registered process, then the rootkit
disallows the following operations: set information, set
context, suspend/resume and terminate.

There are two exceptions for the adjustment to the process
access rights: the rootkit determines the name of the process
that is making the request. If the name is ‘svchost.exe’, the
rootkit allows the ‘dup handle’ operation; if the name is
‘lsass.exe’, the rootkit allows the ‘VM write’ and ‘VM
operation’ operations. There is one exception for the
adjustment to the thread access rights: if the requesting
process is duplicating a handle that it already owns, all
requested access is granted.

OPENPROCESS HOOK

The OpenProcess hook works in a similar way to the
process-specifi c portion of the process and thread callback.

VIRUS BULLETIN www.virusbtn.com

11JUNE 2014

The rootkit calls the original function and returns
immediately if an error occurs. The rootkit also returns
immediately if no process has been registered, if the calling
process is the registered process, or if the handle does not
refer to the registered process. If the handle does refer to
the registered process, the rootkit closes it and then reopens
it with the same process-specifi c operations disallowed as
for the callback, and with the same exceptions as for
‘svchost.exe’ and ‘lsass.exe’. A previous version of the
rootkit contained a bug in this code, which would open
the process only if the requesting process was either
‘svchost.exe’ or ‘lsass.exe’.

OPENTHREAD HOOK

The OpenThread hook works in a similar way to the
thread-specifi c portion of the process and thread callback.
The rootkit calls the original function and returns
immediately if an error occurs. The rootkit also returns
immediately if no process has been registered, if the calling
process is the registered process, or if the handle does not
refer to the registered process. If the handle does refer to the
registered process, the rootkit closes it and then reopens it
with the same thread-specifi c operations disallowed as for
the callback, but without any exceptions.

REGISTRY CALLBACK

The registry callback checks if the current thread handle
is among the thread handles in the array that the rootkit
maintains. If the handle is not a rootkit thread, the rootkit
watches for attempts to set or delete registry values, and
checks against the entries in the registry value list. It denies
the access request if there is a match. The rootkit watches for
attempts to create or open registry keys, and checks against
the rootkit driver path. It denies the access request if there is
a match. The rootkit checks for ‘wuauserv’ and ‘BITS’, and
denies the access request to anything other than ‘services.
exe’. The rootkit checks against the entries in the registry
key list and denies the access request if there is a match.

Next time, we will look at what the user-mode component
does.

REFERENCES

[1] Ferrie, P. The curse of Necurs, part 1. Virus
Bulletin, April 2014, p.4. http://www.virusbtn.com/
pdf/magazine/2014/201404.pdf.

[2] Ferrie, P. The curse of Necurs, part 2. Virus
Bulletin, May 2014, p.18. http://www.virusbtn.com/
pdf/magazine/2014/201405.pdf.

SINOWAL BANKING TROJAN
Chao Chen
Fortinet, China

Once considered to be one of the most malicious and
advanced pieces of malware, Sinowal (a.k.a. Mebroot [1]
or Theola [2]) has drawn the attention of both security
researchers and members of the public alike since 2006.
With a modular architecture and sophisticated functionality,
Sinowal is a multi-component banking trojan targeted
at various web browsers which threatens users of online
banking systems around the globe. In this article, we will
delve into the inner workings of each of the components of
this powerful malware.

INSTALLATION
The Sinowal installer (MD5: 7efc5e7452d98843b9ae4a26
78d057ea) may arrive on a victim’s computer via any of a
number of different means, including drive-by download,
spam attachment and fi le-sharing networks. The infamous
Blackhole [3] exploit kit also served as a major vector of
infection until last autumn (since when Blackhole has been
inactive).

The installer drops a dynamic-link library (DLL) onto
the local hard disk. The DLL acts as a loader module and
will load other components, if any exist, and download a
manager module which plays a central role in conducting
banking fraud. The manager module downloads several
plug-in modules from the C&C server, aimed at different
target applications. These modules are used to steal
sensitive information including bank account details,
email addresses and FTP accounts. All plug-in modules
contact the manager module through a named pipe, while
the manager module communicates directly with the C&C
server, uploading stolen information, reporting the local
status of the trojan and downloading confi guration and
plug-in modules, as well as script commands for the plug-in
modules to run.

LOADER MODULE
The loader module is named ‘mini’ on 32-bit systems and
‘mi64’ on 64-bit systems. Each of Sinowal’s modules has
a different 32-bit and 64-bit version. In this article, we will
focus on the versions for the 32-bit platform.

Back-up loader on disk

After being dropped and decoded by the installer, the
loader module is loaded with the fdwReason parameter of
the EntryPoint function set to 0xFEFEFEEE, indicating

MALWARE ANALYSIS 3

http://www.virusbtn.com/pdf/magazine/2014/201404.pdf
http://www.virusbtn.com/pdf/magazine/2014/201405.pdf

VIRUS BULLETIN www.virusbtn.com

12 JUNE 2014

that this is the fi rst time it has run. The DllRegisterServer
function will be called later to perform the following tasks:

(1) Write the image of the loader module to the fi le
‘%SystemDrive%\Documents and Settings\All
Users\Application Data\{Random Number}\
{Filename}.dll’ on the hard disk. Here, {Random
Number} is determined by calling the GetTickCount
API, and {Filename} is chosen from a given group
on the basis of the creation time of SystemRoot, as
shown in Figure 1.

Figure 1: Choosing a random fi lename.

(2) Keep uploading local information to the C&C server.
The URL of the C&C server is hard-coded in the
loader module’s binary. The information uploaded is
an encrypted list of numbers, each one representing a
special event that has taken place on the compromised
machine, as shown in Figure 2.

Figure 2: Upload events information.

 The encryption routine performs a simple XOR
operation on each double-word. The initial value of
the crypt key is generated on the basis of the CPU
time stamp counter. The size of data is extended to a
multiple of four. In the encrypted data, the fi rst double-
word is the crypt key, the second is the encoded value
of the original data size, and the rest is encoded data.

(3) Execute the command ‘regsvr32.exe /s {Path of
Loader Module}’, which will cause the loader module
to run in the regsvr32.exe process.

Download manager module

Running in the regsvr32.exe process, the loader module will
check the fdwReason parameter of the EntryPoint function.
This time, the value of fdwReason is DLL_PROCESS_
ATTACH. In this case, the hash of the name of the current
process will be calculated and compared against a set of
hashes that represent some particular processes. The result
of the comparison will determine what happens in the next
step.

A Python version of the hash generation algorithm is shown
in Figure 4.

Figure 4: Hash generation algorithm.

Some useful hash values and their corresponding fi lenames
are listed below:

0x56C00521 ‘explorer.exe’

0x58AF052E ‘regsvr32.exe’

0xAAFF04C6 ‘sysprep.exe’

0x54E50518 ‘iexplore.exe’

Figure 3: Encryption routine with XOR.

VIRUS BULLETIN www.virusbtn.com

13JUNE 2014

0xAC0104A3 ‘fi refox.exe’

0xD4C0042E ‘chrome.exe’

The main work in the regsvr32.exe process can be divided
into three parts:

(1) Download the manager module via the routine used
for uploading the event list. The HTTP session for
downloading is shown in Figure 5.

Figure 5: Download the manager module.

 An encrypted list of running processes and installed
software is sent to the C&C server, which will reply
with the XTEA-encrypted manager module. The
downloaded manager module will be decrypted with
the key ‘HONNJCUPKFVBBYCC’. After being
verifi ed as a PE fi le, the manager module (which is
also a DLL) will be XTEA-encrypted locally and
stored in the folder that contains the loader module.
This time, the crypt key (128 bits) consists of two
parts: the fi rst 32 bits are generated on the basis of the
SystemRoot creation time, and the other 96 bits are
hard-coded in the binary. The name of the encrypted
manager module is chosen from another group of
given names and uses ‘.dat’ as its extended fi lename.

(2) Make the registry value ‘HKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\
ShellServiceObjectDelayLoad’ point to the path of
the loader module and add the path of the loader
module to the registry value ‘HKLM\SOFTWARE\
Microsoft\Windows NT\ CurrentVersion\Windows\

LoadAppInit_DLLs’. The fi rst registry value will
enable the loader module to be loaded when Explorer
starts up, and the second will enable it to be loaded
into all user-mode processes in the system.

(3) Inject a piece of code into the explorer.exe process to
load the loader module.

Start manager module

Once the loader module is loaded in the explorer.exe
process, it will realise that Explorer has become its host
process by using the hash comparison described earlier.
Then it will retrieve the encrypted manager module from
the hard disk and decrypt it with a key generated on the
basis of the SystemRoot creation time. Next, the EntryPoint
and Initialize functions of the manager module will be
invoked in sequence so that the manager module can work
in the Explorer process. We will discuss the manager
module in detail later.

Record browser information

If the loader module is loaded in a process of iexplore.exe,
fi refox.exe or chrome.exe, it will record some information
in the registry key ‘HKCU\Software\Microsoft\Notepad’
or, if that fails, ‘HKCU\Software\AppDataLow’. The
value ‘LastMsg’ is set to the number of browser processes
that have been injected by the loader module. The value
‘msg{Number}’ records the identity of the browser program
being injected. Some examples are as follows:

• ValueName = ‘msg0’, data = ‘MD I’ for
Internet Explorer

• ValueName = ‘msg1’, data = ‘MD F’ for
Mozilla Firefox

• ValueName = ‘msg2’, data = ‘MD C’ for
Google Chrome.

Beef fi le

If the loader module is loaded in the Explorer process
or any other user-mode process, such as a web browser
process, it will search for a special fi le from the folder
containing the loader module. The fi le in question is
XTEA-encrypted and its fi rst double-word after decryption
should be 0xBEEFBEEF. We call it the ‘beef fi le’. The
double-word 0xBEEFBEEF is written into the beef fi le by
the loader module. Other data in the beef fi le will be written
by the manager module, which will be discussed later. The
structure of the beef fi le is as follows:

Beef File:

+0 0xBEEFBEEF

+4 NumOfEntries (should <= 0x20)

+8 BeefEntry[NumOfEntries]

VIRUS BULLETIN www.virusbtn.com

14 JUNE 2014

Struct BeefEntry:

+0 EntryName

+14h SizeHashes

+18h SizeModule

+1Ch Hashes[SizeHashes]

+1Ch+ SizeHashes Module[SizeModule]

EntryName: entry name consisting of four characters,
including ‘mini’, ‘mi64’, ‘gbcl’, ‘gc64’, ‘iecl’, ‘ffcl’, ‘crcl’
and ‘snif’.

Hashes: an array of hashes. The loader module will
compare the hash of the name of its host process with each
hash in this array. If a match is found, the corresponding
module stored in this BeefEntry will be loaded into the
host process.

Module: a module exporting two functions – Initialize and
Deinitialize.

Module life cycle

When the manager module or a plug-in module from the
beef fi le is loaded into a process by a copy of the loader
module injected into the same process (the manager module
will only be loaded in the Explorer process), the EntryPoint

function and its initialization will be invoked by the loader
module (see Figure 6).

When the manager module or plug-in module fi nishes its
work, its Deinitialize function will be invoked by the loader
module. After that, the loader module will unload itself
by calling the FreeLibrary API and then reload itself by
calling the LoadLibraryA API with the path of the loader
binary on disk as the parameter. Using this method, the
loader module, manager module and plug-in modules are
periodically reloaded into a host process, which ensures that
any newly downloaded or updated modules will be given a
chance to run.

Anti-Trusteer Rapport

As an advanced banking trojan, Sinowal is equipped with
a weapon to defeat Trusteer Rapport [4], a security tool
used to prevent phishing and man-in-the-browser attacks.
Trusteer Rapport runs in all browser processes, monitoring
suspicious activities by hooking Windows APIs.

If Trusteer Rapport is found to be installed on the
compromised machine, the following actions will be taken
by the loader module running in a browser process:

(1) Suspend all threads belonging to the Trusteer Rapport
module in the browser process.

(2) Recover APIs in the following DLLs from binary fi les
on disk:

ntdll.dll kernel32.dll

user32.dll gdi32.dll

wininet.dll ws2_32.dll

ole32.dll urlmon.dll

oleaut32.dll comctl32.dll

comdlg32.dll wintrust.dll

(3) Hook the NtCreateThread and NtCreateThreadEx
APIs to abort threads created by Trusteer Rapport.

(4) If the top-level exception fi lter is in the
Trusteer Rapport module, replace it with
UnhandledExceptionFilter.

MANAGER MODULE
The manager module downloaded by the loader module
plays a central role in the malware’s activity. It will
download plug-in modules and confi guration data from the
C&C server for stealing information such as bank accounts.
Downloaded plug-in modules will be stored in the beef fi le,
while the confi guration data is written into a local encrypted
fi le. The manager module communicates with the plug-in Figure 6: Invoke Initialize function.

VIRUS BULLETIN www.virusbtn.com

15JUNE 2014

modules through a named pipe. This module is dubbed
‘gbcl’ (32-bit version) or ‘gc64’ (64-bit version).

Time-based DGA for C&C server

Unlike the hard-coded C&C server URL used for
downloading the manager module, the C&C server domains
for downloading confi guration data and plug-in modules are
obtained through a DGA (Domain Generation Algorithm)
which is based on the current date and time taken from
Google. Some generated domains are shown in Figure 7.

Figure 7: C&C server domains.

Register bot with C&C server

To register the compromised machine with the C&C server,
encrypted local information, including the IP address table,
is uploaded. A custom encryption algorithm is employed in
the communication between the manager module and the
C&C server. The fi rst double-word of the transferred data
is the crypt key, and a signature double-word ,‘BIP’ 0x02,
is at offset 0x10 to the beginning of the decrypted data, as
shown in Figure 8.

Figure 8: Crypt key and signature double-word.

Download plug-in modules and confi guration

Plug-in modules and confi guration data are downloaded
using the same encryption scheme as described above. The
confi guration contains thousands of URLs belonging to
online banks and e-commerce services around the world. A
small piece of decrypted confi guration is shown in Figure 9.

The URLs in the confi guration data reveal that the fi nancial
institutions targeted by Sinowal are distributed in the
following countries:

 Europe: Andorra, Austria, Belgium, Bulgaria,
Switzerland, Cyprus, Czech Republic, Germany,
Denmark, Spain, Finland, France, Guernsey, Greece,
Hungary, Ireland, Isle of Man, Iceland, Italy, Jersey,
Cayman Islands, Liechtenstein, Luxembourg, Latvia,
Malta, New Caledonia, Netherlands, Norway, Poland,
Portugal, Romania, Russian Federation, Sweden,
Slovenia, Slovak Republic, Turkey, United Kingdom.

 Asia: United Arab Emirates, China, Israel, India, Japan,
Nepal, Qatar, Singapore.

 Africa: Kenya, Uganda, South Africa.

 North America: Canada, United States.

 Latin America: Argentina, Brazil, Belize, Mexico.

 Oceania: Australia, New Zealand, Samoa.

The plug-in modules are downloaded and stored in the beef
fi le.

Pipe communication

The manager module creates a named pipe through which
it exchanges data and scripts with the plug-in modules. The
pipe’s name is generated by the routine shown in Figure 10.

BANKING FRAUD FOR INTERNET
EXPLORER
A plug-in module named ‘Iecl.dll’ (Figure 11) is injected
into the iexplore.exe process to perform banking fraud.

Figure 9: URLs in confi guration.

VIRUS BULLETIN www.virusbtn.com

16 JUNE 2014

The main functionality of this module is to steal sensitive
information such as the login and password details of
compromised users for online banks and e-commerce sites,
and to run customized scripts from the C&C server at
specifi c times.

Preparation

Because Sinowal targets victims who speak various
different languages around the world, it is important to
ensure that mlang.dll, which provides multi-language
support, exists on the victim’s computer. If mlang.dll does
not exist on the machine, the Iecl module will not work.

To enable browser active scripting, which is required by the
Iecl module, the registry value ‘HKCU\Software\Microsoft\
Windows\CurrentVersion\Internet Settings\Zones\3\1400’

is set to zero. This means that Internet Explorer will no
longer prompt the user before running dynamic scripts.

Hijack Internet Explorer

Figure 12 shows an overview of the complete procedure of
stealing bank accounts and running the malicious script. In
the following sections, we will discuss how it works, step
by step.

Figure 12: Procedure of hijacking IE.

Monitor and respond to web browser events

The Iecl module will enumerate all running instances
of Internet Explorer (IE). For each IE browser object, a
property named ‘__BRCL__’ is created and set as a string
generated as a result of calling the GetTickCount API.
This property is used to identify a specifi c IE browser
object.

For each IE object, an IDispatch interface object is
constructed and connected to the IConnectionPoint interface
of a connection point for the DIID_DWebBrowserEvents2
of the browser object. In this way, the IDispatch object can
respond to browser events using the Invoke method.

If the dispIdMember parameter of the Invoke method
is DISPID_BEFORENAVIGATE2 or DISPID_
NEWWINDOW3, the Iecl module will check the URL the
browser is going to. If the URL is on a blacklist maintained
by Sinowal, the visit to this URL will be cancelled by
setting DISPPARAMS.Cancel to VARIANT_TRUE.

If the dispIdMember parameter is DISPID_
NAVIGATECOMPLETE2, the Iecl module will check the
URL the browser has arrived at. If the URL is blacklisted,
navigation will be stopped by calling IWebBrowser2::Stop.

If the dispIdMember parameter is DISPID_
DOWNLOADBEGIN, the host name of the current
URL will be obtained and saved in the IDispatch object
constructed for this browser object.

If the dispIdMember parameter is DISPID_
BEFORENAVIGATE2, DISPID_DOWNLOADBEGIN,

Figure 10: Generation of pipe name.

Figure 11: Iecl module information.

VIRUS BULLETIN www.virusbtn.com

17JUNE 2014

DISPID_NAVIGATECOMPLETE2 or DISPID_
DOWNLOADCOMPLETE, the IHTMLDocument2
interfaces of all the frames opened in the browser will
be obtained. An IDispatch interface object will be
created for each frame. This IDispatch object will be
connected to the IConnectionPoint interface for the DIID_
HTMLDocumentEvents2 of the frame. If the value of the
‘tagName’ property of this frame is ‘BODY’, the IDispatch
object will also be connected to the IConnectionPoint
interface for the DIID_HTMLTextContainerEvents2 of the
frame. The job of this IDispatch object is to monitor forms
on web pages and to execute a given script at specifi c points
in time, which will be discussed later.

If the dispIdMember parameter is DISPID_ONQUIT, the
IDispatch object for DIID_DWebBrowserEvents2 will
be disconnected from the connection point. If no other IE
browser instance is running in the system, a WM_QUIT
message will be sent to the Iecl module, which will then
cease to work.

Stealing sensitive form information

The Invoke method of the IDispatch object for
DIID_HTMLDocumentEvents2 and DIID_
HTMLTextContainerEvents2 will fi nd all form elements
on a web page and monitor the content and submission of
each form.

If the dispIdMember parameter of the Invoke method
refers to keyboard and mouse events, such as DISPID_
HTMLDOCUMENTEVENTS2_ONCLICK or DISPID_
HTMLDOCUMENTEVENTS2_ONKEYPRESS, the
Invoke method will do nothing.

If the dispIdMember parameter is
DISPID_HTMLDOCUMENTEVENTS2_
ONREADYSTATECHANGE or
DISPID_HTMLDOCUMENTEVENTS2_
ONPROPERTYCHANGE, and the readyState of the
HTML document is ‘complete’, the following actions will
be taken on each form in the HTML document:

First, an attribute named ‘cnct’ will be created for the form.
This attribute is used as a fl ag telling the Iecl module that
the form is already under control.

Secondly, a newly created IDispatch object will be
connected to the connection point for the DIID_
HTMLInputTextElementEvents of each input text element
of the form if the type of the element is ‘password’ and the
method of the form is ‘post’. In the Invoke method of the
IDispatch object, an attribute named ‘pwd’ is created for the
password input text element, and the value of this attribute
is set to the content of the element – which is very likely
the password entered by the compromised user. The ‘pwd’

attribute is used to highlight the password when the form
content is grabbed and sent to the C&C server.

Next, two IDispatch objects are created. One is
attached to the onsubmit event of the form by calling
IHTMLElement2::attachEvent; the other is assigned to the
member ‘submit’ by calling IDispatchEx::InvokeEx with
the parameter wFlags set to DISPATCH_PROPERTYPUT.
These two IDispatch objects are used to collect the
following sensitive information:

• The current URL representing the web page containing
the form

• The value of the property ‘action’ of the form, which is
the destination URL to which the form content should
be sent by an HTTP post command

• The name, type and value of each item in the form.

Finally, the grabbed form data will be sent through a
pipe to the manager module, which in turn will send the
information to the C&C server.

Custom script engine

When the state of an HTML document changes to
‘rendering’, ‘download_complete’ or ‘submit’, the Iecl
module reports the current URL and HTML document state
to the C&C server and receives a custom script to execute.
The manager module acts as a middle-man in this procedure.

In order to run the custom script provided by the
C&C server, the Iecl module creates a member of
IHTMLDocument::Script and names the member with a
randomly generated string. Then an IDispatch interface
object is created and wrapped in a VARIANTARG
with type VT_DISPATCH. This VARIANTARG
will be assigned to the randomly named member of
IHTMLDocument::Script so that this member will act as
a script interpreter, recognizing and executing the custom
script provided by the C&C server.

The IDispatch object for the randomly named member
contains names of a set of commands used in the custom
script, each command having a number as its ID, which will
be retrieved by the GetIDsOfNames and GetDispID methods.

In the Invoke method of this IDispatch object, commands
of the custom script will be parsed and executed. The
commands and their descriptions are as follows:

 jsre (dispId 0x01): JavaScript regular expression parser.

 open (dispId 0x02): open given URL with
given referrer. The parameter is in the format
{Host}/{Path}?rhcpre={Base64 Encoded
Referrer}&{Parameter List}. The URL to be opened is
{Host}/{Path}?{Parameter List}, and the referrer set in
the HTTP header is {Base64 Decoded Refererr}. This

VIRUS BULLETIN www.virusbtn.com

18 JUNE 2014

command gives the Iecl module the ability to pop up a
phishing page at the appropriate time without raising
suspicion.

 close (dispId 0x03): close a specifi c Internet Explorer
browser object.

 eval (dispId 0x04): run the custom script given as the
fi rst parameter. The second parameter is the value of
the ‘__BRCL__’ property identifying the browser
object.

 screen (dispId 0x05): take a screenshot in JPEG format
and send it to the C&C server.

 encrypt (dispId 0x06): custom encryption routine using
XOR.

 image (dispId 0x07): get and base64-encode the stored
data of a given URL in the cache entry fi le.

 request (dispId 0x08): download a string from the
C&C server using the IStream interface.

 video (dispId 0x09): record an MPEG video of the user
screen by using an open-source x264 library embedded
in the Iecl module, and send the video to the C&C
server.

 update (dispId 0x0A): update the time property of the
current host.

 freeze (dispId 0x0B): lock the in-place activation
window in the browser.

 unfreeze (dispId 0x0C): unlock the in-place activation
window in the browser.

 cookie (dispID 0x0D): search cookies for the current
URL.

 report (dispId 0x0E): report local information to the
C&C server.

BANKING FRAUD FOR GOOGLE CHROME

For the Google Chrome browser, a plug-in module named
‘CrclReg.dll’ is downloaded and injected into all running
chrome.exe processes (see Figure 13).

Install Chrome extension

The main job of the CrclReg module is to install a Chrome
extension which will conduct banking fraud. The fi les for
the Chrome extension, including a DLL, are embedded in
the binary of the CrclReg module, as shown in Figure 14.

In fact, the original name of the DLL for the extension is
‘Crcl.dll’, as shown in Figure 15.

These fi les are dropped into a randomly named folder in the
C:\WINDOWS\TEMP directory.

To install the extension, the following shell command
is executed by calling the ShellExecuteA API with the
parameter operation set to ‘open’:

{Path of chrome.exe} --pack-extension=’{Path of
Randomly named Folder}’ --no-message-box

A .crx fi le is generated as a result of the command.

The ScriptItemize, ShowWindow and DrawTextW APIs are
hooked to make the installation process silent and invisible.
In addition, the extension is enabled in incognito mode. We
can see the installed extension named ‘Default Plug-in’ in
Chrome’s extension panel, as shown in Figure 16.

Figure 16: Malicious Chrome extension.

Monitoring web activities

In the exported NP_GetEntryPoints function of Crcl.dll,
a set of NPAPI functions are provided for the browser to

Figure 13: CrclReg module information.

Figure 14: Files for Chrome extension.

Figure 15: Crcl.dll for Chrome extension.

VIRUS BULLETIN www.virusbtn.com

19JUNE 2014

invoke at the appropriate time. The most important NPAPI
functions are NPP_New and NPP_GetValue. NPP_New
is called by the browser to create a new instance of the
extension. In this function, several listeners are set up to
monitor web activities. The script setting the listeners is
hard-coded in Crcl.dll, as shown in Figure 17.

The script equips the extension with the capacity to redirect
network traffi c, forge the HTTP referrer, intercept session
cookies, and monitor browser navigation.

Grab form content

The NPP_GetValue function creates a ScriptableNPObject
to receive and execute the script from the browser. The
content.js fi le packed in the .crx fi le of the extension
contains a script for stealing form content. The de-
obfuscated version of content.js is shown in Figure 18.

The submitEvent function defi ned in the script will grab
the form content when a form is submitted. The collected
information will be given as a parameter to a method
also named ‘submitEvent’ of the ScriptableNPObject
representing the extension. This submitEvent method
implemented in Crcl.dll will transfer stolen form data
through a pipe to the manager module, which then
communicates directly with the C&C server.

Figure 17: Script for monitoring web activities.

Figure 18: De-obfuscated content.js.

Figure 19: The Invoke method of ScriptableNPObject.

VIRUS BULLETIN www.virusbtn.com

20 JUNE 2014

Script command list of extensions

From inside the Invoke method of ScriptableNPObject for
the extension, we can see a list of script commands and the
routines for executing them.

The commands are as follows:

 beforeNavigate: monitor the URL the browser is going
to

 executeScript: get script from the C&C server to run
when the state of the HTML document changes to
‘rendering’, ‘download_complete’ or ‘submit’

 beforeRequest: redirect traffi c for certain URLs

 beforeSendHeaders: forge referrer in the HTTP
request header

 sendHeaders: intercept information in the HTTP
request header, including request method, destination
URL, referrer URL and HTTP session cookie

 submitEvent: send stolen form data to the manager
module through a pipe

 jsre, screen, video, encrypt, request, open, close,
eval, image, update, cookie, report: implement the
same functionalities as discussed in the section on
Internet Explorer banking fraud.

BANKING FRAUD FOR MOZILLA FIREFOX

The module for conducting banking fraud in Firefox, named
‘Ffcl.dll’, is similar to Iecl.dll in its code architecture.

Figure 20: Ffcl module information.

The script embedded in the binary fi le for stealing form data
is shown in Figure 21.

Ffcl.dll also has the same script command list as Iecl.dll.

SNIFFER MODULE
A module named ‘gbsniffer.dll’ is employed to sniff
network data and to harvest email addresses from POP3/
SMTP traffi c and the usernames/passwords of FTP client
applications installed on the compromised machine (see
Figure 22).

Hook APIs

To monitor data transferred on the network and intercept the
original data of hash operations, the sniffer module hooks a
number of APIs, listed as follows:

Ws2_32.dll:
 closesocket, WSASend, WSARecv, send, recv

Wininet.dll:
 InternetConnectA, HttpOpenRequestA,

HttpSendRequestA
 HttpSendRequestW, InternetReadFile,

InternetCloseHandle

Advapi32.dll:
 CryptHashData

Bcrypt.dll:
 BCryptHashData

nspr4.dll:
 PR_Read, PR_Write, PR_Close

Ole32.dll:
 CoGetClassObject

Harvest email addresses and FTP accounts

The sniffer module will collect sensitive information from
POP3, SMTP and FTP sessions. The following information
extracted from a monitored session will be sent through a
pipe to the manager module:

Figure 21: Script in Ffcl.dll.

Figure 22: Sniffer module information.

VIRUS BULLETIN www.virusbtn.com

21JUNE 2014

• Name of client application for POP3, SMTP or FTP

• URL and port of POP3, SMTP or FTP server

• Email addresses from POP3/SMTP or user account of
FTP.

The code for harvesting email addresses is shown in Figure
23.

Figure 23: Harvesting email addresses.

CONCLUSION

Sinowal has become a persistent trojan by continuously
upgrading its weapons, including use of multi-stage injection,
time-based DGA, a complex encryption scheme and plug-in
modules aimed at different kinds of browsers. Enormous
economic losses affecting both individuals and institutions
have been seen during the long evolution of this malware
family. It is now time for the security community to launch a
campaign which will put an end to the Sinowal story.

REFERENCES

[1] Bell, H. Trojan.Mebroot Technical Details.
http://www.symantec.com/security_response/
writeup.jsp?docid=2008-010718-3448-99&tabid=2.

[2] Matrosov, A. How Theola malware uses a Chrome
plugin for banking fraud.
http://www.welivesecurity.com/2013/03/13/how-
theola-malware-uses-a-chrome-plugin-for-banking-
fraud/.

[3] Howard, F. Exploring the Blackhole exploit kit.
http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit/.

[4] https://www.trusteer.com/products/trusteer-rapport.

ROGUE CODE
Paul Baccas
Proofpoint, UK

Title: Rogue Code: A Jeff Aiken
Novel
Author: Mark Russinovich
Publisher: Thomas Dunne Books
ISBN-13: 978-1250035370

Rogue Code is security researcher
Mark Russinovich’s third novel
featuring the main character Jeff
Aiken, and like the previous two
(Zero Day and Trojan Horse),
is a modern techno-thriller with

equal emphasis on both techno and thriller. The plot
revolves around the world of high fi nance, particularly
High Frequency Trading (HFT) and IPOs, and is mainly
based in and around Wall Street. The timing of the book
is particularly fortunate in that both editions of The Times
(London and New York) feature in their list of non-fi ction
best sellers Flash Boys, by Michael Lewis, which describes
the world of HFT and how it has changed share trading, and
the market, forever.

As in the previous two novels, each chapter is introduced
with either a memorandum or a vignette of the people/things
affected by the rogue code – this does not hamper the pace of
the book, and in fact adds to its depth. The characterization
of the minor characters has improved since the fi rst novel
in the series, and I suspect that we may see some of them
appearing in future books (as a protagonist, Jeff Aiken
has at least three more major malware/computer security
themes to tackle). There are several side themes that suggest
that more stories may be in the pipeline: Jeff’s relationship
with colleague Daryl, and the internecine strife between
(ex-)members of certain three-letter agencies with current (or
former) members of other three-letter agencies.

Mark knows his subject in depth – and any area in which
he doesn’t have direct experience, he researches, and
that shows. Sometimes the explanations and details are
superfl uous after the fi rst mention (for example, detailing
the manufacturer, type, and model of the bad guys’ fi rearms
wasn’t necessary more than once). Perhaps taking out
the exposition of the story and adding an Afterword or
Addendum with some of these details would help to keep
the fl ow smooth and fast.

I enjoyed the latest instalment of the Jeff Aiken series and
would recommend you consider this for your summer
vacation reading. Mark seems to be on an 18-month product
release cycle and I look forward to version 4.0.

BOOK REVIEW

http://www.symantec.com/security_response/writeup.jsp?docid=2008-010718-3448-99&tabid=2
http://www.welivesecurity.com/2013/03/13/how-theola-malware-uses-a-chrome-plugin-for-banking-fraud/
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
https://www.trusteer.com/products/trusteer-rapport

VIRUS BULLETIN www.virusbtn.com

22 JUNE 2014

GREETZ FROM ACADEME: WILL
RESEARCH FOR FOOD
John Aycock
University of Calgary, Canada

This is the 13th ‘Greetz from Academe’ article, which
happens to coincide with Virus Bulletin ceasing to be
published in a traditional magazine format. Since VB is
undergoing change, it seems fi tting for my fi nal instalment
to focus on change as well.

I’ll begin with updates, since they introduce all manner of
change to a system. In a previous ‘Greetz’ [1], I featured a
research paper that dissected anti-virus updates and found
a number of worrying problems. Happily, there seem to
be more than enough updating fl aws to go around, and
anti-malware products aren’t in the cross hairs this time
– instead, it’s Google’s turn. Xing et al.’s paper on mobile
OS privilege escalation [2] appeared in the recent IEEE
Symposium on Security and Privacy, a very well-respected
security venue.

The researchers delved into what happens when Android
devices are updated, and in particular the behaviour of the
Android Package Management Service that oversees the
updating process. In other words, the Package Management
Service – which the paper’s authors insist on abbreviating
to ‘PMS’ – is responsible for periodic software bloat. Make
your own inappropriate joke here; it’s simply too easy.

Naturally, it would not be a good thing for user data to be
lost, or user-installed apps to break, when an update occurs.
PMS thus contains some elaborate logic in an attempt to
make changes painless but, as the researchers discovered,
some loopholes exist that can be exploited by an attacker.
Patience is a virtue, and that idea underlies the various
possible attacks. An attacker who can get a malicious app
installed on a device (these attacks can all pass through
third-party app markets, and most of them work on Google
Play as well) simply needs to wait.

In one attack, for example, the malicious app claims
carefully chosen privileges that have no special meaning
on the Android version on which it is installed; when the
Android device is updated, however, and those privileges
now happen to be needed by a critical system component,
PMS handles the confl ict by silently giving the malicious
app the system-level permission. PMS is, in effect,
the Neville Chamberlain of the Android world, trying
desperately to appease apps and keep them functional. This
example is but one of many updating fl aws the researchers
uncovered, both in the Google-sanctioned Android versions
and in thousands of custom vendor builds. The problems
have been reported to Google, whose developers are

working on fi xing them, but the reality is that it will take a
very long time for fi xes to trickle out to all affected devices.

Fermat famously scribbled that he had a clever proof of
his Last Theorem that was too large to fi t in the margin.
Looking at the margins of my copy of Xing et al.’s paper,
they are nearly too small to contain all the stars and
exclamation points with which I marked interesting points
while reading it. It’s a good paper. The authors could have
stopped after explaining all the fl aws, and it would still be
a good paper, but in fact they went further and developed a
tool to help fi nd these so-called ‘Pileup’ update fl aws, which
is publicly available [3]. They make the interesting claim
there that ‘Generic security apps (e.g. Lookout, Avast!,
Norton, etc.) cannot be easily tuned to detect Pileup threats.’
That sounds to me like a challenge.

From updates as change, I’ll turn to the topic of change in
the sense of spare change: academic research funding. One
of my goals in writing this column was to help bridge the gap
between industry and academia, and along the way I’ve tried
to explain what the world looks like from the academic point
of view. It would be remiss of me not to mention research
funding. One reason I went into academia is that I enjoy both
teaching and research, yet a disproportionate amount of my
time is spent doing neither of those, but instead worrying
about getting the money to pay for research. The thing that
may be surprising to readers is the scale, because amounts of
money that would be lost in the noise on a corporate balance
sheet can go quite far in academic research. For anyone
in industry who fi nds themselves awash with what they
consider small change, become a patron for an academic
researcher. I, for one, would be happy to go all Renaissance
in the tradition of da Vinci and Mozart, dedicating my works
to the greater glory of CorporateEntity, if it meant I could
get real work done!

I hope ‘Greetz from Academe’ has been both entertaining
and enlightening over the last 13 months; thanks for reading.

REFERENCES
[1] Aycock, J. Greetz from Academe: Full Frontal.

Virus Bulletin, February 2014, p.30.
http://www.virusbtn.com/virusbulletin/
archive/2014/02/vb201402-greetz.

[2] Xing, L.; Pan, X.; Wang, R.; Yuan, K.; Wang, X.
Upgrading Your Android, Elevating My Malware:
Privilege Escalation Through Mobile OS Updating.
35th IEEE Symposium on Security and Privacy,
2014.

[3] Pileup Flaws: Vulnerabilities in Android Update
Make All Android Devices Vulnerable.
http://secureandroidupdate.org/.

SPOTLIGHT

http://www.virusbtn.com/virusbulletin/archive/2014/02/vb201402-greetz
http://secureandroidupdate.org/

VIRUS BULLETIN www.virusbtn.com

23JUNE 2014

FUZZING EVERYTHING IN 2014
FOR 0-DAY VULNERABILITY
DISCOVERY
Alisa Esage
Esage Lab, Russia

While the focus of fashionable security research is constantly
shifting towards new targets, such as hardware and cloud
security, 0-day vulnerability research has never lost its value.
In fact, its value has continually risen, as demonstrated by the
increase in the number of bug bounty and exploitation contest
programs in existence, and their ever-increasing payouts.
This year, a total of $850,000 was awarded to Pwn2Own
contestants for successful exploitation of 0-day vulnerabilities
in popular software [1]. Another bug monetization entity, the
Zero Day Initiative, has for many years paid researchers for
the responsible disclosure of valid security vulnerabilities (no
exploit required), paying around a few thousand USD each
time (this has been confi rmed by the author).

As these considerable payouts suggest, fi nding valuable
0-days (that is, exploitable security vulnerabilities in
popular software) is not an easy task. Even though fuzzing
– which is the most common approach to bug hunting – is
technologically and scientifi cally well developed and well
documented, simply running some fuzzers (which is indeed
easy to do) is not going to achieve the desired outcome.
There seems to be a secret ingredient to fi nding valuable
bugs – one that is missing from the books and publications
on the subject. The main objective of the research behind
this article was to fi nd that secret ingredient, and to
generalize it so that it could be applied to completely
arbitrary targets (i.e. everything).

The main measure of research success was assumed to be
the ratio of exploitable (as reported by automated tools)
vulnerabilities to total number of bugs found in popular
software. The secondary measure of success was the
total number of bugs found with limited resources, as an
indication of a potent fuzzing vector with popular software.
By means of these two criteria and some of my own
research, I have drawn some conclusions as to what makes
a good fuzzing technique.

THE IDEAL FUZZER
Regardless of the secret ingredient for fuzzing success, the
fi rst thing one needs is a good fuzzing framework.

There are a considerable number of fuzzing tools readily
available on the Internet, both free and commercial.
However, none of them satisfi ed the objectives of this
research due to the following limitations:

FEATURE
1. They were too specialized. For example, they would

only fuzz browsers, or only fi les. They were not
suitable for fuzzing everything by design.

2. They enforced unnecessary constraints. For example,
glue mutation with data feeding and automation with
crash analysis. This kills fl exibility and scalability,
and thus, is not suitable for fuzzing everything.

3. There was a steep learning curve. All fuzzing
frameworks had their own template format and
specifi c confi guration. We have to ask whether it
is worth the investment of learning a system that is
largely constrained anyway.

An ideal fuzzer – one that is suitable for fi nding security
vulnerabilities in arbitrary software – should possess the
following properties:

1. Omnivorous: It should be target invariant – i.e.
independent of software type, data type, platform
and architecture.

2. Omnipresent: It should be hosting-platform invariant
– i.e. it should be equally capable of working on
VM/hardware/localnet/clouds.

3. Autonomous: It should be able to be left to run on its
own. It should rotate mutations/seeds automatically.

4. ‘LEGO’-style modular architecture: One should
be able to mix and match components, enabling
rapid support for new targets and hot patching for
tweaking.

5. Unlimited, native scaling: It should be possible to
have any number of fuzzers running at the same
time. It should take very little time to set up new
targets.

6. Immediately actionable output: It should perform
auto-analysis of crashes, sort unique cases and send
an email with the stats.

7. Available now: It should be available right now – we
don’t have the time for development, and the system
must be usable from day one.

To satisfy these requirements, the system’s specifi c
functions must be well segregated and ultimately
generalized (abstract). We assume the following system
design decisions:

• A network client-server architecture

• Built upon isolated, generic tools

• Native automation (bash, cmd/PowerShell, cscript/
wscript, AppleScript etc.)

• Native instrumentation (DebugAPI, CrashWrangler,
cdb postmortem scripts etc.)

VIRUS BULLETIN www.virusbtn.com

24 JUNE 2014

• Generic mutators (home-made bit-fl ipping tools,
grep/sed/urandom, Radamsa).

Figure 1: An ideal fuzzing framework architecture.

As shown in Figure 1, the system’s functions are segregated
as follows:

1. Server:

• Generates and serves test cases

• Accepts and sorts crash analysis logs

• Provides scripts for additional pre-analysis,
sorting, particular trigger location

2. Client:

• Executes the target software in a loop

• Monitors exceptions

• Analyses crash dumps

3. Whole system:

• Runs in a loop

• Scales natively by addition of new clients

• Runs on any platform thanks to native automation
tools.

As was noted in the introduction to this article, a decent
fuzzing framework is necessary in order to start producing
crashes, but it is not enough to fi nd those elusive exploitable
security vulnerabilities. So, where’s the magic?

THE MAGIC
It has been seven years since the publication of the
canonical book Fuzzing: Brute Force Vulnerability
Discovery [2], and 10 years since the publication of the
fi rst edition of The Shellcoder’s Handbook [3]. Since then,
dozens of research papers have been published, hundreds
of fuzzing tools have been developed and shared with the

community, and thousands of vulnerabilities have been
discovered. In 2014, fuzzing is a mature industry, driven not
by art or technology, but by the market and competition.

A common mistake made by beginners in this industry is
to assume that success in fuzzing is defi ned by the fuzzer’s
speed and size. This is not exactly true, as proven by the
success of a few independent researchers against Google’s
own ClusterFuzz [4]. To put it simply, one needs millions
of test cases if the majority of those test cases are bad (i.e.
rejected by the target’s data validation routines, or unable to
reach or trigger any vulnerable code). Thinking along this
logic, one might conclude that the main thing that matters in
fuzzing is to target bug-rich branches of code.

The problem here is that there is no simple algorithmic
solution for discovering such bug-rich branches of code
on a major scale or for complex data formats. Code
coverage allows for the measuring of the volume of code
paths that have already been reached, but it doesn’t help
in discovering new code segments. Evolutionary input
generation only allows new code paths to be discovered on
a tiny assembly-level scale, not on the scale of a complex
data format. Think of an RTF document with an embedded
Word document with embedded ActiveX – how long would
it take to evolve such a complex sample from a generic
seed? Probably forever. However, my experience shows
that it’s exactly this kind of complex sample that targets the
most ‘fresh’ code in applications.

Thus, discovering potent fuzzing vectors remains largely
the responsibility of human intelligence.

Let’s think: where can it possibly be, this bug-rich code
base?

The ‘Elusive Joes’

Clearly, unknown or unpopular software is rich with an
unaudited code base, because no one cares about it. And
nor do we. As per popular software which everyone cares
about, the density of ‘previously unknown’ bugs in various
segments of code is primarily defi ned by the competition’s
assumptions and research patterns.

Non-obvious

Part of the code base in a known, popular piece of software
may still be bug-rich – for example, the code may not be
obvious to reach or easy to trigger.

One example is the TIFF 0-day discovered in the wild in
2013 (CVE-2013-3906). The vulnerability lies within the
Microsoft Offi ce ogl.dll graphics processing module, which
is specifi c to Offi ce 2007. In every other Offi ce version,
embedded images are processed by the Windows native
module gdiplus.dll. This means that this vulnerability could

VIRUS BULLETIN www.virusbtn.com

25JUNE 2014

only be found by fuzzing Offi ce 2007 specifi cally with
documents containing embedded malformed images – not a
common vector with fuzzing graphics or documents.

Another example is CVE-2014-0315, the Insecure Library
Loading vulnerability in Windows’ handling of .cmd and
.bat fi les. Vulnerabilities of this type are quite easy to fi nd
and are generally considered all to have been fi xed long
ago, but they are still being found in 2014.

The third example is CVE-2013-1324, the Microsoft Offi ce
.wpd fi le vulnerability. This is a stack-based buffer overfl ow
– the trivial type of bug which was considered to have been
eliminated long ago, but has still been found in the latest
versions of Microsoft Offi ce.

To summarize, some places to look for non-obvious code
bases are:

• Ancient, rarely used code bases

• Hidden functionalities

• Software-specifi c source code for a system’s native
functionality.

Effortful

A code base may long remain bug-rich if reaching it
requires considerable effort.

One example is the use-after-free vulnerability in Microsoft’s
RDP ActiveX (CVE-2013-1296). ActiveX modules are an
easy target and should, in theory, be well audited already.
The possible reason why this ActiveX remained vulnerable
in 2013 is that public tools for fuzzing ActiveX don’t support
vulnerabilities of the use-after-free type.

Another example is the Microsoft DKOM/RPC service, which
exposes ports 135 and 445 on a typical Windows system. This
is a huge, complex and completely undocumented code base
that has yet to be targeted by researchers.

So, some more signs of under-audited code bases worthy of
our attention are:

• Those for which public fuzzing tools have limitations
(easily augmented)

• Those with undocumented data formats (easily
addressed by generic tools).

Constrained

A code base may be under-audited because it was
previously assumed to be too constrained to be valuable
for exploitation, e.g. due to extra security controls or user
interaction.

One example is, again, the system-standard ActiveX in
Windows. Modern versions of Internet Explorer require user
interaction to enable an ActiveX, so this is not considered

to be an interesting vector for research. The misconception
here is that IE is not the only software capable of loading
and controlling an ActiveX (think Microsoft Word).

SUMMARY
In summary, what I have concluded to be the minimum
requirements for successful fuzzing are the following:

1. Research! The primary target should be code bases,
not data formats or data input interfaces or fuzzing
automation technology. Look for ancient code,
hidden/non-obvious functionality, etc.

2. Bet on complex data formats. For complex data, code
paths exist which are not reachable automatically
– which means their code bases have probably never
been audited and there will be no competition.

3. Craft complex fuzzing seeds manually. The rule of
‘minimal size sample’, as stated in [2], is obsolete in
2014.

4. Remove one to two data format layers before injecting
malformed data. Deep parsers are less well audited
(because researchers are lazy?) and they tend to
contain more bugs (because programmers are lazy?).

5. Estimate the potency of a new vector by dumb
fuzzing prior to investing in smart fuzzing. Use the
assumption that bugs tend to crowd in the direction
of a ‘less well audited’ code base.

6. Tweak a lot to get a ‘feeling’ for the particular target.

7. Keep the fuzzing setting dirty. Fuzzing is dirty by
design. Incorporating it nicely into a well-designed
system kills the fl exibility that is necessary for
tweaking and rapid prototyping.

8. Do more research.

REFERENCES
[1] Pwn2Own 2014: A Recap. http://www.pwn2own.

com/2014/03/pwn2own-2014-recap/.

[2] Sutton, M.; Greene, A.; Amini, P. Fuzzing:
Brute Force Vulnerability Discovery.
http://www.fuzzing.org/.

[3] Koziol, J.; Litchfi eld, D.; Aitel, D.; Anley, C.;
Eren, S.; Mehta, N.; Hassell, R. The Shellcoder’s
Handbook: Discovering and Exploiting Security
Holes. First Edition. 2004.

[4] Google Chromium Security Hall of Fame.
http://www.chromium.org/Home/chromium-
security/hall-of-fame/.

http://www.pwn2own.com/2014/03/pwn2own-2014-recap/
http://www.fuzzing.org/
http://www.chromium.org/Home/chromium-security/hall-of-fame/

JUNE 2014

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

26

ADVISORY BOARD
Pavel Baudis, AVAST Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, ICSA Labs, USA

Joseph Wells, Independent researcher, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

Oil and Gas Cybersecurity takes place 3–4 June 2014 in Oslo,
Norway. For details see http://www.smi-online.co.uk/energy/europe/
conference/Oil-and-Gas-Cyber-Security-Nordics.

The M3AAWG 31st General Meeting will be held 9–12 June 2014
in Brussels, Belgium. For details see http://www.maawg.org/events/
upcoming_meetings.

The Copenhagen Cybercrime Conference 2014 takes place 12 June
2014 in Copenhagen, Denmark. For details see http://cccc-2014.
com/.

The 2014 USENIX Annual Technical Conference takes place 19–20
June 2014 in Philadelphia, PA, USA. For more information see
https://www.usenix.org/atc14/vb/.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

Hack in Paris takes place 23–27 June 2014 in Paris, France. For
information see http://www.hackinparis.com/.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

DEF CON 22 takes place 7–10 August 2014 in Las Vegas, NV,
USA. For details see https://www.defcon.org/.

44 CON will be held 10–12 September 2014 in London, UK. For
more information see http://44con.com/.

Cyber Intelligence Europe 2014 takes place 22–24 September 2014
in Brussels, Belgium. For details see http://www.intelligence-sec.com/
events/cyber-intelligence-europe-2014.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. Early bird discount applies until 30 June. For more information
and online booking, see http://www.virusbtn.com/conference/vb2014/.
For details of sponsorship opportunities and any other queries please
contact conference@virusbtn.com.

The Fourth Annual (ISC)2 Security Congress 2014 takes place
29 September to 2 October 2014 in Atlanta, GA, USA. For details
see https://congress.isc2.org/.

The Information Security Solutions Europe Conference
(ISSE 2014) will take place 14–15 October 2014 in Brussels,
Belgium. For details see http://www.isse.eu.com/.

The M3AAWG 32nd General Meeting will be held 20–23 October
2014 in Boston, MA, USA. For details see http://www.maawg.org/
events/upcoming_meetings.

WaTeR 2014 (the second Workshop on Anti-Malware Testing and
Research) takes place 23 October 2014 in Canterbury, UK. For
details see http://secsi.polymtl.ca/water2014/.

AVAR 2014 will be held 12–14 November 2014 in Sydney,
Australia. For details see http://www.avar2014.com/.

Botconf ’14 takes place 3–5 December 2014 in Nantes, France. For
full details of the second edition of the botnet fi ghting conference see
https://www.botconf.eu/.

VB2015 will be held in Prague, Czech Republic 30 September to
2 October 2015. Further details will be announced at
http://www.virusbtn.com/conference/vb2015/ in due course – in the
meantime, please contact conference@virusbtn.com for information on
sponsorship of the event or any other form of participation.

http://www.smi-online.co.uk/energy/europe/conference/Oil-and-Gas-Cyber-Security-Nordics
http://www.maawg.org/events/upcoming_meetings
http://cccc-2014.com/
https://www.usenix.org/atc14/vb/
http://www.first.org/conference/2014
http://www.hackinparis.com/
http://www.blackhat.com/
https://www.defcon.org/
http://44con.com/
http://www.intelligence-sec.com/events/cyber-intelligence-europe-2014
http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.virusbtn.com/
https://congress.isc2.org/
http://www.isse.eu.com/
http://www.maawg.org/events/upcoming_meetings
http://secsi.polymtl.ca/water2014/
http://www.avar2014.com/
https://www.botconf.eu/
http://www.virusbtn.com/conference/vb2015/
mailto:conference@virusbtn.com

